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ABSTRACT

Evaluating large vision-language models (LVLMs) is very expensive, due to the
high computational costs and the wide variety of tasks. The good news is that if
we already have some observed scores, we may be able to infer unknown ones.
In this study, we propose a new framework for predicting unknown performance
scores based on observed ones from other LVLMs or tasks. We first formulate the
performance prediction as a matrix completion task. Specifically, we construct a
sparse performance matrix I, where each entry R,,,, represents the performance
score of the m-th model on the n-th dataset. By applying probabilistic matrix
factorization (PMF) with Markov chain Monte Carlo (MCMC), we can complete
the performance matrix, that is, predict unknown scores. Additionally, we esti-
mate the uncertainty of performance prediction based on MCMC. Practitioners
can evaluate their models on untested tasks with higher uncertainty first, quickly
reducing errors in performance prediction. We further introduce several improve-
ments to enhance PMF for scenarios with sparse observed performance scores.
In experiments, we systematically evaluate 108 LVLMs on 176 datasets from 36
benchmarks, constructing training and testing sets for validating our framework.
Our experiments demonstrate the accuracy of PMF in predicting unknown scores,
the reliability of uncertainty estimates in ordering evaluations, and the effective-
ness of our enhancements for handling sparse data.

1 INTRODUCTION

It is expensive to evaluate large vision-language models (LVLMs). First, large-scale models result
in significant computational or API calling costs and memory usage. Additionally, since a single
LVLM can handle a wide range of tasks, comprehensively understanding model performance on
different tasks becomes more challenging. As a result, hundreds of benchmarks have been proposed
to assess the strengths and weaknesses of LVLMs (Li & Lu, [2024). [Zhang et al.| (2024b)) report that
it takes hundreds of hours to evaluate one model on around 50 tasks in LMMs-Eval, and evaluation
even exceeds 1,400 hours on models of 100B parameters or more.

Fortunately, we have already observed performance scores from some of these models on some
tasks, for instance, from the official reports of released models and datasets. For new models, scores
can also be readily obtained with limited compute by running on a small number of tasks. If these
observed scores can be used to predict unknown ones, we could avoid unnecessary evaluations and
effectively reduce costs. Recent works (Polo et al., 2024} Zhang et al.| 2024b) require running the
same model on the same task to predict model performance, and most of them ignore the potential
of leveraging observed performance data from other models or tasks.

In this study, we propose a new framework for predicting unknown performance scores based on
observed ones from other LVLMs or tasks. We first formulate this as a matrix completion prob-
lem. Specifically, we construct a sparse performance matrix R where each entry R,,,, represents
the performance score of the m-th model on the n-th dataset. By applying probabilistic matrix fac-
torization (PMF) with Markov chain Monte Carlo (MCMC), we can predict unknown performance
scores based on observed entries in the matrix. A summary of the framework is shown in Fig.

A bonus of our framework is active evaluation, which aims to select a subset of model-dataset pairs
to evaluate in order to minimize prediction errors across the entire performance matrix. Given a
PMF model on a very sparse performance matrix, we calculate prediction uncertainty from MCMC
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Figure 1: Framework. (A) Given a sparse matrix of performance scores of LVLMs on various tasks,
the goal is to estimate the missing entries. (B) A normal way is to evaluate untested model-dataset
pairs one-by-one. (C) TinyBenchmarks (Polo et al., 2024) runs models on smaller test sets and
reproduce the original performance. (D) We use Probabilistic Matrix Factorization (PMF) to predict
missing entries, reducing unnecessary evaluations, and rank new experiments based on uncertainty.

and prioritize evaluating model-dataset pairs with high uncertainty. Our experiments will confirm
the effectiveness of this strategy for active evaluation.

A challenge is that PMF tends to predict the average score for models and datasets with very few
observed scores, resulting in poor prediction results (Mnih & Salakhutdinovl [2007). To address this,
we introduce several improvements to enhance PMF for scenarios with sparse observed data. First,
we extend PMF to a simple tensor factorization approach, which can handle multiple performance
metrics across different vision-language tasks. Second, we utilize Bayesian PMF (Salakhutdinov
& Mnih, 2008) with an LKJ prior (Lewandowski et al.l [2009) on the variance. Third, we also
incorporate extra information as model and dataset profiles to improve performance prediction. For
example, if we know a model uses CLIP as a vision encoder, the information may help predict the
model’s performance, especially when we observe only a few performance scores of the model.

In experiments, we conduct a systematic evaluation of 108 LVLMs across 176 distinct datasets de-
rived from 36 existing benchmarks, based on four prior works (Duan et al., 2024; Zhang et al.,
2024b; |Liang et al.l |2024; |Karamcheti et al., [2024). We evaluate open-source models such as
LLaVA-v1.5 (Liu et al.,[2023a), InstructBLIP (Dai et al., [2023)), mPLUG-Ow1 (Ye et al.,[2023)), and
MiniGPT-4 (Zhu et al.l |2023)), as well as closed-source models including GPT-40, GPT-4 (Achiam
et al.,[2023), Gemini-1.5 (Reid et al.,|2024)). The benchmarks cover general VQA (Li et al.| 2023a)),
knowledge-dense VQA (Yue et al.,2024]), hallucination (Li et al.;|2023b)), medicine (He et al.| 2020),
emotion recognition (Goodfellow et al.,2013), and others. To reduce computational and API costs,
we subsample some datasets, following the practice in|Liang et al.| (2024).

Using the results from 108 LVLMs across 176 datasets, we construct a 108 x 176 performance ma-
trix, with some entries masked for testing. We empirically demonstrate that PMF accurately predicts
masked scores and consistently outperforms baselines as long as more than 10% entries in the per-
formance matrix are observed. We also show that selecting high-uncertainty model-dataset pairs for
evaluation significantly reduces prediction errors compared to random selection. Additionally, our
improvements effectively alleviate the sparse data issue of PMF.

In summary, this paper covers three main points. First, we formulate a problem of predicting the
unknown performance of LVLMs across tasks. Second, we apply the well-established PMF algo-
rithm to this problem, show the application of active evaluation, and propose several strategies to
mitigate the sparse data issue. Third, we conduct a comprehensive evaluation of 108 LVLMs across
176 datasets, constructing training and testing sets for further experiments.

2 RELATED WORKS

2.1 RECENT LVLMS AND BENCHMARKS

In recent years, there has been increasing growth in LVLMs, with many new models demonstrating
impressive capabilities. Notable closed-source models include GPT-4 (Achiam et al., [2023) and
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Gemini (Team et al.l 2023)), while open-source models such as LLaVA (Liu et al.| [2024; 2023a),
InstructBLIP (Dai et al.,|2023)), and InternVL (Chen et al.,|2023};|2024)) have also gained widespread
attention. |Karamcheti et al| (2024) explore the design of LVLMs and have released a series of
models (i.e., Prismatic VLMs) featuring different architectures and training strategies.

These LVLMs can handle a wide variety of tasks within a single model, but this versatility also
requires more various benchmarks to fully understand their strengths and weaknesses. Some ex-
isting benchmarks can be repurposed for assessing these models, such as Flickr30k (Young et al.,
2014), GQA (Hudson & Manning, 2019), and OKVQA (Marino et al.l 2019). Recent works also
propose new benchmarks to evaluate LVLMs in handling dense knowledge, complex reasoning, and
decision-making tasks. Examples of novel benchmarks include SEED-Bench-2 (Li et al., 2023a),
MMMU (Yue et al.,2024), and MME (Fu et al.,[2023)). Additionally, as LVLMs become more inte-
grated into everyday applications, benchmarks like POPE (Li et al.,2023b) have been introduced to
assess trustworthy issues like hallucination in these models. The variety of LVLMs and benchmarks
leads to substantial computational demands and memory usage.

2.2 IMPROVE EVALUATION EFFICIENCY

Recent works introduce unified frameworks to assess models across multiple benchmarks using a
single codebase, such as VLMEvalKit (Duan et al., [2024), LMMs-Eval (Zhang et al.l [2024b), and
HEMM (Liang et al., [2024). Our study builds on these efforts by consolidating their evaluation
frameworks and integrating models in Prismatic VLMs series.

Predicting unknown model performance can reduce the evaluation cost. Recent works select a core-
set of samples from a large benchmark, for evaluating LLMs (Polo et al., 2024} [Perlitz et al., 2023))
and LVLMs (Zhang et al.}|[2024b; Zhu et al., | 2024)). The performance of a specific model on the core-
set is used to estimate its performance on the full benchmark. Besides, prior studies estimate model
performance on an unlabeled test set based on distribution shift (Deng & Zheng|, [2021)), confidence
scores (Guillory et al., 2021; |Yang et al., [2024)), or LLM feedback (Zheng et al.| |2023)). Instead of
running models on a coreset or an unlabeled set, our framework predicts unknown performance by
utilizing the correlation between model performances across benchmarks.

Another related direction is adaptive testing (Rodriguez et al., 2021} |Prabhu et al., 2024). Given a
new model, only a subset of samples is selected based on sample difficulty for evaluating the new
model. While their work focuses on sample-level testing with a single metric, our approach operates
at the dataset level, using six different metrics. Furthermore, instead of relying on statistically
inferred sample difficulty, we propose a method to rank model-dataset pairs for evaluation based on
uncertainty in performance prediction from MCMC.

2.3 PROBABILISTIC MATRIX FACTORIZATION

PMF (Mnih & Salakhutdinov, [2007) is a technique widely applied in recommender systems. Given
part of the ratings that users provide for items, the goal is to model the observed ratings and predict
the missing ones. PMF achieves this by decomposing the observed rating matrix into two lower-
dimensional matrices, representing the latent features of users and items. A rating is modeled as a
Gaussian distribution centered around the dot product of the user’s and item’s feature vectors.

One major challenge with PMF is that, if users rate very few items, their predicted ratings will be
near the average for those items. Bayesian PMF (BPMF) (Salakhutdinov & Mnihl 2008)) addresses
this by placing distributions over the priors of the latent user and item features, making it more
effective in handling sparse data. Additionally, Constrained PMF (Mnih & Salakhutdinov, [2007)
introduces a latent similarity constraint matrix to further refine the user feature vectors.

3 MODELLING LVLM PERFORMANCE

In this section, we first describe the application of PMF to model the performance score matrix of
LVLMSs across datasets. Then, we discuss active evaluation for LVLMs. Last, three techniques
are introduced to enhance PMF: supporting multiple metrics, incorporating Bayesian PMF, and
integrating model and dataset profiles in modeling.
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Figure 2: Graphical Models of PMF (A) and the enhanced model (B). (A) is adapted from the
original paper (Mnih & Salakhutdinov,|[2007). In (B), we set the mean to O and the covariance to the
identity matrix, thus omitting most of the hyper-parameters for the random variable distributions.

3.1 REVISIT PROBABILISTIC MATRIX FACTORIZATION

Let R be an M x N matrix representing model performance scores on datasets, where M is the
number of models and NV is the number of datasets. For simplicity, we initially assume a single
performance metric, though in reality, benchmarks often employ multiple metrics. In such cases, R
becomes an M x N x S tensor, where S represents the total number of metrics. We will address
this more complex scenario in the following sections.

In practice, only a subset of the elements in R are observed, meaning we evaluate only a portion
of the model-dataset pairs and aim to estimate the remaining performance scores. Specifically, we
define a matrix O € {0, 1}*N where O,,,, = 1 if R,,,, is observed, and 0 otherwise.

To model the observed matrix and estimate the unknown values, we employ PMF (Mnih & Salakhut-
dinov} [2007), as illustrated by the probabilistic graphical model in Fig. 2Z(A). PMF decomposes R
into two low-dimensional matrices, U € RM*L and V- € R¥*D where D is the latent dimen-
sion. Here, U,,. and V;, . are the latent feature vectors for the m-th model and the n-th dataset,
respectively, and we refer to them as U,,, and V;,,. These latent vectors are modeled as multivari-
ate Gaussian distributions, and the observed ratings are assumed to follow a Gaussian distribution
centered at the dot product of the latent feature vectors:

M N
p(RIUV,0*) =[] [TV (R | ULVz,0%)] 7", (1)
m=1n=1
M N
p(U | 63) = [[ NWi |00,03I0), (V| 02) = [[N(Va | 00,03 10), )
m=1 n=1

where I is a D x D identity matrix, and N (z | u1, 0?) represents the probability density function
of a Gaussian distribution with mean z and variance o2. We simply set oy = oy = 1.

Rather than using Maximum A Posteriori estimation to obtain point estimates of the unknown perfor-
mance scores in R, we apply MCMC to obtain distributions over the estimated scores and quantify
the uncertainties in our predictions. Specifically, we use the No-U-Turn Sampler (NUTS) (Hoffman
et al.,[2014), an advanced Hamiltonian Monte Carlo method (Neal,, [2011J).

Our experiments show that standard PMF performs well with sufficient observed data. But its per-
formance degrades significantly and is even worse than predicting the mean, when the observed data
is very sparse (i.e., fewer than 10% model-dataset pairs are observed). To address this, we enhance
our model with several techniques, with a new graphical model shown in Fig. 2(B).
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3.2 ACTIVE EVALUATION

MCMC allows us to estimate score distributions and readily obtain uncertainty estimates for each
unknown score, enabling us to prioritize evaluation experiments. For example, if we are uncertain
about GPT-4’s performance on a 3D understanding but confident about LLaVA’s performance on
object recognition, we can prioritize evaluating GPT-4 on the 3D task when our resources are limited.

In our method, we begin by applying PMF to model a sparse performance matrix. Using MCMC,
we get hundreds of estimations of each unknown score and calculate the standard deviation of es-
timations as a measure of uncertainty. The unobserved scores are ranked by their uncertainties.
High-uncertainty scores are replaced with ground truth, simulating evaluation process in practice.
We rerun PMF with updated observed data, calculate uncertainty, and determine the next set of eval-
uations. This process is repeated until our resource budget is exhausted or all scores are observed.

3.3 MULTIPLE METRICS

Previously, we assumed that each dataset has only one scoring metric, but this is not the case in
practice. For example, yes-or-no questions can be evaluated using accuracy, precision, recall, and
F1 score, while open-ended questions may use metrics like BART score (Yuan et al., [2021) and
BERT score (Zhang et al.,[2019). Model performances are represented by a tensor R € RM*N xS,
where S is the total number of metrics. Empirically, we find that using PMF to model and predict
each metric independently works well when sufficient data is available. However, when observed
data is sparse, incorporating relationships between metrics will be helpful.

To address this, we extend our PMF model into a simple Probabilistic Tensor Factorization (PTF),
where we decompose the 3D tensor R into the product of two low-rank matrices and a 1D vector.
This can be interpreted as applying a linear transformation to the original PMF output, translating it
into multiple metrics. Specifically, we define:

M N S

p(RIU.V,w,b,0%) = [[ [T TV (Rans | UEVi)w, +b,,0%)]7, (3)
m=1n=1s=1

p(w|o2)=N(w|0s,02Is), p(b|c?)=N(b|O0g,0i1s), 4)

where we set o, = 0 = 1 for simplicity.

This approach implicitly assumes a linear relationship between scoring metrics, which may not
exactly hold in reality. However, we usually observe some linear correlation between the metrics
on the same task. Moreover, more sophisticated techniques, such as advanced tensor factorization
methods, modeling non-linear metric relationships with neural networks, or using manually defined
transformation functions for specific metrics, can be explored to further improve the model.

Note that some metrics may be irrelevant for certain datasets, e.g., accuracy is not meaningful for
long-answer questions. While our model can predict these scores, we discard the predicted results.

3.4 BAYESIAN PMF

Instead of using fixed priors for the feature vectors, we model the priors using probabilistic distri-
butions, as proposed by [Salakhutdinov & Mnih|(2008). Unlike the original paper, which employs a
Wishart distribution for the variance, we use the LKJ correlation prior (Lewandowski et al., 2009)
and an Exponential prior to model the variance, as suggested by the PyMC documentation,

Ay = (diag (o) Ly)(diag (o) Lyy) 7, (5)
where p(Ly | ny) = LKJ(LULE | nu) and p(or, | Av) = HdD:1 Exp(oq | Av)-

Latent feature vectors are then modeled as:

p(pu | AGY) = N(pu | 0p, ALY, (6)
M

p(U | pu, AGY) = [] NUn | po, AGY). (7)
m=1

A similar formulation applies to V', which we omit here for brevity.
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3.5 MODEL AND DATASET PROFILES

The final enhancement to our framework is the incorporation of additional information about the
models and datasets. For example, knowing that two LVLMs use CLIP as the vision encoder, or that
LLaVA-v1.5 and LLaVA-NeXT are developed by the same team, suggests potential relationships in
their performances. Inspired by Constrained PMF (Mnih & Salakhutdinovl [2007)), we incorporate
extra information as model and dataset profiles, to improve performance prediction.

Let H € RM*E and G € RV represent the model and dataset profiles, where H,, . encodes
K properties of the m-th model (e.g., vision encoder type), and G,, . encodes J properties of the
n-th dataset. We introduce Gaussian-distributed variables Y € RX*P and X € R7*P to learn the

effects of these profiles. The latent feature vectors are now the sum of the original vectors and the
profile features, following Constrained PMF (Mnih & Salakhutdinovl, [2007).

K J

p(Y |o3) = [[N(Yi [ 0p,03Ip), p(X |o%)=[[N(X;|0p,0%In), (8)
k=1 j=1

U=U+HY, V' =V+GX. )

Oracle Profiles. To explore the upper bound of model and dataset similarities, we use the full R
matrix to cluster models and datasets. For each model, we take R; . (its performance across all
datasets) as a vector and apply the K-Means algorithm to cluster all models. We select the optimal
number of clusters using the elbow method. Similarly, for each dataset, we cluster R. ; in the same
way. We convert the cluster assignments into one-hot vectors to serve as profiles.

Custom Profiles. Since oracle profiles rely on complete performance data, they are not practical
for real-world use. To overcome this, we define custom profiles that can be applied in practice. For
models, we include features such as the number of parameters in the LLM backbone, vision encoder
type (one-hot), and the LVLM family (one-hot), illustrated in the supplementary material (Table [4).
Additionally, we cluster datasets based on latent representations obtained from various models and
get one-hot encoded dataset profiles. We explore three different approaches to generate these latent
representations: D1. using MPNet (Song et al.l 2020) to encode a short description of each dataset.
D2. using CLIP to encode images and BGE-M3 to encode questions in a dataset (following [Zhang
et al.[(2024b)), then averaging the embeddings on the dataset; and D3. using LLaVA-7B to encode
both images and text, then averaging the embeddings for the dataset.

4 EXPERIMENTS

In this section, we construct a performance matrix and present key experiments for our framework.

4.1 EVALUATING MODELS ON BENCHMARKS

Prior works have developed general pipelines for evaluating LVLMs across a wide range of bench-
marks (Duan et al.| [2024; [Zhang et al.| [2024b; Liang et al., [2024). Building on these code repos-
itories, we evaluate 108 LVLMs on 36 benchmarks. The open-source models we cover include
LLaVA-v1.5 (Liu et al.l [2023a), LLaVA-NeXT (Liu et al., [2023a), InstructBLIP (Dai et al., 2023),
mPLUG-Owl (Ye et al.| 2023), and Prismatic VLMs (Karamcheti et al.l [2024). We also evaluate
closed-source models such as GPT-4 (Achiam et al., 2023) and Gemini-1.5 (Reid et al., [2024).

The benchmarks span a variety of domains, including general VQA (SEED-2), knowledge-dense
VQA (MMMU), hallucination (POPE), medical question answering (PathVQA), and emotion recog-
nition (FaceEmotion). Some large-scale benchmarks, such as SEED-2 (Li et al) [2023a) and
MMMU (Yue et al 2024)), cover multiple tasks. To conduct a fine-grain analysis, we split these
benchmarks into task-specific datasets, resulting in 176 datasets in total. Following HEMM (Liang
et al.} 2024), we subsample some datasets to reduce computational and API calling costs of LVLMs.
For each dataset, we calculate a main metric for PMF (either accuracy or BARTScore), and several
other metrics, leading to a total of six metrics for PTF modeling. Full details of datasets and models
are provided in the supplementary material (Section [A).
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Figure 3: Performance of PMF. (A-C) PMF consistently outperforms both baselines when the test
ratio is below 90% for estimating all unobserved scores (A), accuracy scores (B), and BART scores
(C), with particularly strong performance at lower test ratios. (D-F) The predicted scores exhibit
correlations with the ground truth at test ratios of 20% (D), 60% (E), and 90% (F). Gray dashed
lines represent perfect prediction i.e., y = x. We subsampled 200 scores in (D-F) for visualization.

4.2 ESTIMATING UNKNOWN PERFORMANCES

We mask P% of the elements in the score matrix R, use the observed portion to normalize R,
and train the PMF model using MCMC sampling. The model reconstructs the matrix R, and we
evaluate the performance by comparing the estimated values with the ground truth for the masked
elements. For MCMC, we employ the NUTS sampling method, tuning with 500 samples in the
burn-in stage and drawing 100 samples. Empirical results show that 100 samples are sufficient for
stable estimation. The reconstructed matrix R is taken as the mean prediction from MCMC.

We use Root Mean Squared Error (RMSE) as the primary metric to evaluate PMF performance.
Additional metrics such as Mean Absolute Error (MAE) and the coefficient of determination (R?)
are reported in the supplementary material (Section [B].

We compare our method against two baselines: (1) Global Mean: predicting the global mean for un-
observed scores; (2) Mean of Means: for each unobserved score, we average the mean performance
of the model, the mean performance on the dataset, and the global mean.

Results. As shown in Fig. [5[A-C), PMF significantly outperforms the baselines when the test ratio is
lower than 90%. This suggests that when only a portion of the scores is available, PMF can infer the
unobserved scores with high accuracy. Additionally, as demonstrated in Fig. [3(D-F), the estimated
scores strongly correlate with the actual scores.

However, as the amount of observed data decreases, PMF’s performance declines as can be expected.
In extreme cases where the test ratio exceeds 90%, with limited information about model or dataset
performance, PMF can perform worse than predicting the means. We will address this issue in the
following sections with our proposed enhancement techniques.

4.3 ACTIVE EVALUATION FOR LVLMS

‘We compare our uncertainty-based approach against two baselines: (1) Random selection of model-
dataset pairs, and (2) an oracle approach that selects the pairs with the highest actual errors. In
the experiment, we start by masking 80% performance data in the performance matrix. Then, we
progressively conduct more LVLM evaluations using three different strategies, and calculate the
improvement in performance prediction of PMF with the updated observed data. The experiment is
repeated with 10 different random seeds, and we report the averaged improvement.

Results. As shown in Fig. [ our uncertainty-aware method consistently outperforms the random
baseline for a fixed budget of evaluations, especially when the amount of extra data is lower than
30%. However, there remains a gap between our method and the oracle approach.
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Figure 4: Comparison of Active Evaluation Methods. Starting with 20% of the data observed, we
progressively conduct additional LVLM evaluations using three different strategies. (A) RMSE and
(B) MAE improvement demonstrate the advantage of our method compared to random evaluation.
(C) Uncertainties from MCMC are correlated with the actual absolute errors.

Table 1: Comparison of PMF and PTF. Superior results are highlighted. PMF (Sep) models each
score separately, while PMF (OneMat) combines accuracy and BART scores into a single matrix,
as each dataset contains either accuracy or BART scores. PTF is the enhanced model that supports
multiple scoring metrics, which outperforms PMF at a high test ratio.

Overall Acc Precision Recall F1 BART BERT

Method RMSE| MAE| RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Test Ratio: 20%

PMF (Sep) 0.175 0.086 0.073 0.051 0.135 0.086 0.166 0.115 0.134 0.087 0463 0318 0.068 0.031
PMF (OneMat)  0.193 0.090 0.074 0.052 - - - - - - 0.461 0.303 - -
PTF 0.205 0.096 0.078 0.055 0.129 0.085 0.176 0.126 0.108 0.070 0.563 0.378 0.077 0.039
Test Ratio: 90%

PMF (Sep) 0.327 0.177  0.159 0.118 0.238 0.174 0.262 0.197 0.227 0.167 0.864 0.628 0.096 0.047
PMF (OneMat)  0.317 0.174  0.156 0.115 - - - - - - 0.723  0.504 - -
PTF 0290 0.158 0.159 0.118 0.186 0.129 0.230 0.167 0.180 0.124 0.754 0.529 0.094 0.045

4.4 ENHANCING PMF

We apply three enhancement techniques to our PMF model and evaluate their effectiveness across
different test ratios. To minimize experimental variance, we perform each experiment 10 times with
different random seeds and report the average performance at each test ratio.

Results. As seen in Table[I] the multi-score method PTF can get better performance when the matrix
is very sparse. When there is enough data, separately modeling PMF with each score works very
well and is comparable to PTF. For BART and BERT scores, PMF even outperforms PTF. This is
likely because PTF assumes a linear relationship between scores. When this assumption does not
hold, such as in the case of BART and BERT scores, it can negatively impact model performance.
When the test ratio is high, PTF demonstrates better performance.

Fig. 5] illustrates the impact of the other two enhancement techniques. As shown, Bayesian PTF
offers only negligible improvements over standard PTF when there is enough observed data, but it
is particularly beneficial in sparse conditions. In Fig.[5(B), our custom profiles also show improve-
ments when data is limited, though there remains a gap between our custom profiles and the oracle
profiles. Additionally, Fig.[5(C) highlights that adding profiles not only enhances PTF’s overall per-
formance but also reduces instability, as seen by smaller error bars. Model profiles show significant
performance gains, whereas dataset profiles contribute only marginally. Better methods for encoding
and utilizing dataset information need further exploration.

5 DISCUSSION

5.1 LoOwW-RANK PROPERTIES OF THE PERFORMANCE MATRIX

We investigate the impact of different latent dimensions in the PMF models and find that a relatively
small latent dimension, around 10, is sufficient. As shown in Fig.[6] increasing the latent dimension
reduces the RMSE on the training data to zero due to overfitting, but it does not lead to significant
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Figure 5: Performance of Enhanced PTF. (A) BPTF shows minimal improvement over standard
PTF when data is sufficient but proves particularly beneficial under sparse conditions. (B) Custom
profiles improve performance when data is limited, though a gap remains compared to oracle pro-
files. (C) Ablation study on model and dataset profiles. “A | B” represents using A for the model
profile and B for the dataset profile. Custom model profiles lead to significant performance gains,
while dataset profiles contribute only marginally. BPTF, Bayesian PTF; CPTF, Constrained PTF.
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Figure 6: Low-Rank Property of the Score Matrix. (A) RMSE on the test set for PMF stabilizes
when the latent dimension exceeds 15. (B) The top singular values of the performance matrix are
significantly larger than the others. (C) t-SNE visualization of dataset clusters.

improvements in RMSE on the testing data. Additionally, when we extract the singular values of the
score matrix, we observe that the top singular values are much larger than the rest, indicating that
most of the information is captured by a few dimensions. This suggests a high degree of similarity in
performance scores across benchmarks. A detailed correlation analysis of these performance scores
is provided in the supplementary material (Section [A).

5.2 WHAT CAN WE TELL BASED ON VISION ENCODERS?

The Constrained PMF model can capture the impact of model and dataset profiles. Here, we present
a showcase analysis focusing on the vision encoder type from the model profiles. Specifically, we
calculate the dot product between the feature vector of the vision encoder type, H,,, and the feature
vector of the dataset, V,/. The calculation result measures the influence of a vision encoder on a
task. As shown in Fig. [/} DINO shows improvements on a few datasets compared to CLIP, while
FNet, SigLIP, and ViT are less effective in comparison.

5.3 WHICH MODELS OR BENCHMARKS ARE MOST INFORMATIVE?

We assess how representative a model is and how informative a benchmark is, by measuring the
RMSE improvements of PMF when we add the full results of a model or dataset. The most in-
formative models and tasks are shown in Fig. @ As observed, strong models like GPT-4, Gemini,
and InterLM are more representative than weaker models. This is likely because their performance
tends to deviate from the average and, being more general, they reliably reflect the difficulty level
of various datasets. Interestingly, the text-to-image generation task is particularly informative. In
this task, models must select the correct generated image from four candidates, and we observe that
strong models, such as GPT-4, perform significantly better than others. This performance gap leads
to larger errors in PMF, so including this dataset can significantly improve the PMF model.
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Figure 7: Effect Analysis of Vision Encoders on Downstream Tasks. We evaluate the impact of
each vision encoder on downstream tasks by calculating the dot product between the feature vector
of the vision encoder and the feature vector of the dataset.
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Figure 8: Which Models and Datasets Are Informative for Performance Estimation. Given a
PMF model train on 20% data of the performance matrix, We measure the improvement in RMSE
of PMF when adding the entire results of a model (A) or a dataset (B).

6 CONCLUSION AND FUTURE WORK

In this study, we evaluate 108 models on 176 datasets across 36 benchmarks. Our framework esti-
mates unknown LVLM performances across tasks using PMF, prioritizes evaluations based on un-
certainty, and introduce some enhancements to address the sparse data issue. Our study could lead
to significant savings in development time and computation costs. We highlight several limitations.
First, recent advances show that in-context learning or generating multiple responses can improve
LVLM performance on the same dataset. Modeling these different evaluation settings (e.g., 5-shot)
could extend our framework. Second, some model-dataset pairs with high uncertainties might offer
limited value for improving performance prediction on other datasets, so better heuristics for active
evaluation could be developed. Third, our method cannot answer what new benchmarks are needed,
which we believe is an interesting future direction.
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A COMPREHENSIVE EVALUATION OF LVLMS

We provide a comprehensive overview of the datasets and LVLMs used in our study. Detailed dataset
information can be found in Table[2]and[3] while the model profiles are presented in Tables [ and[5]

A heatmap illustrating the model ranking across datasets is shown in Fig.[9] Additionally, the corre-
lation analysis of performance scores is illustrated in Fig.|10]and Notably, even within the same
model family, such as the LLaVA series, the rankings between models do not exhibit a strong cor-
relation. Datasets tend to have much more consistent ranking correlations, suggesting that models
performing well on one dataset are likely to rank highly on others as well.

B FURTHER EXPERIMENTAL RESULTS

We present detailed performance evaluations of PMF in Table [6|and PTF in Table[7] As shown, our
methods consistently outperform the baselines. In scenarios where performance data is sparse, our
enhancements significantly improves the prediction accuracy of PMF.

We also investigate the models’ ability to generalize to new models and datasets without any perfor-
mance scores for training. As illustrated in Fig.[T2] using model and dataset profiles provides slight
improvement for new models or datasets. However, when both the model and dataset are entirely
new, performance falls below the Global Mean baseline. But we argue that this situation is rare in
practice. Some initial performance scores are usually available when a model or dataset is released,
and the community usually reports more performance scores in subsequent works.

16



Under review as a conference paper at ICLR 2025

Table 2: Dataset information. Our study utilizes 36 benchmarks. For larger benchmarks such as
SEED-2, we divide them into sub-datasets based on task categories. To reduce computational costs,
we subsample certain benchmarks. Download URLSs for all benchmarks are provided.

Benchmark

No. of

No. of Samples
Datasets for GPT and Gemini for Other Models

No. of Samples

Download URL

SEED 2 (Li et al.}|2023;
MME (Fu et al.

MMBench CN (Liu et al.
iu et al.

MMBench EN
MMMU (Yue et al.
CMMM ang et al.
ScienceQA (Lu et al.,
CVBench (Tong et al.
POPE (Li et al.

DECI
Enrico (Leiva et al.
FaceEmotion
Flickr30k (Young et al.
GQA (Hudson anni
HatefulMemes (Kiela et
INAT (Van Horn et al.
IRFL (Yosef et al,
MemeCaps (Hwan,
Memotion
MMIMDB
New YorkerCartoon
NLVR (Suhr et al.||2
NLVR?2 (Suhr et al.
NoCaps (Agrawal et al.

rinkhaus et al.

oodfellow et al.

arma et al..
revalo et al.|
essel et

024a

n; 19
al.
8

wartz,

OKVQA (Marino et al.

OpenPath (Huang et al

(He et al.| 202

27
14
20
20

2606
1000
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573
1467
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900
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Table 3: Dataset Metrics. PMF models the main metric on the datasets, while PTF utilizes the main
and other metrics (six in total) in modeling. BARTScore is proposed by (2021), while

BERTScore is introduced by Zhang et al.[(2019).
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BARTScore BERTScore
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Table 4: Model Information. Our study evaluates 108 models. For each model, we report the
number of parameters in the LLM backbone, the vision encoder, and the model family that we
define.

Model Checkpoint No. Param. in LLM Vision Encoder Model Family
BLIP2 BLIP2-opt-2.7B 2.7 ViT BLIP
BLIP2-flan-t5-xx1 11 ViT BLIP
BLIP2-opt-6.7b-coco 6.7 ViT BLIP
BLIP2-0pt-6.7b 6.7 ViT BLIP
BLIP2-flan-t5-x1 3 ViT BLIP
InstructBLIP InstructBLIP-Vicuna-7B 7 ViT BLIP
InstructBLIP-Vicuna-13B 13 ViT BLIP
InstructBLIP-flan-t5-x1 3 ViT BLIP
InstructBLIP-flan-t5-xx1 11 ViT BLIP
MiniGPT4 MiniGPT4-LLaMA2-7B 7 ViT MiniGPT4
MiniGPT4-Vicuna0-7B 7 ViT MiniGPT4
MiniGPT4-Vicuna0-13B 13 ViT MiniGPT4
mPLUG-Owl mPLUG-OwI2-LLaMA2-7B 7 ViT MiniGPT4
mPLUG-OwI2_1 7 ViT mPLUG-Owl
LLaVA LLaVA-7B 7 CLIP LLaVA
LLaVA-13B 13 CLIP LLaVA
LLaVA-v1.6-Vicuna-7B 7 CLIP LLaVA
LLaVA-v1.6-Vicuna-13B 13 CLIP LLaVA
LLaVA-v1.6-Mistral-7B 7 CLIP LLaVA
LLaVA-v1.6-34B 34 CLIP LLaVA
Cambrian-1 Cambrian-Phi3-3B 3 CLIP, SigLIP, ConvNeXt, DINOv2 Cambrian
Cambrian-8B 8 CLIP, SigLIP, ConvNeXt, DINOv2 Cambrian
Cambrian-13B 13 CLIP, SigLIP, ConvNeXt, DINOv2 Cambrian
Cambrian-34B 34 CLIP, SigLIP, ConvNeXt, DINOv2 Cambrian
Fuyu Fuyu-8B 8 - Fuyu
LLaMA _Adapter LLaMA-Adapter-V2-BIAS-7B 7 CLIP LLaMA-Adapter
LLaMA-Adapter-V2-LORA-BIAS-7B 7 CLIP LLaMA-Adapter
LLaMA-Adapter-V2-LORA-BIAS-7B-v21 7 CLIP LLaMA-Adapter
OpenFlamingo OpenFlamingo-3B-vitl-mpt1b 1 NFNet OpenFlamingo
OpenFlamingo-3B-vitl-mpt1b-langinstruct 1 NFNet OpenFlamingo
OpenFlamingo-4B-vitl-rpj3b 3 NFENet OpenFlamingo
OpenFlamingo-4B-vitl-rpj3b-langinstruct 3 NFNet OpenFlamingo
OpenFlamingo-9B-vitl-mpt7b 7 NFNet OpenFlamingo
Qwen-VL Qwen-VL-Chat 7 ViT Qwen
InternLM_XComposer InternLM-XComposer-7B 7 CLIP InternLM
InternLM-XComposer-vl-7B 7 CLIP InternLM
InternLM-XComposer2-7B 7 CLIP InternLM
InternLM-XComposer2-vl-1_8b 1.8 CLIP InternLM
InternLM-XComposer2-vl-7B 7 CLIP InternLM
GPT4 gpt-40-2024-05-13 Unknown Unknown GPT4
gpt-40-2024-08-06 Unknown Unknown GPT4
gpt-40-mini-2024-07-18 Unknown Unknown GPT4
gpt-4-turbo-2024-04-09 Unknown Unknown GPT4
Gemini gemini-1.5-pro Unknown Unknown Gemini
gemini-1.5-flash Unknown Unknown Gemini
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Table 5: Model information. This is the continued table of Table [

Model Checkpoint No. Param. in LLM  Vision Encoder ~Model Family
Prismatic reproduction-llava-v15+7b 7 CLIP prism
reproduction-llava-v15+13b 13 CLIP prism
one-stage+7b 7 CLIP prism
one-stage+13b 13 CLIP prism
full-ft-multi-stage+7b 7 CLIP prism
full-ft-one-stage+7b 7 CLIP prism
in1k-224px+7b 7 ViT prism
dinov2-224px+7b 7 DINOv2 prism
clip-224px+7b 7 CLIP prism
siglip-224px+7b 7 SigLIP prism
clip-336px-resize-crop+7b 7 CLIP prism
clip-336px-resize-naive+7b 7 CLIP prism
siglip-384px-letterbox+7b 7 SigLIP prism
siglip-384px-resize-crop+7b 7 SigLIP prism
siglip-384px-resize-naive+7b 7 SigLIP prism
dinoclip-336px-letterbox+7b 7 CLIP, DINOv2 prism
dinoclip-336px-resize-naive+7b 7 CLIP, DINOv2 prism
dinosiglip-384px-letterbox+7b 7 SigLIP, DINOv2 prism
dinosiglip-384px-resize-naive+7b 7 SigLIP, DINOv2 prism
llama2+7b 7 CLIP prism
llama2+13b 13 CLIP prism
vicuna-no-cotraining+7b 7 CLIP prism
1lama2-no-cotraining+7b 7 CLIP prism
train-1.25-epochs+7b 7 CLIP prism
train-1.5-epochs+7b 7 CLIP prism
train-2-epochs+7b 7 CLIP prism
train-3-epochs+7b 7 CLIP prism
llava-lvisd4v+7b 7 CLIP prism
llava-lrv+7b 7 CLIP prism
llava-lvis4v-lrv+7b 7 CLIP prism
prism-clip-controlled+7b 7 CLIP prism
prism-clip-controlled+13b 13 CLIP prism
prism-clip+7b 7 CLIP prism
prism-clip+13b 13 CLIP prism
prism-siglip-controlled+7b 7 SigLIP prism
prism-siglip-controlled+13b 13 SigLIP prism
prism-siglip+7b 7 SigLIP prism
prism-siglip+13b 13 SigLIP prism
prism-dinosiglip-controlled+7b 7 SigLIP, DINOv2 prism
prism-dinosiglip-controlled+13b 13 SigLIP, DINOv2 prism
prism-dinosiglip+7b 7 SigLIP, DINOv2 prism
prism-dinosiglip+13b 13 SigLIP, DINOv2 prism
prism-dinosiglip-224px-controlled+7b 7 SigLIP, DINOv2 prism
prism-dinosiglip-224px+7b 7 SigLIP, DINOv2 prism
1lama2-chat+13b 13 CLIP prism
mistral-v0.1+7b 7 CLIP prism
mistral-instruct-v0.1+7b 7 CLIP prism
phi-2+3b 3 CLIP prism
gemma-instruct+2b+clip 2 CLIP prism
gemma-instruct+2b+siglip 2 SigLIP prism
gemma-instruct+2b+dinosiglip 2 SigLIP, DINOv2 prism
gemma-instruct+8b+clip 8 CLIP prism
gemma-instruct+8b+siglip 8 SigLIP prism
gemma-instruct+8b+dinosiglip 8 SigLIP, DINOv2 prism
llama2-chat+7b+clip 7 CLIP prism
llama2-chat+7b+siglip 7 SigLIP prism
llama2-chat+7b+dinosiglip 7 SigLIP, DINOv2 prism
llama3-instruct+8b+clip 8 CLIP prism
1lama3-instruct+8b+siglip 8 SigLIP prism
1lama3-instruct+8b+dinosiglip 8 SigLIP, DINOv2 prism
mistral-instruct-v0.2+7b+clip 7 CLIP prism
mistral-instruct-v0.2+7b+siglip 7 SigLIP prism
mistral-instruct-v0.2+7b+dinosiglip 7 SigLIP, DINOv2 prism
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1057 . . . .
1058 Table 6: Detailed performance of PMF. Superior results are highlighted.
1059 \ethod Overall Acc BART
1060 etho RMSE, MAE| RMSE MAE R2?{ RMSE MAE R?
1061 Test Ratio: 20%
Global Mean 0367 0220 0.190 0.148 0475 0.823 0.611 0.549
1062 Mean Of Means 0319 0.186  0.161 0.125 0.622 0719 0525 0.656
1063 PMF 0.192 0090 0073 0051 0922 0458 0303 0.860
1064 Test Ratio: 40%
Global Mean 0368 0220 0.190 0.149 0477 0.829 0.614 0.551
1065 Mean Of Means 0320 0.186  0.161 0.125 0.623 0725 0527 0.657
1066 PMF 0.199 0095 0078 0056 0911 0474 0314 0.853
1067 Test Ratio: 60%
1 Global Mean 0370 0220 0.190 0.149 0474 0831 0.613 0.551
068 Mean Of Means 0322 0.188  0.162 0.126 0618 0729 0529 0.654
1069 PMF 0220 0106 0.089 0063 0.886 0521 0348 0.823
1070 Test Ratio: 80%
1071 Global Mean 0373 0221 0.193 0150 0462 0837 0.612 0.546
Mean Of Means  0.329  0.191 0.166 0.128 0.601 0.742 0533 0.643
1072 PMF 0258 0.131 0.114 0081 0812 0600 0407 0.766
1073 Test Ratio: 90%
1074 Global Mean 0381 0226 0.198 0.153 0430 0.852 0.630 0.529
Mean Of Means ~ 0.339  0.197 0.174 0.133 0564 0.765 0.555 0.621
1075 PMF 0313 0172 0.153 0.113 0.660 0714 0.502 0.669
1076 Test Ratio: 95%
1077 Global Mean 0458 0278 0227 0.182 0254 1041 0807 0.297
Mean Of Means ~ 0.385 0230 0.191 0.150 0474 0.875 0.672 0.504
1078 PMF 0462 0276 0228 0.180 0248 1052 0.805 0.282
1079
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Figure 11: Heatmap of Ranking Correlation on Datasets.
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Table 7: Detailed performance of PTF. Superior results are highlighted.

Overall Acc Precision Recall F1 BART BERT

Method RMSE| MAE| RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Test Ratio: 20%

Global Mean 0.320 0.190 0.190 0.149 0.223 0.167 0245 0.186 0.205 0.156 0.812 0.603 0.088 0.044
Mean Of Means ~ 0.260 0.150 0.149 0.115 0.181 0.131 0205 0.152 0.169 0.123 0.664 0.482 0.074 0.036
PMF 0.206 0.096 0.081 0.057 0.130 0.086 0.175 0.126 0.108 0.070 0.563 0.378 0.077 0.039
CPTF 0.208 0.099 0.087 0.060 0.134 0.089 0.173 0.123 0.107 0.070 0.564 0.379 0.076 0.039
BPTF 0202 0.095 0.079 0056 0.129 0.084 0.177 0.127 0.109 0.070 0.553 0.372 0.077 0.039
BCPTF 0.207 0.096 0.079 0.056 0.129 0.085 0.178 0.127 0.113 0.072 0.568 0.378 0.076  0.039
Test Ratio: 40%

Global Mean 0.323 0.192  0.190 0.149 0.223 0.167 0.247 0.189 0.213 0.160 0.818 0.609 0.091 0.045
Mean Of Means ~ 0.262 0.151 0.150 0.116 0.182 0.132 0209 0.156 0.174 0.126 0.667 0.486 0.078 0.038
PMF 0.210 0.100 0.083 0.059 0.132 0.087 0.181 0.130 0.112 0.073 0.572 0.388 0.081 0.040
CPTF 0.209 0.101  0.087 0.062 0.134 0.089 0.180 0.128 0.113 0.074 0.566 0.385 0.081 0.040
BPTF 0206 0.100 0.084 0.060 0.132 0.086 0.185 0.133 0.117 0.077 0.558 0.379 0.082 0.041
BCPTF 0.209 0.100 0.082 0.059 0.131 0.086 0.184 0.131 0.117 0.076 0.568 0.384 0.081 0.040
Test Ratio: 60%

Global Mean 0.325 0.192  0.191 0.149 0227 0.170 0.248 0.189 0.214 0.160 0.825 0.611 0.092 0.045
Mean Of Means ~ 0.265 0.153  0.15s1 0.116 0.186 0.135 0212 0.157 0.178 0.128 0.676 0.490 0.080 0.038
PMF 0.218 0.107 0.093 0.067 0.136 0.090 0.188 0.134 0.123 0.081 0.588 0.400 0.084 0.041
CPTF 0.219 0.109 0.098 0.070 0.141 0.094 0.187 0.133 0.125 0.082 0.588 0.398 0.083 0.040
BPTF 0.217 0.108 0.096 0.068 0.138 0.092 0.194 0.139 0.130 0.087 0.582 0.397 0.085 0.042
BCPTF 0216  0.105 0.089 0.064 0.135 0.090 0.191 0.136 0.127 0.083 0.584 0.394 0.083 0.041
Test Ratio: 80%

Global Mean 0.330 0.194 0.193 0.150 0.230 0.171 0.253 0.191 0.217 0.162 0.839 0.619 0.092 0.046
Mean Of Means ~ 0.277 0.158 0.155 0.119 0.198 0.141 0225 0.165 0.186 0.134 0.709 0.510 0.084 0.041
PMF 0.249 0.128 0.120 0.087 0.151 0.103 0.207 0.148 0.145 0.098 0.661 0.457 0.091 0.044
CPTF 0.240 0.123  0.115 0.083 0.151 0.104 0208 0.148 0.147 0.099 0.637 0.437 0.088 0.043
BPTF 0.239 0.123  0.116 0.083 0.152 0.103 0212 0.151 0.151 0.102 0.630 0.433 0.090 0.044
BCPTF 0236  0.119 0.108 0.077 0.147 0.099 0.208 0.149 0.147 0.099 0.627 0.427 0.089 0.043
Test Ratio: 90%

Global Mean 0.338 0.198 0.199 0.154 0.237 0.174 0258 0.195 0.224 0.166 0.858 0.629 0.095 0.047
Mean Of Means ~ 0.298 0.168 0.166 0.125 0.216 0.153 0239 0.176 0.204 0.147 0.764 0.547 0.090 0.043
PMF 0.294 0.161 0.161 0.119 0.194 0.135 0235 0.171 0.187 0.131 0.761 0.535 0.094 0.045
CPTF 0.274 0.147 0.145 0.105 0.190 0.133 0.233 0.168 0.184 0.128 0.710 0.492 0.092 0.043
BPTF 0267 0.143 0.142 0.103 0.179 0.123 0.232 0.167 0.178 0.122 0.690 0.480 0.093 0.044
BCPTF 0.268 0.141 0.138 0.099 0.179 0.124 0228 0.164 0.176 0.120 0.698 0.481 0.093 0.045
Test Ratio: 95%

Global Mean 0.404 0.238 0.228 0.182 0.251 0.194 0270 0209 0.240 0.183 1.058 0.805 0.101 0.057
Mean Of Means ~ 0.387 0217 0202 0.158 0.241 0.182 0261 0.198 0.230 0.172 1.027 0.772 0.097 0.056
PMF 0.403 0233 0223 0.177 0.244 0.18 0269 0204 0.236 0.175 1.059 0.801 0.101 0.057
CPTF 0.364 0.199 0.188 0.142 0216 0.161 0.252 0.188 0216 0.157 0970 0.712 0.097 0.054
BPTF 0.355 0.196 0.189 0.144 0208 0.153 0.251 0.188 0.206 0.148 0.940 0.687 0.098 0.055
BCPTF 0.360 0.196 0.186 0.141 0.211 0.156 0.251 0.186 0.205 0.148 0.959 0.702 0.100 0.056
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Figure 12: Results on Purely New Models and Datasets.
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