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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated signif-
icant potential in enhancing real-time spoken interactions. Presently, open-source
methodologies predominantly depend on intermediate generative text-based tran-
scriptions to manage real-time spoken dialogues. However, these techniques of-
ten struggle with providing seamless interactions that involve real-time streaming
audio inputs. In this research, we unveil an innovative spoken dialogue language
model, Parrot, distinguished by its unique pre-training and supervised fine-tuning
(SFT) pipeline. This pipeline deviates from conventional methodologies by uti-
lizing both single-channel audio data and double-channel spoken dialogue data
to train the textless speech language model. During pre-training, we transform
single-channel audio input into a sequence of discrete tokens, thereby instructing
the LLM to identify audio tokens via next-token predictions. In the SFT phase,
we pioneer a novel approach to double-channel generative spoken dialogue lan-
guage modeling with a unique “next-token-pair prediction” objective, facilitating
the LLM’s comprehension of natural human conversations. Our pipeline equips
LLM to produce spoken interactions that are more natural and fluid than those
generated by baseline approaches, as substantiated by thorough evaluations1.

1 INTRODUCTION

The advent of large language models (LLMs), particularly the GPT series (Patel et al., 2023; Ope-
nAI, 2023; 2024), has profoundly transformed the field of artificial intelligence. These powerful lan-
guage models attain their capabilities through pretraining on extensive text corpora using decoder-
only transformer architectures, guided by an autoregressive next-token prediction objective function.
Recently, there has been an increasing interest in integrating the LLMs with other modalities, such
as images (Radford et al., 2021; Li et al., 2022; 2023; Liu et al., 2023b), audio (Zhang et al., 2023a;
2024a; Hassid et al., 2023), protein sequences (Lin et al., 2022; Madani et al., 2023) and etc . Among
these modalities, audio or speech data holds particular importance as it enables LLMs to engage in
real-time voice interactions with humans. The recently unveiled GPT-4o model (OpenAI, 2024)
exhibits a remarkable proficiency in managing real-time interactions with users in conversational
contexts. Throughout the demo presentation, it was able to generate authentic emotional responses
and engage users with swift reactions. These functionalities, however, introduce additional chal-
lenges, as the model must thoroughly interpret the distinct audio information within human speech
while conducting inference with minimal delay.

Presently, the academic community primarily utilizes open-sourced models (Zhang et al., 2023a;
Xie & Wu, 2024; Rubenstein et al., 2023; Huang et al., 2024; Wang et al., 2023a; Nachmani et al.,
2024; Wang et al., 2023b) following a cascading approach. This method heavily depends on an in-
termediate text generation step and generally consists of three stages: automatic-speech-recognition
(ASR), text-based question answering (Text-QA), and text-to-speech (TTS) synthesis. While this
approach is reliable due to the incorporation of powerful text-based LLMs, it does present three
significant drawbacks: (1) Audio Information Loss: Audio signals, unlike text, include additional

1Demo and code can be found at https://anonymous.4open.science/r/Parrot.
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Figure 1: (a) The cascading approach depends on the intermediate text-based response gener-
ation translated by ASR and TTS; (b) The encoder-decoder spoken dialogue language model-
ing encode one of the speaker’s audio sequence Qa = (qa1 , q

a
2 , ..., q

a
T ) as condition informa-

tion to decode another speaker sequence Qb following the probability distribution P (Qb) =∑T
i=1 P (qbt |qbt−1, ..., q

b
1, Q

a); (c) Our novel decoder-only spoken dialogue language model-
ing follows the newly proposed next-token-pair prediction paradigm such that P (Qa, Qb) =∑T

i=1 P (qat , q
b
t |qbt−1, ..., q

b
1, q

a
t−1, ..., q

a
1 ).

human responses such as laughter, interruptions, pauses, and repetitions, reflecting the speaker’s
communication style and emotions. The conversion of audio signals to text could potentially result
in the loss of this crucial information. (2) Error Propagation: The cascading approach consists
of three sequential stages. If the initial ASR translation is inaccurate, the subsequent stages will
operate on incorrect intermediate data representations. (3) Real-time Processing Challenges: In
real-world applications, such as the GPT-4o presentation, spoken dialogues require immediate pro-
cessing. However, incorporating text translation steps inevitably results in a slower process and
adds extra latency during inference. Many recently introduced speech LLMs are striving to mitigate
these issues. However, they either depend on text generation or remain confined to basic question-
answer functions. We will delve into detailed discussions about these approaches in the subsequent
related work section and the appendix, given the rapid growth of this research field. Therefore, the
aforementioned limitations of cascading approaches highlight the necessity of developing speech-
to-speech models capable of managing spoken conversations without the need for text translations.

In this study, we present a novel pre-training and supervised fine-tuning (SFT) pipeline to develop a
robust model, referred to as Parrot, specifically designed for spoken dialogue language modeling.
The pre-training phase begins with the conversion of continuous audio inputs into a sequence of to-
kens, a process made possible by training a vector-quantized autoencoder (VQVAE) (van den Oord
et al., 2017) to reconstruct these audio signals. We then leverage pretrained LLMs as a foundation
for continuous learning on single-channel audio sequences, with the goal of next-token prediction.
This is accomplished by integrating the learned audio tokens into the original text vocabulary. This
pretraining stage aids LLMs in capturing the primary latent distribution of audio token sequences. In
the subsequent stage, we utilize double-channel audio data for SFT. The key advantage is enabling
LLMs to directly comprehend how humans engage in natural dialogues. Unlike existing approaches,
we introduce a novel “next-token-pair prediction” paradigm to model the double-channel spoken
dialogue generation using the decoder-only transformer. The comparison between our proposed
method and existing techniques are illustrated in Figure 1. We carry out extensive experiments to
validate the superiority of our innovative approach. Specifically, Parrot consistently outperforms
strong baseline methods by 150% and 200% in average in terms of the reflective pause and interrup-
tion response accuracy respectively. Additionally, it achieves a low latency of 300ms. In summary,
our contributions to the field are as follows:

1) We present a spoken dialogue language model, Parrot, featuring an innovative pre-training and
SFT pipeline. This novel approach eliminates the need for intermediate text conversions, thereby
facilitating more fluid and natural voice interactions with human users at reduced latency.

2) We propose a new paradigm for double-channel spoken language modeling, called next-token-
pair prediction, which holds the potential to be readily generalized for autoregressive modeling
of multi-channel audio sequence inputs in future explorations.

2
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3) We provide an extensive evaluation of spoken dialogue language models, encompassing several
key aspects and metrics for assessing the quality and speed of spoken interactions.

2 RELATED WORKS

Autoregressive Generative Models. The autoregressive generative modeling has achieved re-
markable success in natural language processing, giving rise to a variety of powerful LLMs
(Sutskever et al., 2014; OpenAI, 2024; 2023; Patel et al., 2023). Inspired by these LLMs, numerous
studies have examined the application of autoregressive modeling in other domains, such as images
(van den Oord et al., 2017; Esser et al., 2021; Li et al., 2024; Tian et al., 2024; Lee et al., 2022;
Chang et al., 2022), graphs (You et al., 2018), videos (Weissenborn et al., 2020), molecules (Shi
et al., 2020; Schwaller et al., 2019) and protein sequences (Madani et al., 2023; Lin et al., 2022).
The fundamental concept of autoregressive modeling focuses on iteratively generating the entire
segment from the intermediate portion, which is particularly well-suited for the audio generation.

Multi-modal LLMs. Multimodal Large Language Models (MM-LLMs) strive to incorporate
knowledge from diverse modalities. A key category of MM-LLMs concentrates on developing
connectors (Li et al., 2022; 2023; Liu et al., 2023b; Alayrac et al., 2022) that identify knowledge
alignment across various modalities. An alternative strategy (Team, 2024; Zhou et al., 2024; Xie
et al., 2024) merges all modalities into a cohesive sequence of tokens and utilizes LLMs to sequen-
tially generate them using modified attention masks. These methods (Wu et al., 2024; Su et al.,
2023; Fu et al., 2024) even integrate audio as an input modality, and by simply combining text and
audio through MM-LLM techniques, they can address one-direction conditional generation tasks
such as speech-to-text translation (e.g., ASR and spoken language understanding) (Radford et al.,
2023; Zhang et al., 2023b; Deshmukh et al., 2023; Arora et al., 2023; Tang et al., 2024; Chu et al.,
2024; Zhou et al., 2023; Ravanelli et al., 2021; Gao et al., 2023) and text-to-speech translation (e.g.,
TTS) (Elizalde et al., 2023; Liu et al., 2023a; Huang et al., 2023; Nachmani et al., 2023; Yang et al.,
2023; Kreuk et al., 2023; Borsos et al., 2023; Copet et al., 2023; Chen et al., 2024; Anastassiou et al.,
2024; Jiang et al., 2023b; Kong et al., 2021; Shen et al., 2024; Casanova et al., 2022; Siuzdak, 2024;
Yang et al., 2024; Kharitonov et al., 2023; Le et al., 2023). However, these methods are limited
to handling multi-turn multi-modal QA tasks (where the model produces an answer only after the
question is completed, as signaled by pressing the input button, for instance) and thereby struggle
with real-time voice interaction tasks, which is the primary focus of our work.

Generative Spoken Language Modeling. The core concept of our approach relies on the pretrain-
ing of robust speech foundation models, with language model learning (LLM) serving as a crucial
component, to enable rapid adaptation to a broad spectrum of downstream speech tasks. Much of the
prior research has utilized the encoder-decoder architecture to enhance pre-training (Borsos et al.,
2023; Lakhotia et al., 2021; Kharitonov et al., 2022; Polyak et al., 2021; Chen et al., 2023; 2022;
Hsu et al., 2021; Zeghidour et al., 2022; Défossez et al., 2023; Agostinelli et al., 2023; Ao et al.,
2022; Tang et al., 2022; Wu et al., 2023). However, this architecture proves inadequate for handling
real-time speech interactions with streaming audio inputs, as it requires the encoder to process the
entire input simultaneously. In more recent studies, the decoder-only transformer (Maiti et al., 2024;
Zhang et al., 2024a; Hassid et al., 2023; Nguyen et al., 2024; Fathullah et al., 2024; Shen et al.,
2023; Zhang et al., 2024b; Das et al., 2024) has been employed to model the audio sequence. This
approach capitalizes on the potent language capabilities of LLMs while also facilitating the process-
ing of streaming inputs. Motivated by the advent of GPT-4o, newly developed models aim to endow
LLMs with speech conversation capabilities (Ma et al., 2024; Zhang et al., 2023a; Xie & Wu, 2024;
Rubenstein et al., 2023; Huang et al., 2024; Wang et al., 2023a; Nachmani et al., 2024; Wang et al.,
2023b; Défossez et al., 2024). However, these models either rely on text transcriptions or adhere to
the aforementioned MM-LLM methods, lacking the ability for natural turn-taking. In stark contrast,
our work leverages double-channel spoken dialogue data to directly instruct LLMs in human con-
versations. A significant contribution in the realm of spoken dialogue language modeling is dGLSM
(Nguyen et al., 2023), but it remains confined to the era of using the encoder-decoder architecture.
In our research, we elevate the architecture to the most recent decoder-only transformer.

3
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3 PARROT: TRAINING AND INFERENCE PIPELINE

Our Parrot comprises two essential steps. The first involves pretraining the LLM on single-channel
audio token sequences using the traditional ”next-token prediction” objective. The second step fine-
tunes the LLM on double-channel audio token sequences, employing the innovative ”next-token-pair
prediction” paradigm. The rationale behind this strategy stems from the fundamental observation
that the single-channel audio data can be sourced from the vast amount of open-source data available
on the web. However, the primary limitation of single-audio data is its lack of speaker identity
information and the overlapping regions between different speakers can be misleading. On the other
hand, double-channel spoken dialogue data encapsulates crucial turn-taking events with distinct
speaker channels, and any overlapping event can be easily discerned. Nevertheless, the double-
channel data necessitates specific pre-processing techniques to segregate the mixed information from
the single-channel data. Therefore, it is a naturally inspired strategy to use the large-scale single-
channel audio data for pretraining and the moderate-scale double-channel dialogue data for SFT.

3.1 AUDIO TOKENIZATION AND SINGLE-CHANNEL AUDIO PRETRAINING

A single-channel audio is a continuous input sequence x ∈ RT with time length T . Owing to the
high sampling rate of continuous audio signals, it is essential to employ an audio tokenizer, which
extracts valuable features for the purpose of compressing the information. The audio quantizer Q
projects the audio sequence x into a set of discrete tokens Q = (q1, ..., qT ′) = Q(x) (T ′ ≪ T ),
where each token qt is an integer index from the vocabulary qt ∈ [V ] where the vocabulary size is
V . We train the audio tokenizer Q following the VQ-VAE (van den Oord et al., 2017) framework.
In contrast to certain prior studies, we directly train the tokenizer on the raw audio signals x, rather
than transforming x into a mel-spectrogram first. We primarily adopt the training strategy presented
in SoundStream (Zeghidour et al., 2022), and provide a brief overview of its underlying mechanism.

Specifically, audio inputs x is fed into an encoder E to derive down-sampled latent features f ∈
RT

r ×D such that f = E(x) with the down-sampling rate r and the latent dimension D. This is
achieved by the CNN (Krizhevsky et al., 2012) architecture, which can capture the local dependency
of x. Then the quantizer Q converts the latent feature f to discrete tokens q ∈ RT

r such that
q = Q(f) where each entry qi is a quantized integer index. Each latent feature fi for time frame i is
mapped to the code index qi of its nearest embedding vector in the Euclidean sense:

qi = argmin
v∈[V ]

∥zv − fi∥2, (1)

where zi denotes the ith embedding vector of the learnable codebook z ∈ RV×D containing |V |
vectors. Then the reconstructed audio signals x̂ are obtained through the decoder G such that x̂ =

G(zq) where zq ∈ RT
r ×D denotes the codebook embedding vectors of the latent feature f indexed

by q. This autoencoder is trained by both the reconstruction loss and discriminator loss through
straight-through estimators with stop-gradient operations. We direct readers to (Zeghidour et al.,
2022) for a comprehensive description of the architectures and algorithms involved.

After converting the input audio signals into the sequence of audio tokens Q, we subsequently
supplement these audio tokens into the original LLM’s text token vocabulary. Following this, we
train the LLMs on the sequence Q using the standard autoregressive approach with the next-token
prediction paradigm:

p(q1, q2, ..., qT ′) =

T ′∏
t=1

p(qt|qt−1, .., q2, q1). (2)

The next-token prediction loss is calculated by summing the cross-entropy loss, which measures
the classification over codebook embedding indices at each time step. Instead of building the audio
language model from scratch, we employ Llama 3 as the initial LLM, augmenting its vocabulary
with additional audio tokens. While LLMs, after the aforementioned pretraining, can learn the
basic audio token distribution, relying solely on single-channel audio data is inadequate for LLMs
to effectively comprehend the subtleties of human communication and generate smooth, natural
responses. Consequently, we continue to train the speech LLM to learn human speech conversations
by utilizing double-channel spoken dialogue data.

4
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Figure 2: The illustration of the SFT learning mechanism of Parrot on the double-channel spoken
dialogue data. The novel architecture consists of two important modules. The first module is the
embedding layer for obtaining the token-pair embedding; The second module is the decoder-only
transformer with a pair-wise causal masking attention for next-token-pair prediction. [s]a and [s]b

denote the special start tokens of channel a and channel b respectively.

3.2 SUPERVISED FINE-TUNING WITH DOUBLE-CHANNEL AUDIO

The double-channel audio input comprises a pair of time-aligned single-channel audio inputs, de-
noted as (xa,xb), where each channel corresponds to a specific speaker. A fresh challenge arises
in the generative modeling of double-channel audio sequences using the decoder-only transformer
architecture of LLMs. To address this issue, we propose a novel generative learning paradigm
called next-token-pair prediction. The key idea here is to generate a sequence of time-aligned
token pairs, rather than a single token, in an autoregressive fashion. In contrast to the conven-
tional next-token prediction, our objective is more suitable to the generative modeling of an inter-
polated dialogue sequence which contain two separate channel identities. Specifically, we begin
by discretizing both channels into time-aligned sequences with quantized audio tokens, denoted as
(Qa = (qa1 , q

a
2 ..., q

a
T ), Q

b = (qb1, q
b
2..., q

b
T )). To accommodate the input sequence structure within

the decoder-only transformer architecture, we reorganize both sequences into a single interpolated
dialogue sequence, represented as Qinput = {qa1 , qb1, qa2 , qb2, ..., qaT , qbT }. Subsequently, we model the
probability distribution that generates the next token pair (qat , q

b
t ) at next time step t conditioned on

the previously generated token pairs from step 1 to t− 1:

p(qa1 , q
b
1, q

a
2 , q

b
2..., q

a
T , q

b
T ) =

T∏
t=1

p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
2 , q

b
2, q

a
1 , q

b
1). (3)

Then we decompose the token pair conditional generating distribution p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1)

by assuming the conditional independence between qat and qbt :

p(qat , q
b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1) = p(qat |qat−1, q

b
t−1, ..., q

a
1 , q

b
1)p(q

b
t |qat−1, q

b
t−1, ..., q

a
1 , q

b
1). (4)

We illustrate this conditional independence and the dialogue distribution modeling in Figure 1. The
probability distribution in Eq.3 and Eq.4 adheres to a fundamental inductive bias that a person’s
speech is influenced by both his own previous statements and what he has heard in the past. To
adapt to the generative modeling of the newly arranged dialogue sequence Qinput, we need to mod-
ify the embedding layer and the attention masking mechanism accordingly. Our novel token-pair
embedding layer consists of three important embeddings in total, which are codebook embedding z,
position embedding p and channel embedding d. Specifically, for each token pair qat , q

b
t :

zqat , zqbt = lookup(z, qat , q
b
t ), pqat

= pqbt
, dqat

,dqbt
= one-hot-embedding(ida, idb). (5)

In the above Eq. 5, dqt ∈ RD denotes the channel embedding of its one-hot identity encoding id,
which indicates the speaker role (a or b) of token qt. The positional encoding is represented as
pqt ∈ RD indicating which time step both tokens are from. It is important to note that both qat
and qbt share the same positional embedding, with the Llama 3 (Dubey et al., 2024) model utilizing
the Rotary positional embedding as described in (Su et al., 2024b). After the token-pair embedding
layer, we obtain the input embedding eqt = [zqt ,pqt ,dqt ] for each token qt (a or b). Following the
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implementation of Llama 3, we add both positional embedding and channel embedding to the query
and key vectors (instead of value vectors) of each token pair as follows:

q = WQ[zqat , zqbt ] + [pqat
,pqbt

] + [dqat
,dqbt

], k = WK [zqat , zqbt ] + [pqat
,pqbt

] + [dqat
,dqbt

]. (6)

Following the above Eq. 6, we obtain the query and key matrices for all token pairs, represented
as Q,K ∈ R2T×D, which are projected by weight matrices WQ,WK respectively. Then we
separately multiply codebook embedding vectors by WV to obtain the value matrices V ∈ R2T×D.
Based on these vectors, we conduct the attention computation as follows:

O = SoftMax((QKT /
√
D) ·M)V, M ∈ R2T×2T . (7)

The pair-wise causal masking matrix M ∈ R2T×2T is used to mask out the entries in the self-
attention matrix, preventing each token qt from attending to future tokens (qt′ , t′ > t) and simul-
taneously attending to tokens from another channel at the same time (i.e. qat and qbt cannot attend
to each other). The final layer output embedding, denoted as Ol ∈ R2T×2T , is utilized to generate
the next-token-pair prediction (q̂at+1, q̂

b
t+1) for each (qat , q

b
t ) via classifications over codebook em-

bedding indices. The total training loss is equal to the sum of cross-entropy loss over all generated
token pair predictions and the ground-truth token pairs. The overall modified embedding layers and
self-attention layers are illustrated in Figure 2. Certain advanced architectural components present
in Llama 3, such as grouped-queries attention and feedforward layers, have been omitted here, as
our modifications do not impact them.

3.3 STREAMING INFERENCE
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Figure 3: The figure illustrates the chunk-
wise streaming inference process. Within each
chunk, (qa1 , q

a
2 , q

a
3 , q

a
4 , q

a
5 ) represents the provided

speaker sequence. Their corresponding keys and
values are stored in the KV-cache. Parrot sequen-
tially predicts tokens (q̂b1, q̂

b
2, q̂

b
3, q̂

b
4, q̂

b
5) based on

generated query vectors, which are directed to the
Key-Value (KV) cache through attention compu-
tations. Once a chunk is filled, the inference pro-
cess proceeds to the next chunk.

In order to simulate a real-time user-assistant
communication scenario, our speech LLM Par-
rot should be proficient in conducting condi-
tional inference with streaming user voice in-
put. In this inference setting, one speaker’s
voice input is provided as the user, and the
model is assigned the task of inferring the other
audio channel. This creates a situation that re-
sembles a constrained generation problem. If
the inference process strictly follows the train-
ing process, then the model should predict q̂bt
immediately after receiving the speaker’s voice
input qat at time t. However, due to the VQ-
VAE audio tokenization mechanism, it’s not
feasible to receive just a single audio token
from the speaker channel during the stream-
ing inference. This is because the VQ-VAE
requires a complete audio signal input within
a specific time window. Therefore, unlike the
training process, we need to determine when
the model should start generating spoken re-
sponses upon receiving streaming user input audio tokens. Specifically, we adopt a divide-and-
conquer approach to the inference process, breaking it down into chunks, each containing a pre-
determined number of tokens, denoted as λ. Each time the number of user input tokens reaches λ
(a chunk of speaker input is given), our model begins to generate predictions until the number of
predicted tokens also reaches λ (a chunk is filled). This procedure is repeated until the end of user
voice inputs (e.g., the conclusion of the voice-assistant service). This inference process is illustrated
in the accompanying Figure 3.

4 EXPERIMENTS

This section presents the foundational capability evaluation results for Parrot. We first describe the
two-stage training dataset, data processing methods, and hyper-parameters. We then evaluate the
Parrot’s performance on core tasks like spoken interaction and provide several case examples.

6
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4.1 DATASET

Parrot employs a two-stage training process. In the first stage, to establish foundational speech
capabilities, we trained the model using three speech datasets totaling approximately 14,000 hours.
This stage focuses on both speech understanding and synthesis. Unlike other models (Fang et al.,
2024) that require audio to be transcribed into text, our Parrot only needs single-channel audio
for direct training. This reduces the data requirements and, consequently, increases the amount of
training data available. For the second stage, we need the Parrot to simultaneously gain the ability
to listen and speak. To achieve this, we further utilize the Fisher dataset (Cieri et al., 2004). This
dataset comprises 2200 hours of phone conversations between randomly paired participants, each
discussing a given topic. A notable feature of the Fisher dataset is that each side of the conversation
is recorded on separate channels, which allows us to provide ground-truth separated streams to
Parrot. The original audio is sampled at 8kHz, and we use Librosa 2 to upsample it to 16kHz.

4.2 BASELINES

We compare against baselines from the audio language modeling literature, in three settings. The
first category encompasses audio-only models starting from a random initialization, including
dGSLM(Nguyen et al., 2023). The second category encompasses several newly released speech
LLMs(Zhang et al., 2023a; Xie & Wu, 2024; Fang et al., 2024). As a way to measure the impact
of two stage training on spoken fluency, we compare these baselines with Parrot trained with and
without pre-training phase.

Table 1: The datasets and their usage for training Parrot.

Type Stages Dataset Hours
English Reading speech 1 LibriSpeech (Panayotov et al., 2015) 1,000 h
Pronunciation recording 1 Common Voice (Ardila et al., 2019) 3,554 h
Video audio 1 Gigaspeech (Chen et al., 2021) 10,000 h
Spoken English audio 1 Libri-light (Kahn et al., 2020) 60,000 h
Recorded telephone conversation 2 Fisher dataset (Cieri et al., 2004) 2,000 h
Speech Instruction 2 InstructS2S-200K(Fang et al., 2024) 100 h

4.3 TRAINING DETAILS

Large Language Model: In this study, we conceptualize audio as an additional language and em-
ploy three of the most widely recognized open-source LLMs as our foundational models: Llama-
3.1-8B(Dubey et al., 2024), Mistral-7B-v0.3(Jiang et al., 2023a), and Gemma-2-9B(Team et al.,
2024). Each of these models comprises an embedding layer, multiple transformer blocks, and a lan-
guage model (LM) head layer. They all encode the relative positional information of tokens using
rotary positional encoding (Su et al., 2024a). Audio Tokenizer: We train an audio tokenizer based
on (van den Oord et al., 2017), which encodes each second of audio into 30-50 discrete tokens from
a codebook of size 2048.

4.4 PRETRAIN EVALUATION

Single audio channel language modeling: We begin by evaluating the capability of Parrot to
model speech sequences through next-token prediction on the large-scale single channel audio
dataset. We use perplexity on the test set’s single-channel audio as the metric. The 4a presents
the training loss over steps for three distinct models. All three models exhibit a decreasing trend
in training loss, indicating effective learning over time. Mistral 7B and Gemma demonstrate sim-
ilar training loss curves. Notably, Llama 3.1, which exhibits superior text reasoning capabilities,
achieves a lower training loss more rapidly compared to Mistral 7B and Gemma. This observation
supports our hypothesis that stronger text models can be more effectively adapted to audio tasks,
aligning with the conceptualization of “audio as a new language”.

2https://librosa.org/doc
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We also explore the trade-off between token rate and codebook size to optimize streaming interaction
performance in Figure 4c. Notably, the configuration of 30 * 2048, which represents our chosen
compromise solution, demonstrates a balanced performance with a steady decline in training loss.
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Figure 4: Training loss and perplexity curves for Parrot under various Pretraining settings.

4.5 INTERACTIVE EVALUATION

4.5.1 REFLECTIVE PAUSE AND INTERRUPTION EVALUATION

In this section, we use GPT-4 to generate 1,000 text prompts that correspond to two interaction
scenarios in natural dialogue: reflective pauses and interruptions. As shown in Figure 5a, reflective
pauses evaluate the model’s ability to maintain silence during a speaker’s contemplative state, while
interruptions test the model’s response to being interrupted mid-speech. Then we utilize ChatTTS3

to generate audio prompt corresponding to one of the channels.

Figure 5b compares the accuracy of interaction response by Parrot with different baselines. For
reflective pauses, Parrot demonstrate the highest accuracy at 68%, significantly outperforming the
other models. Llama-Omni achieve accuracies of 44%, while SpeechGPT and VITA have an accu-
racy of only 20% and 19% respectively. Additionally, Parrot excelle with an impressive accuracy
of 82% for interruption audio prompts, indicating that our model can effectively distinguish human
commands.

Let me think, , for example, you can tell a story. You can go ahead. Alright, that's enough.Slienceuh...

Reflective Pause Interruption

(a) Interactive evaluation settings. Reflective pauses evaluate the model’s ability
to maintain silence during a speaker’s contemplative state, while interruptions test
the model’s response to being interrupted by the speaker mid-speech.
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(b) Interaction turn-taking
event response accuracy.

Figure 5: Reflective pause and interruption evaluation.

4.5.2 QUALITY AND STATISTICS OF GENERATED DIALOGUES

We evaluate the linguistic quality and turn-taking dynamics of generated dialogues using various
models, as detailed in Table 2. The detailed evaluation settings are in the A.5.2. LSLM(Ma et al.,
2024) integrates speaker channels at the embedding layer and separates them in the final layer,
demonstrates a notable reduction in the number of Inter-Pausal Units (IPUs) and gaps, indicat-
ing smoother transitions between speakers. The dGSLM(Nguyen et al., 2023), particularly with
the cross-attention(CA) module, shows a significant decrease in the cumulative duration of pauses
and gaps, suggesting more fluid and continuous dialogue. Comparatively, Parrot exhibit balanced

3https://github.com/2noise/ChatTTS
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Table 2: Linguistic quality and turn-taking statistics of generated dialogues, including the number
of turn-Taking events and cumulative durations per minute, compared to the ground truth.

Model Number of occurrences / min Cumulated duration /min
∆IPU ∆Pause ∆Gap ∆Overlap ∆IPU ∆Pause ∆Gap ∆Overlap

dGSLM w/o CA -3.9 0.9 -3.6 -1. -12.1s 8.3s -1.4s 2.5s
dGSLM -1.6 3.4 -2. -2.9 -4.6s 3.6s 0.8s -1.9s
LSLM -2.2 3.6 -2.4 -3.2 -4.1s 3.4s -1.5s -2.3s

Cascaded -4.1 -7. 7.4 -6.5 1.3s -5.5s 0.9s -3.6s

Parrot0.1 -1.4 2.1 -2.0 -1. -3.2s 2.5s -1.2s -2.1s
Parrot0.5 -1.5 1.9 -1.8 -1.5 -2.9s 3.0s -0.9s -2.2s
Parrot0.9 -1.3 2.2 -1.5 -0.9 -3.3s 2.8s -1.4s -1.9s

performance with moderate reductions in both the number and duration of turn-taking events, high-
lighting their potential for generating natural and coherent dialogues. These findings underscore the
importance of model architecture in optimizing dialogue flow and linguistic quality.

4.6 HUMAN EVALUATION

We folow the evaluation settings of Veluri et al. (2024) and conduct the evaluation study with 25
annotators with native-level English proficiency. We adapt the Mean Opinion Score (MOS) pro-
tocol, utilizing a 5-point Likert scale, to assess the Naturalness (N-MOS) of turn-taking and the
Meaningfulness (M-MOS) of dialogue content. Table. 3 compares the meaningfulness and nat-
uralness by Parrot with different baselines. Both dGSLM and SyncLLM use Fisher as the only
real-world spoken dialogue dataset for training. Besides, we add performance comparison on the
out-of-distribution Candor testset(Reece et al., 2023).

Table 3: Meaningfulness (Meaning.) and Naturalness (Nat.) (scores 1-5) mean estimates and stan-
dard errors (in parentheses), aggregated overall and for Fisher and CANDOR subsets.

Model Overall Fisher CANDOR
Meaning. ↑ Nat. ↑ Meaning. ↑ Nat. ↑ Meaning. ↑ Nat. ↑

dGSLM 1.38 (0.10) 3.85 (0.12) 1.82 (0.09) 4.10 (0.13) 1.51 (0.12) 2.85 (0.18)
SyncLLM 3.85 (0.06) 4.10 (0.05) 4.10 (0.08) 4.33 (0.08) 3.85 (0.09) 3.91 (0.08)
Moshi 3.90 (0.07) 3.95 (0.06) 3.20 (0.10) 4.32 (0.08) 3.90 (0.08) 3.95 (0.08)
Parrot 3.95 (0.04) 4.15 (0.06) 4.10 (0.06) 4.42 (0.06) 4.05 (0.08) 4.05 (0.10)
GT 4.90 (0.01) 4.95 (0.02) 4.90 (0.03) 4.90 (0.04) 4.90 (0.02) 4.95 (0.02)

4.7 ABLATION STUDY

In this section, we present an ablation study to evaluate the impact of different channel embedding
designs and training stages on the performance of Parrot. The results are illustrated in Figure 6.

One-stage VS Two-stage: The Figure 6a compares the perplexity over training steps for these two
strategies. The two-stage training approach demonstrates a significantly lower perplexity throughout
the training process compared to the one-stage training approach. This indicates that pretraining on
single-channel audio data provides a robust foundation, which enhances the model’s performance
during subsequent fine-tuning on dual-channel data.

Channel Embedding: The Figure 6b illustrates the perplexity over training steps for both ap-
proaches. The findings indicate that the layer-wise channel embedding consistently achieves lower
perplexity compared to the consistent channel embedding. This suggests that enabling each layer to
have its own channel embedding allows the model to learn more effective representations, thereby
enhancing performance.

In Figure 6c, we present a t-SNE visualization of token embeddings for each channel, derived from
the Fisher testing set conversation. Due to the design of the channel embeddings, there is some
separation between the token embeddings from different channels in the reduced-dimensional space

9
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Figure 6: Ablation study on channel embedding designs and training stages.

created by t-SNE. Although there is some overlap between the two channels, these initial findings
warrant further exploration and analysis of the embeddings.

5 CASE STUDY

Scenario: A user engages in a conversation with Parrot, describing an
object and asking the model to identify it.

User: Please listen to my description of an object below, and say its
name when you have guessed it. The description is: it has four legs,
a flat surface, and is often used for dining or working...

Parrot: I guess it might be a table.

Figure 7: Case study of Parrot interrupt human speaking correctly and timely.

To intuitively understand the differences in responses from our models, we provide an example in
Figure 7. In this scenario, Parrot interrupts the user at the precise moment it has gathered enough
information to make an accurate prediction. This capability is a significant departure from current
models that would typically wait for the user to finish speaking before responding. The ability to
interject appropriately not only demonstrates the model’s advanced comprehension skills but also
enhances the fluidity and naturalness of the interaction.

6 LIMITATIONS AND FUTURE WORKS

A current limitation of Parrot is its incapacity to integrate the prevalent audio tokenization method,
residual vector quantization (RVQ) (Lee et al., 2022). RVQ is typically used to convert continu-
ous audio into discrete tokens, ensuring the preservation of high-quality information. This process
involves approximating the audio input with multi-scale tokens, each representing the residual infor-
mation remaining after the deduction of the previous scale token’s information. As a result, the audio
token sequence produced by RVQ has an additional residual token dimension (beyond the time step
dimension) compared to the standard VQVAE (van den Oord et al., 2017) utilized in Parrot. This
introduces complexities to the autoregressive generative modeling of spoken dialogue sequences.

7 CONCLUSION

In conclusion, we introduce a novel spoken dialogue language model, Parrot, realized through an
innovative pretraining and SFT pipeline. We employ single-channel audio data for pretraining and
double-channel audio dialogue data for SFT. To facilitate language modeling on double-channel
audio sequences, we unveil the pioneering next-token-pair prediction paradigm for the first time.
Comprehensive experiments underscore the superiority of our approach over existing baseline meth-
ods. Furthermore, through meticulous ablation studies, we validate the effectiveness of each critical
component in our model.
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8 ETHICS AND REPRODUCIBILITY STATEMENT

In this study, we propose an innovative spoken dialogue language model, Parrot. However, it is
important to note that we have not yet conducted a comprehensive safety evaluation of this model.
While preliminary results are promising, the potential for unintended consequences, such as biases
in audio reasoning or misuse of the technology, remains unassessed. We strongly advocate for
further rigorous safety and ethical evaluations to be undertaken by the research community to ensure
responsible deployment and to mitigate any adverse impacts.

To ensure the reproducibility of our results, we have made our codebase publicly available through
an anonymous git repository, which is provided in the footnote of the abstract. This repository con-
tains comprehensive documentation on data processing, model training, and evaluation procedures,
as well as the demo display to facilitate understanding and verification of our methods.
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A APPENDIX

A.1 DETAILED RELATED WORK DISCUSSIONS

We compare Parrot with several newly released speech LLMs, which are Mini-Omni (Xie & Wu,
2024), Llama-Omni (Fang et al., 2024), Moshi (Défossez et al., 2024), LSLM (Ma et al., 2024).
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1) Mini-Omni: The major advancement of this model is the batched parallel decoding strategy.

• Advantages: Text generation can significantly enhance the quality of the audio produced.
Concurrently, the implementation of batched parallel decoding can substantially mitigate
issues related to inference latency. Overall, Mini-Omni effectively maintains a high stan-
dard of response quality while circumventing the latency typically associated with TTS
translations.

• Limitations: This model, while a multi-modal QA system, adheres to the standard archi-
tecture of multi-modal LLMs with various modality adaptors. However, it falls short in
handling natural spoken conversations with real-time streaming user voice inputs. The dy-
namic nature of real-time dialogues, characterized by various pauses and turn-taking events,
cannot be effectively simulated by this system.

2) Llama-Omni: This speech LLM also mainly focuses on enhancing the decoder stage like the
previous Mini-Omni model. It propose an non-autoregressive decoder to simultaneously gener-
ate texts and audios. The text token is firstly upsampled and then fed into the speech decoder to
derive the output voice. Unlike traditional TTS, Llama-Omni applies TTS word by word in an
non-autoregressive manner.

• Advantages: Like the Mini-Omni, this model also enjoys the response reliability due to the
usage of intermediate text generation. In this way, Llama-Omni also enjoys low inference
latency while maintaining high-quality content response.

• Limitations: The Llama-Omni also shares the same limitations like Mini-Omin. Relying on
text generations cannot handle special speech tokens that are hard to match to text tokens.
In addition, the multi-modal LLMs can only handle multi-turn QA while failing to handle
natural conversations like interruptions and pauses.

3) LSLM: This speech LLM explicitly leverages the double-channel audio data. Unlike Parrot,
LSLM fuses two channel tokens into one single token and still follows the next-token prediction
training objective. To enable LSLM to learn to interrupt, this work trains the speech LLM on the
synthetic interruption data.

• Advantages: No need to change the next-token prediction paradigm of the original LLM,
which keeps the speech LLM as simple as possible.

• Limitations: The introduction of the special “EOS” token and the “interruption” token will
bring additional challenges in audio preprocessing. A threshold must be determined to filter
what tokens are assigned to be “interruption token”, which can be tricky. In addition, this
model can only learn to interrupt by training on specific synthetic data. First, it might be
troublesome to synthesize turn-taking events. Second, there is always a distribution gap
between synthetic turn-taking and real-world turn-taking.

4) Moshi: This is a newly open-sourced speech LLM with high-quality spoken responses and
minimal inference latency. Moshi leverages the RVQ technique to tokenize the audio inputs.
And it explicitly proposes the usage of multi-channel audio modeling. There are mainly text
channels, speaker audio channels and listener audio channels. The generative modeling of the
multi-channel token sequences is following the RQtransformer (Lee et al., 2022), which is an
encoder-decoder architecture.

• Advantages: The usage of RVQ can largely improve the quality of discrete audio repre-
sentations. And the usage of intermediate text translation can significantly improve the
reliability of response contents.

• Limitations: The multi-channel data structure requires the alignment between text se-
quences and audio sequences, which is a non-trivial engineering work. Also, the encoder-
decoder RQtransformer architecture requires to receive the entire input of speaker’s chan-
nel, which still somehow downgrades the modeling efficency. Last but not least, this model
can be regarded as alternative form of online cascading approach, which relies on the accu-
racy of both audio-to-text and text-to-audio generation.

In comparison to the above models, Parrot enjoys several important advantages:

• Real Streaming Inference: Parrot is capable of managing real-time streaming inference,
eliminating the need for specific training on turn-taking, as required by models like LSLM.
It can interact seamlessly with human users through natural turn-taking for the duration of
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the service. In contrast, multi-modal speech LLMs such as Mini-Omni and Llama-Omni
can only interact with users on a turn-by-turn basis. In essence, Parrot does not depend on
manually-defined interruption rules when conducting streaming inference.

• Decoder-only Transformers: In contrast to the encoder-decoder dialogue language mod-
eling, Parrot employs a decoder-only transformer. This architecture offers numerous sig-
nificant advantages. For instance, the encoder-decoder structure necessitates maintaining
a window to receive complete inputs during the inference stage. However, the decoder-
only architecture simply requires querying the cached key-value pairs, resulting in superior
computational efficiency during inference.

• Spoken Dialogue Data Usage Efficiency: Both Moshi and LSLM randomly assign one
channel as the speaker and another as the listener. This approach potentially reduces di-
alogue data efficiency, as the trained model becomes speaker-dependent. Essentially, the
model needs to train the reverse conditional distribution by swapping the roles, which could
pose scalability issues as more channels are added in the future. In contrast, Parrot is
speaker-independent and concurrently learns the conditional distribution of both speaker’s
audio channels.

A.2 REPRESENTATION OF THE JOINT SEQUENCE AND MASK STRATEGY MODELED BY
PARROT

0 1 0 1 0 1

<Audio_1>

<Audio_bos>
<Audio_bos>

<Audio_1>

<Audio_2>

<Audio_2>

Environment Audio Model Audio

0 1

t Position embedding
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1 1 2 2 3 3 4 4

n Channel embedding

Figure 8: Pair-wise causal masking attention for next-token-pair prediction.

A.3 POTENTIAL SOLUTIONS TO LIMITATIONS OF PARROT

To overcome the limitations previously discussed, we propose a potential solution: the creation of
a novel generative model for RVQ-based dual-channel audio sequences. However, the complexity
of this task is heightened due to the unclear dependency relations across two distinct dimensions -
the time dimension and the residual token dimension. As an alternative, we could opt to refine our
method by increasing the number of discrete tokens per second. This approach would circumvent
the need for RVQ while simultaneously enhancing the quality of the audio information. In future
research, our goal is to train our method on substantially larger datasets and concurrently develop
more sophisticated speech language model architectures. We hypothesize that the performance of
our method can be further elevated to a new level through various potential approaches, without the
direct application of RVQ.

A.4 MORE IMPLEMENTATION DETAILS AND HYPER-PARAMETER SETTINGS

A.4.1 HYPER-PARAMETER SETTINGS

Our model is trained on 16 A100 GPUs, utilizing a cosine annealing learning rate scheduler with a
minimum learning rate of 4e-6 and a maximum learning rate of 4e-4. Each training epoch consists
of 40,000 steps, with batch size 192 for each step. During fine-tuning, we use learn rate from 4e-6
to 5e-5.
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A.4.2 STREAM INFERENCE

Table 4: Latency, speech-text alignment and speech quality under different unit chunk sizes.

Chunk Size Ω Latency (ms) #Lagging Word ASR-WER ↓ ASR-CER ↓
10 310 2.1 12.5 7.42
20 320 3.1 12.65 7.45
40 350 4.4 12.45 7.89
60 410 6.9 13.10 8.10
80 490 10.2 14.50 8.35

100 550 11.3 15.30 9.05

A.5 MORE EXPERIMENTAL RESULTS

A.5.1 AUDIO TOKENIZER QUALITY

Table 5: Comparison of different models and tokenizers on objective and subjective metrics.

Model Tokenizer Objective Subjective

WER↓ SIM↑ MOS↑ SMOS↑
Groundtruth 1.9 0.93 4.5 3.96
VALL-E EnCodec 7.9 0.75 3.08 3.31
USLM SpeechTokenizer 7.2 0.81 3.63 3.45
Parrot VQVAE 6.9 0.82 3.71 4.50

A.5.2 DIALOGUE LINGUISTIC QUALITY

IPU P. IPU

Turn B

IPU

Overlap

IPU

Turn B

IPU P. IPU P. IPU

Turn A

GAP

Figure 9: Illustration of turn-taking events: IPU (Interpausal Unit), Turn (for speaker A and Speaker
B, resp), P.(within-speaker Pause), Gap and Overlap.

Our model generates two audio channels at the same time, allowing us to use basic Voice Activ-
ity Detection (VAD) tools on the output to gather turn-taking metrics. According to the settings
in (Nguyen et al., 2023), an Inter-Pausal Unit (IPU) is a continuous speech segment within one
speaker’s channel, bordered by VAD-detected silences longer than 200ms on both ends. Silence is
defined as the lack of voice signals on either channel, while overlap refers to segments where voice
signals are detected on both channels. Silences can be further divided into gaps (between IPUs of
different speakers) and pauses (within the same speaker’s IPUs). Consecutive IPUs by the same
speaker, separated by a pause, are merged into a single turn. Our analysis will focus on measuring
the duration distribution of IPUs, gaps, pauses, and overlaps in both the training corpus and the
dialogues generated by our various models.
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A.5.3 REFLECTIVE PAUSE AUDIO DATASET

Prompt for reflective pause

“Hmm..., this question is a bit complicated, I need to think about it.”
“Let me recall, uh..., yes, we went to the park that day.”
“You know, that..., oh, yes, it’s the new restaurant.”
“I remember he mentioned it, um..., it seems to be last Friday.”
“This matter, um..., I think we need to discuss it again.”
“Let me think about it, uh..., yes, that’s it.”
“I’m not sure, um..., maybe I need to confirm it again.”
“This question, um..., I think we can solve it this way.”
“Let me think about it again, uh..., yes, I remember it.”
“The one you mentioned, um..., I seem to have some impression.”
“We need to deal with the budget issue of this project. Um..., this problem is a bit complicated, I need to
think about it.”
“Do you remember the last time we met? Let me recall, uh..., yes, we went to the park that day.”
“Have you heard about the new restaurant? You know, that..., oh, yes, that new restaurant.”
“When did he tell you the news? I remember he mentioned it, uh..., it seems to be last Friday.”
“Do you have any suggestions about this plan? This matter, uh..., I think we need to discuss it again.”
“Can you give me an example? Let me think about it, uh..., yes, that’s it.”
“Are you sure this data is correct? I’m not sure, uh..., I may need to confirm it again.”
“How should we deal with this emergency? This problem, uh..., I think we can solve it this way.”
“Can you explain this concept again? Let me think about it again, uh..., yes, I remember it.”
“Do you know what he is talking about? The one you said, uh..., I seem to have some impression.”

Prompt for GPT score

Content (1-5 points):
1 point: The response is largely irrelevant, incorrect, or fails to address the user’s query. It may be off-topic
or provide incorrect information.
2 points: The response is somewhat relevant but lacks accuracy or completeness. It may only partially
answer the user’s question or include extraneous information.
3 points: The response is relevant and mostly accurate, but it may lack conciseness or include unnecessary
details that don’t contribute to the main point.
4 points: The response is relevant, accurate, and concise, providing a clear answer to the user’s question
without unnecessary elaboration.
5 points: The response is exceptionally relevant, accurate, and to the point. It directly addresses the user’s
query in a highly effective and efficient manner, providing exactly the information needed.

Style (1-5 points):
1 point: The response is poorly suited for speech interaction, possibly including structured elements like
lists or being overly complex, disjointed, or difficult to understand.
2 points: The response is somewhat suitable but may be too long, too short, or awkwardly phrased, making
it less effective in a speech interaction context.
3 points: The response is generally suitable for speech interaction, but it may have minor issues with length,
clarity, or fluency that detract slightly from the overall effectiveness.
4 points: The response is well-suited for speech interaction, with appropriate length, clear language, and a
natural flow. It is easy to understand when spoken aloud.
5 points: The response is perfectly suited for speech interaction. It is the ideal length, highly clear, and
flows naturally, making it easy to follow and understand when spoken.

Below are the transcription of user’s instruction and models’ response:
### [Instruction]: {instruction}
### [Response]: {response}

After evaluating, please output the scores in JSON format: {“content”: content score, “style”: style score}.
You don’t need to provide any explanations.

A.6 MOTIVATIONS OF USING DOUBLE-CHANNEL SPOKEN DIALOGUE DATA

Inspired by GPT-4o (OpenAI, 2024), we aspire to create a powerful voice assistant that can engage
with human users in a natural and fluent way. Ideally, the assistant should be able to be interrupted
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by users. If a user needs to convey something urgently, the assistant should stop speaking and listen
attentively. Furthermore, when a user is in thought or taking a pause, the assistant should not prema-
turely conclude that the user has finished speaking. Instead, it should patiently wait for the user to
complete their thoughts. An advanced voice assistant could even interrupt users when it has already
grasped their intentions, much like how we often interrupt each other in daily conversations. There
are numerous other scenarios that an intelligent voice assistant should be equipped to handle. Given
these complex application scenarios, it’s challenging to address these issues through simple man-
ual engineering, such as the introduction of special tokens like silence tokens, or hard interruptions
when the user is speaking.

The success of foundational models hinges on our trust in the model’s capacity to learn au-
tonomously from data, rather than over-interfering with the learning process or over-engineering
the neural architectures and algorithms. Consequently, in this paper, we utilize double-channel dia-
logue data and directly train the speech LLM on this spoken dialogue data. With robust pre-trained
speech LLMs, we can reasonably anticipate that the model can learn how humans converse with
each other by directly ”reading” their dialogues. This approach eliminates the need for setting man-
ual rules to assist the voice assistant in scenario judgement. The assistant may learn how to navigate
these scenarios by processing a sufficient amount of spoken dialogue data. Regrettably, the current
availability of open-source double-channel spoken-dialogue data is limited. Looking ahead, we hope
our work will stimulate the community to gather large-scale double-channel or even multi-channel
spoken dialogue data.
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