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ABSTRACT

The increasing demand for real-time interaction in online video scenarios neces-
sitates a new class of efficient streaming video understanding models. However,
existing approaches often rely on a flawed, query-agnostic “change-is-important”
principle, which conflates visual dynamics with semantic relevance, leading to
computational waste and interaction errors. To address this, we propose QueryS-
tream, a novel framework that instills query-awareness into the core of video pro-
cessing and response scheduling. QueryStream features two synergistic compo-
nents: (1) Query-Aware Differential Pruning (QDP), a policy that filters the token
stream by jointly assessing semantic relevance to the query and temporal nov-
elty against a dynamically smoothed history, and (2) Relevance-Triggered Active
Response (RTAR), a dual-gated mechanism that schedules responses based on
both high query relevance and significant information density. As a lightweight,
training-free module, QueryStream establishes a new state-of-the-art on bench-
marks like StreamingBench and OVO-Bench, matching or exceeding the per-
formance of full-token baselines while pruning over 70% of visual tokens. No-
tably, our pruning mechanism generalizes to offline tasks, where it functions as
an effective context-denoising module to improve accuracy on long-form videos.
This work not only reveals the vast semantic redundancy in video streams rel-
ative to user intent but also establishes a promising, intent-driven direction for
truly efficient and robust online video understanding. Code can be available at:
https://anonymous.4open.science/r/QueryStream—B5A4 /.

1 INTRODUCTION

The paradigm of video understanding is undergoing a fundamental shift from offline, post-hoc anal-
ysis to online, interactive scenarios prevalent in applications like embodied Al |Duan et al.| (2022),
autonomous driving (Grigorescu et al.| (2020), and live event monitoring |Chen et al.|(2024a)). While
recent advances in Large Vision-Language Models (LVLMs) [Li et al.| (2023a)); Dai et al.| (2023)); |L1
et al.[|(2024a); Hurst et al.| (2024); |Chen et al. (2024b)); Bai et al.|(2025);|Comanici et al.| (2025) have
catalyzed the development of powerful Video Large Language Models (Video-LLMs) Maaz et al.
(2023); [Li et al.|(2023b); |Ataallah et al.|(2024); Zhang et al.| (2025a); [Wang et al.| (2025b); [Li et al.
(20244)), their design remains predominantly offline, treating video as a static, finite batch of frames.
This approach is fundamentally misaligned with the nature of streaming data, where processing
continuous, unbounded streams with minimal latency is paramount. The sheer volume and inherent
temporal redundancy of streaming video render exhaustive, frame-by-frame processing computa-
tionally prohibitive and introduce unacceptable response delays. The central challenge, therefore, is
to devise mechanisms for intelligent information filtering and timely, proactive response generation,
bridging the gap between the power of Video-LLMs and the demands of real-time interaction.

To this end, prior work can be broadly categorized into passive and proactive response models.
Passive models|Di et al.|(2025)); Huang et al.| (2025)); Ning et al.|(2025); |Chatterjee et al.|(2025) focus
on efficient memory management for on-demand querying, but their defining characteristic is that
they require a user prompt to trigger a response. In contrast, proactive models |Chen et al.| (2024a);
Wu et al.| (2024b); Wang et al|(2024); [Li et al.| (2025a); Wang et al|(2025a) aim to autonomously
determine when to respond. Despite their advanced interactivity, a common drawback of these
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Figure 1: A qualitative comparison of response paradigms on a streaming task. In response to
a query about a late event, different models exhibit characteristic behaviors. The Passive model is
reactive, awaiting a new prompt. The Query-Agnostic Proactive model (e.g., TimeChat-Online)
mistakes irrelevant visual changes for important events, resulting in premature and incorrect hallu-
cinatory responses. Our QueryStream, guided by its dual-gated RTAR logic (top-right), remains
silent through the irrelevant segment and delivers a single, accurate answer precisely when the rele-
vant event occurs, highlighting the critical role of query-awareness in intelligent proactive systems.

systems is their reliance on heavily trained, specialized modules for response scheduling, which
often compromises their computational efficiency, operational robustness, and response accuracy.

More recently, TimeChat-Online |Yao et al.| (2025) introduced an elegant approach that leverages
visual change detection to concurrently prune redundant tokens and infer opportune moments for
response. This “change-is-important” philosophy, however, rests on a flawed premise: it conflates
raw visual dynamics with true semantic relevance. As illustrated in Figure [T} a model guided by
such a principle is thus prone to error. It can be spuriously triggered by semantically irrelevant
visual dynamics, such as abrupt scene transitions and the prominent actions of a person not central to
the query, while conversely struggling to isolate the crucial but visually brief event of interest from
the surrounding visual noise. This fundamental misalignment between visual activity and query-
specific importance engenders two critical failures: compromised accuracy and inefficient use of
computational resources, underscoring the need for a more intelligent, query-informed paradigm.

To address these limitations, we propose QueryStream, a novel framework that instills query-
awareness into the core of streaming video understanding for efficient processing and interactive
response. As shown in Figure[T] QueryStream is designed to overcome the pitfalls of prior paradigms
by redefining information filtering and response scheduling through two synergistic components:

First, we introduce Query-Aware Differential Pruning (QDP), a token pruning strategy that moves
beyond simplistic frame-to-frame comparisons. QDP assesses information salience along two or-
thogonal axes: semantic relevance to the user’s query and temporal novelty. Crucially, tempo-
ral novelty is determined not against the immediately preceding frame, but against a Dynamically
Smoothed History (DSH) representation of recent history. This makes QDP robust to slow visual
drifts and transient noise. Consequently, a token is preserved only if it satisfies both criteria: (i) it
must be semantically relevant to the user’s query, and (ii) it must represent a significant temporal
deviation from the smoothed historical context. This policy ensures that the model’s computational
focus is directed toward sparse yet meaningful visual dynamics.

Second, we tackle the challenge of timely interaction with a Relevance-Triggered Active Response
(RTAR) mechanism. Unlike methods that rely on complex learned schedulers (e.g., predicting EOS
token) or simple, query-agnostic change detection, RTAR dynamically determines optimal response
moments by monitoring two key signals. A response is triggered only when a confluence of two
conditions is met: (i) the current visual input is highly aligned with the query’s semantics, and (ii)
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there is a significant influx of new, query-relevant information, as indicated by the QDP mechanism.
This dual-gated policy enables proactive, opportune, and contextually appropriate interactions.

Our contributions are summarized as follows:

* We propose QueryStream, a novel, training-free framework that establishes a query-centric
paradigm for efficient processing and proactive interaction in streaming video understand-
ing. Its modular design allows for seamless integration with off-the-shelf Video-LLMs.

* We introduce Query-Aware Differential Pruning (QDP), a token pruning mechanism that
jointly models semantic relevance and temporal novelty using a robust historical context
based on a Dynamically Smoothed History (DSH), leading to superior filtering accuracy
and efficiency.

* We design the Relevance-Triggered Active Response (RTAR) policy, a dynamic scheduling
mechanism that triggers responses based on a dual criterion of semantic relevance and
information density, enabling opportune and context-aware interaction.

» Extensive experiments demonstrate that QueryStream establishes a new state-of-the-art on
multiple streaming video understanding benchmarks, achieving superior performance with
significantly greater computational efficiency.

2 RELATED WORK

Streaming Video Understanding. Streaming video understanding seeks to process continuous
video streams in real time for interactive applications. Early approaches can be broadly divided
into passive and proactive models. Passive models emphasize efficient memory management for on-
demand querying, typically through dynamic KV-caches or memory banks that preserve historical
context D1 et al.|(2025); Ning et al.| (2025); Zhang et al|(2024). While computationally efficient,
these models remain purely reactive, generating responses only upon explicit user prompting. Proac-
tive models, in contrast, autonomously decide when to respond, for instance by predicting special
EOS tokens|Chen et al.|(2024a) or using auxiliary classification heads|Wang et al.|(2024). The most
relevant work, TimeChat-Online [Yao et al.| (2025), introduced an elegant proactive strategy that
couples response triggering with visual change detection. However, such proactive methods are in-
herently query-agnostic: their response policies are governed either by heavily trained, task-specific
modules or by the simplistic “change-is-important” heuristic. In contrast, QueryStream introduces
a lightweight, logic-driven proactive mechanism (RTAR) that is intrinsically query-aware, thereby
enabling more accurate and context-sensitive interactions without additional training.

Visual Token Pruning. The redundancy of visual data in videos has motivated substantial research
on token pruning. Early approaches compress frames or clips into a fixed number of tokens |L1
et al.| (2024b), which fails to adapt to the varying information density of video streams. More
advanced methods introduce adaptive pruning strategies, though most remain query-agnostic. A no-
table example is the Differential Token Drop (DTD) from TimeChat-Online |Yao et al.|(2025)), which
preserves tokens based on inter-frame dissimilarity. While adaptive, its key limitation—conflating
visual change with semantic importance—has been highlighted in our discussion. Another line of
work explores language-guided or query-aware pruning Song et al.| (2024); Zhang et al.|(2025b); L1
et al.|(2025b). However, these methods are largely designed for offline processing and are ill-suited
to streaming, since they typically require re-processing the entire video history for each new query.
Our Query-Aware Differential Pruning (QDP) bridges these paradigms: it is (i) adaptive to video
content, (ii) sensitive to user intent, and (iii) streaming-efficient, as it incrementally processes frames
without redundant recomputation. Moreover, its incorporation of a Dynamically Smoothed History
(DSH) for novelty detection enhances robustness beyond naive frame-to-frame comparisons.

3 QUERYSTREAM

In this section, we elaborate on the proposed QueryStream framework. QueryStream is a
lightweight, plug-and-play module designed to enhance pre-trained Video-Large Language Models
(Video-LLMs) for online, interactive tasks by instilling query-awareness into their core processing.
We begin with a high-level overview of the architecture in Section[3.1] followed by detailed descrip-
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Figure 2: Overview of the QueryStream framework. (Left) Given a user query and a video stream,
QueryStream serves as a pre-processing gateway. (Top Middle) The Query-Aware Differential Prun-
ing (QDP) filters tokens by semantic relevance (M) and temporal novelty (Mieyp), retaining only
those meeting both. (Bottom Middle) The Relevance-Triggered Active Response (RTAR) triggers
output when both the relevance condition (R;) and the density condition (D;) are satisfied. (Right)
Once triggered, visual tokens and their M-ROPE embeddings are pruned with QDP masks and then
fed into the backbone Video-LLM to generate a timely response.

tions of its two key technical components: the Query-Aware Differential Pruning (QDP) mechanism
in Section[3.2] and the Relevance-Triggered Active Response (RTAR) policy in Section [3.3]

3.1 ARCHITECTURAL OVERVIEW

The overall architecture of QueryStream is illustrated in Figure 2] It operates as an intelligent
pre-processing gateway that sits between the raw video stream and a backbone Video-LLM (e.g.,
Qwen2.5-VL|[Bai et al.| (2025))). Its core philosophy is to align the model’s computational focus with
the user’s intent by establishing a direct interaction between the visual stream and the query’s se-
mantics. Given a continuous video stream and a user’s query, its primary function is twofold: (i) to
judiciously filter out semantically and temporally redundant visual tokens before they reach the com-
putationally expensive Video-LLM, and (ii) to dynamically identify the most opportune moments to
trigger a response from the model.

The framework’s workflow follows two parallel paths processed by a lightweight, pre-trained vision-
language encoder (we use OpenCLIP [Cherti et al.|(2023)). The first path, Query-Aware Differen-
tial Pruning (QDP), generates a pruning mask for each frame. The second path, the Relevance-
Triggered Active Response (RTAR) policy, analyzes the frame’s relevance and information density
to decide whether to activate the Video-LLM’s decoder. The original, unpruned visual tokens are
temporarily held in a memory buffer. Upon receiving a trigger signal from RTAR, the accumulated
pruning masks are applied to this buffer of tokens in a just-in-time manner. The resulting sparse
token set, along with the query, is then fed into the backbone Video-LLM to generate a timely and
contextually grounded response. This architecture ensures that the powerful but resource-intensive
Video-LLM is invoked sparingly and purposefully.

3.2 QUERY-AWARE DIFFERENTIAL PRUNING

The core of our method is the Query-Aware Differential Pruning (QDP) mechanism, a lightweight
module designed to distill a dense visual stream into a sparse, query-relevant token sequence. QDP’s
philosophy is a stark departure from the conventional “change-is-important™ principle. Instead of
treating all visual dynamics as equally salient, it employs a dual-criterion sieve that preserves a
visual token only if its corresponding patch is (1) semantically aligned with the user’s query and (2)
temporally novel against a dynamically maintained historical context.
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Formally, for a given video stream V' = {fi,..., fr} and a query Q, we first use a lightweight
vision-language encoder £ (e.g., OpenCLIP |Cherti et al.| (2023)) to extract a feature vector v}; for
each patch, yielding a set {v}, ..., v;" } that represents the patch-level features of frame f;, alongside
a query embedding q. The pruning process is then governed by two synergistic filtering criteria.

Semantic Relevance Filtering. To focus computation on query-pertinent visual information, our
first criterion assesses the semantic relevance of each patch. A patch is considered relevant if its
feature vector v¢ has a similarity to the query embedding q that exceeds a dynamic, frame-adaptive
threshold. This threshold is the average similarity across all features in the current frame, making
the filtering robust to varying scene complexities. The semantic mask My, is thus defined as:

N
. . i 1 . j
Miem(t,3) =1 | sim(q, v;) > N Zﬂm(q, vi) |,
j=1

where I(-) is the indicator function and sim(-, ) denotes cosine similarity. This ensures that the
model’s attention is focused exclusively on parts of the scene pertinent to the user’s question.

Temporal Novelty Filtering. To identify genuine state changes while remaining insensitive to
transient noise or gradual environmental shifts, our second criterion evaluates the temporal novelty.
We eschew naive frame-to-frame comparisons and instead assess novelty against a dynamically
smoothed history (DSH). For each patch location ¢, we maintain a historical feature vector Vésh. A
patch is deemed novel if its feature vector v! significantly deviates from this established context:

Miemp(t, i) =1 (sim(vi, {’(iish,t—l) < ’Ttemp) )
Following this check, the historical context is updated to integrate the current visual information:
‘_’ésmt = Q- V; + (1 - a) . ‘_’(zish7t71a

where the smoothing factor a € [0, 1] controls the rate of adaptation. This DSH mechanism provides
an adaptive reference, ensuring that only significant departures are flagged as temporally novel.

Synergistic Pruning Policy. The final pruning decision is a logical conjunction of these two criteria:
a visual token is preserved if and only if its corresponding patch passes both the semantic filter
Miem(t,7) and the temporal filter Miemp(t, 7). The final QDP mask is thus computed as:

Maop(t, 1) = Mem(t, 1) A Miemp(t, 7).

This dual-filter approach ensures the downstream model processes a stream purged of both query-
irrelevant and temporally redundant information. Critically, to maintain spatio-temporal integrity,
this mask governs the selection of the complete visual tokens. For each preserved patch, both its fea-
ture vector and its corresponding Multi-modal Rotary Position Embedding (M-ROPE) are retained.
By excising the positional embeddings of discarded patches, we ensure the remaining tokens retain
their original and correct {temporal, height, width} coordinates. The output of QDP is thus a highly
purified, positionally coherent token stream containing only the most salient data for the given query.

3.3 RELEVANCE-TRIGGERED ACTIVE RESPONSE

Complementing the QDP’s function of determining what to process, our Relevance-Triggered Ac-
tive Response (RTAR) policy addresses the equally critical question of when to respond. RTAR
is a dual-gated mechanism that synchronizes the model’s responses with moments of high query-
specific information influx. This is achieved by jointly evaluating two complementary conditions—a
relevance condition (R;) and a density condition (D, )—before triggering a response.

Relevance Condition. The first gate prevents the model from responding during visually active
but query-irrelevant segments. To achieve this, it assesses whether the current frame is thematically
aligned with the user’s query. This condition is met if the holistic relevance of the frame, computed
by comparing the query embedding q with the mean-pooled frame feature vector v, surpasses a
predefined threshold 7,..;. Formally:

Ry = 1(sim(q, Vi) > Trel).

Density Condition. While relevance is necessary, it is not sufficient. To ensure responses are
triggered by new information, our second gate evaluates the frame’s information density. We proxy
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this by the token keep rate from our QDP mechanism, which naturally quantifies the influx of new,
query-relevant information. The density condition is met if this rate exceeds a threshold 7., :

N
1 .
Dt =1 (N ZMQDP(t;Z) > Tden) .

i=1

Triggering Logic. A response is generated at timestep ¢ only when both the relevance and den-
sity conditions are satisfied, ensuring that the model acts on moments that are both contextually
appropriate and informationally rich. The trigger signal T3 is a logical conjunction of the two states:

Tt:Rt/\Dt-

This dual-gated policy prevents two failure modes: it avoids premature responses to irrelevant vi-
sual activity while maintaining sensitivity to brief but significant events. By demanding both high
relevance and significant information density, RTAR produces responses that are more meaningful,
timely, and aligned with the user’s interactive intent.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. Our evaluation comprehensively assesses performance in both online and
offline scenarios. For online streaming understanding, we employ two prominent benchmarks:
StreamingBench |Lin et al.| (2024), a comprehensive benchmark for real-time visual understand-
ing, and OVO-Bench [N1u et al.| (2025), which focuses on complex backward tracing and forward
active responding capabilities. For offline long-form video understanding, we assess performance
on Video-MME [Fu et al.[(2025) and LongVideoBench|Wu et al.|(20244a). For all question-answering
tasks, we adopt accuracy as the primary performance metric. To quantify computational efficiency,
we report the Token Keep Rate (%), defined as the percentage of visual tokens retained after pruning.

Baselines. We compare QueryStream against a representative set of strong baselines. Our pri-
mary comparison is with TimeChat-Online Yao et al.|(2025), as it represents the most relevant prior
work based on query-agnostic differential pruning. We also include other leading streaming Video-
LLMs such as Flash-VStreamZhang et al.| (2024), VideoLLM-online (Chen et al.|(2024a) and Dispi-
der|Qian et al.| (2025). To provide a performance reference, we further compare against the original
Qwen2.5VL-7B Bai et al.| (2025)), which processes the full, unpruned stream of visual tokens.

Implementation Details. Our QueryStream model is implemented by replacing the query-agnostic
pruning module in TimeChat-Online-7B with our proposed query-aware mechanisms. Additionally,
to evaluate the zero-shot generalization of our pruning strategy, we also integrate the QDP module
into the base Qwen2.5VL-7B model. For the feature extraction that underpins our pruning decisions,
we utilize the publicly available OpenCLIP-ViT-L/14 |Cherti et al.|(2023) as our lightweight vision-
language encoder £. The DSH smoothing factor is set to « = 0.1. The thresholds for temporal
novelty (Tiemp), relevance (1), and density (7qen) are determined on a small held-out validation set
(see Appendix [A.4) and are applied consistently across all experiments. Unless specified otherwise,
our model processes video streams at 1 FPS. Crucially, QueryStream requires no additional fine-
tuning; all results are achieved in a zero-shot, plug-and-play manner, underscoring its adaptability
and ease of integration. All experiments are conducted on a single NVIDIA 80 GB A800 GPU.

4.2 MAIN RESULTS ON STREAMING VIDEO BENCHMARKS

Performance on StreamingBench. The results on StreamingBench, detailed in Table |1} clearly
demonstrate the superiority of QueryStream’s intent-driven filtering over the query-agnostic ap-
proach of TimeChat-Online. At a moderate token keep rate of 57.2%, QueryStream achieves an
overall score of 75.32, surpassing TimeChat-Online (74.32 with a 55.8% keep rate) by a significant
1.0-point margin. Notably, this score nearly matches the performance of the full-token TimeChat-
Online baseline (75.36), demonstrating substantial computational savings with negligible perfor-
mance impact. The advantage of query-awareness becomes even more pronounced under aggres-
sive pruning. With a highly efficient token keep rate of just 29.6%, QueryStream’s score of 74.04
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Table 1: Performance comparison on StreamingBench. The table benchmarks a comprehensive
suite of models, including proprietary, open-source offline, and online Video-LLMs. A key compar-
ison is drawn between our proposed QueryStream and the strong TimeChat-Online baseline under
varying token keep rates. The results highlight QueryStream’s ability to achieve state-of-the-art per-
formance while operating with significantly fewer visual tokens.

Model #Frames Keep Rate(%) OP CR CS ATP EU TR PR SU ACP CT All

Human - - 89.47 9200 93.60 9147 9565 9252 88.00 8875 89.74 91.30 | 91.46
Proprietary MLLMs
Gemini 1.5 pro 1 fps - 79.02 80.47 83.54 79.67 80.00 84.74 77778 6423 7195 48.70 | 75.69
GPT-40 64 - 77.11 80.47 8391 7647 70.19 83.80 66.67 62.19 69.12 49.22 | 73.28
Claude 3.5 Sonnet 20 - 7333 8047 84.09 8202 7539 7953 61.11 61.79 6932 43.09 | 72.44
Open-source Offline VideoLLMs

Video-LLaMA2-7B 32 - 55.86 5547 57.41 5817 52.80 43.61 39.81 42.68 4561 35.23 | 49.52
VILA-1.5-8B 14 - 53.68 4922 7098 56.86 5342 53.89 54.63 4878 50.14 17.62 | 52.32
Video-CCAM-14B 96 - 5640 57.81 6530 6275 64.60 5140 4259 4797 4958 31.61 | 53.96
LongVA-7B 128 - 70.03 6328 61.20 7092 6273 59.50 61.11 53.66 54.67 34.72 | 59.96
InternVL-V2-8B 16 - 68.12  60.94 6940 77.12 6770 6293 59.26 5325 5496 56.48 | 63.72
Kangaroo-7B 64 - 71.12 8438 70.66 7320 67.08 61.68 56.48 55.69 62.04 38.86 | 64.60
LLaVA-NeXT-Video-32B 64 - 7820 7031 73.82 7680 6335 69.78 5741 56.10 6431 38.86 | 66.96
MiniCPM-V-2.6-8B 32 - 7193 71.09 7792 7582 64.60 6573 7037 56.10 6232 53.37 | 67.44
LLaVA-OneVision-7B 32 - 80.38 74.22 76.03 80.72 72.67 71.65 67.59 6545 6572 45.08 | 71.12
Qwen2.5-VL-7B 1 fps - 7832 8047 78.86 80.45 76.73 7850 79.63 6341 66.19 53.19 | 73.68

Open-source Online VideoLLMs

Flash-VStream-7B - - 25.89 4357 2491 2387 2733 13.08 1852 2520 23.87 48.70 | 23.23
VideoLLM-online-8B 2 fps - 39.07 40.06 3449 3105 4596 3240 3148 3416 4249 27.89 | 3599

Dispider-7B 1 fps - 7492 7553 7410 73.08 7444 5992 7614 6291 62.16 45.80 | 67.63
TimeChat-Online-7B 1 fps 55.8% 81.03 8359 7855 81.09 76.73 8037 7593 6382 6847 47.87 | 7432
TimeChat-Online-7B 1 fps 33.0% 81.03 82.03 77.60 8237 73.58 79.13 7778 6220 6648 39.89 | 72.96
TimeChat-Online-7B 1 fps 100% 80.22 82.03 79.50 8333 76.10 7850 7870 64.63 69.60 57.98 | 7536

QueryStream-7B 1 fps 57.2% 82.38 8438 79.18 8237 7799 8131 7870 6504 6932 47.34 | 7532
QueryStream-7B 1 fps 29.6% 82.11 8359 7823 8269 7547 80.06 79.63 63.01 6790 42.55 | 74.04

still outperforms TimeChat-Online (72.96 with a 33.0% keep rate) by 1.08 points, despite process-
ing even fewer tokens. This consistently superior performance validates that query-aware pruning
acts as an effective context-denoising mechanism. By filtering out semantically irrelevant visual
noise, QueryStream provides the model with a cleaner context. This benefit is particularly evident
in reasoning-heavy sub-tasks; for instance, at the 60% keep rate level, it outperforms its counterpart
on Causal Reasoning (CR) and Text-Rich Understanding (TR) by 0.79 and 0.94 points, respectively.

Performance on OVO-Bench. On OVO-Bench, a benchmark designed to test complex reasoning,
QueryStream’s advantages are further pronounced (Table 2). With a token keep rate of 52.9%, our
model establishes a new state-of-the-art score of 49.4 among all online models, surpassing even
the full-token TimeChat-Online (46.7) by a significant 2.7-point margin. This superior performance
is not achieved at the cost of efficiency; on the contrary, under an aggressive pruning regime that
keeps only 20.0% of tokens, QueryStream (47.5) still maintains a substantial performance lead over
both the compressed (47.6 at 55.4% keep rate) and full-token (46.7) versions of its query-agnostic
counterpart. A closer inspection reveals that this performance gain is consistent across all three ma-
jor categories, with the most significant improvements observed in the more challenging Backward
Tracing and Forward Active Responding tasks. This suggests that our intent-driven filtering provides
a more robust context for complex temporal reasoning.

4.3 PERFORMANCE ON OFFLINE LONG-VIDEO TASKS

To assess the generalization of our query-aware pruning, we evaluate its efficacy on offline long-
video benchmarks, with results in Table [3| showing compelling performance across both scenarios.

Results on VideoMME. On VideoMME, our query-aware approach demonstrates a clear advan-
tage over query-agnostic methods and even full-token processing. First, when QDP is applied as
a zero-shot module to the base Qwen2.5-VL-7B, it achieves a score of 63.6 with a 52.4% token
keep rate, outperforming its full-token counterpart (63.2). This counter-intuitive finding—achieving
superior performance with less data—validates our hypothesis that QDP acts as an effective context-
denoising mechanism. The advantage is particularly pronounced on the challenging “long” subset,
where our method surpasses the baseline by a substantial 2.2-point margin (52.6 vs. 50.4). Our full
QueryStream model further confirms this superiority, scoring 63.8 and outperforming the compara-
ble TimeChat-Online configuration (63.3) at a similar efficiency level.
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Table 2: Evaluation results on OVO-Bench. OVO-Bench comprises three challenging categories:
(1) Real-Time Visual Perception, (ii) Backward Tracing, and (iii) Forward Active Responding. Our
proposed QueryStream is benchmarked against a comprehensive suite of models. The results high-
light its state-of-the-art performance among online models, demonstrating robust capabilities on
complex temporal reasoning tasks while operating with significantly fewer visual tokens.

| Real-Time Visual Perception | Backward Tracing | Forward Active Responding | Overall
Model #Frames
OCR ACR ATR STU FPD OJR Avg. ‘ EPM ASI HLD Avg. ‘ REC SSR CRR  Avg. ‘ Avg.
Human Agents - | 940 926 948 927 91.1 940 932 | 926 930 914 923|955 897 936 929 | 928
Proprietary Multimodal Models
Gemini 1.5 Pro 1fps 873 670 802 545 683 674 708 | 68.6 757 527 623|355 742 617 57.2 65.3
GPT-40 64 69.1 651 655 500 683 637 63.6| 498 71.0 554 587|276 732 594 53.4 58.6
Open-source Offline VideoLLMs
LLaVA-NeXT-Video-7B 64 698 59.6 664 506 723 614 633 | 512 642 97 41.7 | 341 676 6028 54.2 53.1
LLaVA-OneVision-7B 64 67.1 587 698 494 713 603 628 | 525 588 23.7 450 | 248 669 60.8 50.9 529
Qwen2-VL-7B 64 69.1 532 638 506 663 609 607 | 444 669 344 486 | 30.1 657 508 48.9 527
InternVL-V2-8B 64 68.5 587 69.0 449 673 560 60.7 | 43.1 615 274 440 | 258 576 529 45.4 50.1
LongVU-7B 1fps 557 495 595 483 683 630 574 | 431 662 9.1 395 | 166 69.0 600 485 48.5
Open-source Online Video-LLMs
Flash-VStream-7B 1fps 255 321 293 337 297 288 299 | 364 338 59 254 | 54 673 60.0 442 332
VideoLLM-online-8B 2fps 8.1 239 121 140 455 212 208 | 222 188 122 177 - - - - -
TimeChat-Online-7B 1fps (55.4%) | 745 486 68.1 483 693 598 614 | 569 649 11.8 445 | 318 385 400 36.8 47.6
TimeChat-Online-7B Ifps (152%) | 69.8 48.6 647 449 683 554 586 | 539 628 9.1 420 | 325 365 400 364 45.6
TimeChat-Online-7B 1fps (100%) | 752 468 70.7 47.8 693 614 619 | 559 595 9.7 41.7 | 31.6 385 400 36.7 46.7
QueryStream-7B 1fps (52.9%) 752 495 69.8 50.0 713 625 63.1 | 569 655 124 449 355 433 417 40.2 494
QueryStream-7B 1fps (20.0%) 745 477 707 46.6 713 576 614 | 542 635 86 421 332 431 408 39.0 475

Table 3: Results on offline long-video bench- Table 4: Ablation of QDP components
marks. We report accuracy on LongVideoBench and on StreamingBench. We analyze the
VideoMME (w/o subtitles). Our QDP module is evalu- individual and synergistic effects of se-
ated as a zero-shot plug-in on Qwen2.5-VL (w/ QDP), mantic and visual pruning criteria.

and we also report the performance of QueryStream.

Pruning Method Keep(%) Score (All)
Model #Frames | LongVideoBench | VideoMME No Pruning (Baseline) 100.0 75.36
| overall long + Visual Pruning Only 63.4 74.76
Video Length - | 8sec~60min | I~60min  30~60 min + Semantic Pruning Only 61.7 74.52
Open-Source Offfine VideoLLMs QueryStream (Full QDP)  57.2 75.32
LLaMA-VID-7B 1fps - - -
MovieChat-7B 2048 - 38.2 334
LLaVA-Next-Video-7B 32 435 46.6 - . .
dVidmg;‘anqeg 16 393 395 332 Table 5: Ablatlon Of the RTAR trlg'
LongVA-7B 128 - 526 46.2 . : _ >
Kamgaroo.78 ) s o e gering pollcy. Results on OVO-Bench’s
Video CCAM. 145 % - 32 a7 Forward Active Responding tasks, com-
1deo. - - . g . .
Qwen2.5-VL-7B Lfps (100%) 615 632 50.4 paring accuracy (Acc.) with the score-
Qwen2.5-VL-7B w/ DTD  1fps (53.8%) 61.6 63.4 51.9 .
Qwen2.5-VL-7B w/ QDP  1ips (52.4%) 61.9 636 526 based metric (Score) that rewards both
Open-source Online VideoLLMs accuracy and timeliness.
Dispider-7B 1fps - 572 - N .
VideoChat-Online-8B 2fps - 528 449 Triggering Method Ace. (Avg) Seore (Avg)
TimeChat-Online-7B  1fps (100%) 55.4 62.4 484 Baseline: ) )
TimeChat-Online-7B 1fps (53.7%) 57.1 63.3 524 TimeChat-Online (Density-Only) 36.8 29.5
TimeChat-Online-7B 1fps (15.0%) 577 62.5 49.2 QueryStream Variants:
QueryStream-7B 1fps (52.4%) 57.3 63.8 529 Relevance-Only Trigger 40.3 30.2
QueryStream-7B 1fps (16.6%) 58.0 63.2 49.8 Full RTAR (Ours) 402 34.6

Results on LongVideoBench. The benefits of our approach are further confirmed on
LongVideoBench. At a moderate token keep rate of 52.4%, QueryStream (57.3) already outper-
forms the TimeChat-Online baseline (57.1). More compellingly, under an aggressive pruning regime
that retains only 16.6% of tokens, QueryStream’s performance not only remains highly competitive
but improves to 58.0. This suggests that for very long videos with substantial redundancy, aggres-
sive, query-aware filtering is not just beneficial for efficiency but can be critical for enhancing model
focus and accuracy. Collectively, these findings show that our query-aware approach is not just a
streaming optimization but a robust paradigm for efficient long-video understanding.

4.4 ABLATION STUDIES

To dissect the architecture of QueryStream and validate our key design choices, we conduct a series
of detailed ablation studies. We aim to quantify the individual and synergistic contributions of the
components within our QDP and RTAR mechanisms.
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Effectiveness of QDP Components. To understand the interplay between the semantic and tempo-
ral filters in QDP, we conduct an ablation study with results shown in Table[d] The analysis reveals
a powerful synergistic effect. Applying either the Temporal Pruning Only or Semantic Pruning
Only filter in isolation leads to a minor but noticeable performance degradation compared to the no-
pruning baseline. This suggests that while each filter reduces token count, their individual criteria
are not precise enough to fully separate signal from noise. Remarkably, our full QDP method, which
forms the intersection of these two criteria, resolves this trade-off. It achieves the highest efficiency
with the lowest token keep rate of 57.2% while restoring performance to a level virtually identical
to the full-token baseline. These results demonstrate that the two filters are complementary. Their
combination yields a stricter and more precise policy that removes noise each filter alone would
retain. By preserving only tokens that are both semantically relevant and temporally novel, QDP
delivers a purified context that sharpens model focus and maximizes accuracy at minimal cost.

Impact of the DSH Smoothing Factor. To vali- Impact of DSH ing Factor (a) on Per and
date the importance of a smoothed historical context ~ *']
over naive frame-to-frame comparisons, we conduct
a sensitivity analysis on the DSH smoothing factor
a. As shown in Figure [3] the choice of a reveals
a critical trade-off between efficiency and perfor-
mance on OVO-Bench. A high a = 1.0 (frame-
to-frame) makes the model overly sensitive to noise,

resulting in a low keep rate (31.5%) and poor perfor- & o
mance (45.8). As « decreases, the historical context =t -
becomes more stable, increasing both the keep rate DSH Smoothing Factor (o)
and the score, which peaks at « = 0.1. At this point, . .
the model achieves aIE) optimal balance, reachir?g the Tigure 3: Impact of the DSH smoothing
highest score (49.4) with a keep rate of 20.0%. Fur- factor (O‘.) on performance (Overall Score)
ther decreasing « to 0.01 makes the memory too and efficiency (Token Drop Rate) on OVO-
long, causing slow adaptation and performance de- Ber}ch. Our chosen & = 0.1 achieves the
cline despite the lowest keep rate (13.7%). This anal- optimal balance.

ysis confirms that a smoothed, medium-term memory is crucial and validates oo = 0.1.
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Analysis of the RTAR Triggering Policy. To demonstrate the superiority of our dual-gated RTAR
policy (R; N\ D;), we conduct an ablation on OVO-Bench’s Forward Active Responding tasks, with
results in Table 5] The analysis compares raw accuracy (Acc.) with a timeliness-aware metric
(Score). The Density-Only trigger, mirroring TimeChat-Online’s method, yields the lowest score
(29.5) because it often activates on irrelevant dynamic events. In contrast, the Relevance-Only
trigger achieves the highest accuracy (40.3) but is penalized for timeliness, resulting in a low score
of 30.2, since it generates redundant responses for static yet relevant scenes. Our full RTAR policy
strikes the optimal balance by attaining near-peak accuracy (40.2) together with a score of 34.6,
which is 4.4 points higher than the next best variant. This result confirms that the synergy of the
relevance and density gates is crucial for producing responses that are both contextually appropriate
and informationally novel and timely. Detailed calculation methods are provided in Appendix [A.2]

5 CONCLUSION

In this paper, we introduced QueryStream, a novel framework that redefines efficiency and interac-
tivity in streaming video understanding by fundamentally challenging the query-agnostic “change-
is-important” assumption. QueryStream establishes a query-centric paradigm through two syner-
gistic, training-free components: Query-Aware Differential Pruning (QDP), which filters tokens via
a dual criterion of semantic relevance and DSH-based temporal novelty, and Relevance-Triggered
Active Response (RTAR), which schedules responses based on both query relevance and informa-
tion density. Our extensive experiments demonstrate that QueryStream sets a new state-of-the-art on
multiple streaming benchmarks, achieving superior accuracy while processing significantly fewer
tokens. We further show that our pruning mechanism generalizes to offline tasks, where it func-
tions as a powerful context-denoising module that improves performance by filtering distracting
information. This work highlights the substantial semantic redundancy in video streams relative to
user intent and establishes a foundation for developing more efficient and contextually intelligent
streaming video understanding systems.
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Ethics Statement. We have read and adhere to the ICLR Code of Ethics. Our research is conducted
solely on publicly available benchmarks for video understanding, and all datasets are used in accor-
dance with their licenses. Our framework leverages large pre-trained models (e.g., Qwen2.5-VL,
TimeChat-Online, OpenCLIP), which, like others of this type, may reflect limitations of their train-
ing data. While our method does not directly address such issues, it does not introduce additional
risks. The intended use of QueryStream is to improve the efficiency and responsiveness of inter-
active video understanding systems, such as assistive technologies or monitoring tools. A positive
ethical aspect is its contribution to sustainability: by reducing processed tokens, our method lowers
computational cost and energy consumption. We declare no competing interests.

Reproducibility Statement. We have made every effort to ensure the reproducibility of our work.
The source code for QueryStream, including the implementation of our Query-Aware Differen-
tial Pruning and Relevance-Triggered Active Response methods, will be made publicly available
upon publication. Our framework is built upon publicly available models. For the base Video-
LLM, our experiments utilize both Qwen2.5-VL-7B and TimeChat-Online-7B. The feature encoder
used is OpenCLIP-ViT-L/14. All relevant citations for these models are provided in the main text.
All datasets used in our experiments, including StreamingBench, OVO-Bench, VideoMME, and
LongVideoBench, are standard and publicly available benchmarks. Critical hyperparameters and
detailed experimental settings are documented in Section 4.1} Furthermore, the Appendix provides
a comprehensive description of our simulated evaluation protocol for the active response tasks (Ap-
pendix and an analysis of our key component choices (Appendix [A.3)), further aiding the re-
producibility of our results.
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A APPENDIX

A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In line with the conference policy, we disclose that Large Language Models (LLMs) were used
solely as writing aids. Their involvement was limited to improving grammar, refining sentence
structure, and enhancing readability. All scientific contributions, including the development of ideas,
methodology, experiments, and conclusions, were made exclusively by the authors, who take full
responsibility for the content of this paper.

A.2 SIMULATED EVALUATION PROTOCOL FOR THE RTAR ABLATION STUDY

This section details the simulated evaluation protocol used for the RTAR ablation study presented in
Table [5] which focuses on the Forward Active Responding category of OVO-Bench. As the official
online evaluation code for OVO-Bench and the real-time inference code for TimeChat-Online were
not publicly available at the time of our experiments, we devised a simulated evaluation methodology
designed to fairly approximate the benchmark’s intended real-time assessment.

Our simulation proceeds as follows. For a given video, we first let both models process the entire
stream to identify all potential response trigger points according to their respective mechanisms:

 For QueryStream, a trigger is registered at any timestep ¢ where our RTAR policy (7} ) fires.

* For TimeChat-Online, we simulate its density-based trigger by identifying timesteps where
its token keep rate (the inverse of the drop rate) is significantly higher than a baseline
threshold, indicating a moment of high visual change.

From the sequence of trigger timestamps generated by each model, we identify distinct event in-
tervals. For each interval, we select the first timestamp as the definitive response point, ¢,,. This
simulates a model making its first response upon detecting a new, relevant event and prevents dupli-
cate evaluations for a single continuous event.

Finally, to generate the actual response R,,’, we feed only the video frames up to and including the
trigger timestamp ¢/, into the respective model and perform inference. The resulting response R,/
is then compared against the ground-truth answer A,, to calculate correctness using the function
F(R,., Ay,). Based on this, we compute the two final metrics:

* Accuracy (Acc.): The average correctness across all responses, providing a direct measure
of response quality.

N
1
A = %7 F R’m’7 A’m
cc =+ ; ( )

* Score: A metric that jointly rewards accuracy and timeliness. It penalizes the temporal
deviation of the response from the ideal moment ¢, using an absolute difference |t], —
tm|. This design ensures that both premature and delayed responses are penalized,
encouraging the model to act precisely when sufficient evidence becomes available.

N
Score = Z F(Ry., Ay) - 9t —tmlp

i=1

This simulated protocol ensures a fair and consistent comparison, as each model’s performance is
evaluated based on the context available only up to the point where its own internal logic decided
to act. While the initial identification of trigger points leverages the full video stream—a necessary
simplification to enable offline evaluation—the subsequent response generation strictly adheres to
temporal constraints, thus closely approximating a real-world online scenario.

A.3 ANALYSIS OF COMPONENT SELECTION FOR QUERYSTREAM

13
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The modular design of our QueryStream frame-
work allows the Query-Aware Differential
Pruning (QDP) mechanism to be integrated
with various feature encoders and base Video-
LLMs. This section details the empirical anal-
ysis conducted to justify our final selection of
OpenCLIP-ViT-L/14 as the feature encoder and
Qwen2.5-VL-7B as the base model.

Table 6: Component selection for QueryS-
tream. Performance (OVO-Bench Overall Score)
of our QDP module with different feature en-
coders and base Video-LLMs on a validation sub-
set. Our final choice, highlighted in gray, balances
performance, efficiency, and fairness.

Feature Encoder Qwe{172].;5-VL Intel:nVLZ.S Intern_VndeoZ.S

For an efficient yet representative analysis,  OpenCLIP-ViTB/32 | 472 469 4738
s dat; _ OpenCLIP-ViT-L/14 485 482 49.0
we first created a validation subset by ran OpenCLIP-VITH/A | 489 oy T

domly sampling approximately 10% of the data
(around 250 samples) from each task category
in OVO-Bench. We then evaluated the performance of our QDP module when paired with dif-
ferent combinations of popular OpenCLIP variants and state-of-the-art Video-LLMs. The results,
measured by the OVO-Bench Overall Score, are presented in Table [6]

The results yield two key insights. First, for any given Video-LLM, using a more powerful CLIP
encoder (from ViT-B to ViT-H) generally leads to improved performance. This confirms the im-
portance of high-quality feature representations for effective pruning. However, this performance
gain comes at the cost of significant computational overhead and latency, particularly with larger
encoders like ViT-H/14, which is prohibitive for a real-time system. Second, the results demonstrate
the versatility of our QDP module, which successfully enhances the performance of various leading
Video-LLMs, underscoring its plug-and-play nature.

Based on this analysis, our final component selection was guided by three core principles: (i) Perfor-
mance, the combination must deliver strong results on the target benchmark; (ii) Efficiency, the fea-
ture encoder must be lightweight enough to support real-time operation; and (iii) Fair Comparison,
the chosen base Video-LLM should align with our primary baseline for an equitable comparison.

Consequently, OpenCLIP-ViT-L/14 was chosen as it offers the best trade-off between feature quality
and computational efficiency. Qwen2.5-VL-7B was selected as the base model because it is not only
a strong and representative open-source model but, critically, it also serves as the foundation for our
main baseline, TimeChat-Online. This choice ensures that our observed performance gains can
be more directly attributed to our proposed query-aware mechanisms rather than differences in the
underlying model architectures.

A.4 HYPERPARAMETER SELECTION

The logic-based gates in our QueryStream framework rely on three key thresholds: the temporal nov-
elty threshold (Tiemp) for QDP, and the relevance (1) and density (7geq) thresholds for RTAR. These
values were determined empirically on the same held-out validation set described in Appendix
Our goal was to find a robust set of parameters that balances performance and efficiency.

Table 7: Impact of the temporal novelty thresh-
old (Tiemp) on token keep rate and overall per-
formance on the OVO-Bench validation subset.
The selected value is highlighted.

Table 8: Impact of RTAR thresholds (7ye, Tden)
on the average Score on the OVO-Bench For-
ward Active Responding validation subset. The
selected values are highlighted.

Temp Keep Rate (%) Overall Score Trel  Tden Average Score
0.75 78.5 49.0 0.50 0.15 33.1
0.85 68.3 49.1 0.70 0.15 33.8
0.90 52.9 494 0.60 0.10 32.5
0.95 35.1 48.2 0.60 0.20 33.2
0.98 21.6 46.5 0.60 0.15 34.6

Determining the Temporal Novelty Threshold (7emp). The threshold 7, directly controls the
filtering aggressiveness of our QDP module. A higher value leads to more aggressive pruning (lower
keep rate). We performed a sweep over a range of values for Tiemp and evaluated its impact on the
overall performance (Score) on the OVO-Bench validation subset.

14



Under review as a conference paper at ICLR 2026

Case Study
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Figure 4: Qualitative comparison of QueryStream and TimeChat-Online in a challenging case
study.

As shown in Table[ZI, a value of Tiemp = 0.90 achieved the best overall score. While a more aggres-
sive threshold of 0.95 offered a lower keep rate, it began to degrade performance, suggesting that
critical temporal information was being erroneously pruned. Conversely, a more lenient threshold
of 0.85 retained more tokens without providing a commensurate performance gain, indicating that
it allowed too much redundancy. Therefore, we selected Tiemp = 0.90 for all our experiments as it
strikes the optimal balance between efficiency and accuracy.

Determining the RTAR Thresholds (7 and 74en). The RTAR thresholds govern the active re-
sponse policy and were tuned to maximize the timeliness-aware Score metric on the Forward Active
Responding tasks from the same OVO-Bench validation subset. We performed a grid search to
analyze the interplay between the relevance and density gates.

The results, summarized in Table [8] indicate that a combination of 7y = 0.60 and 74e, = 0.15
yields the highest score. Deviating from these values hurts performance: a lower relevance threshold
(Tre1 = 0.50) caused erroneous triggers on irrelevant scenes, while a higher one (7; = 0.70) missed
some valid response opportunities. Similarly, a lower density threshold (74e, = 0.10) was overly
sensitive to minor visual noise, whereas a higher one (74, = 0.20) failed to trigger on more subtle
events. The chosen values represent the most robust configuration for triggering responses that are
both accurate and timely.

A.5 CASE STUDY

To provide an intuitive understanding of QueryStream’s operational advantages, we present a single,
illustrative case study in Figure[d The video is specifically engineered to probe two common failure
modes of query-agnostic systems: false trigger from irrelevant visual shocks and miss trigger from
subtle, relevant events. To simulate these challenges, we insert several black frames to represent
a transient shock and include a visually subtle but query-relevant action. The figure visualizes the
models’ token drop patterns and their resulting responses, offering a direct comparison between
QueryStream and TimeChat-Online.

False Trigger: Robustness to Irrelevant Shocks. The first challenge tests the models’ robustness
to irrelevant motion. As depicted, the query-agnostic TimeChat-Online falters when confronted
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with the inserted black frames. Guided by its “change-is-important” philosophy, it perceives the
abrupt transition as a major visual event, causing its token drop rate to plummet. This leads to a
spurious trigger, prompting an erroneous and unhelpful response about the screen going black. In
stark contrast, QueryStream’s QDP mechanism recognizes that the black frames are semantically
irrelevant to the user’s query. Consequently, it continues to prune these tokens, maintaining a high
drop rate and correctly remaining silent, thus demonstrating its ability to distinguish visual dynamics
from semantic importance.

Miss Trigger: Sensitivity to Subtle Events. The case study also includes a slow but crucial action
relevant to the query, testing the models’ sensitivity. TimeChat-Online’s myopic frame-to-frame
comparison fails to register the small inter-frame differences of this subtle action, thus missing the
event entirely and resulting in a missed trigger. QueryStream, however, excels in this scenario.
Its DSH-based novelty detector registers the persistent, cuamulative deviation from the established
historical norm. Because this slow change is also highly relevant to the query, both of RTAR’s gates
are satisfied, leading to a timely and accurate response. This case highlights the synergistic power
of our Dynamically Smoothed History and query-aware triggering, enabling a far more nuanced and
intelligent interaction.

A.6 LIMITATIONS

Despite its strong performance and efficiency, QueryStream has several limitations that highlight
promising avenues for future research. Firstly, the efficacy of our Query-Aware Differential Pruning
(QDP) mechanism is fundamentally bound by the representational quality of the pre-trained Open-
CLIP encoder. Its inherent constraints in discerning fine-grained details or abstract relationships
may challenge the pruning precision in semantically nuanced scenarios, potentially causing critical
but subtle events to be missed. Secondly, the current framework is designed around a single, static
user query and does not explicitly handle dynamic conversational contexts where user intent might
evolve over multiple turns. Extending the model to manage a continuously updated query state or
dialogue history is a crucial next step. Finally, our mechanism relies on a set of fixed hyperparame-
ters (v, Tiemp» Trel» Tden) fOI its logic-based gates. While effective, these static thresholds may not be
universally optimal. Future work could explore adaptive thresholding mechanisms or even learned,
soft-gating policies to enable more nuanced, data-driven decision-making and enhance the model’s
robustness across diverse video domains and query types.
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