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ABSTRACT

Recent advances in video generation produce visually realistic content, yet the
absence of synchronized audio severely compromises immersion. To address
key challenges in video-to-audio generation, including multimodal data scarcity,
modal semantic response imbalance, and limited audio quality in existing meth-
ods, we propose HiFi-Foley, an end-to-end text-video-to-audio framework that
synthesizes high-fidelity audio precisely aligned with visual dynamics and se-
mantic context. Our approach incorporates three core innovations: (1) a novel
multimodal diffusion transformer that addresses semantic response imbalance be-
tween video and text modalities through dual-stream audio-video fusion via joint
attention and balanced textual semantic injection via cross-attention; (2) a repre-
sentation alignment training strategy that employs self-supervised audio features
to guide latent diffusion training, thereby improving audio quality and semantic
consistency; (3) a scalable data pipeline leveraging open-source tools for cleaning
raw data and constructing training datasets. Extensive evaluations demonstrate
that HiFi-Foley achieves state-of-the-art performance across audio fidelity, visual-
semantic alignment, temporal alignment, and distribution matching.

1 INTRODUCTION

Recent advances in video generation models (Polyak et al., 2025; Gao et al., 2025; Kong et al., 2025)
have achieved notable success in synthesizing high-quality, photorealistic dynamic sequences. How-
ever, the absence of synchronized audio in these generated videos significantly undermines immer-
sion. Traditional Foley art requires meticulous frame-by-frame creation by professionals, incurring
substantial time and financial costs that render it incompatible with the efficiency of modern video
generation systems. To address this limitation, research on automated Foley generation has gained
momentum.

Text-to-audio (TTA) synthesis constitutes an early approach to Foley generation, producing high-
quality audio conditioned exclusively on textual descriptions. The state-of-the-art (SOTA) TTA
methods can produce high-fidelity audio well-aligned with semantic descriptions. Nevertheless,
restricted to textual guidance only, TTA methods cannot inherently generate audio aligned with
video content, which is a critical requirement for Foley generation.

Video-to-Audio (V2A) generation aims to produce high-quality audio precisely synchronized with
video, both semantically and temporally. Recent V2A approaches (Cheng et al., 2025; Liu et al.,
2025) based on the Multimodal Diffusion Transformer (MMDiT) framework have shown signif-
icant progress. These methods leverage dual-modal inputs (video and text), utilizing pre-trained
encoders to extract video features and text embeddings to guide audio synthesis through diffusion
or flow-matching processes. However, existing V2A methods suffer from several key limitations.
(1) Multimodal Data Scarcity: Public datasets like VGGSound (Chen et al., 2020) offer only 556
hours of low-quality video-audio pairs, while high-quality TTA datasets (e.g., AudioCaps (Kim
et al., 2019), WavCaps (Mei et al., 2024a)) lack video modality. The scarcity of multimodal data
fundamentally limits the generalization capabilities of existing Text-Video-to-Audio (TV2A) mod-
els. (2) Modality Imbalance: Current methods exhibit over-reliance on text semantics, maintaining
only coarse temporal alignment with video while inadequately responding to visual semantics. For
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instance, when processing text “the sound of ocean waves” alongside video depicting a beach scene
with people, seagulls and waves, the model exclusively generates the wave sounds while neglecting
other audio elements (footstep sounds and seagull calls). This phenomenon demonstrates an imbal-
anced multimodal integration where textual cues dominate the audio generation at the expense of
visual information. (3) Audio Quality: The fidelity of audio generated by existing methods fails to
meet professional standards, exhibiting background noise and semantically inconsistent artifacts.

To overcome these challenges, we propose HiFi-Foley, an end-to-end multimodal TV2A generation
model capable of synthesizing high-quality audio tightly aligned with both input video and text
semantics. Our model adopts a multimodal flow-matching transformer paradigm trained on a large-
scale text-video-audio multimodal dataset. First, to enable scalable multimodal dataset creation, we
introduce a comprehensive data pipeline for automated labeling and filtering of collected data. This
pipeline facilitated the construction of a 122k hours TV2A dataset. Second, to address modality
imbalance, we propose a novel multimodal audio generation architecture comprising dual-stream
MMDiT blocks and single-stream audio DiT blocks. The MMDiT incorporates joint self-attention
with interleaved RoPE to strengthen temporal dependencies between video and audio, followed by
the injection of textual information through the cross-attention mechanism. Third, we introduce a
Representation Alignment (REPA) loss to enhance audio quality by aligning the hidden embeddings
from the single-stream audio DiT block with the audio features extracted by a pre-trained self-
supervised model (Li et al., 2023). Our key contributions are summarized as follows:

• We introduce HiFi-Foley, a novel TV2A framework that generates high-quality, semanti-
cally and temporally aligned audio from video and text inputs. Our approach mitigates
modal semantic response imbalance, significantly enhancing visual-semantic alignment
while sustaining text-semantic alignment, achieving SOTA performance.

• We introduce a REPA training strategy leveraging pre-trained audio features to provide se-
mantic and acoustic guidance for the audio modeling process, effectively enhancing audio
generation quality and semantic consistency.

• We propose an efficient TV2A data pipeline built on open-source tools for cleaning raw
data and constructing large-scale, high-quality datasets.

2 RELATED WORK

Text-to-Audio. Early audio synthesis focuses on TTA generation, which aims to synthesize audio
content based on textual descriptions. DiffSound (Yang et al., 2023) pioneers diffusion models for
environmental sound synthesis. AudioGen (Kreuk et al., 2023) adopts auto-regressive transformer
to predict discrete audio representation. Subsequent advances including AudioLDM (Liu et al.,
2023), Make-An-Audio (Huang et al., 2023), and Stable Audio Open (Evans et al., 2024) utilize
latent diffusion with text embeddings from pre-trained text encoders to enhance semantic alignment.
Recently, TangoFlux (Hung et al., 2025) introduces a hybrid DiT architecture following Flux (Labs
et al., 2025), with preference optimization, enabling high-fidelity TTA generation at reduced latency.
However, TTA approaches are inherently limited to text-based generation and lack the capability to
produce audio that is aligned with video content.

Video-to-Audio. Video-to-Audio synthesis aims to generate audio semantically and temporally con-
sistent with video content. Existing V2A approaches can be broadly categorized into two paradigms,
injecting visual features into pre-trained TTA models and training V2A models from scratch. In the
first category, T2AV (Mo et al., 2024) introduces an Audio-Visual ControlNet to strengthen vi-
sual consistency in TTA models. FoleyCrafter (Zhang et al., 2024) utilizes semantic adapters and
temporal controllers for alignment, injecting textual and visual embeddings into a UNet backbone
through cross-attention to guide audio generation. VATT (Liu et al., 2024) uses text prompts de-
rived from video content to steer TTA models for audio synthesis. For approaches trained from
scratch, Diff-Foley (Luo et al., 2023) utilizes a contrastive audio-visual pre-training (CAVP) module
to align features across modalities. FoleyGen (Mei et al., 2024b) employs autoregressive transform-
ers to achieve visual feature-based audio generation. Recent works have demonstrated remarkable
advances in both audio quality and multimodal alignment. Frieren (Wang et al., 2025) proposes
an efficient V2A model based on rectified flow matching. MMAudio (Cheng et al., 2025) adopts
a hybrid architecture combining MMDiT blocks with single-modality DiT blocks, incorporating
synchronization features via Synchformer (Iashin et al., 2024), which is validated for temporal
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Figure 1: Overview of the HiFi-Foley model architecture. The proposed model integrates encoded
text (CLAP), visual (SigLIP-2), and audio (DAC-VAE) inputs through a hybrid framework with N1

multimodal transformer blocks followed by N2 unimodal transformer blocks. The hybrid trans-
former blocks are modulated and gated with Synchformer synchronization features and timestep
embeddings. A pre-trained ATST-Frame is used to compute REPA loss with mapped latent repre-
sentations from a unimodal transformer block. The generated audio latent are decoded into audio
waveforms by the DAC-VAE decoder.

alignment efficacy in V-AURA (Viertola et al., 2024). MMAudio achieves high-quality synthesis
with enhanced alignment. Concurrent work ThinkSound (Liu et al., 2025) proposes a Chain-of-
Thought (CoT) framework enabling step-by-step interactive audio generation and editing. While
previous approaches have made significant progress in V2A synthesis, several critical challenges
remain unresolved. These include suboptimal audio quality that falls short of professional stan-
dards, imprecise temporal alignment, and insufficient semantic correspondence with visual context.
In contrast to existing methods, our approach employs distinct attention mechanisms to address the
different alignment relationships between video-audio and text-audio modalities. This framework
significantly enhances both video-semantic alignment and the quality of synthesized audio.

Representation Alignment. Representation Alignment (REPA), first introduced by (Yu et al.,
2024), accelerates convergence and enhances semantic fidelity in large-scale generative models
through aligning internal features with representations extracted from a pre-trained visual encoder.
The REPA framework has since been widely adopted across generative modeling tasks. VA-VAE
(Yao et al., 2025) integrates REPA into LightningDiT to improve variational autoencoder latent
space learning. JanusFlow (Ma et al., 2025b) employs REPA for multimodal framework refinement;
UniTok (Ma et al., 2025a) applies REPA to develop unified visual tokenizers; and MergeVQ (Li
et al., 2025) utilizes REPA for vector quantization based model optimization. Building upon these
successes, we apply REPA to TV2A synthesis, where we align intermediate representations of DiT
blocks with frame-level audio features extracted from a pre-trained self-supervised model (Li et al.,
2023) to enhance semantic and acoustic modeling. Our experimental results demonstrate marked
improvements in both audio fidelity and semantic relevance.

3 HIFI-FOLEY

To achieve modality balance and high-quality TV2A generation, we introduce the HiFi-Foley frame-
work. As illustrated in Figure 1, HiFi-Foley employs a hybrid architecture with N1 multimodal
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transformer blocks (visual-audio streams) followed by N2 unimodal transformer blocks (audio
stream only). To ensure balanced semantic response across modalities, we propose an MMDiT struc-
ture that adopts dual-phase attentions, achieving audio-visual alignment through joint self-attention
and subsequently implementing text semantic injection through cross-attention. Furthermore, to en-
hance audio generation quality, we leverage pre-trained audio representations to guide the modeling
process through a representation alignment strategy.

The multimodal input representations in HiFi-Foley leverage specialized encoders to extract
modality-optimized features: video frames are processed by a pre-trained SigLIP2 (Tschannen et al.,
2025) encoder generating visual features Fv ∈ RLv×Dv . Textual descriptions are encoded through
CLAP (Elizalde et al., 2023), yielding semantic embeddings Ft ∈ RLt×Dt . Audio waveforms are
compressed via our enhanced DAC-VAE encoder into audio latents x ∈ RLa×Da . Synchronization
features Fs ∈ RLs×Ds are extracted using Synchformer (Viertola et al., 2024), where Lv , Lt, La,
and Ls represent the correspondence of sequence lengths, and Dv , Dt, Da, and Ds represent the
corresponding feature dimension.

3.1 MULTIMODAL ALIGNMENT WITH DUAL-PHASE ATTENTIONS.

TV2A generation requires modeling distinct alignment relationships between video and text modal-
ities: audio and video exhibit fine-grained frame-level temporal and semantic dependencies, while
audio-text interactions only rely on global semantic guidance. During our exploration of model
architectures, we discover that triple-stream MMDiT structures tend to generate audio that heav-
ily relies on textual content while neglecting visual information. In the triple-stream MMDiT, text
and video are treated with equal importance, leading the model to preferentially learn from the
high-density semantic information in text while overlooking the relatively sparse semantic content
in video. We attribute this phenomenon to the fundamentally different alignment relationships that
video and text modalities have with audio. This semantic response imbalance necessitates a more
sophisticated attention design that accounts for the distinct characteristics of each modality. To ad-
dress this dichotomy, our MMDiT architecture employs a dual-phase attention mechanism. Unlike
conventional triple-stream MMDiTs that rely solely on joint self-attention for tri-modal fusion, our
dual-phase approach differentiates between modalities by first establishing audio-visual alignment
through joint self-attention, then separately incorporating textual semantics via cross-attention.

Self-attention phase. In the self-attention phase, audio latents and visual features are concatenated
into a unified sequence, enhanced with interleaved rotary position embedding (RoPE). Traditional
approaches apply RoPE (Su et al., 2024) to audio and visual sequences independently, which may
not effectively capture the temporal correlations. Our interleaved RoPE strategy interleaves audio
and visual tokens along the temporal dimension before applying position embeddings, thereby en-
abling the model to learn more coherent temporal relationships between visual-audio modalities.
Specifically, given audio latents x ∈ RLa×Da and visual features Fv ∈ RLv×Dv . We first employ
nearest-neighbor interpolation to align the sequence length to L = max(La, Lv), then interleave
two sequences. For timestep t ∈ [1, L], the joint feature Fav is combined through Equation 1:{

Fav[2t− 1, : ] = x[t, : ]

Fav[2t, : ] = Fv[t, : ]
(1)

This operation creates an alternating pattern Fav of audio and visual tokens. Subsequently, we apply
RoPE to this interleaved sequence, ensuring that temporally adjacent audio and visual tokens receive
consecutive position embeddings. Finally, we decouple the interleaved sequence back into separate
audio latent x′ and visual feature F ′

v , and then concatenate two sequences along the temporal di-
mension to serve as the query, key, and value in the following self-attention mechanism, shown in
Equation 2.

F ′
av = SelfAttention (Concat (x′, F ′

v)) (2)

The aligned audio-visual features F ′
av are subsequently split into parallel processing streams, each

transformed through linear projection layers equipped with gating mechanisms. These streams are
then processed through adaLN layers that dynamically modulate audio latents and visual features.
Both the gating mechanisms and modulation parameters utilize feature processing based on syn-
chronization feature from the Synchformer visual encoder and flow timestep embeddings.

Fout = CrossAttention(Q = F ′
av,K = Ft, V = Ft) (3)
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Figure 2: Radar Chart of Video-to-Audio Evaluation. It contains the results on three evalua-
tion set: Kling-Audio-Eval, VGGSound-Test, and MovieGen-Audio-Bench, demonstrating that
HunyuanVideo-Foley achieves comprehensive superiority.

Cross-attention phase. In the subsequent cross-attention phase, the concatenated audio-visual se-
quence F ′

av serves as the query, while CLAP-derived text embeddings Ft provide the key and value
components, shown in Equation 3, facilitating semantic alignment between multimodal inputs and
textual descriptions. Following cross-attention, the enhanced features Fout are decomposed into dual
processing streams for audio and visual modalities. Each stream is subsequently processed through
a transformation encompassing linear projection, gating mechanisms, adaLN, MLP operations, and
final gating with residual connection.

3.2 TRAINING STRATEGY

The HiFi-Foley framework employs flow-matching as the primary training objective, which models
the continuous transformation from noise to target audio representations. Given a source distribution
p0 (typically Gaussian noise) and target distribution p1 (audio latents), flow-matching learns a vector
field that defines the optimal transport path between these distributions. The flow-matching loss is
formulated as:

LFM(θ) = Et,x0,x1

[
∥vθ(xt, t, c)− ut(x0,x1)∥2

]
(4)

where vθ is the learned vector field, xt is the interpolated sample at time t, c denotes the conditioning
information, and ut(x0,x1) represents the target vector field.

Additionally, we introduce the REPA strategy that involves aligning hidden states from intermediate
layers of transformer blocks in our diffusion model with frame-level audio representations from
the pre-trained ATST-Frame encoder. Through systematic ablation studies, we explored the impact
of REPA loss placement across different transformer layers and found that applying REPA loss
to the latent representations from the 8th unimodal transformer block yields optimal performance.
Specifically, let EATST denote a pre-trained ATST encoder, which produces representations Fr ∈
RN×D, where Fr = EATST (x), where N representing the sequence length of audio feature and D
is the ATST feature dimension. REPA loss aims to align the mapped latents from the intermediate
DiT layers ht = fθ(zt), where zt denotes the audio latent compressed by a pretrained autoencoder
and fθ denotes trainable diffusion transformer layers, with the ATST-Frame audio features Fr. This
mapping is implemented through a Multi-Layer Perceptron (MLP) layer, denoted by hϕ. Equation
5 shows the calculation of REPA loss.

LREPA(θ, ϕ) := −Ex,ϵ,t

[
1

N

N∑
n=1

sim
(
Fr

[n], hϕ

(
h
[n]
t

))]
(5)

The overall training objective combines both flow-matching and REPA losses with a weighting
parameter λ, shown in Equation 6.

Ltotal(θ, ϕ) = LFM(θ) + λ · LREPA(θ, ϕ) (6)

This dual-objective training strategy leverages flow-matching loss to learn optimal generative tra-
jectories while employing REPA loss to maximize semantic and acoustic alignment through cosine
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Figure 3: Data pipeline for filtering video-audio data. The workflow illustrates the processing steps
from the raw video database to the filtered video-audio database.

Table 1: Comparison of Our Training Dataset with Existing Datasets.

Datasets Duration Num. of Audios Video Audio Audio Caption

AudioSet (Gemmeke et al., 2017) 5.8kh 2M Yes Yes No
AudioCaps (Kim et al., 2019) 416h 150k Yes Yes Yes
WavCaps (Mei et al., 2024a) 7.6kh 400k No Yes Yes
VGGSound (Chen et al., 2020) 556h 200k Yes Yes No
Epic Sounds (Huh et al., 2023) 100h 78.4k Yes Yes No

Ours 122kh 55M Yes Yes Yes

similarity between pre-trained ATST features and DiT internal representations, collectively enhanc-
ing both generation fidelity and semantic coherence.

3.3 DATA CONSTRUCTION

The TV2A task presents a complex multimodal generation challenge that requires large-scale, high-
quality text-video-audio datasets to produce robust and generalizable audio. Current open-source
datasets, however, lack the necessary quality and scale to adequately support this demanding task.
To bridge this gap, we develop a comprehensive data pipeline composed entirely of open-source
tools and designed to systematically identify and exclude unsuitable content.

Data Pipeline. As illustrated in Figure 3, our multi-stage filtering process firstly eliminate videos
lacking audio streams. Subsequently, we employ scene detection algorithms (Castellano, 2023) to
segment raw videos, then chunk them into 8-second intervals. These segments undergo silence ratio
analysis, with those exceeding an 80% silence threshold being discarded. Given the prevalence of
heavily compressed and quality-degraded content on internet platforms, we implement bandwidth
detection to ensure audio quality, retaining only samples with effective sampling rates exceeding
32 kHz. Audio quality constitutes a critical factor in generative audio tasks. Videos captured using
substandard equipment often exhibit substantial background noise and ambient interference, render-
ing them unsuitable for generating cinematic-quality audio. To address this issue, we employ the
Production Quality (PQ) metric from the AudioBox-aesthetic toolkit (Tjandra et al., 2025) for audio
quality assessment. Additionally, signal-to-noise ratio (SNR) serve as a supplementary metric. To
obtain a robust and accurate estimate, we employ the WADA-SNR (Kim & Stern, 2008) algorithm.
Using these parameters, we empirically design a standard to filter and retain only high-quality audio
segments. Another challenge in the V2A domain is ensuring audio-video alignment, which con-
sists of both semantic and temporal alignment. We leverage ImageBind (Girdhar et al., 2023) and
AV-align (Yariv et al., 2024) to address the semantic and temporal alignments, respectively.

Following the aforementioned filtering process, we annotate the remaining video segments using
speech-music detection (Hung et al., 2022) and audio classification (Gong et al., 2021) models.
These annotations provide categorical tags for each segment, enabling effective management of
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Table 2: Objective evaluation results on Kling-Audio-Eval. HiFi-Foley achieves superior perfor-
mance across distribution matching (FDPaNNs, KL), audio quality (PQ), visual-semantic alignment
(IB) and temporal alignment (DeSync) metrics.

Method FDPaNNs↓ FDPaSST ↓ KL ↓ IS ↑ PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑
FoleyCrafter 22.30 322.63 2.47 7.08 6.05 2.91 3.28 5.44 0.22 1.23 0.22
V-AURA 33.15 474.56 3.24 5.80 5.69 3.98 3.13 4.83 0.25 0.86 0.13
Frieren 16.86 293.57 2.95 7.32 5.72 2.55 2.88 5.10 0.21 0.86 0.16
MMAudio (L-44.1kHz) 9.01 205.85 2.17 9.59 5.94 2.91 3.30 5.39 0.30 0.56 0.27
ThinkSound (w/o. CoT) 9.92 228.68 2.39 6.86 5.78 3.23 3.12 5.11 0.22 0.67 0.22

HiFi-Foley (ours) 6.07 202.12 1.89 8.30 6.12 2.76 3.22 5.53 0.38 0.54 0.24

Table 3: Objective evaluation results on VGGSound-Test. Our models achieves superior perfor-
mance across audio quality (PQ) and visual-semantic alignment (IB).

Method FDPaNNs↓ FDPaSST ↓ KL ↓ IS ↑ PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑
FoleyCrafter 20.65 171.43 2.26 14.58 6.33 2.87 3.60 5.74 0.26 1.22 0.19
V-AURA 18.91 291.72 2.40 8.58 5.70 4.19 3.49 4.87 0.27 0.72 0.12
Frieren 11.69 83.17 2.75 12.23 5.87 2.99 3.54 5.32 0.23 0.85 0.11
MMAudio (L-44.1kHz) 7.42 116.92 1.77 21.00 6.18 3.17 4.03 5.61 0.33 0.47 0.25
ThinkSound (w/o. CoT) 8.46 67.18 1.90 11.11 5.98 3.61 3.81 5.33 0.24 0.57 0.16

HiFi-Foley (ours) 11.34 145.22 2.14 16.14 6.40 2.78 3.99 5.79 0.36 0.53 0.24

Table 4: Objective and subjective evaluation results on MovieGen-Audio-Bench. Our model
achieves SOTA performance across almost all objective metrics and subjective evaluations.

Method PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑ MOS-Q↑ MOS-S ↑ MOS-T ↑
FoleyCrafter 6.27 2.72 3.34 5.68 0.17 1.29 0.14 3.36±0.78 3.54±0.88 3.46±0.95
V-AURA 5.82 4.30 3.63 5.11 0.23 1.38 0.14 2.55±0.97 2.60±1.20 2.70±1.37
Frieren 5.71 2.81 3.47 5.31 0.18 1.39 0.16 2.92±0.95 2.76±1.20 2.94±1.26
MMAudio (L-44.1kHz) 6.17 2.84 3.59 5.62 0.27 0.80 0.35 3.58±0.84 3.63±1.00 3.47±1.03
ThinkSound (w/o. CoT) 6.04 3.73 3.81 5.59 0.18 0.91 0.20 3.20±0.97 3.01±1.04 3.02±1.08

HiFi-Foley (ours) 6.59 2.74 3.88 6.13 0.35 0.74 0.33 4.14±0.68 4.12±0.77 4.15±0.75

category distribution and ensuring balanced representation in the training dataset. Subsequently,
we generate audio captions for each segment using GenAU (Haji-Ali et al., 2025), which provides
concise descriptions of the audio content.

Dataset. Leveraging our proposed data pipeline, we have constructed a high-quality TV2A dataset.
As shown in Table 1, our dataset is compared with five commonly used datasets. As illustrated, our
dataset significantly surpasses all others in scale, comprising 122k hours of content with 55 million
clips, each 8 seconds in length. Furthermore, our dataset provides comprehensive multi-modal re-
sources, including video, audio, and audio captions. This large-scale, multi-modal collection offers
robust support for enhancing the generalization capability and generation quality of our model.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

HiFi-Foley consists of 18 MMDiT layers and 36 unimodal audio DiT layers with a hidden dimension
of 1536 and 12 attention heads. The training is conducted on 128 H20 GPUs with an effective batch
size of 2048 over 200k steps on a 100k-hour TV2A datasets built by our proposed data pipeline, us-
ing the AdamW optimizer with a learning rate of 1e-4. We applied a classifier-free guidance (CFG)
dropout rate of 0.1 for each modality. We employ DAC-VAE by removing the original residual
vector quantization (RVQ) blocks from DAC. A detailed description is provided in the appendix.

We evaluate HiFi-Foley against existing SOTA models on three datasets: Kling-Audio-Eval,
VGGSound-Test, and MovieGen-Audio-Bench. For objective evaluation, we employ a compre-
hensive multi-dimensional assessment covering distribution matching (FD and KL divergence using
PANNs and PaSST), audio quality (IS and AudioBox-Aesthetics scores), visual-semantic alignment
(ImageBind cosine similarity), temporal alignment (Synchformer DeSync), and text-semantic con-
sistency (LAION-CLAP). For subjective evaluation, we conduct MOS assessment on audio quality
(MOS-Q), semantic alignment (MOS-S), and temporal alignment (MOS-T) using 527 MovieGen-
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Table 5: Ablation Study on Multimodal Transformer Block Architectures.

Method PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑
Joint self-attention 6.32 2.72 3.61 5.76 0.31 1.05 0.32
Parallel cross-attention 6.33 2.80 3.59 5.55 0.26 0.81 0.27

Joint self-attention+cross-attention 6.38 2.76 3.68 5.90 0.32 0.78 0.30
w/o. interleaved RoPE 6.36 2.78 3.65 5.77 0.31 0.79 0.30
w/o. unimodal DiT 6.23 2.83 3.57 5.70 0.31 0.79 0.30

Table 6: Ablation Study on Representation Alignment Models.

Method PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑
w/o. REPA 6.23 2.83 3.57 5.63 0.31 0.79 0.30
EAT+ATST 6.00 2.90 3.54 5.43 0.32 0.79 0.29
EAT only 6.24 2.77 3.55 5.69 0.32 0.79 0.31
ATST only 6.28 2.74 3.59 5.68 0.33 0.75 0.33

Audio-Bench samples, with 20 experienced annotators providing ratings from 1 (poor) to 5 (excel-
lent). For MOS-Q, scoring is performed using audio only, while for MOS-S and MOS-T, both audio
and video are used for evaluation.

4.2 MAIN RESULTS

Kling-Audio-Eval. Table 2 presents the objective evaluation results on the Kling-Audio-Eval
dataset. HiFi-Foley demonstrates superior performance across multiple metrics, including distri-
bution matching (FD, KL), audio quality (PQ), visual-semantic alignment (IB), and temporal syn-
chronization (DeSync) in comparison with baselines. Compared with the current state-of-the-art
model MMAudio, HiFi-Foley demonstrates slightly inferior performance on IS, CE, and CLAP
scores, while achieving notable improvements in FD (9.01 to 6.07), KL (2.17 to 1.89), and IB (0.30
to 0.38) scores.

VGGSound-Test. The objective evaluation on the VGGSound-Test is shown in Table 3. Notably,
HiFi-Foley underperforms some baselines in distribution matching metrics (FD, KL), but leads in
audio quality metrics (IS, PQ). This discrepancy may stem from the fact that most audio samples
in VGGSound are recorded using non-professional equipment, resulting in generally poor audio
quality that creates a substantial distribution gap with the outputs of HiFi-Foley. Nevertheless, our
model maintains the SOTA performance in IB score while achieving comparable results in DeSync
and CLAP metrics.

MovieGen-Audio-Bench. Table 4 displays both objective and subjective evaluation results on the
MovieGen-Audio-Bench. HiFi-Foley exhibits outstanding generation quality, outperforming base-
lines in nearly all objective metrics and all subjective evaluations. Compared with the strong baseline
MMAudio, our model demonstrates significant improvements across audio quality (PQ), temporal
alignment (DeSync), and visual-semantic alignment (IB), while maintaining comparable perfor-
mance in text-semantic alignment (CLAP).

As shown in the radar charts in Figure 2, comprehensive evaluation across all three datasets demon-
strates that HiFi-Foley achieves substantial improvements in visual-semantic alignment (IB) over
all baselines. Our model also leads in audio quality (PQ) and temporal alignment (DeSync) while
maintaining competitive text semantic alignment (CLAP). In terms of distribution matching, HiFi-
Foley achieves optimal performance on the Kling-Audio-Eval dataset. These results collectively
demonstrate that HiFi-Foley establishes new state-of-the-art performance in TV2A generation.

4.3 ABLATION STUDY

To thoroughly investigate the impact of different model architectures on performance and vali-
date the effectiveness of our proposed design, we conduct comprehensive ablation experiments on
MovieGen-Audio-Bench. The ablation study primarily focuses on multimodal conditioning designs
in MMDiT, the efficacy of the unimodal audio DiT, and optimal implementation strategies for rep-
resentation alignment.
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Table 7: Ablation Study on Representation Alignment for Multimodal and Unimodal Transformers.

Method PQ ↑ PC ↓ CE ↑ CU ↑ IB ↑ DeSync ↓ CLAP ↑
MMDiT + UniDiT 6.28 2.74 3.59 5.68 0.33 0.75 0.33
MMDiT only 6.28 2.79 3.70 5.73 0.33 0.79 0.32

UniDiT only (Layer 8) 6.34 2.80 3.67 5.77 0.34 0.74 0.33

Layer 12 6.28 2.84 3.61 5.77 0.32 0.81 0.32
Layer 16 6.32 2.74 3.58 5.75 0.33 0.78 0.32

Model Architecture. For the architecture of MMDiT, we design two alternative experiments: (1)
employing joint self-attention for text-audio-video triple-stream modal alignment, and (2) using par-
allel cross-attention to separately align audio-text and audio-video modals. All configurations main-
tain identical experimental setups with excluding REPA and employing unimodal DiT. As shown in
Table 5, the proposed approach, which first achieves audio-video alignment through joint attention,
and then injects text features through cross-attention to the audio-video sequence, outperforms alter-
natives across most metrics, particularly demonstrating significant improvement in temporal align-
ment (DeSync). Additionally, when replacing interleaved-RoPE strategy with conventional RoPE,
we observe performance degradation across metrics, confirming that interleaved RoPE effectively
enhances audio-video modality alignment. To verify the effectiveness of the unimodal transformer,
we further replace unimodal DiT with audio-video dual-stream DiT. The results show that the audio-
only transformer achieved superior performance compared with the replacement approach.

Representation Alignment. For representation alignment, we compare two widely-used pre-trained
audio self-supervised models: EAT (Chen et al., 2024) and ATST (Li et al., 2023). Table 6 reveals
that using ATST yields the best results, with noticeable improvements in audio quality, temporal
alignment, and text-semantic alignment. Notably, combining EAT and ATST leads to performance
degradation across most metrics, attributable to the divergence in feature distributions between the
two models, which prevents them from providing robust guidance. Furthermore, we investigate the
effects of applying REPA in different stages and layers. The results in Table 7 show that REPA
achieves optimal performance when applied in unimodal DiT, with additional observations suggest-
ing better outcomes when applied to shallower layers of the unimodal blocks.

4.4 DISCUSSION

Balanced Visual and Textual Semantics. The structural innovation of HiFi-Foley stems from its
strategic use of distinct attention mechanisms for visual and textual feature injection. This approach
effectively addresses the issue of generated audio relying excessively on text semantics while over-
looking video semantics. The experiments show that HiFi-Foley achieves superior performance
across visual-semantic alignment (IB) with maintaining competitive text-semantic alignment (see
Section 4.2 and 4.3), which reveals that joint self-attention is particularly effective for aligning video
features with strong temporal correspondence to audio, whereas separate cross-attention better pro-
cesses text features that convey global contextual information.

Enhanced Audio quality Through REPA Strategy and Dataset Scaling. HiFi-Foley significantly
improves the quality of video-to-audio generation by introducing the REPA training strategy. This
approach effectively aligns the hidden representations of DiT with robust self-supervised features.
Additionally, our proposed data pipeline facilitates the scalable construction of our large-scale and
high-quality training dataset, further enhancing the model performance.

5 CONCLUSION

In this work, we introduce HiFi-Foley, a novel text-video-to-audio generation framework that inte-
grates dual-phase attention mechanisms within MMDiTs alongside a representation alignment train-
ing strategy. This approach enables high-fidelity audio synthesis with well-balanced alignment to
both visual semantics and textual context, as well as precise audio-visual temporal synchronization.
Additionally, we develop an efficient data pipeline based on open-source tools, offering scalable
support for the construction of high-quality TV2A datasets. Extensive experiments demonstrate that
HiFi-Foley sets a new state-of-the-art performance in text-video-to-audio generation, with notable
strengths in video-semantic alignment, temporal synchronization, and overall audio quality.

9
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A EXPERIMENT DETAILS

A.1 VARIATIONAL AUTOENCODER.

The proposed DAC-VAE adopts a neural audio codec architecture based on variational autoencoders,
specifically designed for high-fidelity audio compression and reconstruction tasks at 48kHz. The
model achieves efficient compressed representation and accurate reconstruction of audio signals
through an encoder-decoder framework.

A.1.1 ENCODER.

The encoder employs a multi-scale hierarchical downsampling structure to extract hierarchical fea-
ture representations by progressively reducing temporal resolution. Starting with a 64-dimensional
feature representation, a total temporal compression ratio of 960 is achieved using a downsampling
factor sequence of [2, 3, 4, 5, 8]. Each encoder layer consists of three residual units and one down-
sampling convolutional layer. The residual units incorporate skip connections and integrate two
Snake activation functions and two weight-normalized convolutional layers. The first convolutional
layer uses a 7×1 kernel with multi-scale dilated convolutions (dilation rates of 1, 3, and 9) to capture
audio features at different temporal scales, while the second convolutional layer employs a 1×1 ker-
nel for feature fusion. Compared to the traditional ReLU activation function, the Snake activation
function demonstrates superior performance in modeling periodic signals. Downsampling is imple-
mented via strided convolution, with the kernel size set to twice the downsampling factor, while the
number of feature channels is doubled to maintain representational capacity.

A.1.2 LATENT SPACE MODELING.

The model utilizes a continuous latent space representation instead of traditional discrete codebook
quantization. A quantized convolutional layer maps the 128-dimensional features output by the
encoder to a 256-dimensional output, where the first 128 dimensions represent the mean parame-
ters of a Gaussian distribution and the latter 128 dimensions represent the log-variance parameters,
thereby constructing a diagonal Gaussian distribution. This continuous representation design en-
ables smoother feature interpolation and improved generation quality by avoiding the information
loss associated with discrete quantization.

A.1.3 DECODER.

The decoder adopts a symmetric upsampling structure relative to the encoder, starting with an initial
feature dimension of 1536 and progressively restoring the original 48kHz audio temporal resolution
through an upsampling factor sequence of [8, 5, 4, 3, 2]. Before decoding begins, a post-quantization
convolutional layer remaps the 128-dimensional variables sampled from the latent distribution into a
feature space suitable for decoding. Each decoding module consists of one transposed convolutional
upsampling layer and three residual units, maintaining the same multi-scale dilated convolution
design as the encoder to ensure feature consistency. Upsampling is implemented via transposed
convolution, with the kernel size set to twice the upsampling factor, while the number of feature
channels is halved. The decoder employs the snakebeta activation function and enables logarithmic-
scale parameterization to enhance numerical stability during computation.

A.1.4 EXPERIMENT SETTINGS.

Our DAC-VAE is trained on approximately 100k hours of audio data for 700k steps using 32
NVIDIA H20 GPUs with a batch size of 256. We adopt the AdamW optimizer with a learning
rate of 1e-4 for optimization. The implemented system operates at a sampling rate of 48kHz, with a
latent vector dimensionality of 128 and a latent rate of 50Hz.

A.1.5 AUDIO RECONSTRUCTION.

For audio reconstruction, we conduct comparative studies between DAC (Kumar et al., 2023) and
the continuous VAE employed in Stable Audio Open (Evans et al., 2024). The evaluation spanned
three distinct domains: AudioSet for general sounds, Song Describer for music, and LibriTTS-Clean
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testset for speech scenarios. We adopt Perceptual Evaluation of Speech Quality (PESQ), Short-Time
Objective Intelligibility (STOI), Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) and Mel dis-
tance as objective metrics. As shown in Table 8, our proposed DAC-VAE achieves superior perfor-
mance across all metrics on three evaluation sets. These experiments validate that our DAC-VAE
delivers robust reconstruction performance across diverse audio domains, establishing its effective-
ness as a general-purpose audio reconstruction framework.

Table 8: Evaluation of autoencoder reconstructions in AudioSet (Sound), Song Describer (Music)
and LibriTTS (Speech).

Dataset Method Sample rate PESQ↑ STOI ↑ SI-SDR ↑ Mel-dist ↓ Latent rate Latent

AudioSet

DAC 44.1kHz 4.17 0.94 11.08 0.48 86Hz discrete
Stable Audio Open 44.1kHz 2.33 0.72 3.32 0.83 21.5Hz 64-dim
DAC-VAE (ours) 48kHz 3.59 0.91 8.41 0.60 50Hz 64-dim
DAC-VAE (ours) 48kHz 4.45 0.98 14.76 0.27 50Hz 128-dim

Song
Describer

DAC 44.1kHz 4.18 0.96 13.84 0.48 86Hz discrete
Stable Audio Open 44.1kHz 2.56 0.83 8.02 0.79 21.5Hz 64-dim
DAC-VAE (ours) 48kHz 3.57 0.93 12.60 0.57 50Hz 64-dim
DAC-VAE (ours) 48kHz 4.45 0.99 17.40 0.29 50Hz 128-dim

LibriTTS
Clean Set

DAC 44.1kHz 4.29 0.98 12.37 0.47 86Hz discrete
Stable Audio Open 44.1kHz 2.68 0.93 5.78 0.87 21.5Hz 64-dim
DAC-VAE (ours) 48kHz 3.75 0.97 9.51 0.61 50Hz 64-dim
DAC-VAE (ours) 48kHz 4.50 0.99 14.37 0.26 50Hz 128-dim

A.2 BANDWIDTH TAGGING.

To address the varying sampling rates in our training data, we introduce a bandwidth tagging strat-
egy. Audio samples with sampling rates above 16 kHz receive a “high-quality” tag in their cap-
tions. During inference, we correspondingly append this tag to all input captions. Our experiments
demonstrate that this method successfully conditions the model to associate the “high-quality” tag
with higher sampling rates, resulting in audio outputs with enhanced high-frequency detail preser-
vation. This bandwidth-aware conditioning significantly improves spectral fidelity, as shown by the
superior high-frequency retention in the generated waveforms.

A.3 EVALUATION METRICS.

We adopt a comprehensive suite of metrics spanning multiple dimensions:

• Distribution Matching
– Fréchet Distance (FD): Measures the similarity between generated and real audio

feature distributions using mean and covariance statistics (lower values indicate better
alignment), computed using PANNs and PaSST embeddings.

– Kullback-Leibler Divergence (KL): Quantifies probability distribution divergence
between generated and real audio features through PANNs.

• Audio Quality
– Inception Score (IS): Evaluates quality and diversity through the PANNs classifier.
– AudioBox-Aesthetics:

* Production Quality (PQ): Focuses on the technical aspects of quality instead of
subjective quality. Aspects including clarity & fidelity, dynamics, frequencies and
spatialization of the audio;

* Production Complexity (PC): Focuses on the complexity of an audio scene, mea-
sured by number of audio components. In our experiments, we found that audio
with significant noise and unnatural artifacts tend to receive higher PC scores,
whereas clean, human-perceptually pleasant audio samples are assigned lower
scores. Therefore, in the context of Foley generation, we argue that lower PC
scores are preferable, as they indicate reduced noise and closer alignment with
human auditory perception;
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* Content Enjoyment (CE): Focuses on the subject quality of an audio piece. It’s
a more open-ended axis, some aspects might includes emotional impact, artistic
skill, artistic expression, as well as subjective experience, etc;

* Content Usefulness (CU): Also a subjective axis, evaluating the likelihood of lever-
aging the audio as source material for content creation.

• Visual-Semantic Alignment
– ImageBind (IB) Cosine Similarity: Measures cross-modal alignment between video

frames and generated audio embeddings using ImageBind’s joint embedding space
(higher scores indicate better alignment).

• Temporal Alignment
– DeSync: Predicts audio-visual synchronization errors via Synchformer (lower values

indicate tighter temporal coherence).
• Text-Semantic Consistency

– LAION-CLAP Score: Measures semantic similarity between input text and gener-
ated audio through LAION-CLAP (higher scores reflect better textual grounding).

• Subjective Evaluation
– MOS-Q: The acoustic quality and auditory naturalness of the generated audio, inde-

pendent of video content (1-5 scale);
– MOS-S: The degree of matching between the category, source characteristics, and

physical attributes of the generated audio with the content depicted by the video
frames and textual semantics (1-5 scale);

– MOS-T: The accuracy of synchronization between the generated audio and visual
events, including onset/offset timing and duration (1-5 scale).

• Audio Reconstruction
– PESQ: Perceptual Evaluation of Speech Quality (1-4.5 scale)
– STOI: Short-Time Objective Intelligibility (0-1)
– SI-SDR: Scale-Invariant Signal-to-Distortion Ratio (dB)
– Mel Distance: Distance between ground-truth and generated Mel-spectrograms

A.4 BASELINE DETAILS

In our experimental setup, we conduct comprehensive comparisons with five baseline models: Fo-
leyCrafter ( two-stage generation), V-AURA (autoregressive method), Frieren (first flow-matching
method), MMAudio (current SOTA model), and ThinkSound (latest related work). To ensure fair
comparisons, all models are evaluated using their officially released pre-trained versions, with in-
ference performed on identical hardware configurations and following the original inference scripts.
When multiple pre-trained variants are available, we consistently select the best version for bench-
marking. Notably, for ThinkSound, we only evaluate the version without Chain-of-Thought (CoT)
instructions due to the unavailability for the pre-trained LLM component responsible for generating
CoT instructions. A brief introduction to these baselines follows:

• FoleyCrafter: A TV2A framework that ensures audio generation through a pretrained text-
to-audio model, featuring a semantic adapter with cross-attention for visual relevance, and
a temporal controller with onset detection for precise synchronization.

• V-AURA: The first autoregressive video-to-audio model achieving fine-grained alignment
via high frame-rate visual features and cross-modal fusion.

• Frieren: A V2A model based on rectified flow matching for spectrogram generation via
ODE sampling. Employs transformer-based cross-modal fusion for alignment.

• MMAudio: A TV2A framework jointly trained on video-audio and text-audio data to en-
hance semantic alignment. Uses flow matching and a frame-level sync module for effi-
ciency, achieving SOTA performance in previous works.

• ThinkSound: Integrates Chain-of-Thought reasoning into a three-stage pipeline: founda-
tional Foley generation, interactive object-centric refinement, and language-guided editing.
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B VISUALIZATION

B.1 TRAINING DATASET.

Figure 4: Composition of Sound Event Categories within the Training Dataset.

We visualize the distribution of major sound categories in the training dataset, as illustrated in Fig-
ure 4. Through our proposed efficient data pipeline, we have constructed a large-scale, high-quality
video–audio-text dataset comprising 122k hours of sounding videos along with corresponding audio
captions. The dataset encompasses a wide variety of real-world acoustic scenes, including human
activities, music, vehicles, natural environments, and animal vocalizations, establishing a solid foun-
dation for the generalization and robust generative capabilities of HiFi-Foley.

B.2 SPECTROGRAM.

We present spectrogram visualization between our method and existing approaches in Figure 5 and
6. Notably, our method demonstrates stable performance in preserving high-frequency components
without spectral leakage, while maintaining precise temporal alignment between audio events and
corresponding actions.

C LIMITATIONS AND FUTURE WORK

C.1 LIMITATIONS

Although our method achieves state-of-the-art performance, several limitations remain. First, while
our model architecture effectively mitigates the issue of text semantic dependency, the model’s re-
sponse to video semantics is still insufficient, failing to comprehensively capture all elements present
in the video. Second, the audio captions from GenAU are relatively brief and contain certain hal-
lucinations, leading to omission and confusion of audio elements. Additionally, when processing
longer prompts, the generated audio tends to include background music, although this music often
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aligns well with the visual content. This phenomenon may occur because audio captions contain-
ing music are typically longer, while pure sound effect captions are shorter, causing the model to
assume background music should be present when encountering lengthy prompts. This issue can be
mitigated through negative prompting techniques. Third, our model cannot yet generate intelligible
speech and can only produce indiscernible vocalizations when faced with scenes involving human
dialogue.

C.2 FUTURE WORK

In future work, we will further explore more effective multimodal diffusion architectures to better
address the problem of multimodal condition competition. We plan to design an audio captioning
model that integrates both audio and video content, which will significantly enhance our video-
to-audio generation model’s semantic responsiveness. Additionally, we will extend the model’s
capabilities to include speech and fine-grained music generation, ultimately achieving unified audio
generation capabilities.

D THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are employed solely for the purpose of linguistic refine-
ment and grammatical correction of the manuscript. The model does not contribute to the concep-
tualization, analysis, or intellectual content of the research. All ideas, arguments, and conclusions
remain entirely those of the authors.

Figure 5: Left: The video sequence illustrates a walking scenario on icy surfaces, where our pro-
posed method achieves precise temporal alignment for both the initiation/termination timing and the
duration of each step. Right: Spectral analysis confirms accurate synchronization with the temporal
characteristics of human movements in the skateboarding scenario.
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Figure 6: Left: In the ice hockey scenario involving rapid rhythmic auditory cues, our spectral
analysis demonstrates robust performance in detecting subtle motion variations synchronized with
the sound patterns. Right: Our method preserves the full spectral representation in complex skiing
scenario where motion-sound alignment is less distinct, with no discernible degradation of high-
frequency components in the spectrogram.
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