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ABSTRACT

Given a pre-trained in-distribution (ID) model, the task of inference-time out-of-
distribution (OOD) detection methods aims to recognize upcoming OOD data in
inference time. However, some representative methods share an unproven assump-
tion that the probability that OOD data belong to every ID class should be the same,
i.e., probabilities that OOD data belong to ID classes form a uniform distribution.
In this paper, we theoretically and empirically show that this assumption makes
these methods incapable of recognizing OOD data when the ID model is trained
with class-imbalanced data. Fortunately, by analyzing the causal relations between
ID/OOD classes and features, we identify several common scenarios where proba-
bilities that OOD data belong to ID classes should be the ID-class-prior distribution.
Based on the above finding, we propose two effective strategies to modify previous
inference-time OOD detection methods: 1) if they explicitly use the uniform distri-
bution, we can replace the uniform distribution with the ID-class-prior distribution;
2) otherwise, we can reweight their scores according to the similarity between
the ID-class-prior distribution and the softmax outputs of the pre-trained model.
Extensive experiments show that both strategies significantly improve the accuracy
of recognizing OOD data when the ID model is pre-trained with imbalanced data.
As a highlight, when evaluating on the iNaturalist dataset, our method can achieve
∼36% increase on AUROC and ∼61% decrease on FPR95, compared with the
original Energy method, reflecting the importance of ID-class prior in the OOD
detection, which lights up a new road to study this problem.

1 INTRODUCTION

How to reliably deploy machine learning models into real-world scenarios has been attracting more
and more attention (Huang et al., 2021; Liang et al., 2018; Liu et al., 2020). In real-world scenarios,
test data usually contain known and unknown classes (Hendrycks & Gimpel, 2017). We expect the
deployed model to eliminate the interference of unknown classes while classifying known classes
well. Nevertheless, current models tend to be overconfident in the unknown classes (Nguyen et al.,
2015), and thus confusing known and unknown classes, which increases the risk of deploying these
models in the real world. Especially if the scenarios are life-critical (e.g., car-driving scenarios), we
cannot take the risks of deploying unreliable models in them. This motivates researchers to study
out-of-distribution (OOD) detection, where we need to identify unknown classes (i.e., OOD classes)
and classify known classes (i.e., in-distribution (ID) classes) well at the same time (Hendrycks &
Gimpel, 2017; Hendrycks et al., 2019).

In the OOD detection, a well-known branch is to develop the inference-time/post hoc OOD detection
methods (Huang et al., 2021; Liang et al., 2018; Liu et al., 2020; Hendrycks & Gimpel, 2017; Lee
et al., 2018b; Sun et al., 2021), where we are given a pre-trained ID model and then aim to recognize
upcoming OOD data well. The key advantage of inference-time OOD detection methods is that the
classification performance on ID data will be unaffected since we only use the ID model instead of
changing it. A general way to design a large-scale-friendly inference-time OOD detection method is
to propose a score function by using the ID model’s information. For example, maximum softmax
probability (MSP) uses the ID model’s outputs (Hendrycks & Gimpel, 2017), and GradNorm uses
the ID model’s gradients (Huang et al., 2021). If the score of a data point is smaller, then this data
point is an OOD data point with a higher probability.

1



Under review as a conference paper at ICLR 2023

ID Features OOD Features ID Classes OOD Classes ID Style OOD Style Shared Style

(a) No Styles (b) Different Styles (c) Shared Style

Figure 1: Three common causal graphs in OOD detection. Under these graphs, we prove that probabilities
that an OOD data point xout belongs to ID classes should be the ID-class-prior distribution PY in (Theorem 1).
However, some representative OOD detection methods (Huang et al., 2021; Hendrycks & Gimpel, 2017) assume
such probabilities to be a uniform distribution u (e.g., GradNorm in Eq. 2). In this figure, each node represents a
random variable, and gray ones indicate observable variables. X stands for features, Y stands for classes, and
S stands for styles. In the three graphs, features are generated by classes (i.e., Y → X) (Gong et al., 2016;
Stojanov et al., 2021) or generated by classes and styles (i.e., Y → X ← S) (Yao et al., 2021). The three causal
graphs broadly exist in our common datasets. For example, (a) corresponds to datasets consisting of sketch
images, like ImageNet-Sketch (Wang et al., 2019) where ID classes could be cars and OOD classes could be
animals; (b) and (c) correspond to datasets consisting of common images, like ImageNet (Deng et al., 2009)
and MNIST (LeCun et al., 1998). In (b), the ID classes could be cars in ImageNet, and the OOD classes could
be numbers in MNIST (different styles). In (c), the ID classes could be numbers in MNIST, and OOD classes
could be classes in Fashion-MNIST (Xiao et al., 2017) (the same style). Through these graphs, it is clear that
Y in ⊥⊥ Xout, i.e., Y in and Xout are independent.

However, some representative methods share an unproven assumption: the probability that an OOD
data point xout belongs to each ID class i is always the same. Namely, for any xout, they assume

[Pr(xout belongs to class 1), . . . ,Pr(xout belongs to class K)] = [1/K, . . . , 1/K]1×K := u, (1)

where u is a uniform distribution and K is the number of ID classes. Taking the GradNorm (Huang
et al., 2021), a state-of-the-art OOD detection method, as an example1, let fΘ(x) be ID model’s
output of a data point x, and the score function of GradNorm is

SGradNorm(fΘ,x) =

∥∥∥∥∂DKL(u∥ softmax(fΘ(x))

∂Θ

∥∥∥∥
L1

, (2)

where Θ represents the ID model’s parameters, softmax(fΘ(x)) is a vector consisting of predicted
probabilities that x belongs to ID classes, and DKL(· ∥ ·) is the Kullback-Leibler divergence. It is
clear that GradNorm considers u as a reference distribution to distinguish between ID and OOD
data. If the divergence between softmax(fΘ(x)) and u is smaller, then x is an OOD data point with
a higher probability. Nonetheless, since we do not have this assumption proven, we do not know
whether it is correct. If not, the u-based score functions (e.g., Eq. 2) are ill-defined because they
cannot guarantee that the lowest score corresponds to the most OOD-ness data.

In this paper, we theoretically analyze the above assumption (i.e., Eq. 1) under three common causal
graphs (Figure 1), and find that the above assumption holds only when the ID-class prior is u, i.e.,
the ID model is trained with class-balanced data. In other cases, the reference distribution of OOD
data should be the ID-class-prior distribution PY in (Theorem 1), i.e.,

[Pr(xout belongs to class 1), . . . ,Pr(xout belongs to class K)] = PY in . (3)

Specifically, assume that we have K classes in training data (i.e., ID data). Let nj be the number
of samples in class j, then the total number of samples is N =

∑K
j nj . Thus, we have PY in =

[n1/N, n2/N, ..., nK/N ].

1Note that, MSP also has this assumption, we will discuss it in Section 3.2.
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Figure 2: (a) Plot showing the data distribution of balanced and imbalanced datasets. OOD detection
performances of (b) GradNorm and (c) Energy. Smaller FPR95 values are better. Cyan (left) bar: the
original method on a balanced dataset. Yellow (middle) bar: the original method on an imbalanced
dataset. Red (right) bar: the original method with our method on an imbalanced dataset. For a fair
comparison, the sample numbers of balanced and imbalanced datasets are the same. More detailed
results are shown in Appendix A.1.1.

Empirically, we test the performance of OOD detection methods when the data are not class-balanced
(Figure 2a), i.e., PY in ̸= u. We find that the GradNorm, a state-of-the-art OOD detection method, will
suffer from the imbalanced situation (see cyan and yellow bars in Figure 2b). Besides, it is interesting
to find that Energy (Liu et al., 2020), the other one of representative OOD detection methods that do
not explicitly use u, also suffers from this situation (see cyan and yellow bars in Figure 2c). Based
on Theorem 1 and Eq. 3, we propose two effective strategies to modify previous score-based OOD
detection methods using the ID-class-prior distribution: replacing (RP) strategy and reweighting (RW)
strategy. In RP strategy, previous methods explicitly use the uniform distribution (like GradNorm),
we can modify them by replacing u with the ID-class-prior distribution PY in . For example, we can
modify score functions of GradNorm by replacing u in Eq. 2 with PY in :

SRP+GradNorm(fΘ,x) =

∥∥∥∥∂DKL(PY in∥ softmax(fΘ(x))

∂Θ

∥∥∥∥
L1

. (4)

For the methods that do not explicitly use the uniform distribution to compute scores (like Energy (Liu
et al., 2020)), we can use the RW strategy to reweight their scores according to the similarity between
the ID-class-prior distribution PY in and the softmax outputs of the pre-trained model softmax(fΘ(x)).
Namely,

SRW+Method(fΘ,x) = SMethod(fΘ,x) · cos(softmax(fΘ(x)),PY in), (5)

where SMethod(fΘ,x) is a score function proposed in previous studies (like Energy (Liu et al., 2020)).

We conduct extensive experiments to verify the effectiveness of RP and RW strategies. After our
modification, the results (red bars in Figure 2) show a significant improvement, which illustrates the
effectiveness of our theory. Meanwhile, our method achieves state-of-the-art performance on four
evaluation tasks. As a highlight, when evaluate the OOD detection performance on iNaturalist dataset,
our method can achieve ∼36% increase on AUROC and ∼61% decrease on FPR95, compared with
the original Energy (Liu et al., 2020) (see Table 1). It further validates that we cannot default the
reference distribution of OOD data to the uniform distribution. To improve the generalizability of
OOD detection methods, the class-prior distribution of the training data should be taken into account,
which might benefit future researches in the community.

2 PRELIMINARIES

Let X ⊂ Rd and Y in = {1, ...,K} be the feature space and the ID label space. Denote X in ∈
X , Xout ∈ X and Y in ∈ Y in by the random variables with respect to X and Y in. P(X in, Y in)
is the ID joint distribution, PXin is the ID marginal distribution, and PXout is the OOD marginal
distribution.

OOD Detection. Given the training data Dtrain
in = {(x1, y1), ..., (xn, yn)} independent and identi-

cally distributed (i.i.d.) drawn from P(X in, Y in), the aim of OOD detection is to learn a model h
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using Dtrain
in such that for any test data x drawn from PXin or PXout : 1) if x is drawn from PXin , then

h can classify x into correct ID classes; and 2) if x is drawn from PXout , then h can detect x as OOD
data.

Inference-time OOD Detection. A well-known branch of OOD detection methods is to develop
the inference-time OOD detection (or post hoc OOD detection) methods (Huang et al., 2021; Liang
et al., 2018; Liu et al., 2020; Hendrycks & Gimpel, 2017; Lee et al., 2018b; Sun et al., 2021), where
we are given a pre-trained ID model and then aim to recognize upcoming OOD data well. The key
advantage of inference-time OOD detection methods is that the classification performance on ID data
will be unaffected since we only use the ID model instead of changing it.

Score Functions. Many representative OOD detection methods use a score-based strategy: given a
threshold γ, an ID model fΘ and a scoring function S, then x is detected as ID data if S(fΘ,x) ≥ γ:

Gγ(x) =

{
ID, if S(fΘ,x) ≥ γ

OOD , if S(fΘ,x) < γ
(6)

The performance of OOD detection depends on how to design a scoring function S to make OOD
data obtain lower scores while ID data obtain higher scores—thus, we can recognize ID/OOD data.

3 METHODOLOGY

Clearly, without any assumptions or conditions, OOD detection cannot be addressed well due to the
unavailability of OOD data (Zhang et al., 2021). Therefore, to investigate the feasibility of OOD
detection, in this section, we consider a natural case that ID classes and OOD features do not interfere
with each other.

3.1 ASSUMPTION AND THEOREM

Assumption 1. Random variables Xout and Y in are independent, i.e., P(Xout, Y in) = PXoutPY in .

Justification of Assumption 1. To justify that Assumption 1 is realistic, we conclude three common
causal graphs in Figure 1. These graphs illustrate how the data is generated through the lens of
causality. Notably, in Figure 1c, we can observe that X in and Xout are actually dependent, which
is very common in our daily life. It seems that the dependence of X in and Xout could result in the
failure of Assumption 1. However, since X in and Xout are dependent only because of the same
style (S in Figure 1) instead of classes (Y in Figure 1) (Yao et al., 2021), the condition that X in

and Xout are dependent does not conflict with Assumption 1. In fact, there exist many practical
scenarios which meet the causal structure in Figure 1c, e.g., MNIST and Fashion-MNIST (Xiao et al.,
2017). According to this assumption, we can prove our main theorem, which provides the theoretical
foundation for our paper.
Theorem 1. If Assumption 1 holds, then PY in|Xout(y|x) = PY in(y), for any y ∈ Y in.

The proof of Theorem 1 is in Appendix B.1. In the inference-time OOD detection, researchers assume
that the pre-trained model fΘ(x) can simulate the ID conditional distribution, i.e., the probabilities
that x belongs to each ID class: softmax(fΘ(x)) ≈ [PY in|Xout(1|x), ...,PY in|Xout(K|x)], when the
data point x is from OOD distribution. Therefore, Theorem 1 implies that if Assumption 1 holds, then
we hope that softmax(fΘ(x)) ≈ [PY in(1), ...,PY in(K)] = PY in , for any OOD data x. Next, we
discuss how to utilize this novel observation to improve existing score-based OOD methods. When
the labels of the training dataset are not available, we can use the predictions made by the model
as an alternative to simulate empirical ID-class-prior distribution PY in . The specific analysis and
experiments can be found in the Appendix B.2.

3.2 RETHINKING MSP AND GRADNORM BY THEOREM 1

According to Eq. 6, we discover that the score-based strategy has an implied assumption that if a data
point x has a lower score, then the data x has a higher probability detected as an OOD data point.
Based on this assumption, we consider the ideal case that if a data point x has the smallest score,
then what will happen? We answer this issue, when the score function is MSP.

Rethinking MSP by Theorem 1. We consider the MSP score and answer above issue by Theorem 2.
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Theorem 2. Given a data point x ∈ X , if f∗Θ(x) ∈ argminfΘ(x) SMSP(fΘ,x), then

softmax(f∗Θ(x)) = u, where u = [1/K, . . . , 1/K] ∈ RK .

The proof of Theorem 2 is in Appendix B.3. According to the implied assumption, we know that
when the data point has the smallest score, then x has the largest probability detected as an OOD
data point. Then, Theorem 2 shows that in the ideal case, the output of this data point x is a uniform
distribution u, which is conflict with our observation (i.e., softmax(fΘ(x)) ≈ PY in , if x is an OOD
data point) in the ID class-imbalance case. Therefore, to avoid the contradiction, we can replace the
uniform distribution in MSP as follows:

SRP+MSP(fΘ,x) = max
i∈{1,...,K}

(softmaxi(fΘ(x))− PY in(i)). (7)

Rethinking GradNorm by Theorem 1. Here, we discuss how to adjust the GradNorm score. By Eq.
2, it is clear that in the ideal case, we can conclude that softmax(fΘ(x)) ≈ u, i.e.,

lim
γ→0

softmax(fΘ(x)) = u, where fΘ(x) satisfies SGradNorm(fΘ,x) < γ. (8)

Therefore, Eq. 8 is inconsistent with our observation (i.e., softmax(fΘ(x)) ≈ PY in , if x is an OOD
data point) in the ID class-imbalance case. Similar to the MSP scenario, the basic idea is to use the
ID-class-prior distribution PY in = [PY in(1), ...,PY in(K)] to replace the uniform distribution u, i.e.,

SRP+GradNorm(fΘ,x) =

∥∥∥∥∂DKL(PY in∥ softmax(fΘ(x))

∂Θ

∥∥∥∥
L1

. (9)

3.3 OUR PROPOSAL: REPLACING AND REWEIGHTING STRATEGIES

Replacing (RP) Strategy. For those methods (e.g., MSP and GradNorm) whose score functions are
deeply related to the uniform distribution u, the simple and straight way of modifying them is to
replace the uniform distribution u with the ID-class-prior distribution PY in . As mentioned in Section
3.2, we modify the score functions of MSP and GradNorm as

SRP+MSP(fΘ,x) = max
i∈{1,...,K}

(softmax(fΘ(x))i − PY in(i)), (10)

SRP+GradNorm(fΘ,x) =

∥∥∥∥∂DKL(PY in∥ softmax(fΘ(x))

∂Θ

∥∥∥∥
L1

. (11)

Reweighting (RW) Strategy. For the methods that have no obvious correlations with the uniform
distribution u (e.g., ODIN (Liang et al., 2018) and Energy (Liu et al., 2020)), we design the RW
strategy as a complementary to the RP strategy. RW strategy reweights their scores according to a
similarity between the ID-class-prior distribution PY in and softmax(fΘ(x)). Here, we expect that
the weights do not impact on the OOD scores seriously. In this paper, we use the cosine function as
the weight function, which is one of the most popular distances and similarity functions in contrastive
learning (Chen et al., 2020; Grill et al., 2020; He et al., 2020). The main reason we choose cosine
function is that cosine is a bounded function and suitable as a weighting parameter after normalization.
Specifically,

SRW+Method(fΘ,x) = −SMethod(fΘ,x) · cos(softmax(fΘ(x)),PY in)

= −SMethod(fΘ,x) ·
softmax(fΘ(x)) · P⊤

Y in

∥ softmax(fΘ(x))∥ · ∥PY in∥
,

(12)

where SMethod(fΘ,x) is a score function proposed in previous studies, e.g., ODIN and Energy. Next,
we introduce the details about the reweighted ODIN and reweighted Energy in the following.
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Compared to MSP, the main improvement of ODIN is the use of a temperature scaling strategy. We
can modify ODIN as follows:2 for a temperature T > 0,

SRW+ODIN(fΘ,x) = − max
i∈{1,...,K}

exp (fi(x)/T )∑K
j=1 exp (fj(x)/T )

· cos(softmax(fΘ(x)),PY in). (13)

Energy (Liu et al., 2020) proposes to replace the softmax function with the energy function (LeCun
et al., 2006) for OOD detection. The energy function has a property that is highly correlated with the
distribution: the system with a more concentrated probability distribution has lower energy, while the
system with a more divergent probability distribution (more similar to the uniform distribution) has
higher energy (LeCun et al., 2006). Thus, the energy of ID data is smaller than OOD data. Based on
Eq. 12, we modify Energy as follows:

SRW+Energy(fΘ,x) = T · log
K∑
i=1

efi(x)/T · cos(softmax(fΘ(x)),PY in). (14)

In this paper, we mainly realize our strategies using Eqs. 10, 11, 13 and 14.

4 EXPERIMENTS

In this section, we construct a series of imbalanced ID datasets whose data are sampled from the
ImageNet-1K (Deng et al., 2009). Then, we train the ID classifiers on them as pre-trained ID models,
and use large-scale ImageNet OOD detection benchmark (Huang & Li, 2021) to evaluate our methods,
i.e., RP+MSP (Eq. 10), RP+GradNorm (Eq. 11), RW+ODIN (Eq. 13), and RW+Energy (Eq. 14). In
addition, we also evaluate our methods on a real-world imbalanced dataset iNaturalist (Horn et al.,
2018), see Appendix A.2.

4.1 EXPERIMENT SETUP
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Figure 3: Data distribution with dif-
ferent tail index a.

Dataset. Following Liu et al. (2019), we construct a series of
imbalanced datasets that are sampled by the Pareto distribution
in ImageNet-1K dataset. The definition of Pareto distribution
is in Eq. (15).

p(x) =
ama

xa+1
. (15)

In Appendix B.5, we have shown that the parameter m does not
affect the level of imbalance. Thus, we set m = 1. Additionally,
we note that the level of imbalance depends on the tail index a
(see Figure 3), thus, to evaluate the performance of our methods
in different imbalanced cases, we take different tail index a.

The frequency distributions of classes of the sampled datasets
are shown in Figure 3. As the increase of the tail index a, the
sampled datasets become more imbalanced, thus, the ImageNet-
LT-a8 dataset is the most imbalanced.

In the inference time, we use the large-scale benchmark proposed by Huang & Li (2021). In this
benchmark, the OOD datasets include the subsets of iNaturalist (Horn et al., 2018), SUN (Xiao
et al., 2010), Places (Zhou et al., 2018), and Textures (Cimpoi et al., 2014). Note that, there are no
overlapping classes between ID datasets and OOD datasets (Huang & Li, 2021).

Evaluation Metrics. We use two common metrics to evaluate OOD detection methods (Huang
et al., 2021): the false positive rate that OOD data are classified as ID data when 95% of ID data
are correctly classified (FPR95) (Provost et al., 1998) and the area under the receiver operating
characteristic curve (AUROC) (Huang et al., 2021).

2In fact, ODIN uses the modified softmax function with temperature T , which is also related to the uniform
distribution, so we can also modify ODIN with RP strategy. We can map the class-prior distribution to the same
feature space with ODIN’s OOD scores by temperature T . However, if following the default setting (T = 1000)
in ODIN, ∥PY in − u∥/T ≈ 0. Thus, RP+ODIN may not work. We will discuss this issue in Appendix B.4.
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Table 1: OOD detection performance comparison with other competitive score-based OOD detection
methods. All methods are based on ResNet101 trained on ImageNet-LT-a8. ↑ indicates larger values
are better and ↓ indicates smaller values are better. All values are percetages. The bold indicates the
best performance while the underline indicates the second.

Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44

ODIN (Liang et al., 2018) 60.14 98.70 70.63 93.13 70.14 91.96 41.83 98.30 60.69 95.52
Mahalanobis (Lee et al., 2018b) 60.72 95.87 56.79 94.50 55.27 93.78 49.43 86.99 55.55 92.78

Energy (Liu et al., 2020) 55.99 98.74 71.12 93.11 70.24 91.30 42.38 98.07 59.93 95.30
GradNorm (Huang et al., 2021) 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45

Maxlogit (Hendrycks et al., 2022) 60.14 98.70 70.64 93.13 70.15 91.96 41.83 98.30 60.69 95.52
Dice (Sun & Li, 2022) 85.80 58.96 73.17 76.90 67.83 87.89 58.43 80.59 71.31 76.11

RP+MSP(Ours) 64.95 96.44 67.39 91.79 67.46 91.16 43.05 98.51 60.71 94.48
RW+ODIN(Ours) 86.66 93.85 71.59 97.67 67.56 97.24 68.04 95.37 73.46 96.03
RW+Energy(Ours) 91.92 37.89 80.81 76.22 77.15 81.18 64.48 86.19 78.59 70.37

RP+GradNorm(Ours) 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12
RW+Maxlogit(Ours) 78.16 77.68 77.26 81.91 75.15 83.28 48.34 94.06 69.73 84.23
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Figure 4: Performance comparison of different data type. The figures shows the OOD detection
performance of GradNorm and RP+GradNorm in four OOD datasets.

Baselines. In order to verify the effectiveness of our strategies, we select MSP, ODIN, Energy,
GradNorm and Dice as the baselines, where Dice is the state-of-the-art (SOTA) method. Following
(Huang et al., 2021; Liang et al., 2018), the temperature parameter T in ODIN is set to be 1000 and
in GradNorm is 1.

Models and Hyperparameters. We use mmclassification3 (Contributors, 2020) with Apache-2.0
license to train ID models. The training details of ResNet (He et al., 2016) and MobileNet (Howard
et al., 2019) follow the default setting in mmclassification. Note that, all methods are realized by
Pytorch 1.60 with CUDA 10.2, where we use several NVIDIA Tesla V100 GPUs.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Verification of Two Strategies. Our strategies are applicable to various score functions used by
OOD detection methods. The performance of our methods and baselines are shown in Table 1.
Overall, after modifying previous methods using our strategies, their performance are significantly
improved, indicating the effectiveness of our strategies. Specifically, RW+Energy achieves the highest
AUROC (78.59%) compared to all methods. As a highlight, RW+Energy shows the most significant
performance improvement on all four datasets: ∼61% FPR95 decrease in iNaturalist, ∼17% FPR95
decrease in SUN, ∼10% FPR95 decrease in Places and ∼12% FPR95 decrease in Textures.

Besides, our strategies outperform the existing baseline methods in all evaluation tasks. Compared
with the best baseline, RW+Energy increases AUROC from 71.31% to 78.59%, while RP+GradNorm
reduces FPR95 from 76.11% to 70.12%. Experimental results have shown that our strategies can
significantly outperform the baselines in the ID-class-imbalanced scenarios.

Analysis of Detection Results on Different ID Classes. Since the training dataset is imbalanced, we
follow Liu et al. (2019) to divide all ID classes into three categories (ID Head, ID Mid, ID Tail) for
further analysis. In detail, ID Head category includes the classes containing more than 100 samples
in the training dataset;ID Mid category includes the classes whose number of samples is between
20 and 100 in the training dataset; and ID Tail category includes the classes containing less than 20

3https://github.com/open-mmlab/mmclassification
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Figure 5: OOD detection performance with ResNet101 trained on different imbalanced ID datasets.
↑ indicates larger values are better and ↓ indicates smaller values are better.

samples in the training dataset. Then, we evaluate the OOD detection performance on three datasets:
ID Head+OOD, ID Mid+OOD and ID Tail+OOD (details can be found in Appendix A.1.3). If the
performance of one method on ID Tail+OOD is better than that on ID Head+OOD, then this method
performs better when facing tailed classes and OOD data.

In the case of GradNorm, experiment results in Figure 4 show that our method RP+GradNorm
improves the performance on the above three datasets (ID Head+OOD, ID Mid+OOD, and ID
Tail+OOD). When we take a closer look at the performance improvement, we notice that the overall
performance improvement of RP+GradNorm is mainly due to the significant improvement on the
Tail+OOD dataset. This result might indicate that the previous method, like GradNorm, confuses
OOD data and ID tailed classes, which hinders their OOD detection performance. And our strategies
can overcome this issue. More detailed results are shown in Appendix A.1.3.

4.3 ABLATION STUDY

Analysis regarding Tail Index a. Here, we report the performance of our method and baselines when
changing the tail index a ∈ {2, 3, . . . , 8}. We conduct repeated experiments on these seven datasets
(ImageNet-LT-a2, ImageNet-LT-a3,. . . , ImageNet-LT-a8), and the results are shown in Figure 5.
Overall, our method RP+GradNorm always outperforms other baselines with different imbalance
degrees. More importantly, the performance improvement between RP+GradNorm and each baseline
gradually increases, as the increase of the imbalance degree. This indicates that RP+GradNorm can
handle different imbalanced scenarios better. More detailed results are in Appendix A.1.2.

Analysis regarding Network Architecture. We evaluate all methods on a different network archi-
tecture, MobileNet-V3 (Howard et al., 2019). Experiment results in Table 2 show that our methods
(RP+GradNorm and RW+Energy) still outperform baselines on four evaluation tasks even when we
change the network architecture. In addition, RP+GradNorm has a better performance on FPR95
while RW+Energy has higher AUROC, corresponding to the performances of GradNorm and Energy.

Analysis regarding Model Size. We provide an experiment about the model size of RP+GradNorm.
We compare ResNet50, ResNet101 and ResNet152 trained on ImageNet-LT-a8 datasets. The results
are shown in Table 3. The optimal model is the smallest one (ResNet50), and we observe that as the
increase of the model size, the performance decreases. One of the reasons may be that small models
are more difficult to overfit and thus more suitable for OOD detection in imbalanced scenarios.

More Experiments and Exploration. First, we can also regard the cosine similarity weights in the
RW strategy as a score function, and conduct several experiments in Appendix A.1.4. Second, to
evaluate the stability of our strategies, we conduct 10 independent replicate experiments in Appendix
A.1.5. Third, to further explore the collocation of existing methods and our design strategy, we
conduct experiments regarding RW+MSP, RW+GradNorm, RW+RP+MSP/GradNorm, as shown in
Appendix A.1.6. Then, we further consider what will happen if the ID-class prior is not accurate in
the practical applications and conduct relevant experiments in Appendix A.1.7. Finally, we show in
Appendix A.1.8 that our methods still work well when models are trained with long-tailed learning
strategies (Cao et al., 2019; Park et al., 2022) during the training phase.

8
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Table 2: OOD detection performance with MobileNet trained on ImageNet-LT-a8. ↑ indicates larger
values are better and ↓ indicates smaller values are better. All values are percentages. The bold
indicates the best performance while the underline indicates the second.

Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 63.47 92.38 67.27 85.62 64.16 89.62 59.88 89.06 63.69 89.17

ODIN (Liang et al., 2018) 64.68 93.78 74.29 79.42 69.94 89.70 69.06 82.23 69.49 86.28
Energy (Liu et al., 2020) 63.42 96.37 74.95 77.86 70.30 90.50 70.69 80.83 69.84 86.39

GradNorm (Huang et al., 2021) 70.87 78.12 69.70 67.59 66.00 85.75 63.09 74.89 67.41 76.59
Dice (Sun & Li, 2022) 65.61 86.40 69.35 66.38 65.95 88.42 68.85 68.19 67.44 77.35

RP+MSP(Ours) 63.76 91.76 67.56 85.11 64.37 89.41 60.02 88.62 63.93 88.73
RW+ODIN(Ours) 80.20 73.32 72.46 77.48 68.25 89.08 67.62 73.24 72.13 78.28
RW+Energy(Ours) 81.64 69.94 76.10 80.36 70.41 86.71 65.58 85.82 73.43 80.71

RP+GradNorm(Ours) 77.25 68.61 72.49 66.02 68.56 82.30 64.69 71.86 70.75 72.20

Table 3: OOD detection performance with model size increases. The RP+GradNorm method is
trained on ImageNet-LT-a8. All values are percentages.

Model iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ResNet50 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.62

ResNet101 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12
ResNet152 88.24 53.14 73.45 78.96 68.61 87.14 59.41 83.71 72.43 75.74

5 RELATED WORKS

Inference-time/post-hoc OOD Detection: Some methods (Huang et al., 2021; Liang et al., 2018;
Liu et al., 2020; Hendrycks & Gimpel, 2017; Lee et al., 2018b; Sun et al., 2021) focus on designing
OOD score functions for OOD detection in the inference time and are easy to use without changing
the model’s parameters. This property is important for deploying OOD detection methods in real-
world scenarios where the cost of re-training is prohibitively expensive and time-consuming. MSP
(Hendrycks & Gimpel, 2017) directly takes the maximum value of the model’s prediction as the OOD
score function. Based on MSP, ODIN (Liang et al., 2018) uses a temperature scaling strategy and
input perturbation to improve OOD detection performance. Moreover, Liu et al. (2020) and Wang
et al. (2021a) propose to replace the softmax function with the energy functions for OOD detection.
Recently, GradNorm (Huang et al., 2021) uses the similarity of the model-predicted probability
distribution and the uniform distribution to improve OOD detection and achieve state-of-the-art
performance. In this paper, we mainly work on the inference-time OOD detection methods and aim
at improving the generalizability of OOD detection in real-world scenarios.

Training-time OOD Detection: Other methods (Hsu et al., 2020; Hein et al., 2019; Bitterwolf et al.,
2020; Wang et al., 2021b) will complete ID tasks and OOD detection simultaneously in the training
time. Bitterwolf et al. (2020) uses adversarial learning to process OOD data in training time and
make the model predict lower confidence scores for them. Wang et al. (2021b) generates pseudo
OOD data by adversarial learning to re-training a K+1 model for OOD detection. These methods
usually require auxiliary OOD data available in the training process. Thus, the model will be affected
by both ID data and OOD data. It is important for these method to explore an inherent trade-off (Liu
et al., 2019; Vaze et al., 2022; Yang et al., 2021) between ID tasks and OOD detection.

6 CONCLUSION

This paper theoretically and empirically shows that the unproven assumption of uniform distribution
in previous methods is not valid when the training dataset is imbalanced. Moreover, by analyzing the
causal relations between ID/OOD classes and features, we point out that the best reference distribution
for OOD data is the ID-class-prior distribution. Based on this, we propose two simple and effective
strategies to modify the uniform distribution assumption in previous inference-time OOD detection
methods. RP strategy is suitable for the methods that directly use the uniform distribution to design the
OOD score function, while RW strategy is designed for methods that potentially use the assumption.
Extensive experiments show that both strategies can significantly improve the performance of OOD
detection on large-scale image classification benchmarks.
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To ensure the reproducibility of experimental results, we provide main codes in the Appendix D. The
experimental setups for training and evaluation as well as the hyperparamters are detailedly described
in Section 4.1.
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A FURTHER EXPERIMENTS

A.1 EVALUATION ON IMAGENET BENCHMARK

A.1.1 EVALUATION ON IMBALANCED DATA AND BALANCED DATA

We randomly sample a balanced dataset from ImageNet-1K dataset, which has the same sample
numbers with the imbalanced datasets. We conduct experiments on the balanced data as shown in
Figure 6 and Figure 7. All methods shows a similar trend, i.e., the performance drop a lot when the
training dataset becomes imbalanced (from cyan bars to yellow bars). Moreover, our method shows a
significant improvement with previous methods on all evaluation tasks (from yellow bars to red bars).
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Figure 6: OOD detection performance (AUROC) of (a) MSP (b) ODIN (c) Energy and (d) GradNorm.
Larger AUROC values are better. Cyan (left) bar: the original method on balanced dataset. Yellow
(middle) bar: the original method on imbalanced dataset. Red (right) bar: the original method with
our method on imbalanced dataset.

A.1.2 ANALYSIS REGARDING TAIL INDEX

We can obtain sampled datasets with different levels of imbalance based on the Pareto distribution.
ImageNet-LT-a8 dataset is the most imbalanced, while ImageNet-LT-a2 is the most balanced. We
conduct repeated experiments on these seven datasets and results are shown in Table 4. Obviously,
the more imbalanced the training ID dataset becomes, the more our methods (RP+GradNorm and
Cosine Similarity) demonstrates their superior performance of OOD detection, compared to other
methods on all evaluation tasks.

It is noticeable that the detection performance of GradNorm is relatively stable no matter how
imbalanced the ratio changes, compared with other existing methods (such as MSP, ODIN, Energy).
These methods explicitly/implicitly use the discrepancy between the classifier’s output and the
uniform distribution. Thus, they will be affected a lot if the prior distribution changes from the
uniform distribution to an imbalanced/tailed one.
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Figure 7: OOD detection performance (FPR95) of (a) MSP (b) ODIN (c) Energy and (d) GradNorm.
Smaller FPR95 values are better. Cyan (left) bar: the original method on balanced dataset. Yellow
(middle) bar: the original method on imbalanced dataset. Red (right) bar: the original method with
our method on imbalanced dataset.

As for GradNorm, we conjecture that considering the gradient space might be robust to the changes
of priors (such as from a uniform prior to an imbalanced prior). To verify this conjecture, we conduct
the experiment that KL divergence is directly used to measure the discrepancy between the output
of the classifier and the uniform distribution (i.e., GradNorm without gradient-norm process). The
results are shown in Table 5. Obviously, this KL-based method is also significantly affected by
the imbalanced situation, then we can verify this conjecture. Thus, we confirm that GradNorm’s
robustness of the imbalanced ratio depends on the gradient space.

A.1.3 ANALYSIS OF DETECTION RESULTS ON DIFFERENT ID CLASSES

We calculate the evaluation metrics for the three categories (ID-Head, ID-Mid, ID-Tail) by randomly
sampling OOD data in equal proportions corresponding to the number of samples in each category.
For example, we have 50000 ID samples and 10000 OOD samples in total. If the number of samples
in category Head is 10000 and accordingly we will sample 2000 OOD samples, then we use the
12000 samples to calculate AUROC and FPR95. The results reflects the confusion degree between ID
Head data and OOD data in the view of OOD detection methods. We conduct experiments to analyze
the performance of different data types, as shown in Table 6.

We try to analyze tailed categories using a confusion matrix, and there are some cases in Table 7.
[A B
C D ] is the result, where A represents the number of ID samples in the current class that are correctly

classified as ID while C represents the number of ID samples in the current class that are misclassified
as ID. D represents the number of OOD samples close to ID samples in the current class that are
correctly classified as OOD while B represents the number of OOD samples close to ID samples in
the current class that are misclassified as OOD.

In Class #88 and #94, more OOD samples are correctly classified after applying our strategies, while
the performance of Class #671 remains stable. In Class #671, more ID samples are correctly classified,
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Table 4: OOD detection performance with ResNet101 trained on different imbalanced ID datasets. ↑
indicates larger values are better and ↓ indicates smaller values are better. All values are percentages.

Datasets Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-LT-a2

MSP Hendrycks & Gimpel (2017) 71.57 89.71 73.74 80.64 70.76 85.17 49.68 96.28 66.44 87.95
ODIN Liang et al. (2018) 65.92 93.17 76.32 79.60 72.77 84.29 42.67 95.76 64.42 88.21

Mahalanobis (Lee et al., 2018b) 61.12 92.51 52.79 95.47 52.26 94.96 51.19 88.14 54.34 92.77
Energy Liu et al. (2020) 60.26 95.63 75.57 81.89 72.00 85.90 40.67 95.18 62.12 89.65

GradNorm Huang et al. (2021) 75.82 75.86 75.33 68.03 70.13 80.61 52.58 86.86 68.46 77.84
Dice (Sun & Li, 2022) 72.17 77.31 73.94 70.28 68.88 83.69 50.12 86.38 66.28 79.42
RP+GradNorm(Ours) 79.66 70.18 75.70 68.50 70.33 81.34 53.30 86.88 69.75 76.72

Cosine Similarity(Ours) 81.84 67.06 73.26 74.27 68.78 81.75 47.94 92.18 67.95 78.82

ImageNet-LT-a3

MSP Hendrycks & Gimpel (2017) 73.97 89.10 73.38 80.91 69.91 87.20 50.07 96.28 66.83 88.37
ODIN Liang et al. (2018) 72.04 92.06 75.92 79.71 71.49 86.30 45.79 95.04 66.31 88.28

Mahalanobis (Lee et al., 2018b) 48.51 94.60 53.81 92.63 53.85 91.84 56.36 86.48 53.13 91.39
Energy Liu et al. (2020) 67.94 94.42 75.24 82.36 70.48 88.07 44.81 94.02 64.62 89.72

GradNorm Huang et al. (2021) 83.41 65.27 76.93 67.10 70.94 81.43 57.03 82.25 72.08 74.01
Dice (Sun & Li, 2022) 81.72 65.63 75.60 70.30 69.81 84.44 54.68 82.48 70.45 75.71
RP+GradNorm(Ours) 87.13 56.16 77.47 67.71 71.42 81.96 58.35 82.45 73.59 72.07

Cosine Similarity(Ours) 87.81 50.66 74.15 73.80 68.87 82.92 52.98 87.73 70.96 72.78

ImageNet-LT-a4

MSP Hendrycks & Gimpel (2017) 72.41 89.92 73.00 83.34 70.38 86.97 49.96 96.42 66.44 89.16
ODIN Liang et al. (2018) 70.35 92.76 74.66 82.95 71.35 87.30 46.00 95.50 65.59 89.63

Mahalanobis (Lee et al., 2018b) 49.37 96.48 56.58 93.36 54.98 93.75 51.59 85.45 53.13 92.26
Energy Liu et al. (2020) 66.27 95.05 73.17 85.85 69.63 89.71 45.13 95.14 63.55 91.44

GradNorm Huang et al. (2021) 80.87 71.75 74.64 71.60 69.86 84.24 57.87 81.72 70.81 77.33
Dice (Sun & Li, 2022) 78.60 72.35 74.02 73.34 68.94 86.45 55.75 82.18 69.33 78.58
RP+GradNorm(Ours) 86.20 60.40 75.29 71.93 70.40 84.43 59.85 80.51 72.93 74.32

Cosine Similarity(Ours) 89.21 48.91 74.13 74.53 70.06 82.41 57.25 86.60 72.66 73.11

ImageNet-LT-a5

MSP Hendrycks & Gimpel (2017) 72.18 91.15 72.43 85.42 70.38 87.73 48.59 97.13 65.89 90.36
ODIN Liang et al. (2018) 69.53 94.68 75.92 84.34 73.07 87.04 46.49 96.47 66.26 90.63

Mahalanobis (Lee et al., 2018b) 48.35 96.03 58.07 91.81 57.20 90.52 50.00 83.95 53.41 90.58
Energy Liu et al. (2020) 64.85 95.98 75.38 85.29 72.25 87.89 46.25 95.89 64.68 91.26

GradNorm Huang et al. (2021) 84.01 67.28 75.30 73.25 69.82 85.38 58.53 82.52 71.91 77.11
Dice (Sun & Li, 2022) 82.88 65.51 73.14 76.80 66.94 89.04 57.04 82.25 70.00 78.40
RP+GradNorm(Ours) 89.59 51.01 76.55 72.93 70.91 84.68 61.06 81.05 74.53 72.42

Cosine Similarity(Ours) 91.53 41.44 78.57 71.83 74.41 79.89 60.13 86.74 76.16 69.97

ImageNet-LT-a6

MSP Hendrycks & Gimpel (2017) 70.99 91.04 71.63 86.67 70.50 86.62 45.49 97.66 64.65 90.50
ODIN Liang et al. (2018) 70.82 92.57 74.04 87.81 72.18 88.25 43.49 96.83 65.13 91.36

Mahalanobis (Lee et al., 2018b) 57.62 89.82 60.18 89.38 59.07 89.46 49.49 84.92 56.59 88.39
Energy Liu et al. (2020) 67.93 93.88 72.62 89.16 70.44 89.81 43.53 95.94 63.63 92.20

GradNorm Huang et al. (2021) 83.49 67.76 74.02 76.58 69.12 85.87 55.75 85.46 70.60 78.92
Dice (Sun & Li, 2022) 82.31 68.27 71.70 79.35 66.20 89.82 54.04 85.60 68.56 80.76
RP+GradNorm(Ours) 89.07 51.55 75.09 77.47 69.89 86.28 58.80 84.38 73.21 74.92

Cosine Similarity(Ours) 91.22 43.01 78.35 78.35 74.64 82.94 60.08 88.63 76.07 73.23

ImageNet-LT-a7

MSP Hendrycks & Gimpel (2017) 65.60 96.81 68.50 90.68 67.22 91.26 44.65 98.16 61.49 94.23
ODIN Liang et al. (2018) 63.13 97.72 71.29 91.17 69.16 91.20 43.33 97.64 61.73 94.43

Mahalanobis Lee et al. (2018b) 50.52 97.86 54.18 92.36 54.19 92.31 51.96 88.28 52.71 92.70
Energy Liu et al. (2020) 59.46 98.20 70.56 91.89 68.07 91.90 43.77 97.41 60.47 94.85

GradNorm Huang et al. (2021) 80.38 77.04 73.07 77.43 66.86 88.60 58.65 83.21 69.74 81.57
Dice (Sun & Li, 2022) 81.61 70.42 71.19 78.93 63.79 91.40 57.72 81.95 68.58 80.68
RP+GradNorm(Ours) 88.59 55.40 75.17 75.35 68.78 86.41 63.08 80.83 73.91 74.50

Cosine Similarity(Ours) 90.12 49.49 78.62 77.87 73.94 82.90 62.43 87.54 76.28 74.45

ImageNet-LT-a8

MSP Hendrycks & Gimpel (2017) 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44
ODIN Liang et al. (2018) 60.14 98.70 70.63 93.13 70.14 91.96 41.83 98.30 60.69 95.52

Mahalanobis (Lee et al., 2018b) 60.72 95.87 56.79 94.50 55.27 93.78 49.43 86.99 55.55 92.78
Energy Liu et al. (2020) 55.99 98.74 71.12 93.11 70.24 91.30 42.38 98.07 59.93 95.30

GradNorm Huang et al. (2021) 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45
Dice (Sun & Li, 2022) 85.80 58.96 73.17 76.90 67.83 87.89 58.43 80.69 71.31 76.11
RP+GradNorm(Ours) 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12

Cosine Similarity(Ours) 89.81 51.42 81.55 73.25 77.47 78.38 62.41 87.59 77.65 72.66

Table 5: OOD detection performance with ResNet101 trained on different imbalanced ID datasets.
KL stands for using only KL divergence as the OOD detection function. ↑ indicates larger values are
better and ↓ indicates smaller values are better. All values are percentages.

Datasets Method iNaturalist SUN Places Textures Average
AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-LT-a2 KL 60.66 95.51 75.21 83.06 71.94 86.15 40.36 95.25 62.04 89.99
ImageNet-LT-a3 KL 68.14 94.26 74.91 83.22 70.32 88.10 44.55 94.10 64.48 89.92
ImageNet-LT-a4 KL 66.58 94.78 72.97 86.35 69.66 89.62 44.97 95.25 63.54 91.50
ImageNet-LT-a5 KL 65.14 95.88 75.02 86.18 72.12 88.03 45.96 96.01 64.56 91.53
ImageNet-LT-a6 KL 68.14 93.77 72.30 89.82 70.44 89.86 43.10 96.15 63.50 92.40
ImageNet-LT-a7 KL 59.71 98.10 70.32 92.18 68.12 91.81 43.49 97.41 60.41 94.88
ImageNet-LT-a8 KL 56.33 98.72 71.09 93.29 70.43 91.13 42.27 98.12 60.03 95.32

while the performance of Class #94 of ID samples is sacrificed for more performance improvement
of OOD samples.

Moreover, we visualize the OOD score distributions in Figure 8-11. Obviously, the results and figures
show that the previous methods tend to confuse OOD data and the minority classes, which hinders
their performance of OOD detection. And our strategies can reduce the confusion to improve OOD
detection performance.
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Table 6: Performance comparison of different data type. All methods are based on ResNet101 trained
on ImageNet-LT-a8. All values are percentages.

iNaturalist SUN Places TexturesMethod Data Type AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Overall 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95
Head 82.68 66.48 73.13 73.18 68.86 82.66 51.61 83.59
Mid 83.85 69.50 75.88 75.68 71.91 84.41 55.99 85.48GradNorm (Huang et al., 2021)

Tail 82.51 75.77 75.13 80.78 71.64 88.85 58.62 86.62

Overall 91.23(+8.72) 43.83(-28.36) 77.05(+2.48) 74.20(-3.90) 72.36(+1.69) 83.73(-2.85) 63.05(+5.74) 79.95(-5.00)
Head 87.56(+4.88) 51.94(-14.54) 68.13(-5.00) 78.77(+5.59) 61.71(-7.15) 88.02(+5.36) 52.56(+0.94) 83.39(-0.20)
Mid 91.42(+7.56) 42.26(-27.24) 76.87(+0.99) 73.40(-2.29) 72.12(+0.21) 83.30(-1.11) 63.32(+7.33) 79.92(-5.57)RP+GradNorm(Ours)

Tail 93.38(+10.87) 37.58(-38.19) 81.82(+6.69) 70.33(-10.45) 78.51(+6.87) 80.98(-7.87) 69.40(+10.78) 77.01(-9.61)

Table 7: Confusion matrix in some tailed categories.

Class id GradNorm RP+GradNorm

88 [ 47 14
3 8 ] [ 47 4

3 18 ]
94 [ 33 106

17 182 ] [ 29 61
21 227 ]

671 [ 35 2
15 1 ] [ 41 2

9 1 ]

Table 8: Performance comparison under random sampling. All methods are based on ResNet101
trained on different imbalanced ID dataset with tail index a = 8. The results are means ± standard
errors among ten randomly sampled datasets. ↑ indicates larger values are better and ↓ indicates
smaller values are better. All values are percentages.

Method iNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 65.19±0.95 93.77±0.58 66.18±2.91 91.49±0.62 59.83±1.19 93.44±0.47 46.94±0.81 97.16±0.26

ODIN (Liang et al., 2018) 59.30±0.86 96.99±0.31 66.82±3.36 94.2±0.48 59.84±1.35 94.65±0.40 39.79±0.62 98.32±0.10
Mahalanobis (Lee et al., 2018b) 52.70±1.05 94.56±0.72 50.12±5.09 95.79±1.32 49.72±3.50 95.66±1.04 54.79±3.94 91.36±2.52

Energy (Liu et al., 2020) 53.96±0.77 98.20±0.17 65.44±3.72 96.26±0.49 58.67±1.46 95.54±0.51 37.09±0.76 99.07±0.11
GradNorm (Huang et al., 2021) 81.03±0.56 68.73±1.40 76.03±1.77 70.39±1.74 70.87±0.77 83.39±1.18 61.78±0.83 79.80±0.80

RP+GradNorm(Ours) 83.48±1.03 61.93±2.26 78.74±2.43 62.66±1.81 74.20±0.78 77.35±1.42 64.11±0.73 76.80±0.69
Cosine Similarity(Ours) 71.99±7.05 84.29±13.22 71.72±3.87 82.04±3.06 66.63±4.70 87.99±3.45 51.46±4.44 92.95±1.93

Table 9: OOD detection performance with model size increasing. The RP+GradNorm method is
trained on ImageNet-LT-a8. All values are percentages.

Model iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ResNet50 89.18 51.42 81.55 73.25 77.47 78.38 62.41 87.59 77.65 72.66

ResNet101 90.34 47.35 81.30 75.55 77.84 80.01 62.04 88.05 77.88 72.74
ResNet152 89.19 50.08 79.53 79.20 76.25 82.63 61.41 89.17 76.59 75.27

MobileNet 82.55 65.76 79.73 69.31 73.84 79.47 69.09 78.21 76.30 73.19

A.1.4 COSINE SIMILARITY AS A SCORE FUNCTION

We can also regard the cosine similarity weights in the RW strategy as a score function, and conduct
several experiments in Table 4, Table 8 and Table 9. We notice that the cosine similarity also achieves
a significant improvement compared with baselines in main evaluation tasks. Yet we notice that the
cosine similarity is sensitive to the ID data distribution, since the performance in random sampling
experiments (see Table 8) is not good enough compared with RP+GradNorm.

A.1.5 PERFORMANCE EVALUATION UNDER RANDOM SAMPLING

To further evaluate the performance of our method RP+GradNorm, we conduct experiments in 10
different ID datasets, which are generated randomly by the Pareto distribution with a = 2 and a = 8
from ImageNet-1K. The results on ImageNet-a8 dataset are reported in Table 8. From this table, it
can be observed that, our method RP+GradNorm can outperform baseline methods on all evaluation
tasks. As a highlight, RP+GradNorm reduces FPR95 from 70.39% to 62.66%. All these results show
the our method RP+GradNorm still outperforms all baselines under random sampling. ImageNet-a2
dataset is more similar to the balanced dataset. The results are reported in Table 10. It can be observed
that, our method RP+GradNorm can still outperform baseline methods on all evaluation tasks.
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Figure 8: OOD score distribution of (a) MSP and (b) RP+MSP.
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Figure 9: OOD score distribution of (a) ODIN and (b) RW+ODIN.

Table 10: Performance comparison under random sampling. All methods are based on ResNet101
trained on different imbalanced ID dataset with tail index a = 2. The results are means ± standard
errors among ten randomly sampled datasets. ↑ indicates larger values are better and ↓ indicates
smaller values are better. All values are percentages.

Method iNaturalist SUN Places Textures

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 72.55±0.39 87.64±0.59 68.23±0.35 87.33±0.27 64.82±0.25 90.21±0.27 50.58±0.48 96.02±0.26

ODIN (Liang et al., 2018) 70.70±0.63 89.41±0.75 72.03±0.43 85.31±0.55 67.26±0.38 89.28±0.46 44.86±0.69 95.57±0.28
Energy (Liu et al., 2020) 67.36±0.89 91.14±0.83 72.52±0.63 85.27±0.88 67.33±0.54 89.67±0.61 43.19±0.74 95.42±0.27

GradNorm (Huang et al., 2021) 83.66±0.93 61.90±2.25 78.40±0.76 66.78±1.31 72.09±0.67 79.47±1.09 61.80±0.72 80.21±0.88
RP+GradNorm(Ours) 83.77±0.95 61.83±2.30 78.84±0.77 65.79±1.40 72.50±0.69 78.65±1.17 61.91±0.74 80.12±0.89

18



Under review as a conference paper at ICLR 2023

10 15 20 25

OOD Scores
0.0

0.1

0.2

0.3

0.4

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (iNaturalist)

10 15 20 25

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (SUN)

10 15 20 25

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (Places)

5 10 15 20 25 30 35

OOD Scores
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (Textures)

(a) Energy

7 6 5 4 3 2 1 0

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (iNaturalist)

6 5 4 3 2 1 0

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (SUN)

6 5 4 3 2 1 0

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (Places)

6 5 4 3 2 1 0 1

OOD Scores
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

ID (ImageNet)
ID-Head
ID-Mid
ID-Tail
OOD (Textures)

(b) RW+Energy

Figure 10: OOD score distribution of (a) Energy and (b) RW+Energy.
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Figure 11: OOD score distribution of (a) GradNorm and (b) RW+GradNorm.

A.1.6 ABLATION STUDY BETWEEN PROPOSED STRATEGIES

To further explore the collocation of existing methods and our design strategy, we conduct experiments
regarding RW+MSP, RW+GradNorm, RW+RP+MSP/GradNorm, as shown in the table 11. Since
the cosine distance is superior to the performance of MSP, RW strategy can modify the output of
MSP to improve it better than RP strategy. However, for GradNorm, RP strategy performs better
than RW strategy because the cosine distance does not perform much better than GradNorm. In
contrast, RP strategy better matches the idea of the original method. Therefore, we suggest that the
choice of the two strategies follows the idea of preferentially matching the original method. As for
RP+RW+MSP/GradNorm, they do not perform well. Taking GradNorm as an example, we think the
main reason for this phenomenon is that RP+GradNorm has an outstanding performance, but RW
strategy performance is worse than RP+GradNorm. Thus, adding RW strategy to RP+GradNorm
has a negative effect, so the performance is significantly reduced. On the other hand, as for MSP,
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Table 11: Ablation study between proposed strategies. All methods are trained on ImageNet-LT-a8
dataset with ResNet101.

Method Strategy iNaturalist SUN Places Textures Average

RP RW AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MSP

w/o w/o 63.95 97.72 66.60 93.13 66.84 92.11 42.74 98.79 60.03 95.44
w/ w/o 64.95 96.44 67.39 91.79 67.46 91.16 43.05 98.51 60.71 94.48

w/o w/ 81.77 78.77 77.83 78.10 75.67 81.98 51.24 90.44 71.63 82.32
w/ w/ 67.40 94.79 68.23 91.12 68.30 90.34 43.71 98.09 61.91 93.58

GradNorm

w/o w/o 82.51 72.19 74.57 78.10 70.67 86.58 57.31 84.95 71.26 80.45
w/ w/o 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12

w/o w/ 88.96 56.32 80.05 82.45 77.47 83.93 62.08 92.39 77.14 78.77
w/ w/ 82.56 85.92 77.89 89.06 76.30 88.23 58.73 96.37 73.87 89.89

Table 12: OOD detection performances with different level of noises.

Method Noise Intensity k
iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

RP+MSP

0 64.95 96.44 67.39 91.79 67.46 91.16 43.05 98.51 60.71 94.48
0.1 65.12 96.40 67.24 91.92 67.55 90.97 42.88 98.49 60.70 94.45
0.2 65.06 96.41 67.19 92.07 67.51 91.08 42.86 98.51 60.65 94.52
0.5 64.94 96.53 67.04 92.29 67.39 91.51 42.82 98.60 60.50 94.74
1 64.80 96.75 67.04 92.23 67.38 91.32 42.79 98.67 60.28 95.11
2 64.48 97.15 66.75 92.82 67.18 91.73 42.72 98.76 60.28 95.11

RW+ODIN

0 86.66 93.85 71.59 97.67 67.56 97.24 68.04 95.37 73.46 96.03
0.1 74.81 82.02 63.77 95.77 62.39 96.07 52.72 93.69 63.42 91.89
0.2 73.16 81.94 62.75 96.25 61.46 96.68 52.55 94.27 62.48 92.29
0.5 65.59 83.52 57.79 96.08 56.86 96.46 51.25 94.36 57.87 92.61
1 65.83 84.55 58.22 95.89 57.31 96.22 50.84 94.75 58.05 92.85
2 65.75 86.32 58.25 95.87 57.49 95.77 50.28 94.45 57.94 93.10

RW+Energy

0 91.92 37.89 80.81 76.22 77.15 81.18 64.48 86.19 78.59 70.37
0.1 91.79 37.93 80.65 76.82 77.12 81.24 64.33 86.49 78.47 70.62
0.2 91.76 38.06 80.65 76.90 77.21 81.29 64.07 86.38 78.42 70.66
0.5 91.41 39.09 80.31 77.42 76.91 81.51 62.79 87.38 77.86 71.35
1 89.53 45.44 79.06 78.57 76.44 81.36 60.48 89.17 76.38 73.63
2 87.24 51.32 76.98 79.61 74.70 82.04 58.05 88.92 74.24 75.47

RP+GradNorm

0 91.23 43.87 77.36 73.53 72.67 83.29 62.94 79.80 76.05 70.12
0.1 91.08 44.37 77.02 74.18 72.52 83.30 62.46 80.11 75.77 70.49
0.2 90.89 44.70 76.69 74.65 72.22 83.67 62.24 80.09 75.51 70.78
0.5 90.27 47.63 76.43 75.06 72.07 83.79 61.76 80.21 75.13 71.67
1 89.89 48.70 75.66 75.94 71.24 84.70 61.37 80.59 74.54 72.48
2 88.05 55.07 74.82 76.33 70.51 85.30 60.72 80.60 73.52 74.33

the RP strategy has a negative impact on RW+MSP, resulting in the degradation of OOD detection
performance.

A.1.7 ROBUSTNESS TO INACCURATE CLASS PRIOR DISTRIBUTION

We further consider what will happen if the ID-class prior is not accurate in the practical applications.
In this regard, we conduct relevant experiments. Specifically, we simulate this kind of error regarding
prior by adding noises with different intensities to the ID-class-prior distribution. Assume that
the standard deviation of the ID-class-prior distribution is std. The noises we add will follow
N(0, k · std), where k controls noise intensity. The results are shown in Table 12. After adding
noise, the performances of OOD detection do decrease, but not much, which shows that our method
is robust to inaccurate class prior distributions.

A.1.8 OOD DETECTION WITH LONG-TAILED LEARNING

We train ResNet50 with some long-tailed methods, like LDAM (Cao et al., 2019) and CMO (Park
et al., 2022). Then we evaluate it with different OOD detection methods and our strategies, as shown
in Table 13. The models with LDAM loss do perform better than those with CrossEntropy loss, but
after applying our strategies, there are also significant improvements in all methods. However, CMO
does not bring the performance improvement of OOD detection as LDAM does, and even performs
worse than CrossEntropy. We think that this phenomenon indicates that not all long-tailed training
methods are helpful to improve the OOD detector. But the results show that our strategies still works
well while the models try to overcome the class imbalance in training time.

At last, We would like to reiterate our view on class-imbalanced OOD detection:
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Table 13: OOD detection performance with long-tailed learning methods.

Method Long-tailed Method iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP CrossEntropy 62.50 97.30 67.46 92.04 66.89 91.49 42.64 98.44 59.87 94.82

RP+MSP CrossEntropy 63.45 95.88 67.83 90.85 67.41 90.47 42.74 98.26 60.36 93.87
MSP LDAM 68.12 95.22 70.04 89.39 69.72 87.71 43.04 98.07 62.73 92.60

RP+MSP LDAM 68.95 93.66 70.67 88.07 70.19 86.87 43.27 97.78 63.27 91.60
MSP CMO 71.13 83.77 59.35 93.81 60.35 92.77 49.13 93.58 59.99 90.98

RP+MSP CMO 70.82 84.59 58.92 94.62 59.96 93.49 48.99 93.85 59.67 91.64

ODIN CrossEntropy 59.34 98.59 72.57 91.68 70.85 90.83 42.00 98.16 61.19 94.81
RW+ODIN CrossEntropy 84.04 76.58 68.25 95.94 65.69 96.43 53.00 92.16 67.75 90.28

ODIN LDAM 64.08 98.28 74.40 90.79 72.93 89.01 39.74 98.37 62.79 94.11
RW+ODIN LDAM 85.94 71.28 68.59 96.92 66.77 96.63 50.30 93.53 67.90 89.59

ODIN CMO 73.67 81.36 58.94 93.39 59.57 92.54 49.34 92.41 60.38 89.93
RW+ODIN CMO 77.19 81.55 53.21 95.26 56.84 93.90 57.03 83.67 61.07 88.60

Energy CrossEntropy 56.25 98.95 73.60 91.56 71.32 90.37 42.68 98.10 60.96 94.75
RW+Energy CrossEntropy 90.57 42.68 80.09 76.41 76.12 80.78 64.68 86.17 77.87 71.51

Energy LDAM 59.93 98.80 74.74 91.99 72.74 90.39 39.51 98.37 61.73 94.89
RW+Energy LDAM 92.32 35.76 82.38 74.25 78.61 79.08 63.32 86.35 79.16 68.86

Energy CMO 73.24 85.77 55.50 95.64 55.64 95.54 48.93 91.56 58.33 92.13
RW+Energy CMO 79.75 71.54 54.32 97.12 53.63 96.51 52.31 90.32 60.00 88.87

GradNorm CrossEntropy 80.61 74.33 78.73 68.77 72.78 82.15 58.12 81.97 72.56 76.80
RP+GradNorm CrossEntropy 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.62

GradNorm LDAM 87.05 58.11 81.20 66.00 76.01 78.42 55.95 81.86 75.05 71.10
RP+GradNorm LDAM 92.87 36.75 82.70 63.74 77.41 77.21 60.50 79.01 78.37 64.18

GradNorm CMO 78.56 77.25 57.91 95.74 56.94 96.06 52.86 89.79 61.57 89.71
RP+GradNorm CMO 84.90 63.05 63.65 92.25 61.24 94.42 59.17 86.06 67.24 83.95

• Data imbalance is a common phenomenon, and even a slight imbalance (like the ImageNet-
LT-a2 dataset) can still lead to a decrease in the performance of the OOD detector. After
applying our strategies, this phenomenon can be improved.

• Developers do not necessarily use strategies to overcome data imbalance during the training
phase of the model, depending on whether developers need to pay more attention to the
minority in specific applications.

• Even if developers use strategies to overcome data imbalance during the training time, it is
very hard to obtain a class-balanced classifier. Experiment results show that our method can
achieve performance improvements with or without a strategy to overcome data imbalance.

A.1.9 EVALUATION ON THE BALANCED DATASET

As for RP strategy, when the training dataset is balanced (the class-prior distribution is uniform
distribution in Eqs. 10 and 11), RP+Method will be same as the original method.

For RW strategy, we conduct experiments on full ImageNet dataset (note that it is balanced) and
the results are shown in Table 14. The performances of Energy and ODIN are quite close to the
performnce of Energy and ODIN using RW strategy on the balanced dataset.

Table 14: OOD detection performances on full ImageNet dataset.

Method RW Strategy iNaturalist SUN Places Textures Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

ODIN w/o 89.81 45.74 83.01 63.84 82.50 66.48 81.31 65.51 84.16 60.39
w/ 89.87 45.37 83.05 63.59 82.54 66.32 81.36 65.27 84.20 60.14

Energy w/o 93.28 37.62 88.60 49.48 87.36 54.61 86.80 53.40 89.01 48.78
w/ 93.48 35.86 88.48 50.13 87.29 54.80 86.72 53.24 88.99 48.51

A.2 EVALUATION ON INATURALIST BENCHMARK

A.2.1 EXPERIMENT SETUP

Datasets. We use iNaturalist as ID dataset, which is a real long-tailed dataset, and use Texture as
OOD dataset, which has no overlapping classes with the former.
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Table 15: OOD detection performance on the iNaturalist benchmark.

Method Textures

AUROC↑ AUPR-IN↑ AUPR-OUT↑ FPR95↓
MSP 51.41 91.10 9.66 98.16

RP+MSP(Ours) 51.54 91.12 9.70 97.96

ODIN 37.65 86.53 7.44 99.56
RW+ODIN(Ours) 70.80 94.96 19.73 85.00

Energy 30.54 84.61 6.68 99.93
RW+Energy(Ours) 66.99 94.38 17.32 88.03

GradNorm 31.29 83.84 6.75 99.61
RP+GradNorm(Ours) 36.26 85.10 7.34 98.71

Cosine Similarity(Ours) 63.64 93.66 14.58 91.26

Model and Hyperparameters. We use mmclassification4 (Contributors, 2020) with Apache-2.0
license to train ID models. The training details of ResNet (He et al., 2016) follow the default setting
in mmclassification. We use the model trained in ImageNet as the pre-trained model and finetune it
in iNaturalist. Note that, all methods are realized by Pytorch 1.60 with CUDA 10.2, where we use
several NVIDIA Tesla V100 GPUs.

A.2.2 EXPERIMENTAL RESULTS

We evaluate our methods and previous methods on the proposed benchmark. The results in Table
15 illustrate that our methods show a significant improvement on OOD detection, compared with
previous methods. In addition, the RW strategy appears to be more insensitive to the performance of
the original method than the RP strategy. Specifically, the RW strategy is able to bring substantial
growth when the original method performs particularly poorly, but the RP strategy is unable to do so.

B FURTHER ANALYSIS

B.1 PROOF OF THEOREM 1

Theorem 1. If Assumption 1 holds, then PY in|Xout(y|x) = PY in(y), for any y ∈ Y in.

Proof. Using Assumption 1 in the second equation, we have

PY in|Xout(y|x) = P(Y in = y ∧Xout = x)

P(Xout = x)
=

P(Y in = y)P(Xout = x)

P(Xout = x)
= PY in(y).

B.2 ALTERNATIVE CHOICE FOR ID-CLASS-PRIOR DISTRIBUTION

When the labels of the training dataset are not available, we can use the predictions made by the
model as an alternative to simulate empirical ID-class-prior distribution. Specifically, for each
sample xi in training dataset, the prediction made by the model is softmax(fΘ(xi)). Thus, we have
PY in = 1/N ∗

∑N
i=0 softmax(fΘ(xi)).

We also conduct experiments to confirm the assumption, and the results are shown in Table 16.
Noticeably, OOD detection performances with two kinds of ID-class-prior distribution are similar.

4https://github.com/open-mmlab/mmclassification
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Table 16: Performance comparison of two different ID-class-prior distribution acquisition methods.
All methods are trained on ImageNet-LT-a8 dataset with ResNet50.

Method ID-class-prior Distribution iNaturalist SUN Places Texture Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

RP+MSP Model Prediction 63.36 96.05 68.19 90.40 67.44 90.58 42.93 98.17 60.48 93.80
Data Label 63.34 96.09 68.19 90.44 67.43 90.64 42.93 98.17 60.48 93.84

RW+ODIN Model Prediction 84.02 76.52 68.62 95.56 65.85 96.28 53.21 90.22 67.93 89.65
Data Label 84.04 76.49 68.57 95.59 65.81 96.29 53.23 91.99 67.91 90.09

RW+Energy Model Prediction 90.64 42.30 80.51 75.14 76.39 80.29 64.64 85.78 78.05 70.88
Data Label 90.56 42.69 80.46 75.34 76.27 80.48 64.79 85.90 78.02 71.10

RP+GradNorm Model Prediction 89.89 49.89 80.75 64.33 74.70 78.11 63.36 77.70 77.17 67.51
Data Label 89.85 50.03 80.73 64.52 74.69 78.18 63.31 77.73 77.14 67.60

B.3 PROOF OF THEOREM 2

Proof of Theorem 2. According to the definition of softmax function, it is clear that

K∑
i=1

softmaxi(fΘ(x)) = 1 and softmaxi(fΘ(x)) ≥ 0, for ∀ i = 1, ...,K.

Existence. If we assume that for all i = 1, ...,K, softmaxi(fΘ(x)) < 1
K , then

K∑
i=1

softmaxi(fΘ(x)) < 1, which is conflict with
K∑
i=1

softmaxi(fΘ(x)) = 1.

Therefore, there is at least one i such that softmaxi(fΘ(x)) ≥ 1
K , which implies that

min
fΘ(x)

SMSP(fΘ,x) ≥ 1

K
.

Note that when softmax(fΘ(x)) = u, SMSP(fΘ,x) = 1
K , which implies that there exists f̃Θ(x) ∈

argminfΘ(x) SMSP(fΘ,x) such that

u = softmax(f̃Θ(x)).

Uniqueness. If there is f∗Θ(x) ∈ argminfΘ(x) SMSP(fΘ,x) such that softmax(f∗Θ(x)) ̸= u, it is
clear that

K∑
i=1

softmaxi(f
∗
Θ(x)) < 1,

which is conflict with
∑K

i=1 softmaxi(fΘ(x)) = 1. Therefore, softmax(f∗Θ(x)) = u.

Combining the results in existence and uniqueness, we have completed this proof.

B.4 DISCUSSION ABOUT RP+ODIN

ODIN (Liang et al., 2018) is an enhanced version of MSP, whose main improvement is the introduction
of a temperature scaling strategy. The temperature parameter T smoothes the prediction distribution
of the softmax function and thus making the prediction sparser and more similar to the uniform
distribution.

SODIN(fΘ,x) = max
i

exp (fi(x)/T )∑C
j=1 exp (fj(x)/T )

(16)

Since ODIN maps the prediction distribution of the softmax layer to another distribution space
while we need to measure the similarity between the class-prior distribution and the model-predicted
distribution, we need to use the same mapping method to deal with the class-prior distribution
PY in = [p1, p2, ..., pC ], as follows:

P′
Y in =

[
exp (p1/T )∑C
j=1 exp (pj/T )

,
exp (p2/T )∑C
j=1 exp (pj/T )

, . . . ,
exp (pC/T )∑C
j=1 exp (pj/T )

]
(17)
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Then, we use this new class-prior distribution P′
Y in to modify ODIN with RP strategy as Eq. (19).

hΘ(x) =

[
exp (f1(x)/T )∑C
j=1 exp (fj(x)/T )

,
exp (f2(x)/T )∑C
j=1 exp (fj(x)/T )

, . . . ,
exp (fC(x)/T )∑C
j=1 exp (fj(x)/T )

]
(18)

SRP+ODIN(fΘ,x) = max (hΘ(x)− P′
Y in) (19)

When we follow the default setting T = 1000 in ODIN, we notice that P′
Y in will be quite close to the

uniform distribution, where each element is close to 1/K. Thus, Eq. (19) can be regarded as hΘ(x)
minus a constant.

B.5 DISCUSSION ABOUT M IN PARETO DISTRIBUTION

For each class xi, the sample number is

yi = N × p(xi) = N × ama

xa+1
i

, (20)

where a is tail index, m is a constant and N is the sample number of the ImageNet-1K dataset.

After sampling, the new data distribution for each class is

p(yi) =
yi∑K
i=1 yi

=
N × ama

xa+1
i∑K

i=1(N × ama

xa+1
i

)
=

1

xa+1
i

∑K
i=1

1
xa+1
i

. (21)

Obviously, the value of m do not affect the imbalance degree of sampled datasets. Thus, we keep
m = 1 unchanged.

B.6 DISCUSSION ABOUT FEATURE-BASED METHODS

Feature-based methods, like KNN (Sun et al., 2022), need a training set to generate class prototypes,
i.e., an average feature vector for each category. Under class-imbalanced situations, prototypes of
tailed classes would be more unreliable than the majority due to the limitation of training samples.
We think using ID-class-prior distribution to reweight features may be an effective way to solve the
imbalanced problem in feature space.

B.7 DISCUSSION ABOUT CLASS-DEPENDENT THRESHOLDING

The paper (Guarrera et al., 2022) designs an optimization for threshold selection rather than designing
an OOD score. Class-dependent thresholding is designed for ptrain ̸= ptest and not for data
imbalance issues. This approach only affects the precision and recall metrics at the deployment stage
of the OOD detector, not the AUROC and FPR95 metrics that our paper focuses on. This can be seen
in Table 1 in Guarrera et al. (2022).

B.8 DISCUSSION ABOUT POSSIBILITY FOR RP+MSP.

In order to discuss about the possibility for aligning the minimizer of the score function with the class
priors, we conduct experiments for maxi(softmaxi(f(x))/PY in(i)) and show the corresponding
results in the below table. Our experiments show that maxi(softmaxi(f(x))/PY in(i)) also performs
very well.

Table 17: OOD detection performances on ImageNet-LT-a8 dataset.

Method iNaturalist SUN Places Textures Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

maxi(softmaxi(f(x))/PY in(i)) 81.76 69.75 57.80 94.80 54.90 94.68 52.01 88.97 61.62 87.05
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C DETAILED RELATED WORKS

OOD Detection. OOD detection is a crucial problem for reliably deploying machine learning models
into real-world scenarios. OOD detection can be divided into two categories according to whether
the classifier will be re-trained for OOD detection or not.

1) Inference-time/post hoc OOD Detection: Some methods (Huang et al., 2021; Liang et al., 2018;
Liu et al., 2020; Hendrycks & Gimpel, 2017; Lee et al., 2018b; Sun et al., 2021) focus on designing
OOD score functions for OOD detection in the inference time and are easy to use without changing
the model’s parameters. This property is important for deploying OOD detection methods in real-
world scenarios where the cost of re-training is prohibitively expensive and time-consuming. MSP
(Hendrycks & Gimpel, 2017) directly takes the maximum value of the model’s prediction as the OOD
score function. Based on MSP, ODIN (Liang et al., 2018) uses a temperature scaling strategy and
input perturbation to improve OOD detection performance. Moreover, Liu et al. (2020) and Wang
et al. (2021a) propose to replace the softmax function with the energy functions for OOD detection.
Recently, GradNorm (Huang et al., 2021) uses the similarity of the model-predicted probability
distribution and the uniform distribution to improve OOD detection and achieve state-of-the-art
performance. In this paper, we mainly work on the inference-time OOD detection methods and aim
at improving the generalizability of OOD detection in real-world scenarios.

2) Training-time OOD Detection: Other methods (Hsu et al., 2020; Hein et al., 2019; Bitterwolf
et al., 2020; Wang et al., 2021b) will complete ID tasks and OOD detection simultaneously in the
training time. Bitterwolf et al. (2020) uses adversarial learning to process OOD data in training time
and make the model predict lower confidence scores for them. Wang et al. (2021b) generates pseudo
OOD data by adversarial learning to re-training a K+1 model for OOD detection. These methods
usually require auxiliary OOD data available in the training process. Thus, the model will be affected
by both ID data and OOD data. It is important for these method to explore an inherent trade-off (Liu
et al., 2019; Vaze et al., 2022; Yang et al., 2021) between ID tasks and OOD detection.

The paper (Wang et al., 2022) is training-time OOD detection and uses OOD data to train the model.
After being finetuned, the model can deal with the imbalanced issue and OOD problem. The problem
is similar to our paper, but the setting is completely different with our paper (inference-time OOD
detection). In our paper, we do not change any parameters of the model and design methods to deal
with the imbalanced issue on OOD detection. Note that our work and this work are not comparable
due to the different problem settings.

Open Set Recognition. In open set recognition, machine learning models (Huang & Li, 2021; Lee
et al., 2018a; Perera & Patel, 2019; Perera et al., 2020; Shalev et al., 2018; Radford et al., 2021;
Fort et al., 2021) are required to both correctly classify the known data (ID) from the closed set
and detect unknown data (OOD) from the open set. Some works (Lee et al., 2018a; Huang & Li,
2021) use the information in the label space for OOD detection, and they divide the large semantic
space into multiple levels for models to easily understand. Perera & Patel (2019) designs two parallel
networks training on different dataset and use the membership loss to encourage high activations for
ID data while reducing activations for OOD data. Perera et al. (2020) uses self-supervision and data
augmentation to improve the network’s ability to detect OOD data. Input images are augmented with
the representation obtained from a generative model. In this paper, we consider a more complex open
set, large scale and imbalanced, to achieve OOD detetcion.

D CODES

import torch
import numpy as np
from torch.autograd import Variable

def MSP(data_loader, model):

ood_scores = []

m = torch.nn.Softmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):
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with torch.no_grad():

x = x.cuda()

logits, _ = model_forward(model, x)

softmax_output = m(logits)

ood_score, _ = torch.max(softmax_output, dim=-1)

ood_scores.extend(ood_score.data)

return ood_scores

def MSP_RP(data_loader, model, ID_Prior):

ood_scores = []

m = torch.nn.Softmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

with torch.no_grad():

x = x.cuda()

logits, _ = model_forward(model, x)

softmax_output = m(logits)

# RP strategy

sim = softmax_output - ID_Prior

ood_score, _ = torch.max(sim, dim=-1)

ood_scores.extend(ood_score.data)

return ood_scores

def ODIN(data_loader, model, epsilon, temper):

criterion = torch.nn.CrossEntropyLoss().cuda()

ood_scores = []

for b, (x, y) in enumerate(data_loader):

x = Variable(x.cuda(), requires_grad=True)
outputs, _ = model_forward(model, x)

maxIndexTemp = np.argmax(outputs.data.cpu().numpy(), axis=1)

outputs = outputs / temper

labels = Variable(torch.LongTensor(maxIndexTemp).cuda())

loss = criterion(outputs, labels)

loss.backward()

# Normalizing the gradient to binary in {0, 1}

gradient = torch.ge(x.grad.data, 0)

gradient = (gradient.float() - 0.5) * 2

# Adding small perturbations to images

tempInputs = torch.add(x.data, -epsilon, gradient)

outputs, _ = model_forward(model, Variable(tempInputs))

outputs = outputs / temper

# Calculating the confidence after adding perturbations

nnOutputs = outputs.data.cpu()

nnOutputs = nnOutputs.numpy()

nnOutputs = nnOutputs - np.max(nnOutputs, axis=1, keepdims=True)
nnOutputs = np.exp(nnOutputs) / np.sum(np.exp(nnOutputs),

axis=1, keepdims=True)↪→

ood_scores.extend(np.max(nnOutputs, axis=1))

return ood_scores

def ODIN_RW(data_loader, model, epsilon, temper, ID_Prior):

criterion = torch.nn.CrossEntropyLoss().cuda()

ood_scores = []
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m = torch.nn.Softmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

x = Variable(x.cuda(), requires_grad=True)
outputs, _ = model_forward(model, x)

softmax_output = m(outputs)

softmax_output = softmax_output.data.cpu()

softmax_output = softmax_output.numpy()

maxIndexTemp = np.argmax(outputs.data.cpu().numpy(), axis=1)

outputs = outputs / temper

labels = Variable(torch.LongTensor(maxIndexTemp).cuda())

loss = criterion(outputs, labels)

loss.backward()

# Normalizing the gradient to binary in {0, 1}

gradient = torch.ge(x.grad.data, 0)

gradient = (gradient.float() - 0.5) * 2

# Adding small perturbations to images

tempInputs = torch.add(x.data, -epsilon, gradient)

outputs, _ = model_forward(model, Variable(tempInputs))

outputs = outputs / temper

# Calculating the confidence after adding perturbations

nnOutputs = outputs.data.cpu()

nnOutputs = nnOutputs.numpy()

nnOutputs = nnOutputs - np.max(nnOutputs, axis=1, keepdims=True)
nnOutputs = np.exp(nnOutputs) / np.sum(np.exp(nnOutputs),

axis=1, keepdims=True)↪→

# RW strategy

sim = -softmax_output * ID_Prior

sim = sim.sum(axis=1) / (np.linalg.norm(nnOutputs, axis=-1) *
np.linalg.norm(ID_Prior, axis=-1))↪→

sim = np.expand_dims(sim, axis=1)

nnOutputs = sim * nnOutputs

ood_scores.extend(np.max(nnOutputs, axis=1))

return ood_scores

def Energy(data_loader, model, temper):

ood_scores = []

for b, (x, y) in enumerate(data_loader):

with torch.no_grad():

x = x.cuda()

logits, _ = model_forward(model, x)

ood_score = temper * torch.logsumexp(logits / temper, dim=1)

ood_scores.extend(ood_score.data)

return ood_scores

def Energy_RW(data_loader, model, temper, ID_Prior):

ood_scores = []

m = torch.nn.Softmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

with torch.no_grad():

x = x.cuda()

logits, _ = model_forward(model, x)

conf = temper * torch.logsumexp(logits / temper, dim=1)

# RW strategty
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softmax_output = m(logits)

sim = -softmax_output * ID_Prior

sim = sim.sum(1) / (torch.norm(softmax_output, dim=1) *
torch.norm(ID_Prior, dim=1))↪→

ood_score = conf * sim

ood_scores.extend(ood_score.data)

return ood_scores

def GradNorm(data_loader, model, temperature, num_classes):

ood_scores = []

logsoftmax = torch.nn.LogSoftmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

inputs = Variable(x.cuda(), requires_grad=True)
model.zero_grad()

outputs, _ = model_forward(model, inputs)

targets = torch.ones((inputs.shape[0], num_classes)).cuda()

outputs = outputs / temperature

loss = torch.sum(torch.mean(-targets * logsoftmax(outputs),

dim=-1))↪→

loss.backward()

layer_grad = model.head.conv.weight.grad.data

ood_score = torch.sum(torch.abs(layer_grad))

ood_scores.append(ood_score)

return ood_scores

def GradNorm_RP(data_loader, model, temperature, num_classes,ID_Prior):

ood_scores = []

logsoftmax = torch.nn.LogSoftmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

inputs = Variable(x.cuda(), requires_grad=True)
model.zero_grad()

outputs, _ = model_forward(model, inputs)

# RP strategy

target = torch.tensor(ID_Prior)

targets = target.unsqueeze(dim=0).cuda()

outputs = outputs / temperature

loss = torch.sum(-targets * logsoftmax(outputs), dim=-1)

loss.backward()

layer_grad = model.fc.weight.grad.data

ood_score = torch.sum(torch.abs(layer_grad))

ood_scores.append(ood_score)

return ood_scores

def Cosine_Similarity(data_loader, model, ID_Prior):

ood_scores = []

m = torch.nn.Softmax(dim=-1).cuda()

for b, (x, y) in enumerate(data_loader):

with torch.no_grad():

x = x.cuda()

logits, _ = model_forward(model, x)

softmax_output = m(logits)

sim = -softmax_output * ID_Prior

sim = sim.sum(1) / (torch.norm(softmax_output, dim=1) *
torch.norm(ID_Prior, dim=1))↪→

28



Under review as a conference paper at ICLR 2023

ood_score = sim.unsqueeze(1)

ood_scores.extend(ood_score.data)

return ood_scores
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