
Distilled Decoding 2: One-step Sampling of Image
Auto-regressive Models with Conditional Score

Distillation

Enshu Liu
Tsinghua University

Beijing, China

Qian Chen
Tsinghua University

Beijing, China

Xuefei Ning
Tsinghua University

Beijing, China

Shengen Yan
Infinigence-AI
Beijing, China

Guohao Dai
Shanghai Jiaotong University

Shanghai, China

Zinan Lin∗∗†

Microsoft Research
Redmond, WA, USA

Yu Wang†
Tsinghua University

Beijing, China

Abstract

Image Auto-regressive (AR) models have emerged as a powerful paradigm of visual
generative models. Despite their promising performance, they suffer from slow
generation speed due to the large number of sampling steps required. Although
Distilled Decoding 1 (DD1) was recently proposed to enable few-step sampling
for image AR models, it still incurs significant performance degradation in the
one-step setting, and relies on a pre-defined mapping that limits its flexibility. In
this work, we propose a new method, Distilled Decoding 2 (DD2), to further
advance the feasibility of one-step sampling for image AR models. Unlike DD1,
DD2 does not without rely on a pre-defined mapping. We view the original AR
model as a teacher model that provides the ground truth conditional score in
the latent embedding space at each token position. Based on this, we propose a
novel conditional score distillation loss to train a one-step generator. Specifically,
we train a separate network to predict the conditional score of the generated
distribution and apply score distillation at every token position conditioned on
previous tokens. Experimental results show that DD2 enables one-step sampling
for image AR models with a minimal FID increase from 3.40 to 5.43 and 4.11
to 7.58 on ImageNet-256, while achieving 8.0× and 238× speedup with VAR
and LlamaGen models, respectively. Compared to the strongest baseline DD1,
DD2 reduces the gap between the one-step sampling and original AR model by
67%, with up to 12.3× training speed-up simultaneously. DD2 takes a significant
step toward the goal of one-step AR generation, opening up new possibilities for
fast and high-quality AR modeling. Code is available at https://github.com/
imagination-research/Distilled-Decoding-2.

1 Introduction

Image autoregressive (AR) models have recently achieved state-of-the-art performance in high-fidelity
image synthesis, surpassing other generative approaches such as VAEs, GANs, and diffusion models
[38, 3, 6, 27, 15, 45, 2, 16, 37, 35, 17, 9, 14, 8, 31, 10, 34].

∗Project Advisor: Zinan Lin.
†Correspondence to Zinan Lin (zinanlin@microsoft.com) and Yu Wang (yu-wang@mail.tsinghua.

edu.cn).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/imagination-research/Distilled-Decoding-2
https://github.com/imagination-research/Distilled-Decoding-2
zinanlin@microsoft.com
yu-wang@mail.tsinghua.edu.cn
yu-wang@mail.tsinghua.edu.cn


Despite their strong generation ability, a key limitation of AR models lies in their inherent sequentially
modeling manner, which leads to the token-by-token sampling process and significantly slower
inference speed. Numerous methods have been proposed to reduce sampling steps [41, 1, 18, 36,
11, 2, 37, 17], but nearly all fail to achieve single-step sampling without significant performance
degradation, leaving room for further speedup. Please refer to Sec. 4.1 for more details.

Figure 1: Our goal is to distill a multi-
step AR model in to a one-step generator
while keeping its distribution.

Distilled Decoding 1 (DD1) [21] marks a significant
breakthrough in reducing the sampling steps for AR mod-
els, as it is the first method capable of compressing the
sampling process of an AR image model to only a single
step. DD1 introduces flow matching [22, 20] into the AR
sampling pipeline. Specifically, instead of sampling the
next token directly from a probability vector output by the
AR model, DD1 leverages flow matching in the codebook
embedding space to transform a noise token into a data to-
ken. This enables token-wise deterministic mapping from
noise to data while preserving the output distribution of
the original AR model. By iteratively conducting this process following the original AR sampling
order, DD1 obtains a complete mapping from a noise token sequence to a data token sequence. Then,
a new model is distilled to directly learn this mapping, allowing the generation of the entire token
sequence in a single forward pass.

However, the constructed mapping is inherently challenging for the model to learn, resulting in a
noticeable performance drop compared to the original AR model. In addition, training a generative
model to directly fit a predefined mapping may impose constraints on the flexibility. In contrast,
models like GANs and VAEs, which do not learn explicit input–output correspondences, have shown
broad applicability across downstream generation tasks [19]. This insight leads us to ask:

Can we train a one-step generative model whose output distribution matches a given AR model,
without relying on any predefined mapping?

To answer this problem, we propose Distilled Decoding 2 (DD2) as a completely new method.
Inspired by DD1, our key motivation is to reinterpret the AR model, which originally outputs a
discrete probability vector for the next token qi, as a conditional score model that predicts the gradient
of the log conditional probability density (i.e., the conditional score) in the codebook embedding space.
Specifically, we view the generation of each token as a conditional flow matching process. Based
on this, given all previous tokens q1,...,i−1 as the condition, we can use the teacher model’s output
probability vector to define a conditional score s(qti , t|q<i) = ∇qti

log p(qti |q<i), where t denotes
the flow matching timestep. Unlike DD1, where the conditional score is used solely to construct an
ODE-based mapping, we aim to make fuller use of this signal. We borrow ideas from score distillation
methods (e.g., [26, 40, 24, 43, 48]), which match the score of ax one-step generator’s distribution
to that of a teacher diffusion model and have recently shown strong performance in diffusion-
based generation. Specifically, our DD2 jointly trains a one-step generator and a conditional
guidance network that learns the conditional score of the generator distribution. We propose a novel
Conditional Score Distillation (CSD) loss for training, which aligns the conditional score between the
guidance network and the teacher AR model at every token position. We show that when the CSD
loss is minimized to its optimality, the output distribution of the one-step generator matches exactly
that of the original AR model.

It is important to highlight that our method is fundamentally different from diffusion score distil-
lation. Although both approaches involve aligning scores, AR models and diffusion models follow
completely different modeling approaches and generation processes. As a result, the goals and
challenges in this paper are inherently distinct from previous works. More discussion about the
differences between the two methods can be found at Sec. 6.1.

To validate the effectiveness of DD2, we follow the evaluation setup of DD1 and conduct experiments
on ImageNet-256 [4] with two strong autoregressive models: VAR [37] and LlamaGen [35]. On
VAR, we reduce the sampling steps from 10 to 1 with a marginal FID increase less than 2.5 (e.g.,
from 4.19 to 6.21), achieving a up to 8.1× speedup. Compared to DD1, DD2 reduce the performance
gap between the 1-step model and the original AR model by up to 67%. On LlamaGen, we compress
the sampling process from 256 steps to 1 with an FID degradation from 4.11 to 8.59, resulting in a
238× speedup. Compared to DD1, our 1-step model achieves an FID improvement of 2.76. Further
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Figure 2: Comparison of DD2 models, DD1 models, pre-trained models, and other acceleration
methods for pre-trained models. DD2 achieves a significant speedup compared to pre-trained models
while outperforming DD1 by a large margin. Other methods fail to achieve one-step sampling. For
DD2, DD1, and the pre-trained model, each point corresponds to a different model size, whereas for
the skip-last method, each point corresponds to a different number of skipped final steps.

comparisons between DD2 and other baseline methods are presented in Fig. 2. Additionally, DD2 is
highly efficient to train: compared to DD1, it achieves up to 12.3× training speedup. We hope this
work can inspire future research toward making image AR models maximally efficient while keeping
their superior sample quality.

2 Preliminary

In this section, we introduce the formulation of standard image AR models to understand DD2.

2.1 Image Tokenizer

To train an image AR model, we first need to convert continuous-valued images into discrete token
sequences, so that the probability of each token can be explicitly outputted by the model. Recent AR
models mostly rely on vector quantization (VQ) [39], which leverages an encoder E , a quantizer Q,
and a decoder D to discretize and reconstruct visual content.

The process begins by encoding the input image x ∈ R3×H×W into a latent representation: z′ = E(x),
where z′ = (z1, z2, . . . , zh×w) ∈ RC×h×w is a lower-resolution feature map containing h × w
embeddings, each of dimension C. For each embedding zi, the quantizer selects the nearest code
vector qi from a learned codebook V = (c1, c2, . . . , cV ) ∈ RV×C . The resulting discrete token
sequence is denoted as z = (q1, q2, . . . , qh×w), where each qi is a token cj in V . To reconstruct
the original image, the decoder D takes z as input and produces: x̂ = D(z). During training, a
reconstruction loss l(x̂, x) is used to ensure fidelity between the original and the reconstructed image.
This VQ-based framework underpins many state-of-the-art image AR models [16, 2, 37, 35, 17].

2.2 Auto-regressive Modeling

Once a well trained image tokenizer is available, an AR model can be employed for image generation.
We assume that an image is represented as a sequence of discrete tokens z = (q1, · · · , qn), where
each qi corresponds to an embedding from the codebook V: qi ∈ {c1, . . . , cV }. The AR model is
trained to estimate the conditional probability distribution of each token given all previous tokens:
p(qi|q<i) = p(qi|qi−1, qi−2, · · · , q1) = (p1, . . . , pj , . . . , pV ), where pj denotes the probability that
the next token corresponds to the j-th entry in the codebook.

At generation time, the model samples tokens one by one in order, and the likelihood of the full
sequence is given by: p(Z) =

∏n
i=1 p(qi|q<i). This generation procedure requires n autoregressive

steps, which is often a large number, resulting in slow inference speed and limited efficiency.

3 Distilled Decoding 2

In this section, we first introduce the formal problem definition in Sec. 3.1. Then, we propose
Conditional Score Distillation (CSD) loss as the core component of DD2 in Sec. 3.2. Then
we discuss our initialization method in Sec. 3.3, which plays a crucial role in training speed and
performance. Finally, we present the full training pipeline of our approach.
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(a) Training loss of the generator. (b) Training loss of the guidance network.

Figure 3: Training process using CSD loss. For the generator, the teacher AR model and the guidance
network give the true and fake conditional score of each noisy token based on all previous clean tokens,
respectively. Then the true and fake conditional score are used to calculate the score distillation loss,
which produces gradient to train the generator. The guidance network learn the conditional score of
each noisy token given all previous clean tokens, by optimizing with a standard AR-diffusion loss
[17]. The generator and the guidance model are trained alternately.

3.1 Problem Formulation

Suppose a image can be encoded as a sequence of length n, and we have a well trained teacher AR
model pΦ, which gives the next token probability conditioned on all previous tokens pΦ(xi|x<i) and
will be fixed. Our goal is to train a one-step generator Gθ, which can output a generated sequence
zθ = (q1, . . . , qn) in one run given a latent variable ε drawn from the prior distribution: zθ = Gθ(ε).
We hope the distribution of zθ can match the distribution of the teacher AR model.

3.2 Conditional Score Distillation Loss

In this section, we first introduce our idea of viewing teacher AR model as a conditional score model
in Sec. 3.2.1, and propose the objective based on it in Sec. 3.2.2. Then, we present how to train the
conditional score model for the generator distribution in Sec. 3.2.3, as it is required by the objective.

3.2.1 Teacher AR as a Conditional Score Model

Considering the generation process of the i-th token qi given all previous tokens (q1, . . . , qi−1) as
the condition, we have the probability vector p = (p1, . . . , pV ) outputted by the teacher AR model,
where pj ≥ 0 denote the probability of j-th token cj and

∑V
j=1 pj = 1. Inspired by DD1 [21],

we view the sampling process as a continuous transformation of flow matching [22, 20] from a
source Gaussian distribution at t = 1 to a sum of Dirac function δ(·) weighted by p at t = 0:
p(qi) =

∑V
j=1 pjδ(qi − cj). By choosing the noise schedule of RectFlow [22], the score function

can be expressed in closed form as:

s(xt, t, p) = −
∑V
j=1 pj(xt − (1− t)cj)e

−
(xt−(1−t)cj)

2

2t2

t2
∑V
j=1 pje

−
(xt−(1−t)cj)

2

2t2

(1)

For more details on the derivation of this expression, refer to App. C.1. By substituting qi as
x and (p1, . . . , pV ) = pΦ(qi|q<i) to Eq. (1), we rewrite the left side of Eq. (1) in the form of
conditional score function s(xt, t, p) = sΦ(q

t
i , t|q<i). Here qti is a noisy version of the clean token qi:

qti = (1− t)qi + tϵ, ϵ ∼ N (0; I). The term conditional score refers to the score of qti conditioned on
q<i. Note that the condition term q<i consists of previous clean tokens without any noise injection,
so it can also be noted as q0<i.

3.2.2 Training Objective

With access to the true score function, we aim to make full use of this information rather than using
it merely to construct an ODE mapping as in DD1. To this end, we draw inspiration from score
distillation methods. These methods seek to align the distribution generated by a model with that of a
teacher by matching their respective score functions.
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We first present a general formulation of score distillation. Let x ∈ RC be a random variable. Denote
pΦ and sΦ as the probability density function and its score function given by the teacher model Φ,
pθ and sfake as the probability density function and its score function of the generator θ. A general
score distillation loss can be given as:

LSD = Et∼[0,T ],x0∼pθ,ϵ∼N (0;I)d(sΦ(αtx0 + σtϵ, t), sfake(αtx0 + σtϵ, t)), (2)

where d is a function satisfying that minimal LSD guarantees ∀x ∈ RC , pθ(x) = pΦ(x). In practice,
we choose SiD loss [48] due to its effectiveness, giving:

d = ω(t)
σ4
t

α2
t

(sΦ − sfake)
T (sΦ +

ϵ

σt
− α(sΦ − sfake)), (3)

where ω(t) is the weight function and α is a hyper-parameter, which we set to 1.0.

In our scenario, however, we are not aligning the distribution of a single random variable like score
distillation for diffusion models [43, 24, 48], but a sequence of random variables with auto-regressive
correspondence. Specifically, we aim to match the generator’s conditional distribution at each token
position with that of the teacher AR model. This motivates us to minimize the score distillation loss
on all token positions. Additionally, we have to replace the score term in Eq. (2) with the conditional
score given all previous tokens and αt, σt with the noise schedule of RectFlow [22]. By incorporating
above modifications to Eq. (2), we propose our conditional score distillation (CSD) loss:

LCSD = Eti,(q1,...,qn)∼pθ,ϵ∼N (0;I)

n∑
i=1

d(sΦ(q
ti
i , ti|sg(q<i)), sfake(q

ti
i , ti|sg(q<i))), (4)

where qti = (1 − t)qi + tϵ and sg(·) means the stop gradient operation. We give the following
proposition to show the correctness of our CSD loss, with a brief proof in App. A.
Proposition 1. Minimal LCSD guarantees ∀z = (q1, . . . , qn) ∈ Rn∗C , pθ(z) = pΦ(z).

Intuitively, Eq. (4) encourages progressive alignment of the token sequence distributions. Consider
the first token q1, which has no constraints by any other tokens. Its associated loss term reduces to
a standard score distillation loss Et1,q1∼pθ,ϵ∼N (0;I)d(sΦ(q

t1
1 , t1), sfake(q

t1
1 , t1)), which encourages

pθ(q1) to align with pΦ(q1). Once the first token’s distribution is aligned, we then consider the loss
for the second token: Et2,q2∼pθ,ϵ∼N (0;I)d(sΦ(q

t2
2 , t2|sg(q1)), sfake(q

t2
2 , t2)|sg(q1)). Optimizing this

ensures pθ(q2|q1) = pΦ(q2|q1). Given that pθ(q1) = pΦ(q1) has already been achieved, it follows
pθ(q1, q2) = pΦ(q1, q2). By sequentially matching the distribution on each token position, we can
finally align the entire distribution pθ(q1, . . . , qn) with pΦ(q1, . . . , qn).

3.2.3 Learning the Conditional Score of the Generator

To optimize Eq. (4), we need to access the conditional score of the generator sfake(qtii , ti|q<i).
Following previous works of diffusion score distillation [24, 43, 42, 48], we train a separate model ψ
to output this term, which we refer to as the conditional guidance network.

Specifically, our guidance network consists of a decoder-only transformer backbone and a lightweight
MLP head with negligible cost. The training procedure is inspired by MAR [17]. Given a generated
token sequence (q1, . . . , qn) from the generator, we first process it with the causal transformer
backbone, yielding a sequence of hidden features (f1, . . . , fn). Each feature fi only corresponds to
tokens q<i and thus captures strictly causal context. For each token position i, the MLP takes as input
a noised version of the token qtii , the corresponding timestep ti, and the contextual feature fi. Since
fi only corresponds to q<i as the conditioning, we denote the outputted score function as the fake
conditional score sψ(qtii , ti | q<i). We train the model across all AR positions in parallel and then
present the following loss:

LFCS = Eti,(q1,...,qn)∼pθ,ϵ∼N (0;I)

n∑
i=1

∥sψ(qtii , ti|q<i)−∇
q
ti
i
log p(qtii |qi)∥

2, (5)

where qti = (1 − t)qi + tϵ, and ∇
q
ti
i
log p(qtii |qi) can be simplified to − ϵ

t [34]. The MLP and
transformer backbone are jointly optimized with LFCS .

In practice, the guidance network ψ and generator θ are trained alternately using Eq. (5) and Eq. (4),
respectively. During generator training with Eq. (4), the score term sfake is entirely replaced by sψ ,
with gradients blocked from propagating into ψ. The training algorithm and an illustration of the
pipeline are provided in Alg. 1 and Fig. 3.
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Figure 4: Training loss for initialization.

Figure 5: Overall pipeline. Performance alignment
is an optional technique in the CSD training stage,
which is introduced in App. B.4.

3.3 Initialization of Generator and Guidance Network

With the training procedure outlined in Alg. 1, we are now ready for DD2 training. However,
directly applying this method does not yield satisfactory results. We attribute this to the poor model
initialization. We delve into this issue and propose our solutions in the following part of this section.

We find that good initialization is crucial for score distillation methods: poor initialization can lead
to slow convergence or even training collapse. To validate this, we conduct diffusion distillation
experiments on the ImageNet-64 dataset using the original DMD [43, 42] approach under different
initialization schemes: (1) Default: both the guidance and generator models are initialized from
a pretrained teacher diffusion model, (2) Random Guidance: the guidance model is randomly
initialized, (3) Random Generator: the generator is randomly initialized, and (4) Partial Random
Generator: only the final layer of the generator is randomly initialized. As shown in Fig. 6, improper
initialization of either the guidance or the generator leads to significant training degradation. Even
randomly initializing just the final layer of the generator severely impacts the performance. This
is because initialization determines both the internal knowledge stored in the network and the
generator’s initial distribution, both of which are critical to stable and efficient score distillation
training as discussed in [46].

In our setting, both the generator and the conditional guidance network output continuous values,
while the teacher AR model produces probability vectors. This structural mismatch makes it impos-
sible to directly reuse the model weights from the teacher AR model to initialize the output heads.
To address this, we propose a novel initialization strategy: we first replace the teacher AR model’s
classification head with a lightweight MLP, and fine-tune the new model with AR-diffusion loss [17]
to align its distribution with the teacher AR model. This process is similar to the training of the
conditional guidance network and MAR model [17] but with a key difference: we introduce Ground
Truth Score (GTS) loss by replacing the Monte Carlo Estimation in Eq. (5) with the ground truth
score calculated using the teacher AR model with Eq. (1), giving:

LGTS = Eti,(q1,...,qn)∼pΦ,ϵ∼N (0;I)

n∑
i=1

∥sψ(qtii , ti|q<i)− sΦ(q
ti
i , ti|q<i)∥

2. (6)

This loss significantly improves training stability and convergence speed, as demonstrated in experi-
ments in Tab. 7. The training process is shown at Alg. 2

For both generator and guidance network, we adopt the same architecture composed of a transformer
backbone and a lightweight MLP head, both initialized from the tuned AR diffusion model. For
generator, we sample a noise sequence ε = (ϵ1, . . . , ϵn) as the latent variable input, where each
ϵi ∼ N (0; I). This sequence is fed directly into the MLP, while a one-step offset version is provided
to the transformer backbone. Model architectures are shown in Fig. 7.

Such strategy serves as a strong initialization for both generator and guidance network, improving the
training significantly as demonstrated in Sec. 5.5.

Overall pipeline The complete training process consists of two stages: an initialization tuning phase
with Eq. (6) and a main training phase with Eq. (4) (for the generator) and Eq. (5) (for the guidance
network). The workflow is illustrated in Alg. 3 and Fig. 5. More techniques can be found in App. C.

Multi-step sampling involving the teacher model. To achieve more flexible trade-off between
sample quality and steps, we can use the teacher model to refine the last several steps of the one-step
generated sequence. Details of this sampling method are shown in App. D and Alg. 4.
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Algorithm 1: Training with CSD loss
Require:

the pre-trained teacher AR model Φ.
1: while not converged do
2: z = (q1, . . . , qn)← Gθ(ϵ)

// Train generator θ
3: Sample t = (t1, . . . , tn), sample

zϵ = (ϵ1, . . . , ϵn) from Gaussian
distribution

4: zt = (qt11 , . . . , q
tn
n )← (1− t)z + tzϵ

5: update θ with LCSD(zt, z, t, ψ,Φ) //
Eq. (4).

// Train guidance network ψ
6: Sample another t = (t1, . . . , tn), sample

another zϵ = (ϵ1, . . . , ϵn) from Gaussian
distribution

7: zt = (qt11 , . . . , q
tn
n )← (1− t)z + tzϵ

8: update ψ with LFCS(z
t, z, t, ψ) // Eq. (5).

9: end while
10: return θ

Algorithm 2: Tuning the AR-diffusion model
Require: dataset D, the pre-trained teacher AR model Φ,

AR-diffusion model Ψ.
1: initialize the backbone of Ψ with the backbone of Φ,

randomly initialize the MLP head of Ψ
2: while not converged do
3: Sample z = (q1, . . . , qn) ∼ D
4: Sample t = (t1, . . . , tn), sample zϵ = (ϵ1, . . . , ϵn)

from Gaussian distribution
5: zt = (qt11 , . . . , q

tn
n )← (1− t)z + tzϵ

6: update Ψ with LGTS(z
t, z, t,Ψ,Φ) Eq. (6).

7: end while
8: return Ψ

Algorithm 3: Overall Pipeline

Require: dataset D, the pre-trained teacher AR model θΦ.
1: train the AR-diffusion model Ψ with Alg. 2
2: duplicate the trained Ψ as generator θ and guidance

network ψ
3: train generator θ and guidance network ψ with Alg. 1
4: return θ

4 Related Works

4.1 Reducing the Sampling Steps of AR Models

Many prior works have attempted to reduce the sampling steps of AR models. Set prediction is a
commonly used approach in image AR modeling, where the model is trained to predict the probability
of a set of tokens simultaneously [2, 16, 37, 17]. It significantly reduces the number of sampling
steps to around 10. However, this method struggles to sample with very few steps (e.g., 1), due to
the complete loss of token correlation within each set. As the set size increases, this loss becomes
increasingly detrimental to sample quality as discussed in [21]. For example, consider the case
where the dataset contains 2 data samples with 2 dimensions: D = {(0, 0), (1, 1)}. The one-step
sampling yields a uniform distribution among {(0, 0), (1, 1), (0, 1), (1, 0)}, which is incorrect. For
more details, please refer to the Section 3.1 of DD1 [21]. Speculative decoding is another method
of step reduction, which is widely used in large language models (LLMs) [41, 1, 18] due to its
training-free property. It generates several draft tokens with a more efficient sampling method and
then verifies them in parallel using the target model. Speculative decoding can achieve only a limited
compression ratio of sampling steps (less than 3×) in image AR generation [36, 11], due to the weak
modeling capacity of the draft generator.

Distilled Decoding 1 (DD1) [21] is the first work that compress the sampling steps of image AR
models to 1 without performance collapse. The key idea of DD1 is to construct a deterministic
mapping between a sequence of noise tokens and a sequence of target tokens. Specifically, given
the probability vector outputted by the teacher AR model when generating the next token, DD1
replaces the multinomial sampling process of the original AR model with flow-matching sampling.
The required velocity field can be accurately calculated through Eq. (1). By conducting this process
following the original AR order, DD1 can map a noise sequence to a data sequence. Then DD1
simply train a neural network to fit this mapping. Although DD1 enables one-step sampling, it suffers
from significant performance degradation and relatively slow training. Moreover, its reliance on a
predefined mapping limits flexibility. As a new one-step training framework for AR models, DD2
effectively alleviates all the issues above.
4.2 Score Distillation for Diffusion Models
Similar to AR models, diffusion models (DMs) also suffer from a large number of sampling steps
required by solving the diffusion ODE/SDE. Score distillation [26, 40] serves as a method to distill the
multi-step teacher DM into a one-step generator [24, 43, 42, 48]. The main idea of score distillation
is to make the distribution of the generator indistinguishable to the distribution of the teacher DM.
A general formulation of score distillation generator loss has been given in Eq. (2). A guidance
network is introduced to approximate the score function sfake of the generator. Both models are
trained in turn. Different score distillation methods choose different types of generator loss. For
example, [24, 43, 42] take the KL divergence between the two distributions as the objective, which
gives d = sfake − sΦ. SiD [48] aims to optimize the l2 distance between the score functions of the
two distributions, giving Eq. (3) as the loss. Compared to traditional diffusion distillation method
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based on ODE mapping [23, 29, 33, 13, 32], score distillation methods are more flexible and have
better results. By introducing training data, [46] eliminates the teacher guidance in score distillation
through class-ratio estimation. Recently, there are also methods applying DMD to temporal causal
data type like video [44]. The main difference between our paper and [44] lies in the problems they
aim to solve: our work focuses on few-step sampling for AR models, where an AR model is available
as the teacher, while [44] targets to decrease the step of DMs and assumes access to a teacher DM.

5 Experiments
In this section, we apply DD2 to existing pretrained AR models to demonstrate DD2’s strong ability
to compress AR sampling into a single step.

5.1 Setup

Base Models and Benchmark. In line with DD1 [21], we choose VAR [37] and LlamaGen [35] as
the base AR models due to their popularity and strong generation quality. Moreover, these two models
differ significantly across several key aspects, which makes them ideal testbeds for evaluating the
generality of DD2: (1) Tokenizer training: VAR’s codebook is trained to support multi-resolution
image tokens, while LlamaGen’s tokens are derived solely from the original resolution space; (2)
Token ordering: VAR constructs the full sequence by concatenating sub-sequences across different
resolutions, whereas LlamaGen follows a traditional raster-scan order; (3) Generation steps: VAR
has 10 sampling steps, while LlamaGen requires 256 steps. These differences allows us to evaluate
how DD2 performs across a wide range of AR setups. We choose the popular and standard ImageNet-
256 dataset as the benchmark.

Generation. We use the one-step sample quality as our main results in Tab. 1. Additionally, following
DD1, we involve the teacher AR model in sampling for smoother trade-off of quality and steps.
Results are listed in Tab. 2.

Baselines. Since DD1 [21] is the only method that enables few-step sampling for image AR models,
we take it as our main baseline. We also report the results of several weak baselines in the DD1 paper:
(1) directly skip last several steps, and (2) predicting the distribution of all tokens in one step, which
is the extreme case of set-of-token prediction method. Details of baseline can be found in App. E.5.

5.2 Results of One-step Generation
We demonstrate the main results of DD2 in Tab. 1. Since the model parameter sizes and inference
latency of DD2 and DD1 are similar, we compare them under the same number of sampling steps.
The key takeaways are:

The performance gap between DD2 and the teacher AR model is minimal. For VAR models
across all model sizes, compressing the teacher model to 1 step and achieving up to 8.1× speedup
with an mere FID increase of less than 2.5. For LlamaGen models, DD2 achieves 238× speed-up in
a FID increase of only 4.48. Such a performance drop is acceptable.

DD2 outperforms the strongest baseline DD1 significantly. For VAR models across all model
sizes, DD2 decreases the performance gap between the teacher AR model and one-step model by
up to 67% compared to DD1. DD2 even outperforms the 2 step sampling results of DD1 by a large
margin for all VAR models. For LlamaGen model, DD2 also achieves a 2.76 better FID than DD1.
All weak baselines fail to generate in one-step. These results show the effectiveness of DD2.

5.3 Results of Multi-step Sampling

It is better to offer a smoother trade-off curve between quality and step. To achieve this, we use the
teacher model to refine the last several AR positions of the generated content. The detailed algorithm
is shown at Alg. 4. Results are reported in Tab. 2. For DD1 baseline, we use its default multistep
sampling schedule and control the number of sampling steps to ensure a fair comparison. The sample
quality increases consistently with more sampling steps, offering more choices for the users.

5.4 Training Efficiency

In addition to its superior performance over DD1, DD2 offers another significant advantage: much
faster convergence. As shown in Tab. 3, DD2 requires substantially much fewer GPU hours to train,
achieving up to a 12.3× training speedup while having better performance than DD1. Detailed
analysis of DD2’s training cost can be found at App. B.4.
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Table 1: Generative performance on class-conditional ImageNet-256. “#Step” indicates the number
of model inference to generate one image. “Time” is the wall-time of generating one image in the
steady state. Results with † are taken from [21], while * denotes results obtained with more training.

Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step Time

GAN† StyleGan-XL [30] 2.30 265.1 0.78 0.53 166M 1 0.3

Diff.† ADM [5] 10.94 101.0 0.69 0.63 554M 250 168
Diff.† LDM-4-G [28] 3.60 247.7 − − 400M 250 −
Diff.† DiT-L/2 [25] 5.02 167.2 0.75 0.57 458M 250 31

Mask.† MaskGIT [2] 6.18 182.1 0.80 0.51 227M 8 0.5

AR† VQGAN [6] 15.78 74.3 − − 1.4B 256 24
AR† ViTVQ [45] 4.17 175.1 − − 1.7B 1024 >24
AR† RQTran. [15] 7.55 134.0 − − 3.8B 68 21

AR VAR-d16 [37] 4.15 278.7 0.85 0.41 310M 10 0.133
AR VAR-d20 [37] 3.40 305.1 0.84 0.47 600M 10 0.184
AR VAR-d24 [37] 2.86 312.9 0.82 0.51 1.03B 10 0.251
AR LlamaGen-L [35] 4.11 283.5 0.85 0.48 343M 256 5.01

Weak Baseline† VAR-skip-2 40.09 56.8 0.46 0.50 310M 8 0.098
Weak Baseline† VAR-onestep* 157.5 − − − − 1 −
Weak Baseline† LlamaGen-skip-156 80.72 12.13 0.17 0.20 343M 100 1.95
Weak Baseline† LlamaGen-onestep* 220.2 − − − − 1 −

DD1 VAR-d16 9.94 193.6 0.80 0.37 327M 1 0.021
DD1 VAR-d16 7.82 197.0 0.80 0.41 327M 2 0.036
DD1 VAR-d20 9.55 197.2 0.78 0.38 635M 1 0.027
DD1 VAR-d20 7.33 204.5 0.82 0.40 635M 2 0.047
DD1 VAR-d24 8.92 202.8 0.78 0.39 1.09B 1 0.034
DD1 VAR-d24 6.95 222.5 0.83 0.43 1.09B 2 0.059
DD1 LlamaGen-L 11.35 193.6 0.81 0.30 326M 1 0.023
DD1 LlamaGen-L 7.58 237.5 0.84 0.37 326M 2 0.043

DD2 (ours) VAR-d16 6.21 213.0 0.84 0.39 329M 1 0.019 (7.0×)
DD2 (ours) VAR-d20 5.43 233.7 0.85 0.41 619M 1 0.023 (8.0×)
DD2 (ours) VAR-d24 5.06 254.7 0.85 0.39 1.04B 1 0.031 (8.1×)
DD2 (ours) VAR-d24* 4.91 282.2 0.87 0.39 1.04B 1 0.031 (8.1×)
DD2 (ours) LlamaGen-L 8.59 229.1 0.77 0.32 335M 1 0.021 (238×)
DD2 (ours) LlamaGen-L* 7.58 238.7 0.77 0.34 335M 1 0.021 (238×)

Table 2: Generation quality of involving the pre-trained AR model when sampling. The notation
pre-trained-n-m means that the pre-trained AR model is used to re-generate the n + 1-th to m-th
tokens in the sequence generated in the first step by the few-step generator.

Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step

AR VAR-d16 [37] 4.19 230.2 0.84 0.48 310M 10

DD1 VAR-d16-pre-trained-4-5 6.54 210.8 0.83 0.42 327M 3
DD1 VAR-d16-pre-trained-3-5 5.47 230.5 0.84 0.43 327M 4
DD1 VAR-d16-pre-trained-0-5 5.03 242.8 0.84 0.45 327M 6

DD2 (ours) VAR-d16-pre-trained-8-10 5.24 238.9 0.85 0.40 329M 3
DD2 (ours) VAR-d16-pre-trained-7-10 4.88 248.7 0.86 0.41 329M 4
DD2 (ours) VAR-d16-pre-trained-5-10 4.47 277.8 0.87 0.42 329M 6

5.5 Ablation Study: the Importance of Initialization
As discussed in Sec. 3.3, initialization is dispensable for DD2. We provide results on LlamaGen-L
and VAR-d24 models to verify this, by only initializing one of the generator and guidance network
with the tuned AR-diffusion model, while the other uses the backbone from the teacher AR model
and a randomly initialized output head. Results are shown in Tab. 4. We find that missing proper
initialization for either of them can lead to significant performance degradation or even collapse,
highlighting the importance of good initialization for both components.

6 Discussions
6.1 Distinction with diffusion score distillation
In this section, we discuss the differences between score distillation for diffusion models and DD2.

Fundamentally Different Task. Traditional score distillation methods aim to reduce the number
of sampling steps for diffusion models. In contrast, our work focuses on one-step sampling for
pre-trained AR models, which is a fundamentally different generative paradigm from diffusion models.
Despite the competitive or even superior performance of AR models compared to diffusion models,
one-step sampling for AR models is under explored, which highlights the contribution of DD2.
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Table 3: Training cost of DD2 and speed-up com-
pared with DD1. All experiments are done on 8
NVIDIA A800 GPUs.

Method Model Param Cost (8×GPU h) Speed-up

DD1 VAR-d16 327M 296.9 1×
DD1 VAR-d20 635M 484.4 1×
DD1 VAR-d24 1.09B 604.2 1×
DD1 LlamaGen-L 326M 647.7 1×

DD2 (ours) VAR-d16 329M 115.5 2.6×
DD2 (ours) VAR-d20 619M 174.4 2.8×
DD2 (ours) VAR-d24 1.04B 96.1 6.3×
DD2 (ours) LlamaGen-L 335M 52.6 12.3×

Table 4: Impact of Initialization.
Gui-Init Gen-Init Model Param FID-5k

✓ ✓ LlamaGen-L 335M 14.77
✓ × LlamaGen-L 335M 16.08

× ✓ LlamaGen-L 335M 21.76

✓ ✓ VAR-d24 1.04B 11.53
✓ × VAR-d24 1.04B Collapse(>200)

× ✓ VAR-d24 1.04B Collapse(>200)

Table 5: Perceptual path length of DD2 and DD1.
DD1 DD2

PPL↓ 18437.6 7231.9

Technical Adaptations. Directly applying standard score distillation to AR models is not feasible.
We have made multiple technical innovations to tackle this problem: (1) we train the guidance network
to learn the conditional score of the generator instead of the score, (2) we replace the classification
layer in AR models with MLP head to ensure continuous output, and (3) we propose to adapting
the pre-trained AR model into an AR-diffusion model as an initialization. We further replace the
standard AR-diffusion loss with our GTS loss for better convergence of this process.

Our strong results offer a new perspective on training one-step generative models. Currently, the
dominant strategy for training such models focuses on diffusion-based frameworks. In contrast, our
method demonstrates that distilling an AR model is also a highly competitive approach, as our results
surpass many representative diffusion distillation techniques shown in Tab. 6.

6.2 Benefits of Eliminating Pre-defined Mapping in DD1
Compared to DD1, a key feature of DD2 is that it does not rely on any pre-defined mapping, which
brings several potential benefits: (1) More efficient utilization of model knowledge. In DD1,
the pre-defined mapping provides only a single end-to-end signal, whereas DD2 explicitly trains
the model at every token position, offering a more fine-grained supervisory signal. (2) Reduced
accumulation of errors. In DD1, if the model fails to correctly learn the noise-to-data mapping at a
certain position, this error propagates to subsequent positions because their conditions depend on
earlier predictions. In contrast, in DD2, the teacher model provides ground-truth distributions for
each token position based on the generator’s current condition. Since the teacher model possesses
strong generalization ability, the impact of imperfect conditions is greatly mitigated. (3) Smoother
latent representations. More generally, training generative models without pre-defined mappings
allows them to automatically discover smoother latent representations of the target data distribution,
which benefits learning because smoother representations are easier to optimize. To quantify this
property, we measure the Perceptual Path Length (PPL) metric [12] for both DD2 and DD1, where a
lower value indicates smoother interpolation in the latent space. As shown in Tab. 5, DD2 achieves
significantly smoother latent interpolation than DD1.

7 Future Works and Limitations
Compatibility with Image AR Models without VQ. In addition to the commonly used discrete-
space AR models based on VQ hidden space, continuous-space AR models [17] has recently gained
increasing popularity. These models generate each token through a diffusion process. Our method is
naturally compatible with such models as well, since they directly provide the conditional score. We
leave the application of our approach to this class of models as future work.

Scaling to Larger Tasks. Image AR models have also been used in larger-scale tasks, such as
text-to-image task [9, 47]. Extending our method to these models offers practical impact.

Performance Gap to the Teacher Model. Although DD2 achieves significant speedup, the distilled
models still exhibit a certain performance gap compared to the original AR models. Addressing this
performance drop to make one-step AR models match or even surpass the quality of pretrained AR
models remains an important and promising direction for future research.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The answer NA means that the paper does not include theoretical results.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
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Justification: See Sec. 3, App. C and App. E.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We have not released our code yet.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Sec. 3, App. C and App. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Some of our baselines are taken from previous papers, which do not contain
error bars. Besides, we believe that the metrics used in our paper are not significantly
affected by randomness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Tab. 1, Tab. 3 for the computational cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: Our method is an acceleration method for AR models, which is not related to
any domains that may have societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets are properly cited and discussed in Sec. 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not released any assets yet.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion of Prop. 1

In this section, we provide the proof of Prop. 1 using a simple induction.

Proof. Assuming the neural network has sufficiently large capacity, minimizing LCSD is then equiv-
alent to minimizing each individual term LCSDi = d(sΦ(q

ti
i , ti|sg(q<i)), sfake(q

ti
i , ti|sg(q<i))) for

any i.

Base case (i = 1): At the first position i = 1, the corresponding term LCSD1 =
d(sΦ(q

t1
1 , t1), sfake(q

t1
1 , t1)) degrades to a traditional score distillation loss, so that minimizing

this term guarantees pθ(q1) = pΦ(q1).

Inductive Hypothesis (i = k − 1): Assume that for token position i = k, the generator correctly
models the distribution of all tokens before this position: pθ(q<k) = pΦ(q<k).

Inductive Step (i = k) Minimizing LCSDk = d(sΦ(q
tk
k , tk|sg(q<k)), sfake(q

tk
k , tk|sg(q<k)))

guarantees pθ(qk|q<k) = pΦ(qk|q<k), so that pθ(q<k+1) = pθ(qk|q<k)pθ(q<k) =
pΦ(qk|q<k)pΦ(q<k) = pΦ(q<k+1) holds

Conclusion: By mathematical induction, minimizing LCSD guarantees pθ(q1, . . . , qn) =
pΦ(q1, . . . , qn).

B More Experimental Details

In this section, we provide some additional experimental settings and results.

B.1 Comparison with Diffusion Distillation Methods

We compare DD2 with several commonly used diffusion distillation methods to show our effectiveness.
Results are shown in Tab. 6.

Table 6: Comparison between DD2 and diffusion distillation methods. Results are taken from the
paper of Shortcut model [7].

DD2-VAR-d16 DD2-VAR-d20 DD2-VAR-d24 PD[29] CD[33] CT[33] Reflow[22] Shortcut[7]

FID↓ 6.21 5.43 4.91 35.6 136.5 69.7 44.8 10.6

B.2 Training Curve of the Original DMD Method

We demonstrate our reproduced FID-iteration curve of the original DMD method with different
initialization setting in Fig. 6. As discussed in Sec. 3.3, an inappropriate score distillation initialization
strategy can lead to slower convergence and bad training stability, which motivates us to use the
AR-diffusion model for initialization.

B.3 Performance of the AR-diffusion Model for Initialization

Table 7: Performance of AR-diffusion models. FIDs are evaluated wit 5k generated images.
Loss Model Param FID-5k Training Iter

GTS VAR-d16 329M 11.41 330k

GTS VAR-d20 619M 11.41 330k

GTS VAR-d24 1.04B 11.24 230k

GTS LlamaGen-L 335M 15.66 100k

diffusion VAR-d16 329M 17.98 500k
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Figure 6: Training results for different initialization strategies. default indicates that both the generator
and the guidance components are initialized using the teacher model [43], random_init_gen_last_layer
refers to the setting where only the last layer of the generator is randomly initialized, while the rest of
the generator and the guidance are initialized from the teacher model. random_init_gen means the
entire generator is randomly initialized, whereas the guidance is initialized from the teacher model.
random_init_gui denotes the case where only the guidance is randomly initialized, with the generator
initialized from the teacher model.

Table 8: Wall time (hour) of each training stage under different settings. All time costs are profiled
on 8 NVIDIA A800 GPUs.

Model VAR-d16 VAR-d20 VAR-d24 LlamaGen-L

Continuous Adaptation - - - 3.3
AR-diffusion Tuning (Head Only) 60.1 72.6 59.9 -
AR-diffusion Tuning (Full Model) 8.0 9.1 17.2 8.6
Main Training 42.6 88.0 19.0 40.7
Performance Alignment 4.8 4.7 - -

Overall 115.5 174.4 96.1 52.6

We report the performance of the tuned AR-diffusion Model in Tab. 7, which serves as the initialization
of both generator and guidance network. We use a 10-step Euler solver for the sampling process of
every token. To verify the effectiveness of the proposed GTS loss Eq. (6), we also report the results
of using traditional diffusion loss where the target is a Monte Carol of the ground truth score. The
key takeaways are: (1) the tuned AR-diffusion model demonstrates strong sample quality, making it
a suitable choice for initialization, and (2) performance degrades significantly if we use traditional
diffusion loss, highlighting the effectiveness and necessity of our GTS loss.

B.4 Training Details and Cost

The training mainly cost consists of two parts: AR-diffusion tuning and the main training process
with CSD loss.

In the first stage, we use the same setting as in evaluation to generate the training data. Specifically,
for all VAR models, we apply top_k as 900 and classifier-free-guidance scale as 2.0; for LlamaGen
model we use top_k as 8000 and classifier-free-guidance scale as 2.0.
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Table 9: Converged performance before/after using performance alignment operation.
Type Model FID↓ IS↑ Pre↑ Rec↑ #Para #Step

DD2 (Before) VAR-d16 8.35 176.7 0.80 0.42 329M 1
DD2 (Before) VAR-d20 6.57 201.4 0.81 0.43 618M 1
DD2 (After) VAR-d16 6.21 213.0 0.84 0.39 329M 1
DD2 (After) VAR-d20 5.43 233.7 0.85 0.41 618M 1

For VAR models, in the first stage, we first fine-tune only the output head, and subsequently train the
entire model. For the second part, we apply performance alignment to d16 and d20 models, which
takes additional cost of training the guidance network. We list the cost of each part in Tab. 8.

For LlamaGen model, there is an additional stage where we fine-tune the teacher model to support
continuous input. For AR-diffusion tuning, we directly train the entire model. We don’t apply
performance alignment. Detailed results are listed in Tab. 8.

B.5 The Effectiveness of Performance Alignment

We provide the convergence performance of the d16 and d20 models before and after performing the
performance alignment procedure in Tab. 9, demonstrating the effectiveness of this operation.

C Implementation Techniques

In this section, we introduce several techniques we use in our pipeline.

C.1 Computing Score Function with Probability Vector

In this section, we derive Eq. (1) starting from the preliminaries of flow matching.

Flow matching [20, 22] defines an invertible transformation with ordinary differential equation (ODE)
dx = V (xt, t)dt between two distributions π0(x) and π1(x). The velocity function under linear
noise schedule xt = (1− t)x0 + tx1 can be given as:

V (xt, t) = Ex0,x1∼π0,1(x0,x1)(x1 − x0|(1− t)x0 + tx1 = xt), (7)

where π0,1(x0, x1) is any joint distribution that satisfies temporal boundary conditions at both ends:∫
π0,1(x0, x1)dx0 = π1(x1) and

∫
π0,1(x0, x1)dx1 = π0(x0).

Since the source distribution π1(x) is a Gaussian distribution here, the relationship between the score
function s(xt, t) and the velocity V (xt, t) is as follows:

v(xt, t) = − ts(xt, t) + xt
1− t

(8)

And the score function can be given as:

s(xt, t) = Ex0,x1∼π0,1(x0,x1)(−
x1
t
|(1− t)x0 + tx1 = xt) (9)

In our problem, the target distribution is a weighted sum of Dirac functions: π0(x) =
∑V
j=1 pjδ(x−

cj), and is independent of the source distribution, resulting in only a finite number of possibilities.
Therefore, we only need compute the product of the source distribution probability and the target
distribution probability for each possible case, and then use this as the weight function to compute
the expectation of −x1

t . With the above explanations, we can easily arrive at Eq. (1).

C.2 Multiple Noisy Samples for Fake Conditional Score Learning

As discussed in Sec. 3.2.2, the output of the guidance network sψ(qtii ,i |q<i) is computed in two
stages. First, a transformer backbone process the input sequence (q1, . . . , qn) and outputs a feature
sequence (f1, . . . , fn), where each fi is causally conditioned on q<i. Then, a lightweight MLP takes
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the noisy token qtii , timestep ti and the feature fi as input, then outputs the estimated conditional
score sψ(qtii , ti|q<i).
Every conditioning fi defines a continuous distribution over noisy inputs (xt, t), and the model
must learn to predict score function across the entire space and all timesteps. To ensure sufficient
training and improve generalization, we draw inspiration from the MAR implementation (see https:
//github.com/LTH14/mar for more details) and apply a multi-sample training strategy. Specifically,
for a generated sequence (q1, . . . , qn), we sample multiple noise sequences (ϵ1, . . . , ϵn)1,...,m to
create multiple noisy versions of the generated sequence. For each noisy sequence, we apply Eq. (5)
as the loss function and take the average across all m samples. The resulting training objective is:

LFCS = E(q1,...,qn)∼pθ

m∑
j=1

n∑
i=1

∥sψ(q
ti,j
i , ti,j |q<i)−∇

q
ti,j
i

log p(q
ti,j
i |qi)∥2, (10)

where ti,j is the j-th sample at the i-th token position, qti,ji = (1− ti,j)qi+ ti,jϵi,j , with ϵ ∼ N (0; I)
denotes the j-th noise sample at the i-th token position.

C.3 Performance Alignment for both Generator and Guidance network

We find there are two issues during training: (1) there is a discrepancy between the guidance network
and the generator’s score, and (2) unstable training dynamics. Specifically, we observe that the
samples generated by the conditional guidance network via AR-diffusion tend to under-perform those
generated by the generator, indicating a training gap of the guidance network. Additionally, we notice
that the generator’s FID fluctuates significantly during training. However, applying the Exponential
Moving Average (EMA) technique to the generator leads to a much more stable performance curve.
These findings motivate us to introduce a performance alignment procedure for both generator and
guidance network after an initial phase of training. Specifically, (1) for the generator, we replace the
regular model weights directly with EMA weights, then (2) we fix the generator and only train the
conditional guidance network for a certain period to adapt it to the new generator distribution. Once
this alignment process is complete, we resume the standard training process. We empirically found
that this technique is particularly helpful for training VAR-d16 and VAR-d20 models, significantly
improving performance even after the models have already converged. Results are shown at Tab. 9.

C.4 Larger Update Frequency for the Guidance Network

Training the guidance network is crucial, as it is responsible for producing accurate conditional scores
of the generator distribution. However, this task is challenging because the generator distribution
is also evolving during training. To address this issue, we adopt a higher update frequency for the
guidance network, following the strategy used in DMD2 [42]. Specifically, in each training iteration,
we update the guidance network K times with (K > 1) while updating the generator only once. The
specific values of K used for different models are provided in App. E.

C.5 Details of Model Architectures

We use the same architecture for both generator and guidance network. Inspired by MAR [17], our
model architecture consists of a transformer backbone and a lightweight MLP head. As discussed in
Sec. 3, for the guidance network, the transformer backbone takes the token sequence as input and
output a causal feature sequence, while the MLP head takes the feature, noisy token and timestep as
input and output the predicted conditional score. For the generator, the transformer backbone takes
the shifted noise sequence as input, while the MLP head takes the noise sequence and the feature
sequence as input and give the final generated sequence. We demonstrate the model architectures in
Fig. 7.

D Algorithms of Multi-step Sampling Method

In this section, we present the pseudo algorithm of the multi-step sampling method in Sec. 3.
Suppose we have a sequence X = (q1, . . . , qn). We denote the indexing operations X[t] = qt and
X[: t] = (q1, . . . , qt−1). The pseudo algorithm is presented in Alg. 4, with results reported in Tab. 2.
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Figure 7: Demonstration of the model architectures and the corresponding inputs/outputs.

Table 10: Hyperparameters used for AR-diffusion model tuning in the initialization phase. Actual
BS/iter refers to the actual batch size used in each training iteration. The training iterations for VAR
are reported in the format of ’only head + full model’ to reflect the two-phase training procedure.

Hyperparameter VAR-d16 VAR-d20 VAR-d24 LlamaGen-L

Learning Rate 2e-4 2e-4 2e-4 1e-4
Batch Size 512 512 512 512
Grad Accumulation 4 8 16 4
Actual BS/iter 128 64 32 128
Adam β0 0.9 0.9 0.9 0.9
Adam β1 0.95 0.95 0.95 0.95
Training Iterations 300k+30k 300k+30k 200k+30k 100k

Algorithm 4: Sampling with the teacher AR model
Require: : The distilled one-step model θ, the pre-trained AR model Φ, total sampling steps k > 1.
Sampling Process
1: X = (q1, . . . , qn)← one-step sampling by θ
2: for t in {n− k + 2, . . . , n} do
3: Sample q′t ∼ pΦ(·|X[: t])
4: X[t]← q′t
5: end for
6: return X

E Detailed Experimental Settings

In this section, we present the settings of our training process.

E.1 Model Parameterization

In this work, we parameterize the network as velocity prediction network, due to its widely verified
good properties. Specifically, we use v(xt, t) = −σts(xt,t)−xt

αt
to convert between velocity and score.

We use the velocity function to train the AR-diffusion model and the guidance network. For the
generator, we use xθ = ϵ− vθ as its final output, where ϵ is the input noise and vθ is the model output.
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Table 11: Hyperparameters used for DD2. Actual BS/iter refers to the actual batch size used in each
training iteration. "Gen" and "Gui" stand for the generator and guidance network, respectively. The
training iterations of the generator for VAR-d16 and VAR-d20 are reported in the format of "before
performance alignment + after performance alignment", while the training iterations of the guidance
network for VAR-d16 and VAR-d20 are reported in the format of "before performance alignment +
alignment + after performance alignment".

Hyperparameter VAR-d16 VAR-d20 VAR-d24 LlamaGen-L
Gui ψ Gen θ Gui ψ Gen θ Gui ψ Gen θ Gui ψ Gen θ

Start Learning rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
End Learning rate 2e-4 2e-4 2e-4 2e-4 4e-4 5e-5 2e-4 1e-4
Batch size 512 512 512 512 1024 1024 1024 1024
Grad Accumulation 4 4 8 8 32 32 8 8
Actual BS/Iter 128 128 64 64 32 32 128 128
Adam β0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Adam β1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Training iterations 40k+8k+15k 8k+7.5k 80k+8k+36k 16k+18k 30k 15k 60k 12k

Guidance Update Freq 5(Before Align), 2(After Align) 5(Before Align), 2(After Align) 2 5

E.2 Stage 1: AR-diffusion Tuning

For VAR models, we first freeze the transformer backbone and tune the output MLP for certain
iterations. Then we remove the constraints and tune all parameters. For LlamaGen model, we directly
tune all parameters from the start. Settings are listed in Tab. 10.

E.3 Stage 2: Training with CSD Loss

Calculation of the Real Conditional Score We follow the default sampling settings of original AR
models for probability vector calculation. For VAR models, we set classifier-free guidance scale to
2.0, top-k to 900 and top-p to 0.95. For LlamaGen model, we set classifier-free guidance scale to 2.0,
top-k to 900 and top-p to 1.0.

Optimization Settings We list the optimization settings in Tab. 11. For the learning rate of the
generator, we apply a linear warm up strategy from the start learning rate to the end learning rate
in 40K guidance network training iterations for VAR-d16, VAR-d20 and LlamaGen-L models. For
VAR-d24, we set the warm up length as 20K.

EMA We find that EMA is very important for the stability of training. Since the model performs
badly at the beginning of the training process, we use a progressive EMA rate. Specifically, we use a
small EMA rate in the early stage of training. Then we use a dynamic EMA rate min(0.9999, (iter+
1)/(iter + 10)), where iter is the training iteration. This progressive EMA schedule ensures both
training stability and fast convergence.

E.4 Continuous Input Adaptation for LlamaGen Models

For VAR teacher models, we directly conduct our workflow since they naturally support continuous
embeddings as input. However, for LlamaGen teacher model, we need to modify the model’s input
head to accept continuous latent embeddings instead of discrete token indices. This allows the
model to handle the continuous outputs from the generator. Specifically, we replace the original
nn.embedding layer emb with a MLP mlp. We first train this MLP with loss

∑V
i=1 ∥mlp(ci) −

emb(i)∥2, where i is the token and V is the total number of tokens in the codebook. This process
is fast, but incurs performance loss. Then we fine-tune the whole model with standard AR loss
implemented by LlamaGen for 200K iterations, to align its performance with the original model.
Finally, we obtained an AR LlamaGen model that incurs no performance loss and supports continuous
embeddings as input, which we use as the teacher model.

E.5 Baselines

Set Prediction Method. Set prediction is a commonly used technique for reducing the sampling steps
of Image AR models [2, 37, 17]. However, it is fundamentally incapable of reducing the sampling
process to a single step. As pointed out in the DD1 paper [21], when training a model under the
one-step sampling setting with this approach, the optimal solution is equivalent to independently
sampling each token according to the overall token frequency at this position in the dataset. Therefore,
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we can directly evaluate its one-step generation performance without actually training a model. This
method completely ignores the dependencies between tokens, which leads to the failure case reported
in the onestep* rows of Tab. 1.

Pre-trained AR Models. For VAR models, we set top_k, top_p and classifier-free-guidance scale as
900, 0.95 and 1.5, respectively. For LlamaGen models, we use 8000 as top_k, 1.0 as top_p, and 2.0
as classifier-free-guidance scale

F Visualizations

We show some generated examples in Figs. 8 to 11.

Figure 8: Generated by DD2-VAR-d16 model.
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Figure 9: Generated by DD2-VAR-d20 model.

Figure 10: Generated by DD2-VAR-d24 model.
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Figure 11: Generated by DD2-LlamaGen-L model.
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