
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KOOPMAN EMBEDDED EQUIVARIANT CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

An efficient way to control systems with unknown nonlinear dynamics is to find
an appropriate embedding or representation for simplified approximation (e.g. lin-
earization), which facilitates system identification and control synthesis. Neverthe-
less, there has been a lack of embedding methods that can guarantee (i) embedding
the dynamical system comprehensively, including the vector fields (ODE form)
of the dynamics, and (ii) preserving the consistency of control effect between the
original and latent space. To address these challenges, we propose Koopman Em-
bedded Equivariant Control (KEEC) to learn an embedding of the states and vector
fields such that a Koopman operator is approximated as the latent dynamics. Due to
the Koopman operator’s linearity, learning the latent vector fields of the dynamics
becomes simply solving linear equations. Thus in KEEC, the analytical form of the
greedy control policy, which is dependent on the learned differential information of
the dynamics and value function, is also simplified. Meanwhile, KEEC preserves
the effectiveness of the control policy in the latent space by preserving the metric in
two spaces. Our algorithm achieves superior performances in the experiments con-
ducted on various control domains, including the image-based Pendulum, Lorenz-
63 and the wave equation. Code is available at https://anonymous.4open.
science/r/Koopman-Embed-Equivariant-Control-70D1.

1 INTRODUCTION

Many real-world system dynamics are unknown and highly nonlinear, which limits the applications
of classical control methods. Although model-based control methods have been widely studied to
learn the dynamics from the data, e.g., in Chua et al. (2018); Deisenroth et al. (2009); Müller et al.
(2012); Nagabandi et al. (2018); Williams et al. (2017), the learned dynamics can still be highly
non-linear or black-box, making it still analytically intractable and computationally inefficient. One
effective class of methods addressing this issue is to find a proper representation that embeds the
dynamical system into a latent space (Ha & Schmidhuber, 2018), in which the system evolution is
simple (e.g. locally linear) (Banijamali et al., 2018; Levine et al., 2019; Mauroy & Goncalves, 2016;
Mauroy et al., 2020; Watter et al., 2015; Weissenbacher et al., 2022; Williams et al., 2015), such that
various control methods such as iterative Linear Quadratic Programming can be used.

However, current embedding methods have primarily focused on next-step predictions through local
linearization approaches (Bruder et al., 2019a; Kaiser et al., 2019; Bruder et al., 2019b; Li et al.,
2019). The learned dynamics neglect the vector fields or metrics, which lead to the learned latent
dynamics and the optimal control policy derived based on it inconsistent with the original ones.
These methods lack a formal and theoretical guarantee that the system is comprehensively embedded
into the latent space, including the vector fields and flows 1. Thus, the effect of control may not
be preserved when the control policy inversely mapped back to the original space. The sufficient
conditions for preserving the control effects are the equivariance of the dynamics (Maslovskaya,
2018) and the metric preservation of the latent space (Jean et al., 2017). In this paper, we aim to find
an isometric and equivariant mapping such that the flows and vector fields of the original nonlinear
dynamics are comprehensively mapped to a latent controllable system, thus preserving the control
effect in both the original and latent spaces.

1Given the control policy, the system dynamics and trajectories under this control policy can be viewed as
vector fields and corresponding flows, respectively (Field, 2007).

1

https://anonymous.4open.science/r/Koopman-Embed-Equivariant-Control-70D1
https://anonymous.4open.science/r/Koopman-Embed-Equivariant-Control-70D1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Linear embedding of control system given action at. (b) Latent vector field

Figure 1: Figure 1(a) is an overview of KEEC. The 1(b)-left shows the embedded latent uncontrolled vector
field of the pendulum, and 1(b)-right shows the corresponding embedding controlled vector field. Under the
controlled vector field, pendulum contracts to the target point. More information is available in Section 4.

Related works in this field fall into two main streams: embedding for control and symmetry in control.
Embedding to control algorithms aims to map complex, high-dimensional, nonlinear dynamics into a
latent space with local linearization, often using Variational Autoencoder (VAE) structures (Watter
et al., 2015; Kaiser et al., 2019; Nair et al., 2018). These algorithms ensure a bijection between
the original and latent spaces (Huang, 2022; Levine et al., 2019), however, they do not embed the
necessary differential and metric information with equivariance, causing the control effect to be
inconsistent in both spaces. Conversely, symmetry in control theory has been crucial in identifying
invariant properties of systems (Field, 2007), leading to effective control policies. Research has
underscored the value of symmetric representations in learning dynamics for tasks with evident
(e.g., rotation and translation invariance) symmetries (Adams & Orbanz, 2023; Bloem-Reddy &
Teh, 2020; Bronstein et al., 2017), such as work in robotics control tasks under special orthogonal
group (SO(2)) action by Wang et al. (2021). However, these methods may struggle in scenarios with
unknown dynamics and less evident symmetries. Recent advancements include methods designed
to learn implicit symmetries, such as meta-sequential prediction for image prediction with implicit
disentanglement frameworks (Miyato et al., 2022; Koyama et al., 2023). These approaches achieve
disentanglement as a by-product of training symmetric dynamical systems by Fourier representation.
Such properties are important in maintaining consistency in control policies across different spaces.

In this paper, we propose Koopman Embedded Equivariant Control (KEEC) to learn an equivariant
embedding of dynamical system based on Koopman operator theory. Our contributions are that
unlike existing works embedding methods and Koopman methods (Chua et al., 2018; Deisenroth
et al., 2009; Bruder et al., 2019a;b; Li et al., 2019; Mauroy et al., 2020; Weissenbacher et al., 2022)
to merely embed the states, we embed the vector fields that require the derivatives of the states
as well to the latent space. We formally propose that equivariance and isometry are two properties
to preserve the control effects in latent space. By embedding with the two properties, our method
maintains a better consistency between original dynamics and the latent linear dynamics. In addition,
in the latent space, the dynamics simplify to a linear function of the state given the action, which
improves computational efficiency of learning dynamics. Based on the control-affine assumption and
Hamiltonian-Jacobi theory, we manage to derive a greedy control policy dependent on the learned
differential information of the dynamics and value function analytically. Our numerical experimental
results demonstrate KEEC’s superiority over existing methods in controlling unknown nonlinear
dynamics across various tasks, such as Gym (Towers et al., 2023)/image Pendulum, Lorenz-63, and
the wave equation achieving higher control rewards, shorter trajectories and improved computational
efficiency. Figure 1 takes pendulum control as an example to demonstrate the control framework
of the KEEC and shows the learned vector field on the latent space.

2 PRELIMINARY

2.1 OPTIMAL CONTROL: A GEOMETRIC PERSPECTIVE

State at time t, st is used to indicate the current status of the system. The collection of all states form
state space denoted by M . The dynamics in unknown and nonlinear control-affine system is affected

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

by action at in action space A, usually formulated as an Ordinary Differential Equation (ODE):

ṡt = f(st, at) = fM (st) +B(st)at, (1)

where fM andB are called the drift (action-independent) and actuation (action-dependent) terms. The
Equation 1 expresses the time-derivative of state st given action at. The collection of time-derivatives
at each point st ∈M forms a vector field on M .

A flow consists of the collection of all trajectories of the states, denoted by F∆t. F∆t :M ×A →M
is the flow map of the dynamical system, representing the state transition over time ∆t. The system
state at time t+∆t under control action at is:

st+∆t = F∆t(st, at) = st +

∫ t+∆t

t

f(sτ , aτ)dτ. (2)

The reward function r : M × A → R is commonly a quadratic form in control system satisfying
r(s, a) = r1(s) + r2(a). A control policy is a mapping π : M → A. our objective is to maximize
the value function

V π(st) = E[
∑
τ

γτr(sτ , aτ) | sτ , aτ ∼ π], ∀st ∈M ⊂ Rm, (3)

where γ ∈ (0, 1) is the discount factor. Other notations in Appendix A and B.

2.2 EMBEDDING FOR CONTROL

Solving control problems in an unknown and nonlinear system in Equation 1 is challenging. Thus, we
aim to learn an embedding g that transform the system in the original state space M to a latent space
N , in which the control problem can be easily solved. For example, mapping the original system
to a latent one where the dynamics is linear evolving. It thus motivates our study by answering the
question: What properties should the embedding g satisfy?

An embedding g for control problems first should preserve the system dynamics, i.e. mapping the
state dynamics from M to N . This can be satisfied if the embedding is equivariant.

Equivariance. A map g : M → N is equivariant function if F latent ◦ g = g ◦ F (Hall & Hall,
2013), where F latent is the flow in latent space, equivariant with respect to flow F under the map g.

Equivariant map ensures that F latent◦g(st) = g◦F (st), i.e., the transitions of states remain consistent
between the original and latent spaces. In addition, preserving the metric on both spaces is essential
for maintaining the consistency of reward/cost functions and control effects across both spaces.

Isometry. Let M and N be metric spaces with metrics dM and dN . A map g : M → N is an
isometry if for any s1, s2 ∈M , we have dM (s1, s2) = dN (g(s1), g(s2)) (Field, 2007).

Isometry can guarantee the reward/cost functions on the original space M and latent space N . This
is because most reward/cost function is highly dependent on the distance between current state to
the optimal state, such as the reward design in MuJoCo (Todorov et al., 2012). Furthermore, the
distance-preserving property of the trajectory ensures that the latent and original trajectories are
consistent with one another.

An equivariant and isometric map g can comprehensively map the original system to a latent system
and guarantee the consistent control performances. While, solving the nonlinear control problem
with unknown dynamics remains challenging. To simplify the problem, we aim for a latent system
that has simple dynamics on the latent space N . Works have been done by linearizing the dynamics
(Watter et al., 2015; Kaiser et al., 2019). However, they didn’t comprehensively map the flows and
vector fields original dynamics to the latent space.

3 KOOPMAN EMBEDDED EQUIVARIANT CONTROL

In this section, we consider an embedding function g mapping the original state dynamics to a
latent dynamics. We introduce the Koopman operator for optimal control by proposing Koopman

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Embedded Equivariant Control (KEEC). We learn an isometric and equivariant function to embed
the control dynamics into a latent space such that the latent dynamics can be represented by a
Koopman operator. The organization of this section is as follows. We first introduce in section
3.1 leveraging Koopman operator, an infinite-dimensional linear operator, as a equivariant linear
representation of dynamical system F in Equation 1. Then in section 3.2, in order to embed the
vector field fM , we demonstrate that the infinitesimal generator of the Koopman operator rather
than the operator itself can be used to represent the equivariant latent vector field. In section
3.3, we demonstrate our methods for learning an equivariant embedding with finite-dimensional
approximation of Koopman operator. Finally in section 3.4, we leverage the value-based methods to
solve the simplified equivariant control problems.

3.1 KOOPMAN OPERATOR AS LATENT DYNAMICS

We utilize the Koopman operator to simplify the dynamics of a nonlinear system. We aim to embed
the original state space M into a latent space N with function g : M → N . Denote the space of
continuously differentiable functions as C1(M). In an uncontrolled dynamical system, the Koopman
Operator K∆t : C1(M) → C1(M) is an infinite-dimensional linear operator that governs the
evolution of observables (functions in C1(M)) over a time period ∆t (Das, 2023). Mathematically,
for any function g ∈ C1(M), the Koopman operator satisfies: K∆tg = g ◦ F∆t.

The inclusion of the control action can be seen as extending the Koopman framework to a system
where the evolution of functions depends on both the state and the action. The goal is to define an
operator that tracks how functions evolve under the influence of action. In this paper, considering the
system evolving as: st+∆t = F∆t(st, at), given action at, the Koopman operator then describes how
the function g(st) evolves when an action at is applied:

g(F∆t(st, at)) = (Kat

∆tg)(st). (4)
Equation 4 demonstrates the equivariance between two dynamics K and F . K and F essentially
describe the same state transition but in different spaces. Formally, Kat(zt) = zt+∆t, where
zt := g(st) ∈ N and zt+∆t := g(st+∆t) ∈ N are the latent states. Refer to Appendix D for more
details about the equivariance.

In the rest of the paper, we omit the superscript action a given the common setting of control. K
pushes the latent state z forward in time along the controlled dynamics. In this way, the map g is an
equivariant function and evolves globally in a linear manner due to the Koopman operator, even if the
original dynamics is nonlinear. However, merely approximating the Koopman operator K and map g
does not fully capture the vector fields induced by the ODE of the time-derivative dynamics.

3.2 MODELLING THE EQUIVARIANT LATENT VECTOR FIELDS

Vector fields are not embedded with simple Koopman operator since only the dynamics F is mapped
in the latent space, and the vector field requiring the derivatives of latent states have been lacking. To
address this, we first discuss embedding the drift term in Equation 1 by setting no control (at ≡ 0).

Based on group theory and Lie theory, the Koopman operator K can be treated as a linear
one-parameter semigroup (Bonnet-Weill & Korda, 2024). Given Equation 1, F is smooth. Thus,
the Koopman operator has an infinitesimal generator P , where K∆t = exp(P∆t). Here P is
well-defined on the dense subset of function space C1(M) (more details refer to D).

According to Sophus Lie (Lie, 1893), the one-parameter Lie group is generated by the Lie algebra. In
other words, the smooth vector field induces a flow K∆t. According to Equation 4, the time derivative
of the latent states under the flow K∆t is:

Lfg(st) = lim
∆t→0

g ◦ F∆t − g
∆t

(st) = lim
∆t→0

K∆tg − g
∆t

(st) = Pg(st). (5)

L denoted as the Lie derivative. Equation 5 shows that with no control, the underlying dynamical
system can be globally linearized due to that ġ = d

dt exp(Pt)g = Pg. Therefore, the homogeneous
part in the ODE, i.e. the drift term in the dynamics vector field in Equation 1, can be fully embedded
and also linearized.

As for the actuation term of the dynamics, since the homogeneous part is embedded, and the deriva-
tives of states are embedded by map g, the remaining inhomogeneous part in the ODE (actuation)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

is also automatically embedded. Although the actuation term is not linearized, it is still possible in
practice to find an embedding g such that the latent actuation term becomes a simple function of
latent state, such as constant or linear function. We formally demonstrate the equivariant embedding
as follows.
Theorem 3.1 (Equivariant Vector Field). Given that the unknown nonlinear control-affine dynamics
in Equation 1, with the Koopman operator and its infinitesimal generator, the equivariant dynamical
system evolves on N as:

żt = Pzt + (Uzt)at, (6)
where zt = g(st), st ∈ M is the original state, and żt is the derivative w.r.t time t. The U is a
state-dependent operator that maps the latent state zt to a linear operator acting on the action at.
(Further details and Proof in Appendix F.1)

According to this theorem, the system under Koopman representation has well-defined vector fields
equivariant to the original vector fields in the dynamics ODE.

Our embedding enables that the latent dynamics can be simply learned by solving linear equations,
which can stabilize the learning procedure (see Section 3.3). Besides, due to the assumption of
control-affine systems, the embedded system dynamics actuation part (Uzt) provides the information
of vector fields to derive an analytical form of policy extraction, i.e. representing greedy policy with
value function (see Section 3.4). We then derive the flow of the equivariant vector field for later
embedding learning.
Proposition 3.2 (Equivariant Flow). According to derived operators P,U in Equation 6, the equiv-
ariant flow under the two operators can be derived as

z∆t = exp(P∆t)z0 + P−1(exp(P∆t)− I)(Uzt)a0, (7)

where I is the identity operator. (Proof in Appendix F.1)

These two theorems describe the differential and integral forms of the latent dynamics and can be
derived from one another. The equivariant flow in Equation 7 will be used to predict the next latent
state, zt+∆t ≈ exp(P∆t)zt + P−1(exp(P∆t)− I)(Uzt)at.

3.3 LEARNING EQUIVARIANT EMBEDDING

To comprehensively embed the original space, two properties need to be satisfied, i.e., equivariance
and isometry. Equivariance guarantees that the learned flows and vector fields are consistent under
embedding. Isometry makes the metric consistent and preserves the control effect in both spaces.
KEEC leverages the auto-encoder structure to learn the equivariant and isometric embedding. And to
learn the latent dynamics and its vector field, instead of learning the Koopman operator K itself, we
learn the vector field parameters derived from K: P and U .

The Koopman operator is inherently infinite-dimensional, and traditional methods that approximate
it with finite-dimensional models or manually selected feature functions for embedding (Budišić
et al., 2012; Kutz et al., 2016), such as polynomials, often lead to inaccuracies and incomplete
representations of nonlinear dynamics. Moreover, these feature functions typically struggle with high-
dimensional data, limiting their applicability to large-scale systems (Tu, 2013). Instead, deep learning,
which is well-suited for representing arbitrary functions. In our work, we employ a deep auto-encoder
to learn the embeddings that naturally fit with the Koopman framework (Lusch et al., 2018; Brunton
et al., 2021). Denote the encoder-decoder pair as gen

θ : Rm → Rn, gde
ϕ : Rn → Rm, mapping between

original space M and latent space N , parameterized by θ and ϕ. Let st0:t1 represents consecutive
states from t0 to t1. The dataset consists of state transitions {s(j) = s

(j)
0:L, s

(j)
+ = s

(j)
1:L+1}Jj=1 and

corresponding actions {a(j) = (a
(j)
0 , ..., a

(j)
L)}Jj=1.

Identifying the latent dynamics. Given one tuple of data (s(j),a(j), s
(j)
+), we firstly map the state

sequence to the latent space, such as z(j) =
(
gen
θ (s

(j)
0), ..., gen

θ (s
(j)
L)

)
, , and similarly z

(j)
+ corresponds

to s
(j)
+ . We then approximate the P̂ and Û by solving a least square problem according to Theorem

3.1 and Proposition 3.2 as

P̂, Û = argmin
P,U
∥[exp(P∆t)z + P−1(exp(P∆t)− I)(Uz)a]− z+∥, (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where P̂ ∈ Rn×n, Û ∈ Rn×d×n. By concatenating z and z ∗ a, where ∗ denotes the column-wise
Kronecker product, we define Λ =

[
z, z ∗ a

]T ∈ RL×(n+n×d), the problem Equation 8 can be
simplified and yield a solution such as (see Equation 28 in Appendix F.1),

C =
1

∆t
(z+ − z)Λ

(
ΛTΛ

)† ∈ Rn×(n+n×d), [P̂, Û] =
[
C1:n, C(n+1:n+n)×d

]
, (9)

where Ci:j represents the ith to jth columns of C, and we have żt ≈ P̂zt + (Ûzt)at

Equivariance Loss. KEEC learns the equivariant vector fields in the latent space by training the
encoder according to our proposed loss function, consisting of two terms. The first is equivariance
loss, simplified to the name forward loss:

Efwd =

t0+(L−1)∆t∑
t=t0

{
∥gde

ϕ (ẑt+∆t)− st+∆t∥+ ∥gde
ϕ ◦ gen

θ (st)− st∥
}
, (10)

where ẑt+∆t = exp
(
∆tP̂

)
zt + P̂−1(exp

(
P̂∆t

)
− I)(Ûzt)at. To calculate ẑt+∆t, the solutions

of P̂ and Û from Equation 9 are used, which results in a more efficient and robust joint training
procedure. In the loss function Efwd, ∥gde

ϕ (ẑt+∆t)−st+∆t∥ represents the correction of the equivariant
flow; ∥gde

ϕ ◦ gen
θ (st) − st∥ is the standard identity loss in auto-encoder, imposing the equivariant

constraints required by learning the embedding gen
θ .

Control tasks often rely on metric information (Lewis et al., 2012), which, in our KEEC framework,
is implicitly defined on the latent space. The inconsistency in metric information can lead to diverse
control effects in the latent space compared to the original space (Jean et al., 2019). A consistent
metric by an isometry embedding is a sufficient condition for preserving this control effect.

Isometry Loss. Here, we introduce the second loss term isometry loss:

Emet =

t0+(L−1)∆t∑
t=t0

∣∣∣∥zt+∆t − zt∥ − ∥st+∆t − st∥
∣∣∣, (11)

which is the absolute error between the distance measured in the latent space and the original space.
In fact, Emet is used to embed metric information consistently. The scale of Emet evaluates the
Distortion2 of latent space by embedding gen

θ . It is worth noting that Emet and ∥gde
ϕ ◦ gen

θ (st)− st∥
in Equation 10 together make gen

θ a local isometric diffeomorphic representation. More specifically,
for arbitrary points s1, s2 ∈M , the metric is invariant under embedding gen

θ such that dM (s1, s2) =
dN (gen

θ (s1), (g
en
θ (s2)), where dM and dN are the metric in the space M and the latent space N (Yano

& Nagano, 1959). Isometry loss Emet is one of the key points to preserve the KEEC’s control effect
after mapping back to the original space. Without this loss function, the latent space may be distorted
from its original, affecting the control consistency between the two spaces.

Finally, the loss is a linear combination of forward loss and isometry loss with a penalty λmet ∈ (0, 1):

E = (1− λmet)Efwd + λmetEmet. (12)

E can be minimized by optimizing the parameters in the auto-encoder gen
θ , g

de
ϕ using stochastic

gradient descent methods (See Algorithm 1 for details).

3.4 OPTIMAL CONTROL ON EQUIVARIANT VECTOR FIELD

KEEC solves the control tasks on the latent space rather than in the original space. We follow
model-based RL framework to conduct control (see Appendix C). Inspired by the Hamiltonian-Jacobi
theory (Carinena et al., 2006), our control policy is based on a latent value function. Within this
framework, the optimal control policy is determined by the vector field along the steepest ascent
direction of the latent value function.

2Give two metric space (X, dX), (Y, dY) and a function g : X → Y . The distortion of g is defined as
dis(g) = supx1,x2

∥dX(x1, x2) − dY (g(x1), g(x2))∥ (Federer, 2014). As an example, we see if g is an
isometry, the distortion is 0 so that X and Y are perfectly matched.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 KEEC: Learning

Learning Equivariant Vector Field
Require: Data D = {{T i

t }
t0+L∆t
t=t0 }Nsample

i=1 :
transition tuple T i

t = (sit, a
i
t, r

i
t),

time-interval ∆t; learning rate α;
number of training epochs Kflow.

1: Initialize auto-encoder gen
θ0 , gde

ϕ0

2: for Training epoch k = 0, ...,Kflow do
3: Map to the latent space N

∀s ∈ D : z = gen
θk(s)

4: Compute operators P̂ , Û using Equation 8.
5: Compute the loss E by Equation 12
6: Update auto-encoder:

θk+1, ϕk+1 = θk + α∇θE , ϕk + α∇ϕE .
7: end for
8: return auto-encoder {gen

θ , g
de
ϕ }

operators {P̂, Û}

Learning Value Function
Require: optimal state s∗; reward function R;

number of training episodes Kvalue.
9: Initialize value net Ṽg(·, ψ0)

10: Initialize replay buffer DReplay = {}
11: for Training episodes k = 0, ...,Kvalue do
12: z0 = gen

θ (s0)
13: for t = 1, ..., T do
14: Perform optimal policy Equation 16
15: Predict next state zt+1 using Equation 7
16: Compute reward rt = R(gde

ϕ0(zt), at)

17: DReplay = DReplay ∪ (zt, at, zt+1, rt)
18: end for
19: Update value net with TD loss.
20: end for
21: return value net Ṽg(·, ψ)

To perform control in the latent space, the value function should be invariant under the embedding g.
This indicates that the control effect should be preserved under embedding. The lemma below proves
this invariance.
Lemma 3.3 (Invariant Value Function). Under isometry embedding g, the value function is invariant
to embedding g for arbitrary policy π:

V π(s) = V π(g(s)). (13)

As shown by the research (Jean et al., 2019; Maslovskaya, 2018), the optimal control solutions remain
consistent across both original and latent spaces under the isometry embedding g. This implies that
the integral of cumulative rewards along equivariant flow remains invariant, directly deriving the
invariant value function. With this invariance property, Lemma 3.3 demonstrates that we can solve
the control problems based on the latent value function without mapping back to the original space.
In the following, we denote the latent value function as V π

g := V π ◦ g.

Hamiltonian-Jacobi Optimal Value Function. The value function and reward function defined on
the latent space are represented as Vg and rg . With the Bellman Optimality B∗, by using Equation 4,
Vg can be expressed as

B∗Vg(zt) = max
at∈A

rg(zt, at) + γVg(K∆tzt), (14)

where zt = g(st). We apply temporal difference TD(0) to learn the latent value function parametrized
by neural networks (more details in Appendix E). Then, we can obtain the analytical optimal policy
from the learned value function. By the Hamiltonian-Jacobi theory (Carinena et al., 2006), the optimal
action for Vg in Equation 14 can be transformed as

max
Xg

LXg
Vg(zt), (15)

where Xg(zt) := Pzt + (Uzt)at represents the corresponding latent vector field dependent on the
action . When Xg(zt) points in the steepest ascent direction of Vg(zt), it will be the optimal control
policy. In this scenario, we reframe the policy optimization problem as the optimization of the
controlled vector field Xg . The derived analytical policy is in the following.
Theorem 3.4 (Greedy Policy on Equivariant Vector Fields). Under Theorem 3.1 and Lemma 3.3, the
optimal policy for the value function in the latent space has an analytical solution:

π∗(zt) = −[∇arg(zt, ·)]†(γ∇zV
T
g · U(z))∆t (16)

where symbol † represents the inverse map with respect to a. (Proof in F.2; Corollary of quadratic-
form latent value function in Appendix F.1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Then the control can be performed directly with the extracted policy in Equation 16 given a well-
trained value function. We can apply the automatic differentiation (Paszke et al., 2017) to compute the
derivative∇zVg . We provided the pseudo algorithm for KEEC control in Algorithm 2 in Appendix G.

4 NUMERICAL EXPERIMENTS

In this section, we empirically evaluated the performances of KEEC in controlling the unknown
nonlinear dynamical systems. We compared KEEC with four baselines: (a) Embed to control (E2C) -
prediction, consistency, and curvature (PCC) (Levine et al., 2019); (b) Data-driven model predictive
control (MPC) - model predictive path integral (MPPI) (Williams et al., 2017); (c) Online RL - soft
actor-critic (SAC) (Haarnoja et al., 2018); (d) Offline RL - conservative Q-learning (CQL) (Kumar
et al., 2020). These baselines covered a wide range of control methods for unknown dynamics,
comprehensively investigating KEEC’s control effectiveness. The experimental comparisons were
conducted on a standard control benchmark - Gym and image-based pendulum- and two well-known
physical systems - Lorenz-63 and wave equation.

Control tasks. (1) Pendulum task involved swinging up and stabilizing a pendulum upright. We
generated 1,000 trajectories; each has 50 steps with random controls using OpenAI Gym (Towers
et al., 2023). In the gym version, the state was the pendulum’s angle and angular velocity. In the
image version, the same dynamics were simulated, but the state was defined as the image of the
corresponding angle and angular velocity with 96× 48 pixels (see Figure 6 in Appendix H.1). (2)
Lorenz-63 system, a 3-dimension system known for its chaotic behaviour, was adapted with an affine
controller acting on each dimension of the system. The goal was stabilizing the system on one of
its strange attractors. In this environment, the state was defined by the system’s three variables. We
generated a dataset of 1,000 random control trajectories, each with 500 steps. (3) Wave equation
is a second-order partial differential equation (PDE) system describing the wave propagation. The
objective was stabilizing the waves to zero using ten controllers across the domain. The state was
defined as the phase space, consisting of 50 states with their time derivatives. We generated 5,000
trajectories with random control using the controlgym (Zhang et al., 2023), each with 100 time steps
(See more task details in Appendix H.1).

Training Details. For each system, the reward r was recorded as the quadratic reward3 r(st, at) =
−(∥st−s∗∥2R2

+∥at∥2R1
), where s∗ is the specified optimal state andR1, R2 are two positive definite

matrices. The dataset was constructed by slicing the trajectories for training KEEC into multi-step
L = 8, and slicing the trajectories for PCC, MPPI, and CQL into single-step L = 1, and then
shuffling all slices. For the online algorithm SAC, the number of interactions with the environments
is the same as the number of transition pairs in the offline data. All models were trained on the
corresponding loss function using the Adam optimizer (Kingma & Ba, 2015). Appendix H.2 provides
more details of the baselines and training details.

Table 1: Quantitative results. The results were the mean and standard deviation (±) of episodic
rewards, evaluated with 100 initial states uniformly sampled from initial regions. We omitted the
results of SAC, CQL, and MPPI on the image-based pendulum as their implementations did not
support image inputs.

Pendulum (OpenAI Gym | Image) Lorenz-63 Wave Equation
SAC −95.1± 48.7 N/A −4491.8± 1372.4 −1007.6± 74.4
CQL −128.2± 76.9 N/A −5782.5± 921.6 −4117.5± 561.2
MPPI −187.2± 78.7 N/A −8768.4± 1831.1 −34.5k ± 2267.2
PCC −104.7± 49.2 −216.1± 45.3 −5123.6± 1289.3 −2249.2± 133.6

KEEC (w/o Emet) −852.3± 128.7 −205.7± 33.7 −8951.9± 1927.4 −28.9k ± 3219.5
KEEC −94.9± 44.8 −202.3± 32.6 −2531.4± 1121.8 −277.6± 29.2

Evaluation and Results. We reported the control performances in each system, particularly the
mean and standard deviation of the episodic rewards. These results were evaluated with multiple runs
using different random seeds and initial states sampled uniformly from specific regions. Episode

3The quadratic reward functions cover a broad range of RL problems. With the quadratic form, R1 ∈ Rm×m

will be used in the numerical experiments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Pendulum (left) and Lorenz-63 (right) (b) wave equation - SAC (left) and KEEC (right)

Figure 2: Qualitative results. In (a-left), the Pendulum started at (−3, 6) with a goal state of (0, 0).
A zoomed-in view of [−0.1, 0.1] × [−0.3, 0.3] showed control stability. In (a-right), the goal was
the strange attractor (−8,−8, 27) of Lorenz-63 system and we visualized the control trajectories of
KEEC and the baselines. In (b), we showed the control trajectories of the KEEC in (b-right) and
the best baseline SAC in (b-left). This task aimed to steer the system state to the zero state. Control
trajectories of other baselines were shown in Appendix H.1.

Ablation Studies Computation Time

E
pi

so
di

c
R

ew
ar

d

C
om

pu
ta

tio
n

Ti
m

e
(s

)

(a) Pendulum (b) Lorenz-63 (c) Wave equation (d) Magnitude of 𝝀𝒎𝒆𝒕	(e) Latent dimension 𝒏

Figure 3: Quantitative results on evaluation time and ablation studies on latent dimension n and
magnitude of the isometric constraint λmet. Left: box-plots show the distributions of evaluation
time. The white line in the box indicates the median. Our approach is consistently faster than the
MPC-based methods and comparable to the RL methods. Right: different dimensions of the latent
space (d) and our model’s episodic reward with different magnitudes of λmet (e).

lengths were set at 100 for the pendulum, 500 for Lorenz-63, and 200 for the wave equation.
Additional details about the evaluation were detailed in Appendix H.3. Table 1 showed how KEEC
outperformed the baseline algorithms by comparing the mean and standard deviations of the episodic
rewards on the different control tasks. This phenomenon is more evident in Lorenz-63 and the
wave equation; since their behaviours are highly nonlinear or even chaotic, MDP and simply locally
linearized models can not sufficiently capture the pattern of dynamics.

In Figure 2, we presented the trajectories produced by various algorithms for three control tasks. By
embedding vector field and metric information, KEEC improved control stability, as evidenced by the
smooth trajectories and control robustness (Figure 2). Conversely, other baselines exhibited a “zig-zag”
trajectory as they approached the goal state (see Figure 2(a)-left). In the Lorenz-63 task, the baselines’
trajectories showed diverse control paths sensitive to minor perturbations due to the system’s chaotic
behaviour. KEEC, however, converged to the Lorenz attractor with minimal fluctuations (Figure
2(a)-right). This difference was because KEEC embedded vector field information (Figure 1(b)),
enhancing control stability beyond control methods that rely on next-step predictions. For the wave
equation task, we showed the control trajectories of best baseline-SAC and KEEC in Figure 2(b)).
The results show that KEEC outperformed other algorithms, which struggled to effectively control a
complex, nonlinear, and time-dependent field in high-dimensional PDE control. While SAC came
closest to achieving success (see Figure 2(b)-left), it still failed to stabilize the phase space to zero.
Figure 3(a-c) shows computation times for all methods. KEEC, with linear dynamics and an analytical
control policy, is much faster than MPPI and PCC. Although computing the gradient of the value net,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Learned Vg with Emet (b) latent space with Emet (c) Learned Vg w/o Emet (d) latent space w/o Emet

Figure 4: Comparison of learned value function Vg and latent space with and without(w/o) the Emet in pendulum
task. The colours on the original coordinates and the space indicated the magnitude of Vg . The spaces in (b) and
(c) were visualized using Locally Linear Embedding (Roweis & Saul, 2000) to project from 8 to 3 dimensions.

∇zVg via automatic differentiation makes KEEC slightly slower than MDP-based RL methods, the
times remain comparable.

4.1 ABLATION STUDY.

On top of comparing the performance of KEEC to the baselines, we revisited the wave equation
control problem and performed an ablation analysis to assess the effects and sensitivity to (1) the
magnitude of isometry loss λmet Equation 11, and (2) the latent dimension n

Latent dimension n. In the main experiments, we set the latent dimension n = 64. To evaluate the
model’s performance under different latent dimensions, we varied the dimension from 32 to 256 while
keeping other settings fixed. Figure 3(e) illustrates how the latent dimension n affects the algorithm’s
performance. When n is too small (e.g., 32), the latent space lacks sufficient capacity to fully capture
the original dynamics linearly. Dimensions of 64 and 128 yield good control performance, but larger
dimensions increase sample complexity, resulting in degraded performance with the same dataset.

Isometry loss magnitude λmet. Figure 3(d) shows that our approach is robust for λmet ∈ [0.1, 0.3],
though stronger constraints hinder learning control dynamics, indicating a trade-off. Control perfor-
mance degraded significantly without constraints, as shown in Table 1. These results align with the
theoretical analysis in Sections 3.2 and 3.3, emphasizing the need to preserve metrics for consistent
control performance. Figure 4 visualizes the learned latent space for an inverted pendulum. With
Emet, the learned space was smooth by preserving the metric (Figure 4(b)), while without it, the space
was distorted, and the optimal state cannot be observed (Figure 4(d)).

5 CONCLUSIONS

This paper introduces KEEC, a novel representation learning algorithm for unknown nonlinear
dynamics control. By integrating principles from Lie theory and Koopman theory, KEEC constructs
equivariant flows and vector fields. Because of the inherent equivariance and consistent metric, KEEC
preserves the control effect across the original and latent space. Inspired by the Hamiltonian-Jacobi
theory, KEEC utilizes the learned differential information to derive an analytical control policy, which
improves computational efficiency and control robustness. We demonstrate these superiors in the
numerical experiments, in which KEEC outperforms a wide range of competitive baselines.

Limitations. Our method relies on embedding the vector fields of the unknown dynamics to derive
an analytical control policy to improve the control stability and avoid intensive numerical control
optimization. Since the vector fields are characterized locally, we require the time step ∆t to be
sufficiently small. Our approach may struggle with environments with a large time step ∆t (i.e.,
low observation frequency). An ablation study on how the magnitude of time step ∆t influences
the control performance is required. In addition, our experiments on the image-based pendulum
also demonstrated KEEC’s effectiveness with image observations and potentially other types of
observations. However, for handling different types of observations, the design of the auto-encoder
neural network is crucial in our approach. A generic auto-encoder design could degrade our method’s
performance in identifying and controlling dynamical systems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. Manifolds, tensor analysis, and applications,
volume 75. Springer Science & Business Media, 2012.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Ryan P Adams and Peter Orbanz. Representing and learning functions invariant under crystallographic
groups. arXiv preprint arXiv:2306.05261, 2023.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable embed-
ding. In International Conference on Artificial Intelligence and Statistics, pp. 1751–1759. PMLR,
2018.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 4. Athena scientific,
2012.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant neural networks.
The Journal of Machine Learning Research, 21(1):3535–3595, 2020.

Benoît Bonnet-Weill and Milan Korda. Set-valued koopman theory for control systems. arXiv
preprint arXiv:2401.11569, 2024.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Daniel Bruder, Brent Gillespie, C David Remy, and Ram Vasudevan. Modeling and control of soft
robots using the koopman operator and model predictive control. arXiv preprint arXiv:1902.02827,
2019a.

Daniel Bruder, C David Remy, and Ram Vasudevan. Nonlinear system identification of soft robot
dynamics using koopman operator theory. In 2019 International Conference on Robotics and
Automation (ICRA), pp. 6244–6250. IEEE, 2019b.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

Marko Budišić, Ryan Mohr, and Igor Mezić. Applied koopmanism. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22(4), 2012.

John Charles Butcher and Gerhard Wanner. Runge-kutta methods: some historical notes. Applied
Numerical Mathematics, 22(1-3):113–151, 1996.

José F Carinena, Xavier Gracia, Giuseppe Marmo, Eduardo Martínez, Miguel C Munoz-Lecanda,
and Narciso Roman-Roy. Geometric hamilton–jacobi theory. International Journal of Geometric
Methods in Modern Physics, 3(07):1417–1458, 2006.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Suddhasattwa Das. Lie group valued koopman eigenfunctions. Nonlinearity, 36(5):2149, 2023.

Suddhasattwa Das, Dimitrios Giannakis, and Joanna Slawinska. Reproducing kernel hilbert space
compactification of unitary evolution groups. Applied and Computational Harmonic Analysis, 54:
75–136, 2021.

Marc Peter Deisenroth, Carl Edward Rasmussen, and Jan Peters. Gaussian process dynamic program-
ming. Neurocomputing, 72(7-9):1508–1524, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Cornelia Druţu and Michael Kapovich. Geometric group theory. American Mathematical Soc., 2018.

Herbert Federer. Geometric measure theory. Springer, 2014.

Michael Field. Dynamics and symmetry, volume 3. World Scientific, 2007.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Brian C Hall and Brian C Hall. Lie groups, Lie algebras, and representations. Springer, 2013.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Changcun Huang. On a mechanism framework of autoencoders. arXiv preprint arXiv:2208.06995,
2022.

Frédéric Jean, Sofya Maslovskaya, and Igor Zelenko. Inverse optimal control problem: the sub-
riemannian case. IFAC-PapersOnLine, 50(1):500–505, 2017.

Frédéric Jean, Sofya Maslovskaya, and Igor Zelenko. On projective and affine equivalence of
sub-riemannian metrics. Geometriae Dedicata, 203(1):279–319, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Masanori Koyama, Kenji Fukumizu, Kohei Hayashi, and Takeru Miyato. Neural fourier transform: A
general approach to equivariant representation learning. arXiv preprint arXiv:2305.18484, 2023.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode
decomposition: data-driven modeling of complex systems. SIAM, 2016.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

Nir Levine, Yinlam Chow, Rui Shu, Ang Li, Mohammad Ghavamzadeh, and Hung Bui. Predic-
tion, consistency, curvature: Representation learning for locally-linear control. arXiv preprint
arXiv:1909.01506, 2019.

Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. John Wiley & Sons, 2012.

Shuai Li, Yangming Li, Bu Liu, and Timmy Murray. Model-free control of lorenz chaos using
an approximate optimal control strategy. Communications in Nonlinear Science and Numerical
Simulation, 17(12):4891–4900, 2012.

Yunzhu Li, Hao He, Jiajun Wu, Dina Katabi, and Antonio Torralba. Learning compositional koopman
operators for model-based control. arXiv preprint arXiv:1910.08264, 2019.

Sophus Lie. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen.
BG Teubner, 1893.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

12

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141,
1963.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Xiaoteng Ma, Xiaohang Tang, Li Xia, Jun Yang, and Qianchuan Zhao. Average-reward reinforcement
learning with trust region methods. arXiv preprint arXiv:2106.03442, 2021.

Yunqian Ma and Yun Fu. Manifold learning theory and applications, volume 434. CRC press Boca
Raton, 2012.

Sofya Maslovskaya. Inverse Optimal Control: theoretical study. PhD thesis, Université Paris Saclay
(COmUE), 2018.

Alexandre Mauroy and Jorge Goncalves. Linear identification of nonlinear systems: A lifting
technique based on the koopman operator. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pp. 6500–6505. IEEE, 2016.

Alexandre Mauroy, Y Susuki, and I Mezić. Koopman operator in systems and control. Springer,
2020.

Mayank Mittal, Marco Gallieri, Alessio Quaglino, Seyed Sina Mirrazavi Salehian, and Jan Koutník.
Neural lyapunov model predictive control: Learning safe global controllers from sub-optimal
examples. arXiv preprint arXiv:2002.10451, 2020.

Takeru Miyato, Masanori Koyama, and Kenji Fukumizu. Unsupervised learning of equivariant
structure from sequences. Advances in Neural Information Processing Systems, 35:768–781, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Berndt Müller, Joachim Reinhardt, and Michael T Strickland. Neural networks: an introduction.
Springer Science & Business Media, 2012.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
international conference on robotics and automation (ICRA), pp. 7559–7566. IEEE, 2018.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,
31, 2018.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based
reinforcement learning. In Conference on robot learning, pp. 258–272. PMLR, 2020.

Hideki Omori. Infinite-dimensional Lie groups, volume 158. American Mathematical Soc., 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Pablo Pedregal. Functional analysis, sobolev spaces, and calculus of variations. 2024.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

Barry Saltzman. Finite amplitude free convection as an initial value problem—i. Journal of
atmospheric sciences, 19(4):329–341, 1962.

Alexander A Schekochihin. Lectures on ordinary differential equations. University of Oxford, 2022.

Rudolf Schmid. Infinite dimentional lie groups with applications to mathematical physics. 2004.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Jonathan H Tu. Dynamic mode decomposition: Theory and applications. PhD thesis, Princeton
University, 2013.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. In Interna-
tional Conference on Learning Representations, 2021.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

Matthias Weissenbacher, Samarth Sinha, Animesh Garg, and Kawahara Yoshinobu. Koopman Q-
learning: Offline reinforcement learning via symmetries of dynamics. In International Conference
on Machine Learning, pp. 23645–23667. PMLR, 2022.

14

https://zenodo.org/record/8127025

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721. IEEE,
2017.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation
of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science,
25:1307–1346, 2015.

Stephen J Wright. Numerical optimization. Springer New York, NY, 2006.

Dongjun Wu and Guang-Ren Duan. Further geometric and lyapunov characterizations of incre-
mentally stable systems on finsler manifolds. IEEE Transactions on Automatic Control, 67(10):
5614–5621, 2021.

Kentaro Yano and Tadashi Nagano. The de rham decomposition, isometries and affine transformations
in riemannian spaces. In Japanese journal of mathematics: transactions and abstracts, volume 29,
pp. 173–184. The Mathematical Society of Japan, 1959.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

Xiangyuan Zhang, Weichao Mao, Saviz Mowlavi, Mouhacine Benosman, and Tamer Başar. Control-
gym: Large-scale safety-critical control environments for benchmarking reinforcement learning
algorithms. arXiv preprint arXiv:2311.18736, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A TABLE OF NOTATIONS

Notations Meaning
a action
f time derivative of the dynamical system
g isometry embedding
gen
θ encoder
gde
ϕ decoder
g Lie algebra
s state
r reward
rg reward in latent space
z state in latent space
A action space
B∗ Bellman optimality
D Dataset
F flow of dynamical system
M original state space of dynamical system
N latent space
GL generalized linear group

Hom(·, ·) homomorphic category
K Koopman operator
L Lie derivative
P Lie algebra of one-parameter group
r1,r2 reward functions related to action and state respectively
S state space
B actuation matrix
U actuation matrix

V, Vg value function and latent value function
X,Xg vector fields and equivariant (or latent) vector fields
∆t discretized time interval
λmetric penalty coefficient of isometric loss in loss function
λcost penalty coefficient of action in reward function
θ parameters of encoder
ϕ parameters of decoder
ψ parameters of latent value function
π control policy

□∗,□∗ pullback and pushforward symbols

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B IMPORTANT DEFINITIONS

Definition B.1 (Manifold, Riemannian Metric and Riemannian Manifold (Abraham et al., 2012)). A
manifold M is a Hausdorff, second countable, locally Euclidean space. It is said of dimension n if it
is locally Euclidean of dimension n. If a manifold with a globally defined differential structure, it
is called a smooth manifold (Abraham et al., 2012). The manifold equipped a Riemannian product
(Riemannian metric) structure ⟨·, ·⟩ is called Riemannian manifold denoted by a pair (M, ⟨·, ·⟩).

Definition B.2. A smooth function of class Ck is a function that has continuous derivatives up to the
k-th order. Specifically, if a function f : U → R (where U is an open subset of Rn) is said to be of
class Ck, it satisfies the following properties:

• The function f has partial derivatives of all orders from 1 up to k.

• These partial derivatives are continuous up to the k-th order.

In formal terms, a function f is of class Ck if:

f ∈ Ck(U) if
∂|α|f

∂xα1
1 · · · ∂x

αn
n

exists and is continuous for all multi-indices |α| ≤ k,

where α = (α1, . . . , αn) is a multi-index representing the orders of partial differentiation.

Definition B.3 (Group (Druţu & Kapovich, 2018)). A group is non-empty set G with a binary
operation on G, here denoted as “·”, then the group can be written as (G, ·), three axioms need to be
satisfied on group:

• Associativity. for all a, b, c in G, one has (a · b) · c = a · (b · c);

• Identity Element. There exists an element e inG such that, for every a inG, one has e ·a = a
and a · e = a, such an element is unique in a group;

• Inverse Element. For each element a in G, there exists an element b in G such that a · b = e,
the b is unique commonly denoted as a−1.

Definition B.4 (Vector Field). Let U ⊆ Rn be an open subset. A vector field on U is a smooth
(continuously differentiable) function

f : U → Rn

that assigns to each point s = (s1, s2, . . . , sn) ∈ U a vector

f(s) = (f1(s), f2(s), . . . , fn(s)) .

Definition B.5 (Lie Group Action). Let G be a Lie group and M be a smooth manifold. A Lie group
action of G on M is a group action:

σ : G×M →M, (g, s) 7→ g · s (17)

such that the action map σ is smooth.

Definition B.6 (Flow). Given a vector field f on an open subset U ⊆ Rn, a flow generated by vector
field f is a family of diffeomorphisms

Ft : U → U, t ∈ R,

satisfying the following properties:

1. Initial Condition: For all s ∈ U ,
F0(s) = s.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. Group Property: For all s, t ∈ R and x ∈ U ,

Fs+t(s) = Fs(Ft(s)).

3. Differential Equation: For each s ∈ U , the curve ϕ(t) = Ft(s) is a solution to the ordinary
differential equation

d

dt
ϕ(t) = f(ϕ(t)),

with initial condition ϕ(0) = s.

Typically, the flow map F can be treated as a local one-parameter Lie group of parameterized by t.

Definition B.7 (Lie Derivative (Lie, 1893)). The Lie derivative of a function g :M → R with respect
to vector field X at a point s ∈M is the function

(LXg)(s) = lim
t→0

g(ϕs(t))− g(s)
t

, (18)

where ϕs(t) the flow through s.

Definition B.8 (Infinitesimal Generator). Suppose ϕ : R → GL(n,R) is a one-parameter group.
Then there exists a unique n× n matrix X such that ϕ(t) = exp(tX) for all t ∈ R. It follows from
the result that is differentiable, and the matrix X can then be recovered from ϕ as

dϕ(t)

dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

exp(tX) = (X exp(tX))

∣∣∣∣
t=0

= X exp(0) = X, (19)

where X is called infinitesimal generator.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C MODEL-BASED RL

The most well-known and popular reinforcement learning methods are model-free (Lillicrap, 2015;
Mnih et al., 2015; Schulman, 2015; Schulman et al., 2015; 2017; Vinyals et al., 2019; Ma et al., 2021).
Model-free RL has been widely used in many areas and manage to optimize the performance of models
especially in language tasks (Achiam et al., 2023; Touvron et al., 2023; Ouyang et al., 2022). Despite
of the generalization ability and scalability of model-free RL, when it comes to applying to continuous
control, results from the traditional control theory and the induced analytical closed-form policy extrac-
tion, which can potentially be used to reduce the sample complexity, have been ignored. In this work,
we leverage these missing advantages to develop our algorithm under the model-based RL framework.

Based on the dynamics Equation 1, a model-based RL decision-making process is provided. The
sequential actions {aτ} are determined by a policy π(· | sτ), the target is to maximize the expected
accumulated reward r :M → R in the future, such that

V π(st) = E[
∑
τ

γτr(sτ , aτ) | sτ , aτ ∼ π], ∀st ∈M, (20)

where V π :M → R is the value function to measure the future expected accumulated reward for the
arbitrary state, γ ∈ (0, 1) is the discounted factor, and s0 ∈M is the initial state.

The control part of KEEC is derived from model-based RL (Okada & Taniguchi, 2020; Mittal et al.,
2020). The algorithm aims to search an action sequence in an infinite horizon as a control policy,
expressed as at:t+(L−1)∆t = (at, at+∆t, · · · , at+(L−1)∆t). The optimal actions under model-based
RL can be defined as:

a∗t:t+(L−1)∆t︸ ︷︷ ︸
search optimal policy for L−step rollout

∈ argmax E[
t+(L−1)∆t∑

τ=t

γτr(sτ , aτ)︸ ︷︷ ︸
L−step rollout

+γLV (st+L∆t)],

s.t. sτ+∆t = F∆t(sτ , aτ), ∀τ ∈ {t, t+∆t, · · · , t+ (L− 1)∆t}, ∀ aτ ∈ A.

(21)

C.1 BELLMAN OPTIMALITY

The value function approximation in the model-based RL framework is considered as a control
certificate. Based on the original work (Bellman, 1966), the N−step look-forward latent value
function can be represented as

B∗Ṽ k
g (zt) = max

at:t+(L−1)∆t

t+(L−1)∆t∑
τ=t

γτrg(zτ , aτ) + γLṼ k
g (zt+L∆t), ∀st ∈ S, (22)

whereB∗ is the Bellman optimality and k+1, k ∈ L+ are the number of iterations of the approximated
value function Ṽg. It is known that the approximated value function contracts to a fixed point
(Bertsekas, 2012; Lagoudakis & Parr, 2003), such that

lim sup
k→∞

∥Ṽ k
g − V ∗

g ∥∞ ≤ ϵ,

where V ∗
g is the optimal value function and ϵ is arbitrary small.

In original dynamic programming methods, the search for optimal actions relies on the discretization
of the state space. However, the number of states and actions increases exponentially with refinement,
and optimization eventually becomes a costly computational problem. To overcome the drawbacks
of other embedding control works, the analytical form of the optimal policy can be derived by
discovering the vector fields on the latent space.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D KOOPMAN SEMIGROUP AND EQUIVARIANCE

Koopman Semigroup (Das, 2023). The Koopman operatorKt acts on a function space by composi-
tion with the flow map Ft, effectively implementing time shifts in function g. Various choices exist for
the function space, such as L2(M) and spaces of continuous functions. In this context, we restrict our
attention to C1(M), the space of once continuously differentiable functions on the space M . Specifi-
cally, for a function g ∈ C1(M) and time t ∈ R, the Koopman operator Kt : C

1(M)→ C1(M) is
defined as:

(Ktg)(s) = g(Ft(s)),

where Ft :M →M is the flow map with interval time t.

In general, if Ft is a Ck flow for some k ≥ 1, then Kt maps the space Cr(M) into itself for every
0 ≤ r ≤ k. The infinitesimal generator P of the Koopman operator Kt is defined by:

Pg := lim
t→0

1

t
(Ktg − g), g ∈ D(P),

where D(P) ⊆ C1(M) is the domain of P , consisting of functions for which this limit exists.
Typically, P : C1(M)→ C0(M) when Ft is sufficiently smooth.

Notably, P is an unbounded operator on C1(M), meaning it is not defined on the entire space but
rather on a dense subset D(P). This dense subset ensures that P can approximate its behavior across
C1(M) through limits of convergent sequences within D(P).

Furthermore, when considering C1(M) ∩ L2(M), the action of the extended generator P̂ coincides
with that of P on this intersection, ensuring consistency across different function spaces. According
to the strong operator topology, the Koopman semigroup {Kt} can be approximated by exp(tPn)
for a Cauchy sequence {Pn} of bounded operators converging to P on D(P). Sepcifically, for each
g ∈ C1(M) ∩ L2(M), we have limn→∞ ∥Kg − exp(Pnt)g∥2 → 0.

The family of Koopman operators {Kt}t∈R forms a one-parameter group of linear operators, satisfy-
ing:

Kt+s = Kt ◦ Ks, K0 = Identity operator.

This group structure implies that Kt = exp(tP), where exp(tP) is defined via the operator exponen-
tial for the generator P .

The generator P acts as a differentiation operator:

Pg = Lg,

where X is the vector field defining the flow Ft, and L denotes the Lie derivative of g along X .
Consequently, P generates the vector fields of g in the function space C1(M), facilitating a linear
representation of the potentially nonlinear system.

Group Representation and Equivariance. Let (ρ, V) and (τ,W) be group representations of C.
A linear map g : V →W is called C−linear map if g(ρ(c)v) = τ(c)g(v) for any v ∈ V and c ∈ C,
that is if the diagram in D commutes (Koyama et al., 2023).

V V

W W

ρ(c)

g g

τ(c)

AC−linear map is a homomorphism of the representation ofC. If there is a bijectiveC−map between
two representations of C, they C−isomorphic, or isomorphic for short. When the isomorphism exists,
the two representations ρ and τ are said to be completely equivalent.

Discussion of Equivariance of Flow and Vector Fields under Koopman Operator. Back to
our case, our target is to construct the representation of one-parameter group - flow map. The flow
Ft :M →M generated by the vector fields is a diffeomorphism Diff(M) that can be equivalently

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

described in the Koopman framework by the automorphismKt. According to infinite-dimensional Lie
group theory, when M ⊂ Rm is compact, the group of diffeomorphisms Diff(M) can be endowed
with a Fréchet-Lie group structure. Similarly, the group of automorphisms Aut(C∞(M)) 4 also
forms a Fréchet-Lie group. Under the topology of local uniform convergence of all partial derivatives
on C∞(M), there exists an isomorphism between these two Fréchet-Lie groups. This isomorphism
preserves both the group structure and the smooth manifold structure, establishing a deep connection
between diffeomorphisms of M and automorphisms of the function space. The associated Lie
algebras of these groups are the vector fields V ect(M) for Diff(M) and the derivations (generator)
Der(C∞(M)) 5 6 for Aut(C∞(M)). The isomorphism between Diff(M) and Aut(C∞(M)) in-
duces an isomorphism between their respective Lie algebras, V ect(M) and Der(C∞(M)). This
correspondence implies that a vector field f ∈ V ect(M) on the manifold M is equivalent to a
derivation P ∈ Der(C∞(M)) on the function space, defined by Pg = ∇g · f for all g ∈ C∞(M).
The detailed proof can be found in (Omori, 2017; Schmid, 2004). Consequently, the flow maps
Ft and the Koopman operators Kt are intertwined by this isomorphism, making them equivariant
under the constructed representations. Similarly, the vector fields f ∈ V ect(M) and the derivations
P ∈ Der(C∞(M)) are equivariant under the induced representations. Please be note that the local
flow Ft can always be mollified to a smooth function with arbitrary small error (Pedregal, 2024), and
thus above isomorphic map g can always be found.

Convergence Property. Our method distinguishes itself from previous work by focusing on the
learning of the infinitesimal generator P . One advantage of this approach is the ability to approximate
and capture mixed spectra with strong convergence. We consider the Koopman operator Kt, which
acts on the square-integrable space L2(M) = Hc ⊕Hp, where Hc and Hp represent the continuous
and atomic (point) spectra, respectively. The generator P of the Koopman operator is a densely
defined, unbounded operator with domain D(P) ⊂ L2(M). In our approach, we approximate P by
constructing a compactified version, P̂ , following the compactification procedure described in (Das
et al., 2021). Specifically, it is shown in (Das et al., 2021) that the operator P̂ = ΠPΠ is a compact
operator with a purely atomic spectrum, providing an approximation to the original unbounded
generator P . Here, Π is a projection operator that maps L2(M) to the feature function space spanned
by g, which is dense and countable in L2(M). The approximated operator P̂ can be expressed as
P̂ = limt→0+

ΠKtΠ−I
t , consistent with our learning process as described in Equations (8) and (9) of

our work. Moreover, P̂ achieves strong convergence in operator topology to P as t→ 0+, implying
that the spectral properties of P̂ approximate those of P . This convergence also ensures that the
spectral measures of P̂ approximate those of P , effectively capturing both the atomic and continuous
components of the Koopman spectrum. Consequently, the approximated Koopman evolution operator
exp

(
P̂t

)
achieves strong convergence toKt, even when the Koopman operator has a mixed spectrum.

This result is supported rigorously by Corollary 4 in (Das et al., 2021), highlighting the quality of the
approximation.

E ADDITIONAL DETAILS OF VALUE LEARNING

The parameter ψ is optimized using stochastic gradient descent to minimize the following loss for
value learning:

Eevf =
∑

(zt,a∗
t ,zt+∆t)∈DReplay

∥rg(zt, a∗t) + γṼg(zt+∆t, ψ)− Ṽg(zt, ψ)∥, (23)

where a∗ = π∗(zt) and DReplay is the replay buffer storing the system trajectories under the control
policy π∗ in Equation 16. The analytical form of the optimal action is performed directly on the

4Aut(C∞(M)) refers to the set of all automorphisms (structure-preserving bijective maps) of the space
of smooth functions C∞(M) on space M . This group consists of all maps that preserve the algebraic and
differentiable structure of the space of smooth functions.

5The Lie algebra of derivations Der(C∞(M)) associated with the group of automorphism Aut(C∞(M))
is a mathematical structure that describes the infinitesimal transformations of the space of smooth functions
C∞(M) on manifold M .

6A derivation on C∞(M) is a linear mapD : C∞(M) → C∞(M) that satisfies the Leibniz rule: D(fg) =
fD(g) + gD(f) ∀f, g ∈ C∞(M).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

continuous space via learned equivariant vector fields Equation 6. In addition to computational
efficiency, the convergence of Ṽg(·, ψ) enables a fast convergence rate to V π∗

g , as shown in the
following theorem.
Theorem E.1 (Quadratic Convergence of Value Functions). When Theorem 3.4 holds, the ap-
proximated latent value function Ṽg(·, ψ) will point-wisely converge to the optimal V π∗

g , and the
convergence rate is quadratic as follows:

∥Ṽ k+1
g − V π∗

g ∥ = O(∥Ṽ k
g − V π∗

g ∥2), (24)

where the kth update of Ṽ k
g is calculated by minimizing Eevf in Equation 23.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F PROOFS OF MAIN THEOREMS

This section provides proof of the lemma and theorems in the main text.

F.1 PROOF OF THEOREM 3.1.

Proof. Before proving the lemma, the property of pushforward of diffeomorphism needs to be given.

Pushforward map (Ma & Fu, 2012). Let g be an embedding map g :M → N , for a vector field
X ∈ V ect(M) and flow ϕ : I →M and corresponding vector field (g∗X)(ϕ(t)) ∈ V ect(N), there
exists

(g∗X)
(
ϕ(t)

)
= d

(
g
(
ϕ(t)

))
X(t), (25)

where g∗ is the pushforward operator.

Therefore, the pushforward can be represented as

d

dt
(Kat

t g)(st) = d(g(st))f(st, at)

= ∇(g(st)) · [fM (st) +B(st)at]

=
∂g

∂s
(st)fM (st) +

∂g

∂s
(st)B(st)at

= Pzt︸︷︷︸
embedding of drift part

+ U(zt)at︸ ︷︷ ︸
embedding of actuation part

,

(26)

where Pzt is the equivariant vector field without any action intervention. The ∂g
∂s (st)B(st) is the

embedding of the actuation matrix. Under the certain embedding condition, we can simplify the
acutation part to a interaction form as (Uzt)at, where U is a three-mode tensor.

According to the Theorem 3.1, the flow can be represented by the exponential map in Lie theory

z∆t = exp(P∆t)
(
z0 +

∫ ∆t

0

exp(−tP)U(zt)atdt
)

= exp(P∆t)z0 +
∫ ∆t

0

exp(P[∆t− t])U(zt)atdt

≈ exp(P∆t)z0 + P−1(exp(P∆t)− I)U(z0)a0

(27)

where the first line is the solution of non-homogeneous linear ODE (see Equation 2.61 on page 20
(Schekochihin, 2022)). When the ∆t is sufficiently small, the right-side of the third line can be
approximated as P−1(exp(P∆t)− I)U(zt)at. Then the difference between z∆t and z0 can be

z∆t − z0
= exp(∆tP)z0 + P−1(exp(P∆t)− I)U(z0)a0 − z0

= (I + P∆t+
∑
n≥2

1

n!

dn(K∆t)

dtn
∆tn − I)z0 + P−1(I + P∆t+

∑
n≥2

1

n!

dn(K∆t)

dtn
∆tn − I)U(z0)a0

= Pz0∆t+ U(z0)a0∆t+O(∆t2).
(28)

F.2 PROOF OF THEOREM 3.4 AND COROLLARY F.1.

The proof is directly developed from the dynamic programming (Bertsekas, 2012) and the Hamilton-
Jacobi-Bellman (HJB) equation (Yong & Zhou, 1999).

In this case, the proof will be decomposed into two cases, one to prove a general case and another
to prove the solution of the special quadratic form of the reward function (covering a wide range of
Linear Quadratic Regulator problems).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1. Proof of Theorem 3.4 By the Bellman optimality, the optimal value function can be represented
as a similar form in Equation Equation 14:

B∗V (st) = max
at

r(st, at) + γV (F∆t(st)). (29)

According to the Lemma 3.1 and Theorem 3.3, there exists a representation in latent space as

B∗Vg(zt) = max
at

rg(zt, at) + γVg(K∆t(zt)). (30)

In this scenario, it assumes that the value function V ∈ C1(M,R), then Vg ∈ C1(N,R).

By the definition of the HJB equation (Yong & Zhou, 1999), the standard form exists:

V (x(t+∆t), t+∆t) = V (x(t), t) +
∂V (x(t), t)

∂t
∆t+

∂V (x(t), t)

∂x
· ẋ(t)∆t+ o(∆t), (31)

where x(t) is the state at time t, since in the value function is time-independent, the ∂V (x(t),t)
∂t = 0.

Back to the case, the integral form can be obtained as:

Vg(K∆t(zt)) = Vg(zt) +

∫ ∆t

0

LXg
Vg(zτ)dτ + o(∆t)

≈ Vg(zt) +∇ztV
T
g (zt) ·Xg(ϕ(t))∆t+ o(∆t)

(32)

The Lie derivative LXgVg(zτ) interprets the change value function Vg(zτ) under the vector field
of Xg(zt) ∈ V ect(N). Instead of searching for a direction in Euclidean space, LXgVg(zτ) can be
understood as the change of value function along the tangent vector Xg(zt) (Wu & Duan, 2021) on
the latent space. When the ∆t is sufficiently small, the second line of Equation 32 holds. Observing
the right-hand side of Equation 30 can be replaced by Equation Equation 32, the following equation
can be obtained as

B∗Vg(zt) = max
at

rg(zt, at) + γVg(K∆t(zt))

= max
at

rg(zt, at) + γ(Vg(zt) +∇ztV
T
g (zt) ·Xg(zt)∆t+ o(∆t))

= max
at

rg(zt, at) + γVg(zt) + γ∇ztV
T
g (zt)[Pzt + U(zt)at]∆t+ o(∆t),

(33)

where the vector field of Xg(ϕ(t)) is defined as in Equation 6. Typically, the reward function can be
decomposed as two separable functions defined on state and action, respectively. Here, the rg can be
defined as

rg(z, a) = r1(a) + r2(z), (34)
where r1 and r2 are two independent functions. Plug-in the Equation 32 into the Equation 33, the
following form exists:

max
at

rg(zt, at) + γ
(
Vg(zt) +∇ztV

T
g (zt)[Pzt + U(zt)at]∆t+ o(∆t)

)
=max

at

rg(zt, at) + γVg(zt) + γ∇ztV
T
g (zt)[Pzt + U(zt)at]∆t+ o(∆t)

=max
at

rg(zt, at) + γ∇ztV
T
g (zt)[Pzt + U(zt)at]∆t︸ ︷︷ ︸

depedent on action

+γVg(zt) + o(∆t).

(35)

When the rg is a convex function, the optimization becomes a convex problem, which can be solved
analytically.

Since rg is quadratic form, ∇arg(zt, ·) is a linear operator, and thus ∇arg(zt, a) = ∇arg(zt, ·)a.
The Equation 35 can be solved by taking the gradient equal zero:

max
at

rg(zt, a) + γ∇ztV
T
g (zt)[Pzt + U(zt)at]∆t

⇒ ∇arg(zt, a) + γ∇ztV
T
g (zt)U(zt)∆t = 0

⇒ a∗t = −[∇arg(zt, ·)]†(γ∇zV
T
g · U(zt))∆t,

(36)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Corollary F.1 (Analytical form of value function with quadratic form). Under Theorem 3.4, if the
value function Vg has a quadratic form, i.e., Vg(z) = −(z − z∗)TW (z)(z − z∗) + b with W (z)
being symmetric positive definite matrix, b being a constant, then, the optimal action is:

π∗(zt) =− γR†
1[z

T
t W (zt) +

1

2
γ(zt − z∗)T

∂W (zt)

∂z
(zt − z∗)]U(zt). (37)

Proof. For the reward function, the Equation 34 becomes as

rg(z, a) = −aTR1a∆t− zTR2z∆t, (38)

where R1 and R2 are symmetric semi-positive definite matrices, and their dimensions rely on the
dimension of observables and actions. In this case, the value function will also become a quadratic
form as

V (z) = −(z − z∗)TW (z)(z − z∗) + b, (39)

where z∗ is the target state in observable space and M(z) is a positive definite matrix. Correspond-
ingly, the Equation 32 in quadratic form becomes

Vg(Kt(zt)) = Vg(zt) +∇ztV
T
g (zt) ·Xg(zt)∆t+ o(∆t)

= −(zt − z∗)TW (zt)(zt − z∗)− 2zTt W (zt) · [Pzt + U(zt)at]∆t

− (zt − z∗)T
∂W (zt)

∂z
(zt − z∗) · [Pzt + U(zt)at]∆t+ o(∆t).

(40)

Meanwhile, the Equation 33 can be

B∗Vg(zt) = max
at

rg(zt, at) + γVg(zt) + γ∇ztV
T
g (zt+1)[Pzt + U(zt)at]∆t+ o(∆t)

= max
at

−aTt R1at∆t− zTt R2zt∆t− γ(zt − z∗)TW (zt)(zt − z∗)− 2γzTt W (zt) · [Pzt + U(zt)at]∆t

− γ(zt − z∗)T
∂W (zt)

∂z
(zt − z∗) · [Pzt + U(zt)at]∆t+ o(∆t).

(41)

Due to the convexity of the Equation 41, taking the gradient equal to zero can yield the optimal action
as

− 2R1at − 2γzTt W (zt)U(zt)− γ(zt − z∗)T
∂W (zt)

∂z
(zt − z∗)U(zt) = 0

⇒ a∗t = −γR†
1[z

T
t W (zt) +

1

2
(zt − z∗)T

∂W (zt)

∂z
(zt − z∗)]U(zt).

(42)

F.3 PROOF OF INVARIANT VALUE LEARNING CONVERGENCE

Approximation in value space with one-step greedy TD amounts to a step of Newton’s method
for solving HJB equation. In the following proof, the convergence of the latent value function
{Ṽg(ψk)}∞k=1 is treated as a Cauchy net in the functional space contracting to the fixed point V π∗

g .
The proof has a natural connection to Newton-Raphson method (Wright, 2006).

Lemma F.2 (Newton-Raphsom Method (Nocedal & Wright, 1999)). Consider a contraction map
E : Y → Y and the fixed point y∗ = limn→∞En(y0) for some initial vector y0 ∈ Y ⊂ Rn and
y∗ = E(y∗). The step-wise difference is defined as

D(yk) = E(yk)− yk (43)

where ∀yk ∈ C2 and the contraction operator E indicates the fact that limk→∞D(yk) → 0, the
Newton’s step is to update yk+1 as

yk+1 = yk − [∇D(yk)T]−1D(yk) (44)

where D(yk) is differentiable and the∇D(yk) is an invertible square matrix for all k.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proposition F.3 (Quadratic convergence of Newton-Raphson). Under the condition of Lemma 3.1,
every step iteration yk+1 = yk − [∇D(yk)T]−1D(yk). When D(y) is C1−regularity as
ρmin(∇D(y)) > C1 7 and satisfying the following condition as

∥∇D(yn)−∇D(ym)∥ ≤ C2∥yn − ym∥2, for some compact sets.

Thus, the convergence rate is quadratic as ∥yk+1 − y∗∥ = O(∥yk − y∗∥2).

Proof.

∥yk+1 − y∗∥ = ∥yk − [∇D(yk)T]−1D(yk)− y∗∥ (45)

The error gap D(yk) can be calculated as variational form as:

D(yk) =

∫ 1

0

∇D(y∗ + t(yk − y∗))dt(yk − y∗). (46)

Plug the Equation 46 to Equation 45, we get

⇒∥yk − y∗ − [∇D(yk)T]−1D(yk)∥

=∥[∇D(yk)T]−1

[
[∇D(yk)T](yk − y∗)−D(yk)

]
∥

=∥[∇D(yk)T]−1

[
[∇D(yk)T](yk − y∗)−

∫ 1

0

∇D(y∗ + t(yk − y∗))dt(yk − y∗)

]
∥

≤∥∇D(yk)T]−1∥∥
∫ 1

0

[D(yk)T]−∇D(y∗ + t(yk − y∗))dt∥∥yk − y∗∥

≤C2∥∇D(yk)T]−1∥∥yk − y∗∥2

≤C2

γ
∥yk − y∗∥2

(47)

where it is easy to see the quadratic convergence relationship ∥yk+1 − y∗∥ = O(∥yk − y∗∥2).

Finally, the proof of quadratic convergence of ∥Ṽ k+1
g − V ∗

g ∥ = O(∥Ṽ k
g − Ṽ ∗

g ∥2) can be a direct
result from the Equation 47.

Let’s give some analysis to connect to the Theorem 3.4 and Corollary F.1. This analysis provides a
one-step rollout case. The multi-step rollout case can be extended following the one-step rollout.
It should be noted that the multi-step rollout can be understood as a larger step size to make the
convergence of the invariant value function. The core idea behind Newton’s step is to use the
second-order information to guide the convergence of value function V k

g (θ). The second-order
information of V k

g (θ) is from the Bellman optimality B∗. By observing Equation 23, one-step
Temporal Difference is updated by using rg(zt, a∗t) instead of using rg(zt, at). The a∗ derived from
provide a piece of second-order information. The value function is defined on the latent space, and a
well-learned latent space can boost the convergence of the invariant value function by vector field
information. Compared to the conventional RL methods, such as soft actor-critic RL, the policy π is
updated incrementally, and it is impossible to discover a piece of second-order information to guide
the policy.

The proof of the quadratic convergence rate can be analogous to Newton’s step. The fact is sig-
nificantly different from the actor-critic RL methods, where the policy π needs to be updated
incrementally. The conventional RL relies on asynchronous updating of value function and policy,
which causes a low convergence rate (Sutton & Barto, 2018). This paper’s analytical form of optimal
policy provides “curvature information” to boost the convergence rate.

7ρ represents the Eigenvalue of matrix.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

G PSEUDO ALGORITHM FOR KEEC CONTROL

Algorithm 2 KEEC: Control

Require: trained encoder gen
θ , trained value net Ṽg(·, ψ) from Algorithm 1;

reward function R1; optimal state s∗; max control time Tmax; environment Env
1: initial state s0 ∈M
2: t = 0
3: while t ≤ Tmax do
4: Map to latent space zt = gen

θ (st)
5: perform optimal action at = π(zt) from the lifted policy with Equation Equation 16 or

Equation 37
6: Observe next state st+1 = Env(st, at)
7: t← t+ 1
8: end while

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H EXPERIMENT SETTINGS

H.1 DESCRIPTION OF THE TASKS

Pendulum. The swing-up pendulum problem is a classic control problem involving a pendulum
swinging from a downward hanging position to an unstable inverted position. In the controlgym-based
control, the problem has two state dimensions: angular θ and angular velocity θ̇. In the image-based
control, we simulate the pendulum with the same dynamics, but the state is defined as the binary
images of two consecutive states (the θ̇ can be learned by locally differencing). The image has size
96× 48, as the number of pixels (see Figure 6).

The pendulum motion equitation can be expressed as follows:

d2θ

dt2
=

3g

2l
sin θ +

3

ml2
a, (48)

where l is the pendulum length, m is mass, g is the gravitational acceleration, and a is the applied
torque. Parameter settings commonly used in such studies, i.e., m = 1, l = 1, g = 10, and
a ∈ [−2, 2], are used in this study. In addition to the results presented in the main context, we show
four KKEC control trajectories of the inverted pendulum (gym) with random initials and the 3D
visualization of the learned value function in Figure 5.

(a) Example control trajectories with four
random initials, where + indicates the ini-
tials and the yellow star indicates the optimal
state. The background contour map indicates
the magnitude of the value function (red indi-
cates high value and blue indicates low value)

(b) 3D visualization of learned value function

Figure 5: The visualization of the learned value function and the KEEC control trajectories of the
swing-up pendulum.

Lorenz-63 system. The Lorenz-63 model (Lorenz, 1963; Saltzman, 1962), which consists of three
coupled nonlinear ODEs,

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz (49)

used as a model for describing the motion of a fluid under certain conditions: an incompressible fluid
between two plates perpendicular to the direction of the earth’s gravitational force. In particular, the
equations describe the rate of change of three quantities with respect to time: x is proportional to the
rate of convection, y to the horizontal temperature variation, and z to the vertical temperature variation.
The constants σ, ρ, and β are system parameters proportional to the Prandtl number, Rayleigh number,
and coupling strength. In this paper, we take the classic choices σ = 10, ρ = 28, and β = 8

3

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Image of pendulum state (1, 3) (b) Image of pendulum goal state (0, 0)

Figure 6: Demonstration of states in the image-based pendulum control task: the image is the
concatenated frames from two consecutive states (last timestep and current timestep).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 7: (a) and (c) uncontrolled and KEEC controlled 3d phase trajectories of Lorenz-63, where the arrows in
(c) indicate the moving direction. (b) and (d) uncontrolled and controlled state trajectories of Lorenz-63.

which leads to a chaotic behavior with two strange attractors (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) and

−(
√
β(ρ− 1),−

√
β(ρ− 1), ρ − 1). Its state is s = (x, y, z) ∈ R3 bounded up and below from

±30. Our implementation and control settings are based on the (Li et al., 2012) which modifies the
Lorenz-63 system with three action inputs a = (ax, ay, az) ∈ [−3, 3]3 on each of the variable as,

dx

dt
= σ(y − x) + ax,

dy

dt
= x(ρ− z)− y + ay,

dz

dt
= xy − βz + az, (50)

The goal is to steer the system’s dynamics toward a state s∗ = 0 with appropriate control inputs.
Although the system naturally approaches the attractors, its stabilization is extremely challenging
due to fractal oscillation and sensitivity to perturbations. The numerical integration of the system
Equation 50 using the fourth order Runge-Kutta (Butcher & Wanner, 1996) with a time step ∆t = 0.1.
Figure 7 presents four trajectories of the Lorenz-63 system, both uncontrolled and KEEC controlled.
This comparison effectively illustrates the effect of KEEC on stabilizing the Lorenz-63 system.

Wave Equation. The wave equation is a fundamental second-order PDE in physics and engineering,
describing the propagation of various types of waves through a homogeneous medium. The temporal
dynamics of the perturbed scalar quantity u(x, t) propagating as a wave through one-dimensional
space is given by

∂2u

∂t2
− c2 ∂

2u

∂x2
= a(x, t) (51)

where c is a constant representing the wave’s speed in the medium, and a(x, t) is a source term that
acts as a distributed control force,

a(x, t) =

na−1∑
j=0

Φj(x)aj(t). (52)

The control force consists of na control inputs aj(t), each acting over a specific subset of the
spatial domain, defined by its corresponding forcing support function Φj(x) (see Figure 8 for the
demonstration of the controller in our implementations). Such a control force can be used to model
the addition of energy to the system or other external influences that affect the PDE dynamics.
The uncontrolled solution of the wave equation for c = 0.1 and initial condition u(x, t = 0) =
sech(10x − 5) can be found in Figure 9. We use the implementation and control environment by
the Python package controlgym8 (Zhang et al., 2023). The wave equation with periodic boundary
condition is solved by first transforming (51) into a coupled system of two PDEs, with first-order
time derivatives defined as ψ(x, t) = ∂u

∂t representing the rate at which the scalar quantity u(x, t) is
changing locally.

In our implementation, we discretized the spatial domain [0, 1] with ∆x = 0.02 and results
the discretized field u∆x(x, t) = [u0, u∆x, ..., u1] ∈ R25. The system state is defined as
the combination of discretized u(x, t) and discretized time derivative ψ(x, t) such as s =
[u0, u∆x, ..., u1, ψ0, ψ∆x, ..., ψ1] ∈ R50. We set the control term a(x, t) with na = 5 control
inputs aj(t) = 1 with support function Φj(x) = [0.2j, 0.2(j + 1)], as illustrated in Figure 8. We
visualize the control trajectories of all the baselines and KEEC in Figures 10, 11, 12, 13, and 14.

8https://github.com/xiangyuan-zhang/controlgym

30

https://github.com/xiangyuan-zhang/controlgym

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 8: Demonstration of how distributed control inputs influence the dynamics of the wave equation
through forcing support functions. In our setting, the forcing support functions corresponding to
na = 10 control inputs are shown, each with a width of 0.1, uniformly affecting the state components
of the physical domain.

Figure 9: The uncontrolled solution to the wave equation in a spatial domain [0, 1] with parameters, c = 0.01.
The initial condition is u(x, t = 0) = sech(10x − 5) and ψ(x, t = 0) = 0. (left): Contour plot that shows
the value of the state variable over the total simulation time (x-axis) and across the spatial domain (y-axis).
(middle): 1D line representing the state variable at fixed times. The x- and y-axes represent spatial coordinates
and values of the state variable, respectively. The colour of the lines corresponds to the time stamps within the
total simulation time. (right): 3D surface plot showing the value of the state variable (z-axis) over time (y-axis)
and across the spatial domain (x-axis).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 10: KEEC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 11: SAC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 12: CQL controlled solution to the wave equation. The figure convention is consistent with Figure 9.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 13: MPPI controlled solution to the wave equation. The figure convention is consistent with Figure 9.

Figure 14: PCC controlled solution to the wave equation. The figure convention is consistent with Figure 9.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

H.2 TRAINING DETAILS AND BASELINES.

At a high level, KEEC and other baselines are implemented in Pytorch (Paszke et al., 2019). Both
training and evaluations are conducted on a Mac studio with a 24-core Apple M2 Ultra CPU and
64-core Metal Performance Shaders (MPS) GPU. The evaluation is conducted on the CPU.

All models were trained using the Adam optimizer (Kingma & Ba, 2015), with the decaying learning
rate initially set to 0.001. For KEEC, 100 training epochs are used for system identification with a
batch size of 128, and 50 training epochs are used for learning the value function with a batch size
of 256. The latent space dimensions are set at 8, 8, 16, and 64 for the pendulum (gym, image) and
Lorenz-63, wave equation tasks, respectively. We set the lose weight λmet = 0.3. Both offline models
(CQL, MPPI, and PCC) were trained for 100 epochs with a batch size of 256, while the online SAC
was updated every 10 steps with the same batch size and a 100k replay-memory buffer for a total of
250k gradient iterations. We use the following Pytorch (Paszke et al., 2019) implementations for the
baselines. For all the baselines, we keep the default model and hyper-parameter settings, adapting
only the state-action dimensions for each task. Additionally, the hidden dimensions of the models are
set to be the same as the latent space dimension of KEEC.

• SAC: Stable Baselines 3 (Hill et al., 2018):https://github.com/hill-a/
stable-baselines.

• CQL: The implementation is based on the provided code of (Kumar et al., 2020):https:
//github.com/aviralkumar2907/CQL.

• MPPI: The implementation is based on the provided code of (Williams et al., 2017):https:
//github.com/UM-ARM-Lab/pytorch_mppi.

• PCC: The implementation is based on the provided code of (Levine et al., 2019): https:
//github.com/VinAIResearch/PCC-pytorch.

H.3 EVALUATION DETAILS

The table 2 shows the general settings for the conducted evaluations.

Table 2: Evaluation settings.

initial region goal state horizon noises
pendulum (gym) [−2.9,−π]× [−8, 8] (0, 0) 100 N/A

pendulum (image) [−2.9,−π]× [0] (0, 0) 100 N/A
Lorenz-63 [−1,−17,−20]± [1, 1, 1] (−8,−8, 27) 500 N/A

Wave equation u(x, 0) = sech(10x− 5), ψ(x, 0) = 0 0 ∈ R50 200 N (0, 10−2)

The SAC, CQL, and KEEC are standard feedback control algorithms that determine control actions
based on the observed state. Below, we provide additional settings for two other baseline methods,
MPPI and PCC:

• MPPI: The planning horizons are set to 10, 10, 50, and 20 for the pendulum (gym, image),
Lorenz-63, and wave equation tasks, respectively. The number of sampled trajectories for
integral evaluations is fixed at 100 across all tasks.

• PCC: This method utilizes the iLQR algorithm to perform control in its latent space. For
the two pendulum tasks, we keep the default settings as outlined in the original paper. For
the Lorenz-63 and wave equation tasks, the latent cost matrices are set to match the cost
matrices R1 and R2 in the original spaces. The planning horizons are set to 10 for each
pendulum task, 50 for Lorenz-63, and 20 for the wave equation. The number of iLQR
iterations is consistently set at 5 for all tasks.

H.4 MODEL ARCHITECTURE

In the implementations, an autoencoding architecture is used for Koopman embedding, where the
encoder and decoder are symmetric and contain only three Fully Connected (FC) layers each. The

34

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/aviralkumar2907/CQL
https://github.com/aviralkumar2907/CQL
https://github.com/UM-ARM-Lab/pytorch_mppi
https://github.com/UM-ARM-Lab/pytorch_mppi
https://github.com/VinAIResearch/PCC-pytorch
https://github.com/VinAIResearch/PCC-pytorch

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

performance of the proposed KEEC can be easily verified using a simple design and demonstrates its
potential to solve more complex control tasks with more well-designed neural networks. It is recalled
that m, d represents the dimension of the environmental state and input control signal, respectively,
whereas n is the dimension of latent space (i.e. the finite approximated dimension of our Koopman
operators). For the latent value function, two types of model architectures were employed: (1)
Multi-Layer Perception (MLP) and (2) Quadratic Form Vg(z) = (z − z∗)TW (z)(z − z∗) where
W (z) = W

1
2 (z)TW

1
2 (z) ensures the positive definiteness and z∗ is the encoded optimal state s∗.

Specifically, the general network structure is listed in Table 3, including the specific sizes used and
the different activation functions.

Table 3: KEEC model architecture in our implementation

Components Layer Weight Size Bias Size Activation Function
Encoder FC m× n

2
n
2 Tanh

Encoder FC n
2 × n n Tanh

Encoder FC n× n n Tanh
Encoder FC n× n n None
Decoder FC n× n n Tanh
Decoder FC n× n

2
n
2 Tanh

Decoder FC n
2 ×m m Tanh

Decoder FC n
2 ×m m None

Value Function (MLP) FC n× n n ReLU
Value Function (MLP) FC n× n

2
n
2 ReLU

Value Function (MLP) FC n
2 ×

n
2

d
2 ReLU

Value Function (MLP) FC n
2 × 1 1 None

Value Function (Quadratic) FC n× (n× n) n× n None

As discussed in the main text, no extra parameters are used for training the two lifted P and U instead
of solving the least square minimization problem (8) with an analytical solution to obtain P̂ and Û
with regularization 10−3. The solved solutions in each batch were averaged over all the training data.
In evaluation, the two approximated lifted operators P̂ ∈ Rn×n and Û ∈ Rn×d are loaded into the
dynamics model and used in the control tasks.

35

	Introduction
	Preliminary
	Optimal Control: A Geometric Perspective
	Embedding for Control

	Koopman Embedded Equivariant Control
	Koopman Operator as Latent Dynamics
	Modelling the Equivariant Latent Vector Fields
	Learning Equivariant Embedding
	Optimal Control on Equivariant Vector Field

	Numerical Experiments
	Ablation study.

	Conclusions
	Table of Notations
	Important Definitions
	Model-based RL
	Bellman Optimality

	Koopman Semigroup and Equivariance
	Additional Details of Value Learning
	Proofs of Main Theorems
	Proof of Theorem 3.1.
	Proof of Theorem 3.4 and Corollary F.1.
	Proof of Invariant Value Learning Convergence

	Pseudo algorithm for KEEC control
	Experiment Settings
	Description of the tasks
	Training details and baselines.
	Evaluation details
	Model Architecture

