

SEEING WHAT'S WRONG: A TRAJECTORY-GUIDED APPROACH TO CAPTION ERROR DETECTION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Error detection is critical for enhancing multimodal dataset reliability and down-
 012 stream model performance. Existing error filters, while increasingly powerful,
 013 typically rely on a single similarity score per image–caption pair. This is lim-
 014 iting: captions with subtle errors (e.g., mislabeled objects, incorrect colors, or
 015 negations) can still score highly, while correct but imprecisely worded captions
 016 may score poorly. To address this, we introduce the notion of a *caption trajec-*
 017 *tory*: an ordered sequence of captions produced by iteratively editing a caption to
 018 maximize an image-text relevance score. This trajectory carries rich signals for
 019 error detection. Correct captions typically stabilize after minor edits, while erro-
 020 neous captions undergo substantial improvements. Building on these insights, we
 021 introduce *TRACED*, a cost-efficient and model-agnostic framework that leverages
 022 trajectory statistics for more accurate caption error detection. Beyond detection,
 023 *TRACED* also serves as an interpretable tool for identifying the origins of errors.
 024 We further demonstrate that, in the case of error correction, these interpretable
 025 token-level error information can be provided to VLMs to enhance the alignment
 026 scores of the generated captions. On MS COCO and Flickr30k, *TRACED* achieves
 027 up to 2.8% improvement in accuracy for error detection across three noise types.

1 INTRODUCTION

031 Vision models have achieved remarkable success across diverse applications, including visual un-
 032 derstanding (Dosovitskiy et al., 2021), multimodal reasoning (Alayrac et al., 2022), and content
 033 generation (Esser et al., 2024). These models require extensive training on massive datasets, often
 034 containing millions of image-caption pairs (Ordonez et al., 2011; Lin et al., 2014; Russakovsky et al.,
 035 2015; Schuhmann et al., 2021; Bain et al., 2021; Changpinyo et al., 2021; Li et al., 2022). However,
 036 many rely on pre-training with web-scraped (Radford et al., 2021; Li et al., 2021; Lin et al., 2024)
 037 or even synthetic data (Li et al., 2022; 2023; Hammoud et al., 2024). These datasets often contain
 038 significant errors (Northcutt et al., 2021b; Liao et al., 2021; Zhang et al., 2024), which not only
 039 hampers model convergence during training but can also reinforce biases and reduce generalization
 040 capabilities. Recent studies have demonstrated that removing incorrect image-caption pairs (Zhang
 041 et al., 2024; Li et al., 2022) can substantially improve model performance. Therefore, detecting such
 042 errors is essential for boosting data quality and training better models.

043 As manual annotation is infeasible at scale, many works have proposed automated error detection.
 044 Existing error detection methods typically rely on assigning a quality or similarity score to each
 045 image-caption pair, using either model confidence (Pleiss et al., 2020; Swayamdipta et al., 2020;
 046 Northcutt et al., 2021a), neighborhood consistency (Bahri et al., 2020; Zhu et al., 2022; Zhang et al.,
 047 2024), or multimodal alignment (Radford et al., 2021; Li et al., 2022; Zhang et al., 2024). While
 048 these existing methods are increasingly powerful, they typically rely on a single similarity score
 049 per image-caption pair. This poses a key limitation: *not all errors are equally detectable*. Some
 050 captions may mostly align with the image but include subtle mistakes—incorrect object labels, color
 051 description, or negation—that still yield high similarity scores. Conversely, a correct caption might
 052 receive a low score if the image is difficult to describe or if the wording is imprecise (see Figure 1).
 053 In both cases, relying on a single similarity score can lead to unreliable error detection.

In this paper, we propose a novel approach that leverages caption improvement trajectories for more
 accurate error detection. Our key insight is that *the potential for improvement varies significantly*

Figure 1: Left: the BLIP-based alignment score (ITM block) is high (above 0.5), likely because the caption is mostly correct except for a single erroneous word (“no”). Right: the BLIP-based alignment score is low (below 0.5) even though the caption is correct.

between correct and incorrect captions, a pattern we observe consistently across the state-of-the-art alignment scoring functions we evaluated. Specifically, when starting with an accurate caption, iterative attempts to improve it yield minimal gains in similarity scores. In contrast, an incorrect caption presents substantial improvement potential. We formalize these intuitions by generating a sequence of increasingly refined captions for each image-caption pair and analyzing the resulting trajectory. Rather than making error detection decisions based on a single similarity score, our method examines the *pattern of improvement across the entire sequence*. Importantly, this trajectory-based framework is model-agnostic and can be combined with existing state-of-the-art error detection baselines to enhance their performance.

To evaluate error detection in image captioning, synthetic noise is typically injected through caption swaps (Zhang et al., 2024). More sophisticated swaps (e.g., between captions sharing nouns or metadata) can create harder cases but still often yield captions that are unrelated to the image and easy to detect. To test our framework under more challenging and realistic conditions, we introduce a new form of fine-grained noise generated with GPT-4o-mini (OpenAI, 2024). By prompting the model to make minimal yet semantically significant alterations, this noise yields captions that remain plausible but contain subtle errors, making them harder to detect (see left example in Figure 1).

We further show that our error detection framework has broader applicability. In particular, it provides interpretable insights into the origin of errors, which can then be leveraged to guide a VLM toward potential error sources, thereby correcting them and enhancing the alignment score of the edited captions.

Our contributions are as follows:

1. We introduce a new error detection framework called *TRACED* (**T**rajectory **C**reation for **E**rror **D**etection), based on the novel idea of creating caption trajectories. By iteratively improving captions through token replacements and deletions, we generate a sequence of captions and analyze both their alignment with the corresponding image and the semantic changes between iterations. This trajectory-based approach provides richer signals and enables more accurate identification of mismatched image-caption pairs. *TRACED* is cost-efficient and interpretable. It is also flexible and can be applied on top of many existing error detection methods to enhance their performance.
2. We evaluate how *TRACED* improves the performance of several state-of-the-art error detection methods, including CLIP (Radford et al., 2021), LEMON (Zhang et al., 2024), and BLIP (Li et al., 2022). Our experiments contain various types of label noise, including traditional random caption swaps and a more challenging type of synthetic noise we generated by prompting GPT-4o-mini (OpenAI, 2024). Compared to the existing benchmarks, this novel type of noise consists of plausible yet incorrect captions designed to better reflect real-world annotation errors. On average across all noise types, *TRACED* consistently improves detection Accuracy by up to 2.5% on MS COCO (Lin et al., 2014), 2.8% on Flickr30k (Plummer et al., 2015), and 2.4% on MM-IMDb (Arevalo et al., 2017).
3. We show how *TRACED* can be used to provide interpretable outputs and identify specific misaligned tokens in erroneous captions. On InternVL3 models, we evaluate the impact of this interpretable token-level error information on caption correction. We show that this information can be used to improve the alignment of the generated captions, and observe an

108 improvement of up to 14.5% in the BLIP-alignment score for the corrected captions using
 109 *TRACED* compared to unguided caption correction.
 110

111 Our code and datasets will be made open-source in the camera-ready version if the paper is accepted.
 112

113 2 RELATED WORK

116 **Handling Noise in Vision Datasets.** Vision datasets often contain labeling errors that degrade
 117 model performance (Zhang et al., 2021; Northcutt et al., 2021b; Liao et al., 2021; Zhang et al.,
 118 2024). To address this problem, two main research directions have emerged: (i) learning with noisy
 119 labels by adapting the loss function or reducing the influence of likely corrupted pairs (Natarajan
 120 et al., 2013; Bennouna et al., 2023; Arazo et al., 2019; Huang et al., 2023), and (ii) data cleaning,
 121 which aims to detect and remove mislabeled samples (Grivas et al., 2020; Zhang et al., 2024). Our
 122 work follows the second line, improving the filtering of noisy image–caption pairs.

123 **Error Detection for Classification Datasets.** Label noise can be detected through various ap-
 124 proaches. Confidence-based methods such as Confident Learning (Northcutt et al., 2021a), AUM
 125 (Pleiss et al., 2020), and Dataset Cartography (Swayamdipta et al., 2020) flag mislabeled samples
 126 based on model confidence. Neighbor-based approaches, including Deep k-NN (Bahri et al., 2020)
 127 and SimiFeat (Zhu et al., 2022), detect label noise by checking agreement with nearest neighbors
 128 in an embedding space. With the emergence of foundation models, new stronger baselines for la-
 129 bel error detection have appeared. Liang et al. (2024) and Kang et al. (2022) propose leveraging
 130 CLIP (Radford et al., 2021), pretrained on 400M image-text pairs, to score image-label consistency.
 131 Building on this, LEMoN (Zhang et al., 2024) introduces a neighborhood-based method that aggre-
 132 gates relevance scores from multimodal nearest neighbors to improve error detection in classification
 133 and image captioning datasets. It outperforms prior confidence- and neighborhood-based methods,
 134 making it a strong baseline, which we further enhance with our trajectory-based framework.

135 **Error Detection for Image Captioning.** In this paper, we focus on error detection in image caption-
 136 ing, a more challenging task than image classification, as it requires a deeper semantic understanding
 137 of both language and visual content. To improve caption quality, BLIP (Li et al., 2022) builds on
 138 CLIP by learning a shared image-text embedding space but also by training a classifier to distinguish
 139 high-quality from noisy image-caption pairs. Although not originally intended for error detection,
 140 Zhang et al. (2024) show that BLIP’s filtering component performs very well in identifying misla-
 141 beled image–caption pairs on the dataset it was fine-tuned on. We therefore also examine how our
 142 framework can further enhance BLIP on caption error detection.

143 **Evaluation via Synthetic Noise Injection.** Error detection methods are often evaluated by in-
 144 jecting synthetic label noise into clean datasets. Prior work has studied symmetric noise, where
 145 labels are randomly swapped (Pleiss et al., 2020; Kang et al., 2022), asymmetric noise, where labels
 146 are replaced with semantically similar ones via a transition matrix (Northcutt et al., 2021a), and
 147 instance-dependent noise, where incorrect labels depend on instance features (Liang et al., 2024;
 148 Zhu et al., 2022). These noise models, however, are designed for classification tasks. Zhang et al.
 149 (2024) extend noise modeling to image captioning via random caption swaps, swaps between cap-
 150 tions with shared nouns, and swaps within the same category using metadata. While more realistic,
 151 these approaches still replace entire captions, producing descriptions that can be unrelated to the im-
 152 age. In practice, noise is often subtler: annotators may describe the correct image but misrepresent
 153 specific elements, and provide captions that are mostly accurate yet partially wrong. In this paper,
 154 we introduce another type of noise for image captioning that aims at capturing this fine-grained form
 155 of caption noise and evaluate our framework in this more challenging setting.

156 **Error Correction for Image Captioning.** Prior work on caption correction has followed two main
 157 directions: (a) structured editing frameworks, where models are trained to add or delete words in a
 158 sentence (Wang et al., 2022), and (b) dedicated correction models designed to fix a caption (Sam-
 159 mani & Melas-Kyriazi, 2020; Huang et al., 2024; Berger et al., 2025). Our framework has direct
 160 applications to the second line of work. Early efforts used LSTMs for correction (Sammani &
 161 Melas-Kyriazi, 2020), while later work fine-tuned small VLMs (Berger et al., 2025) or leveraged
 162 large closed-source models (Huang et al., 2024) such as GPT-4 (OpenAI et al., 2024) . These studies
 163 highlight the effectiveness of transformer-based architectures for caption correction, with large
 164 models offering strong but costly performance, and smaller VLMs providing an efficient alterna-

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215

3 *TRACED*: A TRAJECTORY-BASED FRAMEWORK FOR ERROR DETECTION

To address the limitations of single-score image-caption alignment methods, we propose *TRACED*, a trajectory-based framework that leverages iterative caption refinement for improved error detection. *TRACED* iteratively modifies the caption to increase its alignment with the image and tracks how alignment evolves across these edits. This produces a *caption trajectory*, i.e. a sequence of increasingly refined captions, which we use as a signal for error detection. Our core insight is as follows: (i) If the original caption is correct, alignment scores should improve only slightly, and edits will leave the meaning largely intact. (ii) If the caption is incorrect, alignment can typically be improved substantially—often requiring major revisions. By capturing how easily and meaningfully a caption can be improved, *TRACED* provides a richer and more interpretable signal than any single similarity score. *TRACED* is flexible and can be integrated with any existing scoring-based error detection method. *TRACED* can be used for interpretability: using trajectory statistics, we can identify tokens that are likely incorrect in a caption. Another application of *TRACED* is caption correction. The interpretable information on the origin of the error can be provided to VLMs to guide caption correction and improve the alignment score of the generated captions.

3.1 TRAJECTORY GENERATION AND ASSESSMENT

Trajectory Creation and Evaluation. Let \mathcal{X} denote the set of captions and \mathcal{Y} the set of images. We assume access to a relevance scoring function:

$$s: \mathcal{X} \times \mathcal{Y} \longrightarrow \mathbb{R} \\ (x, y) \mapsto s(x, y)$$

This function assigns a real-valued relevance score to an image-caption pair, with higher values indicating stronger alignment. The choice of s is flexible: it may represent the matching probability in BLIP (Li et al., 2022), the cosine similarity of CLIP image and text embeddings (Kang et al., 2022), or a multi-modal similarity metric like LEMoN (Zhang et al., 2024).

To capture how a caption evolves during the procedure, we define a trajectory evaluation function:

$$e: \mathcal{X}^{T+1} \times \mathcal{Y} \longrightarrow \mathbb{R}^d \\ (x_0, \dots, x_T, y) \mapsto e(x_0, \dots, x_T, y)$$

where $T + 1$ is the trajectory length and d is the dimensionality of the trajectory representation used for error detection.

A simple choice of e is the concatenation of relevance scores: $e(x_0, \dots, x_T, y) = [s(x_0, y), \dots, s(x_T, y)]$.

Another interesting metric to keep track of is the semantic similarity between the caption at step t and the original (potentially noisy) caption x_0 , denoted $c(x_t, x_0)$. This captures the degree of semantic change introduced at each step.

In this paper, we focus on these two key signals and construct the following evaluation function:

$$e(x_0, \dots, x_T, y) = [s(x_0, y), \dots, s(x_T, y), \\ c(x_1, x_0), \dots, c(x_T, x_0)]$$

While any metrics can be used here, we observe in Appendix A.1 that relying solely on s or c for example is suboptimal. Using both is consistently better. Given access to s and e , *TRACED* constructs and evaluates a caption trajectory as described in Algorithm 1.

Algorithm 1 Trajectory Creation and Evaluation

Input: initial caption x , image y , scoring function s , evaluation function e , number of exploration steps T , number of caption candidates N at each exploration step
 Initialize $x_0 \leftarrow x$
for $t = 1$ to T **do**
 Generate candidate alternatives: $x_t^{(1)}, \dots, x_t^{(N)}$
 Select best candidate:
 $j_t \leftarrow \arg \max_{j \in [N]} s(x_t^{(j)}, y)$
 Set $x_t \leftarrow x_t^{(j_t)}$
end for
Output: $e(x_0, \dots, x_T, y)$

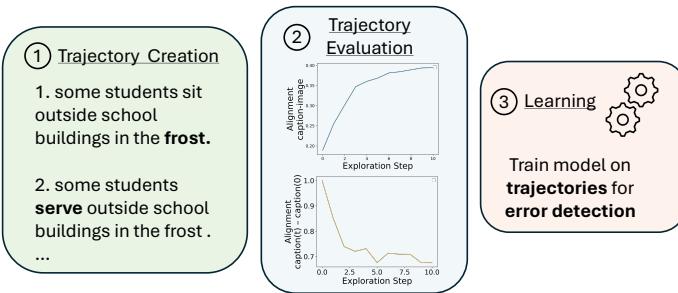
216
217
218
219
220
221
222
223
224
225Some students **sit** outside school buildings in the **grass**.

Figure 2: *TRACED* Pipeline for error detection on an example from Flickr30k (Plummer et al., 2015). Given a noisy image-caption pair, a caption trajectory is generated by iteratively maximizing a relevance scoring function s . The trajectory is then evaluated using various alignment metrics, which serve as features to distinguish between correct and incorrect image-caption pairs.

Learning From Trajectories. We apply Algorithm 1 to each image-caption pair in the dataset. From the resulting trajectory embeddings, we train a classifier to distinguish between correct and erroneous pairs. The overall framework is described in Figure 2.

3.2 CAPTION EXPLORATION

A critical component of Algorithm 1 is the generation of candidate captions at each step. We explore and evaluate several strategies for this purpose:

- **Elimination (Elim).** This simple and efficient method generates candidates by removing one token at a time from the current caption. Formally, for a caption $x = (w_1, \dots, w_L)$ with L tokens, we set $N = L$ in Algorithm 1 and produce L candidates:

$$x^{(i)} = (w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_L)$$

This strategy is computationally cheap: it requires only L forward passes through the scoring function s in Algorithm 1 and no gradient computations.

- **Greedy Coordinate Descent (GCD).** Inspired by Zou et al. (2023), this method aims to find improved captions by replacing individual tokens with alternatives that increase the relevance score s . For each token in a caption of length L , we consider the top- K gradient-guided replacements, leading to a candidate pool of size KL . Since this is often too large to evaluate exhaustively, we randomly sample N token replacements from this space.

- **Fast GCD (FGCD).** To balance the efficiency and quality of the caption trajectory, we introduce a hybrid strategy that combines Elimination with Greedy Coordinate Descent (GCD). We first apply the Elimination method to identify the token whose removal most improves the relevance score. Then, we explore only the top- K replacements for that specific token, reducing the search space to K candidates. This approach requires only one gradient computation and $K + L$ forward passes per iteration in Algorithm 1, a significant reduction compared to the KL evaluations needed for full exploration. Moreover, by focusing on the most impactful token, we promote more effective substitutions than would be achieved by randomly sampling from a large candidate pool.

The full algorithm descriptions are provided in Appendix A.2.

3.3 INTERPRETABILITY

Examining the caption trajectory can help identify the source of the error. As shown in Figure 3, the first tokens whose removal or replacement leads to the greatest improvement in alignment score often correspond to the source of the misalignment.

In this example, the initial alignment score from BLIP’s classifier is 0.55, indicating a 55% probability that the image-caption pair is correct. Relying on this score would result in misclassifying the image-caption pair. However, the trajectory shows that a meaningful semantic change can

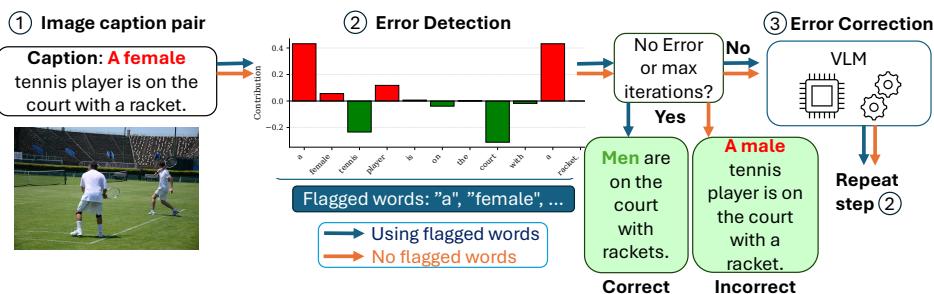
270 increase the alignment score to around 99.4%, indicating that the original caption was likely erroneous.
 271
 272

273 On the contrary, for correct captions, the improvements in alignment scores are often associated
 274 with minor semantic changes, as seen on Figure
 275 6 in Appendix A.3. Similar observations can be
 276 made when using the GCD and Fast GCD al-
 277 gorithms. Wrong captions are often improved
 278 through substitutions with semantically different
 279 words, and correct captions tend to be refined with
 280 minor edits. Full GCD and Fast GCD trajectories
 281 are provided in Figures 7 and 8 in Appendix A.3.
 282
 283

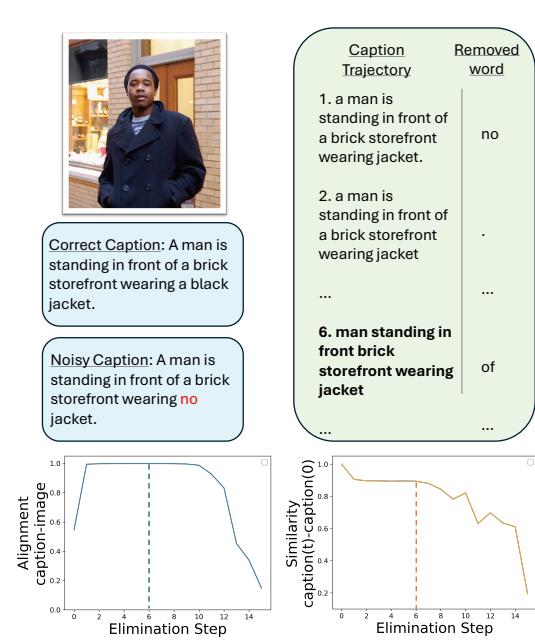
284 3.4 APPLICATION TO CAPTION CORRECTION

285 **Zero-shot Correction.** The trajectories produced
 286 by *TRACED* contain rich information, particularly
 287 about the origin of errors. While interpretability
 288 can also be derived from GCD and FGCD (by ex-
 289 amining which tokens are replaced), we adopt the
 290 Elimination Algorithm because it is both computa-
 291 tionally efficient and achieves performance com-
 292 parable or even superior to GCD and Fast GCD,
 293 suggesting that the extracted signals are of high
 294 quality. In this procedure, we remove one token at
 295 a time and observe the change in alignment score:
 296 increases suggest that the token is likely incorrect
 297 (it is better to remove it), while decreases suggest
 298 that it is likely correct. This token-level error
 299 localization is then provided to the VLM in the
 300 prompt, as illustrated in Figure 4. We also investigate
 301 the use of Chain-of-Thought (CoT) prompting
 302 to test whether reasoning over the flagged words can
 303 further aid correction. The exact prompts used
 304 are provided in Appendix A.17. In our experiments,
 305 we find that both the number of correction
 306 prompts and the way the token-level error information
 307 is provided play an important role in the final
 308 alignment scores. More information on the exact
 309 procedure we used is available in Appendix A.5.

310 **Correction After Fine-tuning.** For large-scale data cleaning, smaller VLMs are advantageous due
 311 to their lower cost and faster inference. When sufficient data is available, a small model can be
 312 fine-tuned for caption correction using a larger model as teacher. Given the alignment score gains
 313 observed for InternVL3-14B when applying *TRACED* in the zero-shot setting (see Figure 5), we
 314
 315

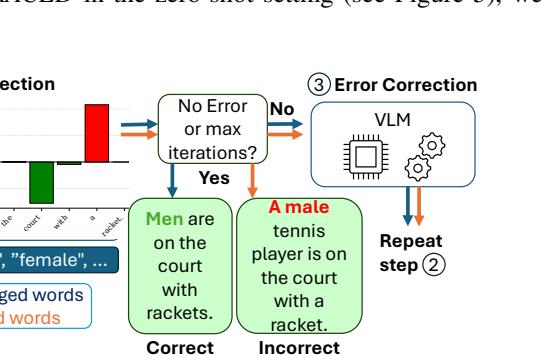


316 Figure 4: *TRACED* correction pipeline on an example from MS-COCO (Lin et al., 2014). The
 317 Elimination procedure identifies words whose removal increases the alignment score (in red on the
 318 bar plot). These flagged words are then provided as hints to the VLM, and the process is repeated
 319 until no further errors are detected or the maximum number of iterations is reached. Following the
 320 hint-guided path (blue) leads to captions with fewer errors compared to the unguided path (orange).
 321
 322



323 Figure 3: *TRACED* offers interpretability on
 324 a Flickr30k example (Plummer et al., 2015),
 325 identifying “no” as the source of misalignment.
 326 The BLIP-based alignment score (ITM block)
 327 peaks at step 6, where the caption accurately
 328 matches the image. Removing “no” leads to
 329 a notable decline in semantic alignment in the
 330 caption trajectory.

331
 332
 333
 334
 335
 336
 337
 338
 339



340 Figure 6: The effect of word removal on alignment
 341 score. The plots show the alignment score (ITM block)
 342 for the image caption pair “A female tennis player
 343 is on the court with a racket.” when the word “a”,
 344 “female”, “is”, or “on” is removed. The alignment
 345 score drops significantly when the word “a” is removed,
 346 while the other words are less critical for the alignment.
 347

324 fine-tune InternVL3-1B on captions corrected by InternVL3-14B using *TRACED*’s token-level
 325 guidance in the prompts. The resulting model is referred to as InternVL3-1B-FT. At inference time,
 326 we isolate the contribution of *TRACED* by comparing two use-cases on the same fine-tuned model:
 327 (i) *TRACED*-guided inference, which supplies *TRACED* trajectory information to the VLM, and
 328 (ii) a baseline InternVL3-1B-FT model, which uses only the image and noisy caption. This design
 329 controls for distillation effects and measures the incremental benefit of *TRACED* at inference.
 330 Additional details on the fine-tuning process of InternVL3-1B is available in Appendix A.6.

332 4 EXPERIMENTS

334 4.1 SETUP

336 All experiments are conducted using 4 NVIDIA L40 GPUs, each with 40GB of memory. *TRACED* is
 337 highly parallelizable (see Appendix A.7). Thus, the datasets are split into 4 subsets, with each GPU
 338 processing one subset independently. Sentences are processed in batches of size 128 on each GPU.
 339 *TRACED* is implemented using PyTorch (Paszke et al., 2019). Details on the computation overhead
 340 are provided in Appendix A.8. In general, *TRACED* is efficient and scalable: with BLIP (ITM), the
 341 most computationally expensive baseline, *TRACED*-BLIP classifies 1,000,000 image–caption pairs
 342 in roughly 6.5 hours on 4 L40 GPUs using the Elimination algorithm.

344 4.2 BASELINES AND DATASETS

346 We evaluate *TRACED* against common error detection baselines on benchmark datasets by injecting
 347 noise into previously clean captions, with the goal of identifying erroneous image–caption pairs.

348 **Baselines.** We consider BLIP (Li et al., 2022), LEMoN (Zhang et al., 2024) and CLIP (Radford
 349 et al., 2021; Kang et al., 2022). CLIP uses cosine similarity in a joint embedding space, LEMoN ag-
 350gregates CLIP scores from nearest neighbors, and BLIP combines contrastive learning (ITC block)
 351 to learn a shared image-text embedding space with a classification head (ITM block) for alignment
 352 prediction. LEMoN supports two versions: FIX (default hyperparameters) and OPT (hyperparame-
 353ters tuned via validation).

354 **Integration with *TRACED*.** We apply *TRACED* on top of each of these baselines by using their
 355 respective alignment scores as the scoring function s during trajectory construction. For BLIP, we
 356 evaluate *TRACED* using both the ITC and ITM modules. For LEMoN, we apply our method to both
 357 the FIX and OPT variants. For CLIP, we use the standard cosine similarity between image and text
 358 embeddings.

360 **Datasets.** We evaluate the impact of *TRACED* on LEMoN and CLIP using Flickr30k (Plummer
 361 et al., 2015), MS COCO (Lin et al., 2014) and MM-IMDb (Arevalo et al., 2017). For Flickr30k and
 362 MS COCO, we use the standard Karpathy split (Karpathy & Li, 2015). For MM-IMDb, we adopt
 363 the same random 80/10/10 train-validation-test split as Zhang et al. (2024).

364 For BLIP, finetuned models are publicly available only for Flickr30k and MS COCO. Therefore, we
 365 evaluate the improvements from *TRACED* on these two datasets only.

366 **Noise Types.** We evaluate *TRACED*’s improvements under three types of synthetic label noise,
 367 introducing 50% erroneous image–caption pairs for each seed:

- 369 • Random noise: A subset of captions is randomly replaced with others from the dataset.
- 370 • Noun noise: Captions are swapped with others that share at least one noun, introducing partial
 371 semantic overlap.
- 372 • Fine-grained noise: Captions are minimally perturbed using `gpt-o4-mini` to introduce sub-
 373 tle semantic inconsistencies, as described in Appendix A.4. Some illustrative examples of the
 374 generated errors are provided in Appendix A.16.

376 Due to the higher cost of generating fine-grained noise using the ChatGPT API, we limit its use to
 377 Flickr30k and MS-COCO. For both random and noun noise, we follow the methodology introduced
 in Zhang et al. (2024).

378
379
3804.3 EXPERIMENTAL DETAILS FOR TRAJECTORY CONSTRUCTION AND LEARNING
FRAMEWORK

381

Trajectory Generation Hyperparameters.382
383
384The trajectory generation hyperparameters for
Elimination, GCD, and Fast GCD are detailed
in Appendix A.9.385
386
387
388
389
390
391
392
393**Trajectory Evaluation Metrics.** For the alignment
score $s(x_t, y)$, we use the scoring function
of the baseline being evaluated — either CLIP,
LEMoN, or BLIP. For the semantic similarity
 $c(x_t, x_0)$, we compute the cosine similarity be-
tween the embeddings of x_t and x_0 . When the
baseline is BLIP, we use its ITC block to ex-
tract embeddings. For CLIP and LEMoN, we
use CLIP embeddings.394
395
396
397
398
399
400
401
402
403**Learning Procedure Details.** Once the tra-
jectory embeddings are constructed, they can
be used as features to predict whether a given
image-caption pair contains an error. While any
standard classification model could be applied
at this stage, we use XGBoost and CART due
to their simplicity, as our primary goal is to
demonstrate the effectiveness of our approach.
More sophisticated models could be explored to
further improve the performance gap between
TRACED and the original baseline.404
405
406
407
408
409
410
411
412For datasets that use the Karpathy split, we
combine the original training and validation
sets. We then perform 3-fold grid-search cross-
validation to select the best model and hyper-
parameters. The complete grid searches are pro-
vided in Appendix A.9. The best-performing
model (XGBoost or CART) and its correspond-
ing hyperparameters are selected based on the
highest cross-validation AUC score.

413

414 4.4 MAIN RESULTS AND ANALYSIS
415416
417
418
419
420
421
422**Error Detection.** The results on error detection
are presented in Table 1, where accuracy scores
and accuracy improvements are averaged over
all applicable noise types and random seeds.
TRACED yields consistent and significant gains
over each baseline, highlighting its effective-
ness for error detection.423
424
425
426
427
428
429
430
431Table 1 suggests that the Elimination algorithm
often generates more informative trajectories
for error detection compared to GCD and Fast
GCD. We attribute this to two main factors.

- The Elimination algorithm progressively removes words from the caption, producing a trajectory in which the alignment score typically increases before decreasing. Unlike GCD and FGCD, which replace some tokens to increase alignment, Elimination reflects

Table 1: Comparison of *TRACED* with baselines.
Mean accuracy and mean accuracy improvement
of *TRACED* vs. baselines, averaged over 3 seeds
and noise types (noun, random for MM-IMDB;
noun, random, fine-grained for Flickr30k and MS-
COCO at 50% noise), with standard errors.

DATASET	METHOD	ALGOR- ITHM	ACC. (%)	IMPROVE- MENT (%)
FLICKR- 30K	<i>TRACED</i> - BLIP (ITM)	ELIM	89.5 ± 0.2	1.3 ± 0.2
		FGCD	89.2 ± 0.2	0.8 ± 0.2
		GCD	88.8 ± 0.2	0.3 ± 0.2
		-	88.5 ± 0.3	0.0 ± 0.0
	<i>TRACED</i> - BLIP (ITC)	ELIM	88.1 ± 0.2	0.9 ± 0.1
		FGCD	88.1 ± 0.1	0.9 ± 0.3
		GCD	88.0 ± 0.2	0.7 ± 0.1
		-	87.4 ± 0.3	0.0 ± 0.0
MM- IMDB	<i>TRACED</i> - LEMoN _{OPT}	ELIM	85.6 ± 0.4	1.8 ± 0.2
		FGCD	85.5 ± 0.3	1.9 ± 0.2
		GCD	85.7 ± 0.4	2.1 ± 0.5
		LEMoN _{OPT}	84.3 ± 0.3	0.0 ± 0.0
	<i>TRACED</i> - LEMoN _{FIX}	ELIM	85.0 ± 0.3	1.7 ± 0.5
		FGCD	85.0 ± 0.3	1.7 ± 0.1
		GCD	85.6 ± 0.4	2.6 ± 0.5
		LEMoN _{FIX}	83.9 ± 0.3	0.0 ± 0.0
MS- COCO	<i>TRACED</i> - CLIP	ELIM	85.7 ± 0.1	2.8 ± 0.4
		FGCD	85.5 ± 0.1	2.6 ± 0.2
		GCD	85.5 ± 0.3	2.5 ± 0.5
		CLIP	83.8 ± 0.2	0.0 ± 0.0
	<i>TRACED</i> - LEMoN _{OPT}	ELIM	79.0 ± 0.0	1.4 ± 0.2
		FGCD	78.0 ± 0.1	0.2 ± 0.1
		GCD	78.3 ± 0.1	0.5 ± 0.1
		LEMoN _{OPT}	77.9 ± 0.2	0.0 ± 0.0
Flickr30k	<i>TRACED</i> - LEMoN _{FIX}	ELIM	78.3 ± 0.1	2.4 ± 0.2
		FGCD	77.2 ± 0.1	0.9 ± 0.2
		GCD	77.6 ± 0.1	1.4 ± 0.2
		LEMoN _{FIX}	76.5 ± 0.1	0.0 ± 0.0
	<i>TRACED</i> - CLIP	ELIM	78.5 ± 0.0	1.8 ± 0.1
		FGCD	77.5 ± 0.1	0.4 ± 0.2
		GCD	77.8 ± 0.1	0.9 ± 0.0
		CLIP	77.2 ± 0.1	0.0 ± 0.0
COCO	<i>TRACED</i> - BLIP (ITM)	ELIM	90.5 ± 0.2	1.7 ± 0.1
		FGCD	89.8 ± 0.1	0.9 ± 0.1
		GCD	89.7 ± 0.1	0.8 ± 0.1
		BLIP (ITM)	89.1 ± 0.1	0.0 ± 0.0
	<i>TRACED</i> - BLIP (ITC)	ELIM	88.7 ± 0.1	1.8 ± 0.0
		FGCD	88.4 ± 0.0	1.4 ± 0.1
		GCD	88.1 ± 0.1	1.0 ± 0.1
		BLIP (ITC)	87.4 ± 0.1	0.0 ± 0.0
COCO	<i>TRACED</i> - LEMoN _{OPT}	ELIM	85.0 ± 0.3	1.6 ± 0.0
		FGCD	84.6 ± 0.3	1.0 ± 0.1
		GCD	84.5 ± 0.3	1.0 ± 0.1
		LEMoN _{OPT}	83.8 ± 0.3	0.0 ± 0.0
	<i>TRACED</i> - LEMoN _{FIX}	ELIM	84.3 ± 0.1	2.3 ± 0.1
		FGCD	83.9 ± 0.2	1.8 ± 0.2
		GCD	83.9 ± 0.3	1.8 ± 0.2
		LEMoN _{FIX}	82.6 ± 0.1	0.0 ± 0.0
COCO	<i>TRACED</i> - CLIP	ELIM	84.5 ± 0.2	2.5 ± 0.2
		FGCD	83.7 ± 0.2	1.5 ± 0.2
		GCD	83.8 ± 0.1	1.6 ± 0.1
		CLIP	-	82.7 ± 0.2

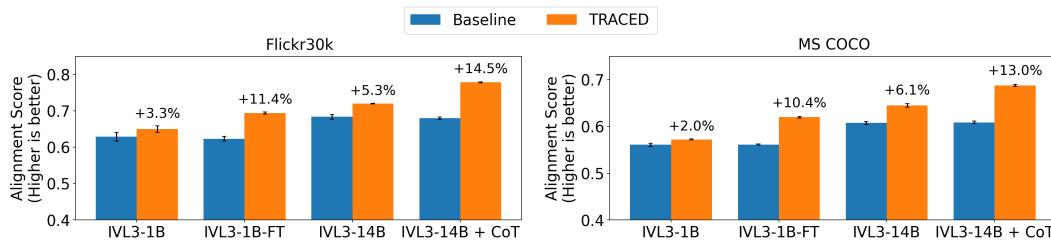


Figure 5: Impact of *TRACED* on BLIP alignment scores of the corrected captions from InternVL3-1B, InternVL3-1B-FT, and InternVL3-14B (with CoT prompting for the 14B model) on Flickr30k and MS COCO. Results are shown after five fixing steps with two fixing prompts at each step (see Appendix A.5), and averaged over three seeds with standard errors. 50% of the samples are corrupted using fine-grained noise. InternVL3 models are abbreviated as IVL3 in the plot.

both the positive and negative contributions of each individual word, showing which align with the image and which do not.

- The Elimination algorithm operates in a much more constrained search space, which introduces a form of regularization. In contrast, GCD and Fast GCD allow broader substitutions, sometimes leading to non-meaningful token replacements that nonetheless increase the alignment score.

A detailed breakdown by noise type is provided in Table 6 (Appendix A.10). The largest gains from *TRACED* occur under the fine-grained noise setting, where subtle word changes make detection especially challenging and baseline methods struggle most. Under this regime, *TRACED* achieves up to 7.5% improvement in accuracy compared to the baseline. These results highlight *TRACED*’s strength in handling more realistic and semantically nuanced errors.

Importance of N , T , and c . Appendix A.13 and Appendix A.14 analyze the effect of the number of candidate edits N , the trajectory length T , and the semantic similarity metric c on the performance of *TRACED*. We find that *TRACED* is primarily sensitive to T : increasing T lead to significant and consistent gains in accuracy. However, only a few exploration steps are typically required to locate the erroneous token (Figure 3), and small values of T already achieve near-optimal performance.

Performance of *TRACED* across caption lengths and noise levels. Appendix A.15 reports the performance of *TRACED* as a function of caption length, showing consistent improvements across sentence lengths. Appendix A.11 further evaluates *TRACED* under varying noise levels, with results indicating consistent gains over the baseline.

Application of *TRACED* on Error Correction. Figure 5 shows the impact of *TRACED* on the correction performance of InternVL3-1B, including with fine-tuning (InternVL3-1B-FT) and InternVL3-14B, with and without CoT prompting. We omit CoT results for the 1B variants here, as this smaller model exhibits limited reasoning capabilities. We observe that *TRACED* consistently enhances the BLIP alignment score of the generated captions, regardless of model scale. Notably, for InternVL3-14B, performance improves further when combined with CoT prompting, suggesting that token-level error information is highly informative to optimize over the alignment metric. Our results show that our procedure can successfully optimize caption quality with respect to an alignment metric. In particular, our approach is metric-agnostic and could also benefit future scoring methods.

Downstream captioning performance. Appendix A.12 evaluates the impact of using *TRACED* to identify erroneous samples for filtering or correction prior to fine-tuning BLIP-2 Li et al. (2023). Both approaches improve BLIP-2’s captioning performance, with correction yielding the largest gains, and *TRACED* consistently outperforming baseline methods. Overall, on Flickr30k, our procedure yields up to a 1-point improvement in BLEU-4 over training on the noisy data.

4.5 IMPORTANCE OF THE TRAJECTORY

To assess the importance of the caption trajectory for effective error detection, we compare the full *TRACED* trajectory to three simplified single point variants: (i) using only the first step ($s(x_0, y)$; note that $c(x_0, x_0) = 1$ provides no additional signal, (ii) using only the last step ($s(x_T, y)$ and

486 $c(x_T, x_0)$, and (iii) using the mean of all alignment and similarity values across the trajectory
 487 ($\frac{1}{T+1} \sum_{t=0}^T s(x_t, y)$ and $\frac{1}{T} \sum_{t=1}^T c(x_t, x_0)$). Table 2 reports the mean percent change in test ac-
 488 curacy for each variant, relative to using the complete trajectory.
 489

490 Table 2: Mean percent improvement in Test Acc. when using only the first step, last step or mean
 491 trajectory alone in *TRACED*, compared to using the whole trajectory. Experiments are conducted on
 492 Flickr30k using the Elimination algorithm. Results are averaged over 3 seeds and all 3 noise types
 493 (50% noise), with standard errors reported.
 494

METHOD	FIRST STEP	LAST STEP	MEAN TRAJECTORY
BLIP (ITM)	-1.25 ± 0.23	-43.07 ± 0.61	-4.90 ± 0.16
BLIP (ITC)	-0.85 ± 0.08	-40.54 ± 0.39	-5.48 ± 0.30
LEMoN _{OPT}	-1.75 ± 0.17	-38.67 ± 0.82	-5.72 ± 0.09
LEMoN _{FIX}	-1.62 ± 0.46	-38.18 ± 0.42	-5.67 ± 0.55
CLIP	-2.62 ± 0.35	-38.49 ± 0.30	-5.37 ± 0.02

502
 503 Retaining only the first step causes the mildest decline. Using only the last step yields the sharpest
 504 drop (over 38% in all cases), and averaging over the trajectory performs slightly better but still
 505 falls far behind the full sequence. These results highlight the importance of modeling the trajectory,
 506 which captures how alignment evolves and provides richer information than a single-point summary.
 507

508 4.6 MAXIMIZING OR MINIMIZING THE SCORING FUNCTION?

510 In *TRACED*, we proposed to generate the trajectories by maximizing the image-caption alignment
 511 score s at each step. To test whether the opposite strategy is also effective, we compare against a
 512 variant that minimizes s instead. Table 3 reports the mean percent improvement in test accuracy
 513 when using the minimization approach, relative to maximization.
 514

515 Table 3: Mean percent improvement in Test Acc. when generating *TRACED*’s trajectory by mini-
 516 mizing s rather than maximizing it. Experiments are conducted on Flickr30k using the Elimination
 517 algorithm. Results are averaged over 3 seeds and all 3 noise types (50% noise), with standard errors.
 518

BLIP (ITM)	BLIP (ITC)	LEMoN _{FIX}	LEMoN _{OPT}	CLIP
-0.76 ± 0.12	-0.46 ± 0.17	-0.70 ± 0.24	-0.58 ± 0.34	-0.24 ± 0.15

525 Across all baselines, maximizing the alignment score yields modest but consistent improvements
 526 over minimization. This suggests that constructing trajectories toward higher-scoring captions,
 527 rather than worse ones, provides a more reliable signal for detecting inconsistencies.
 528

529 5 CONCLUSION

531 We presented *TRACED*, a flexible and efficient framework for image-caption error detection. By
 532 iteratively improving captions and analyzing alignment and semantic similarity over time, *TRACED*
 533 extracts rich signals that help distinguish between correct and erroneous image-caption pairs. Our
 534 framework can be applied on top of existing error detection methods such as CLIP, LEMoN and
 535 BLIP, consistently boosting their performance across multiple datasets and noise types. We also
 536 introduced a new fine-grained noise generation process that reflects real-world annotation errors
 537 and provides a more challenging benchmark for evaluation. Beyond improving error detection,
 538 *TRACED* can be used for interpretability by revealing which parts of a caption contribute most to
 539 misalignment. We show that this token-level error information can effectively guide VLMs for
 caption correction, producing captions that are better aligned with their corresponding images.

540 REFERENCES
541

542 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
543 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
544 Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick,
545 Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
546 Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a vi-
547 sual language model for few-shot learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
548 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
549 <https://openreview.net/forum?id=EbMuimAbPbs>.

550 Eric Arazo, Diego Ortego, Paul Albert, Noel O'Connor, and Kevin Mcguinness. Unsupervised
551 label noise modeling and loss correction. In Kamalika Chaudhuri and Ruslan Salakhutdinov
552 (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97
553 of *Proceedings of Machine Learning Research*, pp. 312–321. PMLR, 09–15 Jun 2019. URL
554 <https://proceedings.mlr.press/v97/arazo19a.html>.

555 John Arevalo, Thamar Solorio, Manuel Montes y Gómez, and Fabio A. González. Gated multimodal
556 units for information fusion, 2017. URL <https://arxiv.org/abs/1702.01992>.

557 Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-NN for noisy labels. In Hal Daumé III
558 and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*,
559 volume 119 of *Proceedings of Machine Learning Research*, pp. 540–550. PMLR, 13–18 Jul 2020.
560 URL <https://proceedings.mlr.press/v119/bahri20a.html>.

561 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
562 image encoder for end-to-end retrieval. In *ICCV*, pp. 1708–1718, 2021. URL <https://doi.org/10.1109/ICCV48922.2021.00175>.

563 Amine Bennouna, Ryan Lucas, and Bart Van Parys. Certified robust neural networks: Generalization
564 and corruption resistance, 2023. URL <https://arxiv.org/abs/2303.02251>.

565 Uri Berger, Omri Abend, Lea Frermann, and Gabriel Stanovsky. Improving image captioning by
566 mimicking human reformulation feedback at inference-time, 2025. URL <https://arxiv.org/abs/2501.04513>.

567 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Push-
568 ing web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, pp.
569 3558–3568, 2021. URL https://openaccess.thecvf.com/content/CVPR2021/html/Changpinyo_Conceptual_12M_Pushing_Web-Scale_Image-Text_Pre-Training_To_Recognize_Long-Tail_Visual_CVPR_2021_paper.html.

570 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
571 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
572 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
573 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

574 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
575 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evalua-
576 ting large multi-modality models. In *Proceedings of the 32nd ACM International Conference on
577 Multimedia*, pp. 11198–11201, 2024.

578 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
579 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
580 glish, and Robin Rombach. Scaling rectified flow transformers for high-resolution image syn-
581 thesis. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=FPnUhQJ5B>.

582 Andreas Grivas, Beatrice Alex, Claire Grover, Richard Tobin, and William Whiteley. Not a
583 acute stroke: Analysis of rule- and neural network-based information extraction systems for

594 brain radiology reports. In Eben Holderness, Antonio Jimeno Yepes, Alberto Lavelli, Anne-
 595 Lyse Minard, James Pustejovsky, and Fabio Rinaldi (eds.), *Proceedings of the 11th Interna-
 596 tional Workshop on Health Text Mining and Information Analysis*, pp. 24–37, Online, Novem-
 597 ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.louhi-1.4. URL
 598 <https://aclanthology.org/2020.louhi-1.4/>.

599 Hasan Abed Al Kader Hammoud, Hani Itani, Fabio Pizzati, Adel Bibi, and Bernard Ghanem. Syn-
 600 thCLIP: Are we ready for a fully synthetic CLIP training? In *Synthetic Data for Computer*
 601 *Vision Workshop @ CVPR 2024*, 2024. URL <https://openreview.net/forum?id=oKwYycMSrf>.

602 Kung-Hsiang Huang, Mingyang Zhou, Hou Pong Chan, Yi Fung, Zhenhailong Wang, Lingyu
 603 Zhang, Shih-Fu Chang, and Heng Ji. Do LLMs understand charts? analyzing and correct-
 604 ing factual errors in chart captioning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 605 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 730–749, Bangkok,
 606 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 607 *findings-acl.41*. URL <https://aclanthology.org/2024.findings-acl.41/>.

608 Runhui Huang, Yanxin Long, Jianhua Han, Hang Xu, Xiwen Liang, Chunjing Xu, and Xiaodan
 609 Liang. Nlip: Noise-robust language-image pre-training. In *AAAI*, pp. 926–934, 2023. URL
 610 <https://doi.org/10.1609/aaai.v37i1.25172>.

611 Woo-Young Kang, Jonghwan Mun, Sungjun Lee, and Byungseok Roh. Noise-aware learning from
 612 web-crawled image-text data for image captioning. *CoRR*, abs/2212.13563, 2022. URL <https://doi.org/10.48550/arXiv.2212.13563>.

613 Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating image descrip-
 614 tions. In *CVPR*, pp. 3128–3137, 2015. URL <https://doi.org/10.1109/CVPR.2015.7298932>.

615 Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, and
 616 Steven Hoi. Align before fuse: Vision and language representation learning with momentum
 617 distillation. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in*
 618 *Neural Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=OJLaKwiXSbx>.

619 Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. Blip: Bootstrapping language-image
 620 pre-training for unified vision-language understanding and generation. In *ICML*, pp. 12888–
 621 12900, 2022. URL <https://proceedings.mlr.press/v162/li22n.html>.

622 Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. Blip-2: Bootstrapping
 623 language-image pre-training with frozen image encoders and large language models. *CoRR*,
 624 abs/2301.12597, 2023. URL <https://doi.org/10.48550/arXiv.2301.12597>.

625 Chao Liang, Linchao Zhu, Humphrey Shi, and Yi Yang. Combating label noise with a general
 626 surrogate model for sample selection. *International Journal of Computer Vision*, 133:3166–3179,
 627 12 2024. doi: 10.1007/s11263-024-02324-z.

628 Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a
 629 meta review of evaluation failures across machine learning. In *Thirty-fifth Conference on Neural*
 630 *Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL <https://openreview.net/forum?id=mPducS1MsEK>.

631 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA:
 632 Learning united visual representation by alignment before projection. In Yaser Al-Onaizan,
 633 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical*
 634 *Methods in Natural Language Processing*, pp. 5971–5984, Miami, Florida, USA, November
 635 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.342. URL
 636 <https://aclanthology.org/2024.emnlp-main.342/>.

637 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 638 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 639 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp.
 640 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

648 Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with noisy labels.
 649 In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
 650 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran
 651 Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/3871bd64012152bfb53fdf04b401193f-Paper.pdf.

652

653 Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset
 654 labels. *J. Artif. Int. Res.*, 70:1373–1411, May 2021a. ISSN 1076-9757. doi: 10.1613/jair.1.12125.
 655 URL <https://doi.org/10.1613/jair.1.12125>.

656

657 Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize
 658 machine learning benchmarks. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021b. URL <https://openreview.net/forum?id=XccDXrDNLek>.

659

660

661 OpenAI. Gpt-4o-mini, 2024. Available at <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>.

662

663

664 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 665 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 666 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 667 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 668 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 669 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 670 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 671 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 672 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 673 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 674 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 675 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 676 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 677 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 678 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 679 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 680 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 681 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 682 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 683 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 684 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 685 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 686 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 687 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 688 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 689 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 690 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 691 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 692 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 693 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 694 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 695 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 696 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 697 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 698 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 699 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 700 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 701 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 jayvergyia, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan

702 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
 703 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 704 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 705 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 706 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 707 <https://arxiv.org/abs/2303.08774>.

708 Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing images using 1 mil-
 709 lion captioned photographs. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q.
 710 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 24. Curran
 711 Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

712 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 713 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 714 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 715 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 716 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
 717 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
 718 Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

719 Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying
 720 mislabeled data using the area under the margin ranking. In H. Larochelle,
 721 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-
 722 formation Processing Systems*, volume 33, pp. 17044–17056. Curran Associates, Inc.,
 723 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf.

724 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and
 725 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 726 image-to-sentence models. In *2015 IEEE International Conference on Computer Vision (ICCV)*,
 727 pp. 2641–2649, 2015. doi: 10.1109/ICCV.2015.303.

728 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 729 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 730 Sutskever. Learning transferable visual models from natural language supervision. In Marina
 731 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine
 732 Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR,
 733 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>.

734 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 735 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 736 ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision (IJCV)*,
 737 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

738 Fawaz Sammani and Luke Melas-Kyriazi. Show, edit and tell: A framework for editing image cap-
 739 tions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
 740 (CVPR)*, June 2020.

741 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 742 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset
 743 of clip-filtered 400 million image-text pairs, 2021. URL <https://arxiv.org/abs/2111.02114>.

744 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
 745 Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets
 746 with training dynamics. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
 747 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
 748 (EMNLP)*, pp. 9275–9293, Online, November 2020. Association for Computational Linguistics.
 749 doi: 10.18653/v1/2020.emnlp-main.746. URL [https://aclanthology.org/2020.emnlp-main.746/](https://aclanthology.org/2020.emnlp-main.746).

756 Zhen Wang, Long Chen, Wenbo Ma, Guangxing Han, Yulei Niu, Jian Shao, and Jun Xiao. Explicit
 757 image caption editing. In *Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv,
 758 Israel, October 23–27, 2022, Proceedings, Part XXXVI*, pp. 113–129, Berlin, Heidelberg, 2022.
 759 Springer-Verlag. ISBN 978-3-031-20058-8. doi: 10.1007/978-3-031-20059-5_7. URL https://doi.org/10.1007/978-3-031-20059-5_7.
 760

761 Yuheng Zha, Yichi Yang, Ruichen Li, and Zhitong Hu. AlignScore: Evaluating factual consistency
 762 with a unified alignment function. In *Proceedings of the 61st Annual Meeting of the Association
 763 for Computational Linguistics (Volume 1: Long Papers)*, pp. 11328–11348, Toronto, Canada, July
 764 2023. Association for Computational Linguistics. URL <https://aclanthology.org/2023.acl-long.634>.
 765

766 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 767 deep learning (still) requires rethinking generalization. *Commun. ACM*, 64(3):107–115, Febru-
 768 ary 2021. ISSN 0001-0782. doi: 10.1145/3446776. URL <https://doi.org/10.1145/3446776>.
 769

770 Haoran Zhang, Aparna Balagopalan, Nassim Oufattolle, Hyewon Jeong, Yan Wu, Jiacheng Zhu,
 771 and Marzyeh Ghassemi. Lemon: Label error detection using multimodal neighbors, 2024. URL
 772 <https://arxiv.org/abs/2407.18941>.
 773

774 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 775 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 776 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
 777 Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
 778 Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
 779 Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
 780 Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. In-
 781 ternvl3: Exploring advanced training and test-time recipes for open-source multimodal models,
 782 2025. URL <https://arxiv.org/abs/2504.10479>.
 783

784 Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without training a model
 785 to predict. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
 786 and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
 787 volume 162 of *Proceedings of Machine Learning Research*, pp. 27412–27427. PMLR, 17–23 Jul
 788 2022. URL <https://proceedings.mlr.press/v162/zhu22a.html>.
 789

790 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
 791 and transferable adversarial attacks on aligned language models, 2023. URL <https://arxiv.org/abs/2307.15043>.
 792

793

794

795 **A APPENDIX**

796

797 **A.1 CONTRIBUTION OF IMAGE-CAPTION ALIGNMENT AND CAPTION-CAPTION
 798 SIMILARITY METRICS**

799

800 To isolate the contribution of each trajectory evaluation metric, we conduct ablation studies using
 801 *TRACED* with either the alignment score s or the semantic similarity score c alone. Table 4 reports
 802 the mean percent change in test accuracy when using one of the two metrics alone, relative to using
 803 both jointly.

804 Across all baselines, using either metric in isolation results in a consistent and significant drop in
 805 performance. The alignment score s alone is much more informative, likely because a notable in-
 806 crease in alignment often signals an error in the original caption. In contrast, the semantic similarity
 807 score c is less useful on its own, as captions along the trajectory may differ substantially from the
 808 original, reducing its standalone discriminative power. However, combining s and c consistently
 809 yields the best performance: s captures the degree of alignment improvement, while c indicates
 whether that improvement involves a substantial semantic change or only a minor rephrasing.

810
 811 Table 4: Mean percent improvement in Test Acc. when using either s or c alone in *TRACED*,
 812 compared to using both jointly. Experiments are conducted on MS-COCO using the Elimination
 813 algorithm. Results are averaged over 3 seeds and all 3 noise types (50% noise), with standard errors
 814 reported.

METHOD	ALIGNMENT	SIMILARITY
	IMAGE-CAPTION $s(x, y)$	CAPTION-CAPTION $c(x_t, x_0)$
BLIP (ITM)	-0.41 ± 0.13	-6.03 ± 0.11
BLIP (ITC)	-0.59 ± 0.12	-10.18 ± 0.16
LEMON _{OPT}	-0.55 ± 0.12	-7.22 ± 0.17
LEMON _{FIX}	-0.41 ± 0.21	-6.44 ± 0.33
CLIP	-0.60 ± 0.04	-7.00 ± 0.19

824 A.2 EXPLORATION ALGORITHMS DETAILS

825 The Elimination algorithm iteratively removes the token whose deletion increases in alignment score
 826 the most, until no tokens remain.

829 Algorithm 2 Elimination Algorithm

830 **Input:** initial caption x
 831 Note $x = (w_1, \dots, w_L)$ with w_1, \dots, w_L the tokens in caption x
 832 **for** $i = 1$ to L **do**
 833 $x^{(i)} \leftarrow (w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_L)$
 834 **end for**
 835 **Output:** $\{x^{(1)}, \dots, x^{(L)}\}$

837 The Greedy Coordinate Descent (GCD) algorithm perturbs the caption by replacing individual to-
 838 kens. For each position, it selects top- K promising replacements based on the gradient of the align-
 839 ment score. A subset of candidate captions is then generated by sampling token replacements at
 840 random.

842 Algorithm 3 Greedy Coordinate Descent (GCD)

844 **Input:** Initial caption $x = (w_1, \dots, w_L)$, image y , scoring function s , evaluation function e ,
 845 number of candidates N , top- K promising replacements per position
 846 Let \mathcal{V} be the vocabulary, and $e(v)$ the embedding of token $v \in \mathcal{V}$
 847 **for** $j = 1$ to L **do**
 848 Compute top- K replacements for w_{j_0} :
 849 $\mathcal{X}_j \leftarrow \text{Top-}K \left\{ \nabla_{e(w_{j_0})} s(x, y)^T (e(v) - e(w_j)) \mid v \in \mathcal{V} \right\}$
 850 **end for**
 851 **for** $k = 1$ to N **do**
 852 $j \sim \text{Uniform}(\{1, \dots, L\})$
 853 $w'_j \sim \text{Uniform}(\mathcal{X}_j)$
 854 $x^{(k)} \leftarrow (w_1, \dots, w_{j-1}, w'_j, w_{j+1}, \dots, w_L)$
 855 **end for**
 856 **Output:** $\{x^{(1)}, \dots, x^{(N)}\}$

858 This algorithm is inspired by the GCD method proposed by Zou et al. (2023), which was originally
 859 developed for adversarial attacks on large language models. In our work, we adapt this approach for
 860 the purpose of improving image captions.

862 The Fast GCD algorithm is a more efficient alternative to full GCD. It first applies the Elimination
 863 Algorithm to identify the token position $j_0 \in [L]$ that most negatively impacts alignment. Gradient-
 based substitution is then restricted to this single position. Unlike full GCD, which randomly sam-

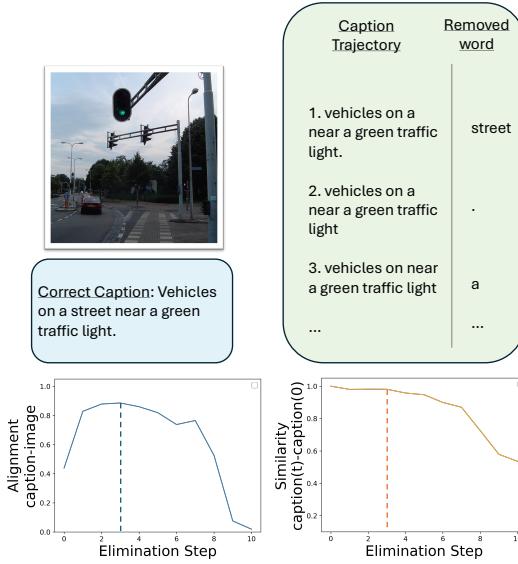
864 ples N captions from a pool of $K \times L$ candidates ($N \ll K \times L$), Fast GCD can exhaustively evaluate
 865 all K candidate replacements at position j_0 . This approach enables to find better token substitutions
 866 using a reduced number of forward passes through the alignment scoring function s .
 867

869 Algorithm 4 Fast Greedy Coordinate Descent (Fast GCD)

870 **Input:** Initial caption $x = (w_1, \dots, w_L)$, image y , scoring function s , evaluation function e ,
 871 top- K promising replacements per coordinate
 872 Let \mathcal{V} be the vocabulary and $e(v)$ the embedding of token $v \in \mathcal{V}$
 873 Run Elimination Algorithm: $\{x^{(e,1)}, \dots, x^{(e,L)}\} \leftarrow \text{Elim}(x)$
 874 Select most promising coordinate: $j_0 \leftarrow \arg \max_{j \in [L]} s(x^{(e,j)}, y)$
 875 Compute top- K replacements for w_{j_0} :
 876 $\mathcal{X}_{j_0} \leftarrow \text{Top-}K \left\{ \nabla_{e(w_{j_0})} s(x, y)^T (e(v) - e(w_{j_0})) \mid v \in \mathcal{V} \right\}$
 877 **for** $w' \in \mathcal{X}_{j_0}$ **do**
 878 $x^{(w')} \leftarrow (w_1, \dots, w_{j_0-1}, w', w_{j_0+1}, \dots, w_L)$
 879 **end for**
 880 **Output:** $\{x^{(w')} \mid w' \in \mathcal{X}_{j_0}\}$

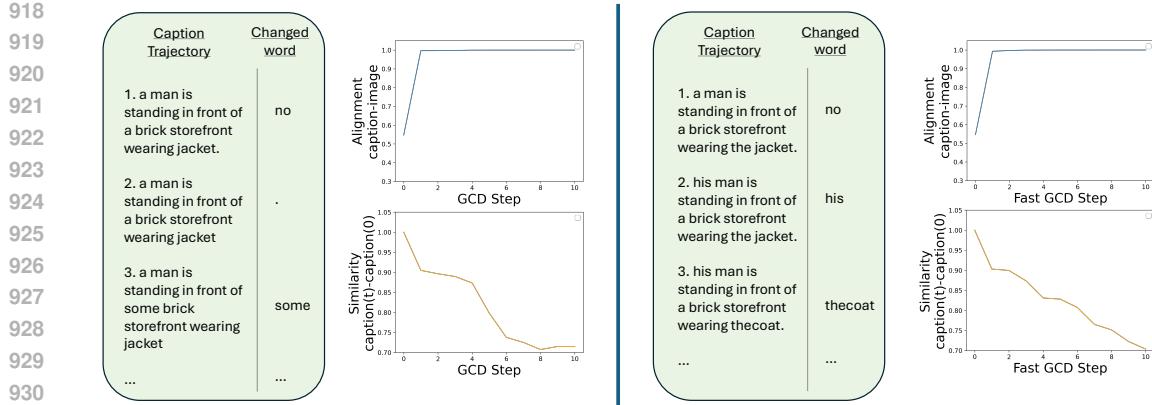
882
 883
 884
 885
 886 **A.3 ADDITIONAL EXAMPLES OF CAPTION TRAJECTORIES**
 887

888 Figure 8 illustrates the behavior of *TRACED* using the Elimination Algorithm on an example with a
 889 correct caption.

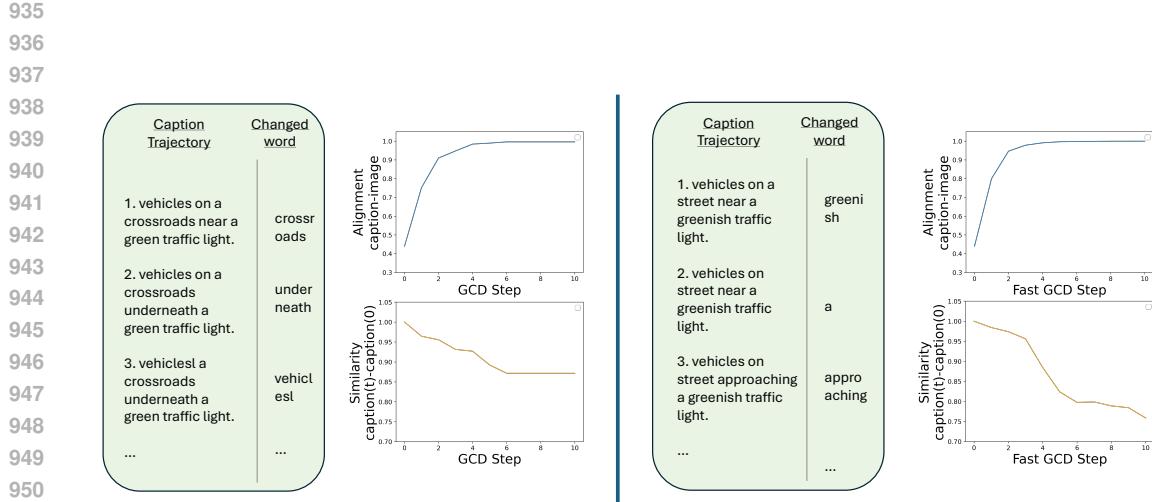


900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910 Figure 6: *TRACED* improves the BLIP-based image-caption alignment score (ITM) on an MS
 911 COCO example Lin et al. (2014), with minimal semantic change in the revised captions, suggesting
 912 the original pair is likely accurate.

913
 914
 915
 916
 917 We then show in Figures 7 and 8 the trajectories obtained with GCD and Fast GCD on the examples
 in Figures 3 and 6 respectively.



932 Figure 7: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 3.
933 In both cases, *TRACED* identifies "no" as the source of misalignment and further improves the
934 caption's alignment with the image.



952 Figure 8: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 6.
953 In both cases, *TRACED* improves the caption's alignment with the image using only minor semantic
954 edits.

957 A.4 NEW BENCHMARK DATASET CREATION

959 Prior work on error detection in image captioning introduces noise via full caption swaps as a means
960 of constructing evaluation benchmarks (Zhang et al., 2024). However, such swaps replace the entire
961 caption, often resulting in text unrelated to the original. In contrast, real-world annotation errors can
962 be more subtle, with annotators correctly describing an image but misrepresenting specific details.
963 To better capture fine-grained noise, we propose a new approach for constructing a challenging
964 benchmark by modifying only a few words within each caption. More specifically, for each original
965 caption, we leverage a large language model to generate $K = 20$ variants that maintain the same
966 structure but introduce small semantic errors. The exact prompt is provided in Appendix A.18.

967 While many generated options are useful, some may be too similar to the initial caption. To filter
968 these, we apply Alignscore (Zha et al., 2023), a factual consistency metric based on a fine-tuned
969 natural language inference model. Alignscore assigns low scores to captions that either omit key
970 information or contradict the original caption. The selected variants thus differ meaningfully in
971 content while remaining structurally close, effectively modeling fine-grained semantic noise. To
increase variability across seeds, we select the 2 least-aligned sentences for each sample.

972 Figure 9 illustrates this generation and filtering
 973 process.
 974

975 A.5 CAPTION 976 CORRECTION HYPERPARAMETERS 977

978 Figure 4 outlines the general caption correction
 979 framework used in this paper, where *TRACED*
 980 is applied to improve the alignment metric of
 981 corrected sentences and fix the potential er-
 982 rors. The way trajectory information is pro-
 983 vided, however, can vary. In our experiments,
 984 we find that repeating the same prompt across
 985 multiple iterations often improves performance,
 986 as the model progressively refines the caption.
 987 We also observe that asking the model first to
 988 fix the caption without any guidance (to avoid
 989 bias from our signals) and then with our token-
 990 level error information appears to be the best
 991 strategy.

992 The main hyperparameters of our correction
 993 framework are:

- 994 • The number of fixing steps: how many times the procedure of error detection followed by
 995 error correction is applied. At each step, new flagged words are obtained with *TRACED*.
 996
- 997 • The number of correction attempts per fixing step, denoted as k : at each fixing step, how
 998 many times the VLM is asked to revise the caption (using the same flagged words).
 999
- 1000 • The correction strategy: the manner in which token-level information from *TRACED* is
 1001 provided to the VLM.

1002 In our experiments, we evaluate the following correction strategies:

- 1003 • Without *TRACED*: the model is asked k times to correct the caption without any guidance
 1004 from our interpretable error detection framework. In this case, the prompt in Figure 13 is
 1005 used with [1] empty.
 1006
- 1007 • With *TRACED* only: the model receives token-level error information from our framework
 1008 and is asked to fix the caption with this information k times. Here, the prompt in Figure 13
 1009 is used with [1] containing guidance on the errors in the caption.
 1010
- 1011 • Without then with *TRACED*: the model performs $k - 1$ correction steps without token-level
 1012 guidance ([1] empty), followed by a final step where *TRACED* provides token-level error
 1013 information ([1] filled).

1014 Figure 10 highlights the impact of correction strategies. Supplying token-level error information to
 1015 the VLM in a direct, naive way can sometimes perform worse than providing no guidance at all. In
 1016 contrast, with an improved strategy, both the 1B and 14B models are able to leverage the information
 1017 provided to generate captions that align more closely with the image. Interestingly, we find that only
 1018 two prompts are often sufficient to consistently surpass the baseline which doesn’t use *TRACED*.
 1019 This is why we show results for two fixing iterations (Without-then-with *TRACED* (2) and Without
 1020 *TRACED* only (2)) after five fixing steps in Figure 5.

1021 A.6 FINE-TUNING INTERNVL3-1B. 1022

1023 To construct a fine-tuning dataset for InternVL3-1B, we apply the correction procedure described in
 1024 Section 3.4 on the train and validation sets of MS COCO and Flickr30k using InternVL3-14B, with
 1025 50% fine-grained noise. For MS COCO, we sub-sample the train set and keep the first 30% (27,594
 1026 samples).

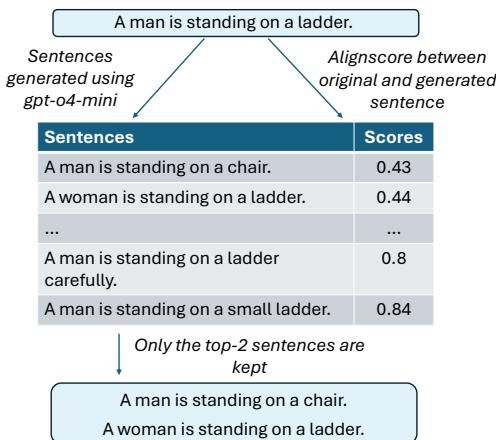


Figure 9: Fine-grained noise generation pipeline. Given an original caption, an LLM generates 20 variants. Alignscore then evaluates the factual consistency of each variant with respect to the original. The least aligned (lowest-scoring) sentences are selected as fine-grained noisy captions.

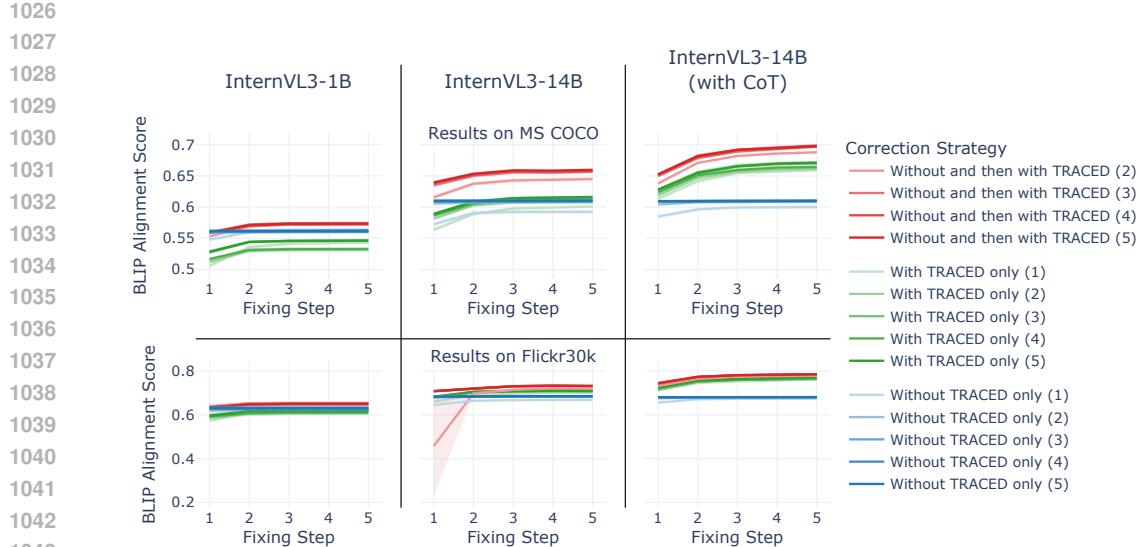


Figure 10: Caption correction results for InternVL3-1B and InternVL3-14B (with and without CoT prompting) across fixing steps. We compare three correction strategies: (1) without *TRACED*, (2) with *TRACED* only, and (3) without *TRACED* for $k - 1$ iterations followed by one iteration with *TRACED*. Numbers in parentheses indicate the number of times k the VLM is asked to fix the caption at each fixing step. BLIP alignment scores (ITM block) on the corrected sentences are averaged over 3 seeds with standard errors.

For each dataset and seed, InternVL3-1B is trained using cross-entropy loss (next token prediction) for five epochs, and the best checkpoint is selected based on validation correction performance (measured as the number of errors detected by *TRACED-BLIP-ITM*). The same hyperparameters (learning rate, optimizer, etc.) as in the original InternVL3 paper were used (Zhu et al., 2025). This model is denoted InternVL3-1B-FT.

A.7 PARALLELIZATION BENEFITS

TRACED applies the trajectory creation and evaluation from Algorithm 1 independently to each sentence in the dataset. This enables efficient large-scale parallelization. Our method benefits from both intra-GPU and multi-GPU parallelism: given access to n GPUs, the dataset can be split into n subsets processed in parallel, with each GPU handling batches of samples.

A.8 COMPUTATION OVERHEAD

Table 5 reports the computation time required by *TRACED* and the original baselines to process 1,000 image-caption pairs on a single L40 GPU. Baseline models such as BLIP, LEMoN, and CLIP are very fast as they require only a single forward pass per pair. Despite performing multiple model evaluations to construct trajectories, all variants of *TRACED*, including Elimination, Fast GCD, and GCD, remain practical and scalable. Among the proposed methods, Elimination is the most efficient, offering substantial speed advantages while maintaining among the best performance. Fast GCD achieves a strong balance between speed and trajectory quality. For example, when scaled to 1,000,000 image-caption pairs using BLIP (ITM), the most expensive baseline, and 4 L40 GPUs, Elimination completes in approximately 6.5 hours and Fast GCD takes about 2.6 days.

As described in Appendix A.7, thanks to the high degree of parallelism in our method, leveraging more GPUs can substantially further reduce total processing time.

We want to emphasize that *TRACED* needs to be applied only once to identify and filter out incorrect image-caption pairs. This one-time computational cost is reasonable for generating a cleaner dataset that can be reused across various downstream tasks, including pre-training, fine-tuning, and evaluation.

1080
1081 Table 5: Computation time comparison across algorithms. Reported times (in seconds) corresponds
1082 to the duration required to process 1,000 sentences with a single L40 GPU, including both trajectory
1083 exploration and alignment score evaluation.

METHOD	ALGORITHM	COMPUTATION TIME (S)
BLIP (ITM)	-	3.82 ± 0.11
<i>TRACED</i> - BLIP (ITM)	ELIMINATION	92.53 ± 1.16
	FAST GCD	905.22 ± 0.99
	GCD	1617.06 ± 0.13
BLIP (ITM)	-	3.56 ± 0.24
<i>TRACED</i> - BLIP (ITM)	ELIMINATION	49.05 ± 0.28
	FAST GCD	389.19 ± 0.51
	GCD	688.90 ± 0.55
LEMON _{OPT}	-	3.13 ± 0.08
<i>TRACED</i> - LEMON _{OPT}	ELIMINATION	43.77 ± 0.59
	FAST GCD	451.28 ± 0.43
	GCD	799.03 ± 1.79
LEMON _{FIX}	-	3.19 ± 0.40
<i>TRACED</i> - LEMON _{FIX}	ELIMINATION	43.44 ± 0.44
	FAST GCD	452.48 ± 1.07
	GCD	802.13 ± 1.76
CLIP	-	2.40 ± 0.07
<i>TRACED</i> - CLIP	ELIMINATION	43.10 ± 0.57
	FAST GCD	444.80 ± 0.55
	GCD	788.97 ± 0.29

A.9 HYPERPARAMETERS

1108
1109 **Trajectory Generation Hyperparameters.** Depending on the exploration strategy, the caption
1110 trajectory generation from Algorithm 1 involves a few hyperparameters:

1111
1112 • Elimination Algorithm: We set $T = L$ and $N = \frac{L(L-1)}{2}$, where L is the caption length. The algo-
1113 rithm removes one token at a time, selecting the one whose removal most improves the alignment
1114 score s , and continues until there is no token in the sentence.

1115 • GCD Algorithm: We use $T = 10$, $K = 128$, and $N = 256$.

1116 • Fast GCD Algorithm: We set $T = 10$, $k = 128$ and $N = K = 128$ since we explore all K
1117 promising replacements for the single token identified via Elimination Algorithm.

1118 **Grid Searches.** The hyperparameter grids used for model selection are as follows:

1119 XGBoost hyperparameters:

1120
1121 • `max_depth` $\in \{3, 4, 5\}$
1122 • `learning_rate` $\in \{0.01, 0.05, 0.1, 0.5\}$
1123 • `n_estimators` $\in \{50, 100, 200, 400\}$

1124 CART hyperparameters:

1125
1126 • `max_depth` $\in \{1, 5, 10, +\infty\}$

A.10 RESULTS PER NOISE TYPE

1127
1128
1129 We present in Table 6 the impact of *TRACED* on various baselines across the three noise types
1130 we evaluate. *TRACED* consistently improves performance across all baselines and noise settings.
1131 Notably, the gains are more substantial for noise types that are harder to detect. For example,
1132 improvements are modest for random noise, where baselines already achieve over 97% Accuracy on

1134 Flickr30k and MS COCO. On the contrary, improvements are much more pronounced on the Fine-
 1135 Grained noise and on MM-IMDb, which present more challenging errors for the existing methods.
 1136

1137 Table 6: Comparison of *TRACED* with baselines. "Elim" and "FGCD" denote Elimination and Fast
 1138 GCD, respectively. Results are averaged over 3 seeds for each noise type (50% noise). We report
 1139 mean accuracy and mean accuracy improvement compared to the baseline, with standard errors.

1141	1142	1143	DATASET	METHOD	ALG.	RANDOM		NOUN		FINE-GRAINED																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
1144	1145	1146	1147	1148	1149	1150	1151	1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229	1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	

1188	1189	Noise type	Method	10%	20%	30%	40%
1190	1191	Fine-grained	<i>TRACED</i> -BLIP (ITM)	83.5 ± 1.5	82.6 ± 0.8	84.0 ± 1.3	84.4 ± 0.8
1192	1193		BLIP (ITM)	80.8 ± 1.0	79.1 ± 0.6	80.6 ± 1.1	81.4 ± 0.7
1194	1195		<i>TRACED</i> -LEMoN _{OPT}	76.4 ± 1.1	75.4 ± 2.1	75.0 ± 0.7	74.7 ± 1.0
1196	1197		LEMoN _{OPT}	73.5 ± 2.1	70.7 ± 0.9	71.4 ± 0.8	72.1 ± 1.5
1198	1199	Noun	<i>TRACED</i> -CLIP	76.7 ± 1.4	76.0 ± 1.8	75.4 ± 1.0	75.8 ± 1.1
1200	1201		CLIP	71.5 ± 2.5	70.0 ± 1.5	70.7 ± 1.3	70.6 ± 1.2
1202	1203		<i>TRACED</i> -BLIP (ITM)	99.1 ± 0.3	98.8 ± 0.2	98.8 ± 0.2	98.5 ± 0.2
1204	1205		BLIP (ITM)	99.0 ± 0.3	98.8 ± 0.2	98.8 ± 0.2	98.5 ± 0.2
1206	1207	Random	<i>TRACED</i> -LEMoN _{OPT}	96.2 ± 0.5	95.9 ± 0.7	96.0 ± 0.3	95.1 ± 0.2
1208	1209		LEMoN _{OPT}	95.7 ± 0.5	95.6 ± 0.8	95.3 ± 0.4	94.5 ± 0.1
1210	1211		<i>TRACED</i> -CLIP	96.4 ± 0.3	96.3 ± 0.4	96.2 ± 0.3	95.5 ± 0.2
1212	1213		CLIP	95.5 ± 0.3	95.6 ± 0.7	95.4 ± 0.3	94.7 ± 0.3
1214	1215		<i>TRACED</i> -BLIP (ITM)	99.7 ± 0.2	99.6 ± 0.1	99.8 ± 0.1	99.8 ± 0.1
1216	1217		BLIP (ITM)	99.6 ± 0.3	99.7 ± 0.1	99.7 ± 0.1	99.7 ± 0.1
1218	1219		<i>TRACED</i> -LEMoN _{OPT}	99.5 ± 0.1	99.6 ± 0.2	99.5 ± 0.1	99.5 ± 0.1
1220	1221		LEMoN _{OPT}	99.4 ± 0.1	99.5 ± 0.2	99.3 ± 0.3	99.4 ± 0.1
1222	1223		<i>TRACED</i> -CLIP	99.3 ± 0.2	99.6 ± 0.1	99.6 ± 0.2	99.6 ± 0.1
1224	1225		CLIP	99.3 ± 0.2	99.5 ± 0.2	99.5 ± 0.1	99.5 ± 0.1

Table 7: Comparison of *TRACED*, using the Elimination Algorithm, against baseline models across noise levels (10%, 20%, 30%, and 40%) on Flickr30k. Test AUCs are averaged over three seeds on with standard errors.

gains are especially substantial under fine-grained noise, where baseline methods tend to struggle the most.

A.12 DOWNSTREAM CAPTIONING PERFORMANCE

In this section, we evaluate the impact of our filtering and correction procedure on the downstream performance of a captioning model, BLIP-2 Li et al. (2023). In particular, we fine-tune BLIP-2 on (i) the Flickr30k datasets containing 50% fine-grained noise and (ii) cleaned datasets obtained by removing sentences flagged as incorrect by BLIP (the strongest baseline) or by *TRACED*-BLIP. In addition to filtering, we also test the correction strategy, where sentences predicted as wrong by *TRACED*-BLIP are replaced with corrected versions produced either by InternVL3-1B alone or using the token-level correction procedure described in Section 3.4.

We fine-tune BLIP-2 using LoRA (rank = 4) and report BLEU-4, ROUGE, and CIDEr scores. We train the models for 3 epochs, with a learning rate of 1e-5, AdamW and using early stopping. The table below summarizes the results:

1231	Method	BLEU-4 (%)	ROUGE (%)	CIDEr (%)
1232	Noisy	31.5 ± 0.2	56.5 ± 0.1	69.2 ± 0.4
1233	Filtering with BLIP	30.8 ± 0.5	56.1 ± 0.3	67.9 ± 1.3
1234	Filtering with <i>TRACED</i> -BLIP	31.8 ± 0.1	56.6 ± 0.1	69.6 ± 0.2
1235	Ideal Filtering	31.8 ± 0.1	56.8 ± 0.1	70.2 ± 0.4
1236	Correction with InternVL3-1B	32.0 ± 0.1	56.8 ± 0.0	70.2 ± 0.4
1237	Correction with InternVL3-1B + <i>TRACED</i>	32.5 ± 0.1	56.9 ± 0.1	70.4 ± 0.5

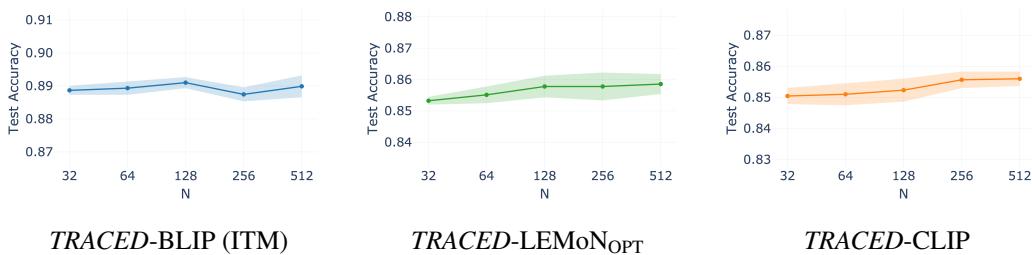
Table 8: Impact of filtering and correction, using either the baseline or *TRACED*, on the downstream caption quality of BLIP-2. In both correction settings, corrections are applied to the same samples predicted as erroneous by *TRACED*-BLIP, isolating the effect of *TRACED*’s interpretable tokens in the correction pipeline.

1242 Filtering with *TRACED-BLIP* achieves performance very close to Ideal Filtering and substantially
 1243 outperforms the baseline (BLIP-filtering) across all metrics. Applying caption correction to the
 1244 samples flagged as erroneous by *TRACED-BLIP* yields additional gains in BLEU-4, ROUGE, and
 1245 CIDEr, and incorporating *TRACED*’s interpretable tokens into the correction process further boosts
 1246 downstream caption quality. Overall, our *TRACED*-based correction pipeline improves BLIP-2’s
 1247 captioning performance by up to 1 point in BLEU-4, 0.4 in ROUGE, and 1.2 in CIDEr compared to
 1248 training on the noisy dataset.

1249 A.13 IMPACT OF N AND T ON *TRACED*

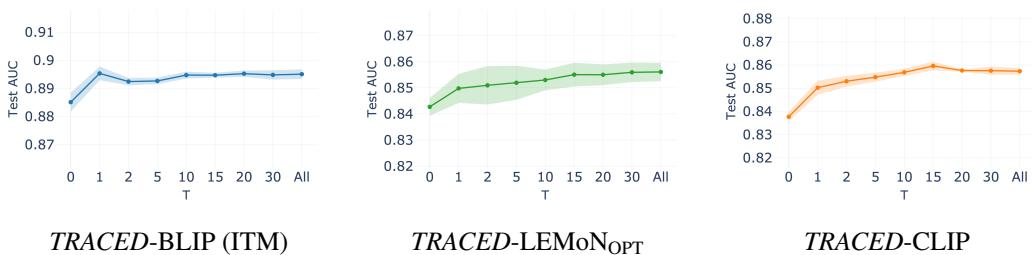
1250 Algorithm 1 relies on two key hyperparameters: N , the number of candidate edits considered at
 1251 each step, and T , the trajectory length. In this section, we analyze the sensitivity of *TRACED* to
 1252 these hyperparameters.

1253 **Impact of N .** For the Elimination algorithm, N is inherently small: by construction it matches
 1254 the number of tokens in the caption and decreases by one at each iteration, making exploration
 1255 progressively faster. Consequently, we focus our analysis on the role of N in the GCD algorithm,
 1256 and report in Figure 11 the impact of varying N on performance on Flickr30k.



1257 Figure 11: Impact of varying N on the performance of *TRACED* when applied to BLIP (ITM),
 1258 LEMoN_{OPT}, and CLIP using the GCD algorithm. Mean accuracies on Flickr30k over 3 seeds and
 1259 noise types (noun, random and fine-grained at 50% noise), are reported.

1260 **Impact of T .** We evaluated the influence of trajectory length to determine how much information
 1261 is gained from longer versus shorter paths. We used the Elimination algorithm to conduct this
 1262 experiment. The results on Flickr30k are presented in Figure 12. We observe that larger values
 1263 of T generally lead to improved performance, particularly for CLIP and LEMoN_{OPT}. However, a
 1264 single step of Elimination ($T = 1$) is often sufficient to achieve near-optimal, and sometimes even
 1265 optimal, performance. This behavior can be explained by the fact that in many cases, only one or a
 1266 few exploratory steps are required for our procedure to identify an incorrect token along the caption
 1267 trajectory (see Figure 3) and therefore determine whether the caption is correct or not.



1268 Figure 12: Impact of varying T on the performance of *TRACED* (Elimination algorithm) when
 1269 applied to BLIP (ITM), LEMoN_{OPT}, and CLIP. Mean accuracies on Flickr30k over 3 seeds and
 1270 noise types (noun, random and fine-grained at 50% noise), are reported with standard errors.

1271 A.14 IMPORTANCE OF THE SEMANTIC SIMILARITY SCORE

1272 We additionally study the impact of the semantic similarity function c on the performance of
 1273 *TRACED*. For BLIP (ITM), we compared using the ITC component (as described in Section 4.3)

1296 with using CLIP. For both $\text{LEMoN}_{\text{OPT}}$ and CLIP, we performed the other substitution and evaluated whether replacing CLIP with BLIP (ITC) affected performance. The resulting comparisons are
 1297 provided below.
 1298

s	Noise Type	$c = \text{CLIP}$	$c = \text{BLIP (ITC)}$
BLIP (ITM)	fine-grained	76.0 ± 0.2	76.6 ± 0.3
	noun	93.7 ± 0.3	93.8 ± 0.3
	random	98.0 ± 0.1	98.2 ± 0.1
$\text{LEMoN}_{\text{OPT}}$	fine-grained	68.5 ± 1.0	69.2 ± 1.0
	noun	90.8 ± 0.1	90.5 ± 0.2
	random	97.5 ± 0.1	97.4 ± 0.3
CLIP	fine-grained	68.9 ± 0.4	70.0 ± 0.2
	noun	90.7 ± 0.2	90.9 ± 0.3
	random	97.6 ± 0.1	97.5 ± 0.3

1311 Table 9: Impact of changing c on the performance of TRACED . Mean accuracies on Flickr30k for
 1312 each noise type are computed over 3 seeds with standard errors.
 1313

1314
 1315 While the choice of BLIP (ITC) seems preferable for $s = \text{BLIP (ITM)}$, the choice of c does not
 1316 seem to have a decisive impact on the final performance, and both CLIP and BLIP (ITC) appear to
 1317 be effective metrics c for error-detection.
 1318

1320 A.15 PERFORMANCE OF TRACED ACROSS CAPTION LENGTH

1321 To assess whether the effect of TRACED on the baseline depends on caption length, we compute
 1322 test accuracies for both TRACED and the baselines across caption-length bins on MS COCO. The
 1323 corresponding results are shown in Table 10. We find that TRACED consistently improves upon the
 1324 different baselines across all caption-length ranges, indicating that the trajectory-guided approach is
 1325 beneficial regardless of the caption length.
 1326

Noise type	Method	(6.999, 9.0]	(9.0, 10.0]	(10.0, 11.0]	(11.0, 14.0]	(14.0, 34.0]
Fine-grained	TRACED-BLIP (ITM)	80.5 ± 0.5	80.9 ± 1.2	80.1 ± 0.5	80.2 ± 0.2	79.1 ± 0.4
	BLIP	76.5 ± 0.3	78.3 ± 0.9	76.8 ± 0.7	77.8 ± 0.4	74.4 ± 2.0
	$\text{TRACED-LEMoN}_{\text{OPT}}$	70.5 ± 0.9	70.4 ± 0.9	71.1 ± 0.5	71.2 ± 0.5	71.3 ± 1.5
	LEMON_OPT	68.6 ± 0.7	68.5 ± 1.0	68.0 ± 1.3	69.6 ± 1.0	68.1 ± 1.1
Noun	TRACED-CLIP	70.3 ± 0.5	68.9 ± 0.3	69.8 ± 1.2	70.3 ± 0.6	68.5 ± 1.3
	CLIP	66.7 ± 0.4	66.8 ± 0.9	65.0 ± 0.8	68.1 ± 0.3	65.4 ± 2.0
	TRACED-BLIP (ITM)	91.9 ± 0.3	92.6 ± 0.1	92.6 ± 0.1	91.6 ± 0.3	91.7 ± 0.6
	BLIP	91.7 ± 0.4	91.8 ± 0.1	92.1 ± 0.2	90.9 ± 0.4	92.1 ± 0.9
Random	$\text{TRACED-LEMoN}_{\text{OPT}}$	86.0 ± 0.5	86.3 ± 0.7	86.4 ± 0.8	86.6 ± 0.2	87.8 ± 1.2
	LEMON_OPT	84.1 ± 0.3	85.4 ± 1.1	85.6 ± 0.7	85.8 ± 0.2	88.3 ± 1.1
	TRACED-CLIP	85.6 ± 0.3	86.2 ± 1.0	85.6 ± 0.7	85.3 ± 0.0	87.3 ± 2.1
	CLIP	83.1 ± 0.2	83.9 ± 0.7	84.3 ± 0.4	84.5 ± 0.7	86.0 ± 1.2
	TRACED-BLIP (ITM)	98.8 ± 0.0	98.8 ± 0.4	99.1 ± 0.2	99.0 ± 0.2	98.5 ± 0.5
	BLIP	98.3 ± 0.1	98.7 ± 0.3	98.4 ± 0.4	98.5 ± 0.3	98.5 ± 0.5
	$\text{TRACED-LEMoN}_{\text{OPT}}$	97.7 ± 0.1	98.3 ± 0.1	97.8 ± 0.1	97.4 ± 0.2	98.7 ± 0.2
	LEMON_OPT	97.6 ± 0.2	98.1 ± 0.0	97.7 ± 0.0	97.5 ± 0.2	98.0 ± 0.2
	TRACED-CLIP	97.7 ± 0.3	98.2 ± 0.0	97.6 ± 0.2	97.3 ± 0.2	98.0 ± 0.2
	CLIP	97.5 ± 0.3	98.1 ± 0.1	97.4 ± 0.1	97.2 ± 0.1	98.0 ± 0.2

1346 Table 10: Comparison of TRACED , using the Elimination Algorithm, with baseline models across
 1347 caption-length bins on MS COCO. The bins correspond to the (0%, 25%], (25%, 50%], (50%,
 1348 75%], (75%, 95%], and (95%, 100%] percentiles of caption length. For each bin, test accuracies are
 1349 averaged over three seeds, with standard errors reported.

1350
1351

A.16 EXAMPLES OF ERRORS WITH FINE-GRAINED NOISE

1352

1353

1354

1355

We show below a list of examples of noisy captions generated as described in A.4.

1356

1357

1358

1359

1360

1361

1362

1363

Wrong object/element

1364

True: A black and white dog is running through the grass.
Noisy: A black and white cat is running through the grass.

True: Several students waiting outside an igloo.
Noisy: Several students waiting outside a car.

True: A man in a white shirt stands high up on scaffolding.
Noisy: A woman in a red shirt stands high up on scaffolding.

Wrong negation

1380

True: Three people are sitting at an outside picnic bench with an umbrella.

Noisy: Two people are sitting at an inside picnic table without an umbrella.

True: A man is standing in front of a brick storefront wearing a black jacket.

Noisy: A man is standing in front of a brick storefront wearing no jacket.

True: A man playing an acoustic guitar and singing with a group of people behind him including a woman who is singing along.

Noisy: A man not playing any instrument and speaking with a group of people behind him including a woman who is taking notes.

Wrong action

True: Girl wearing blue shirt and black shorts plays trumpet outside.

Noisy: The girl wearing a blue shirt and black shorts sings outside.

True: One man holds another man's head down and prepares to punch him in the face.

Noisy: One man holds another man's head down while his friends cheer him on.

True: A group of people are hiking up an icy hillside.

Noisy: A group of people are skiing down an icy hillside.

Wrong number

True: A group of spectators watch a men's sand volleyball game.

Noisy: A solitary spectator watches a men's sand volleyball game.

True: Shaft of light in a cave shows three spelunkers.

Noisy: A shaft of light in a cave reveals one spelunker.

True: Person standing on rocky edge of water with hilly land in background.

Noisy: A group of people standing on the sandy beach with flat land in the background.

1401

1402

1403

Table 11: Examples of true versus noisy captions with fine-grained noise from our new benchmark dataset, derived from Flickr30k, illustrating errors in the objects, negations, actions and quantities.

1404	Wrong object/element	Wrong action
1405		
1406		True: a guy that is riding his bike next to a train Noisy: A guy that is riding his bike next to a bus.
1407		
1408		
1409		
1410		
1411		
1412		
1413		
1414		True: An old black and white photo of Pennsylvania Avenue. Noisy: An old black and white photo of Fifth Avenue.
1415		
1416		
1417		True: a cat that is eating some kind of banana Noisy: A dog that is eating some kind of banana.
1418		
1419		
1420		
1421	Wrong negation	Wrong number
1422		
1423		True: Many people gather around a building with clocks Noisy: Many people gather around a building without clocks.
1424		
1425		
1426		
1427		
1428		
1429		
1430		
1431		True: A pencil is sitting on a ruler with a pair of scissors. Noisy: A pencil is sitting on a ruler without any scissors.
1432		
1433		
1434		
1435		True: a pole that has a sign on it Noisy: A pole that has no sign on it.
1436		
1437		
1438		
1439		
1440		
1441		
1442		
1443	Table 12: Examples of true versus noisy captions with fine-grained noise from our new benchmark dataset, derived from MS COCO, illustrating errors in the objects, negations, actions and quantities.	True: a photo of a train heading down the tracks Noisy: A photo of multiple trains heading down the tracks.
1444		
1445		
1446		
1447		
1448		
1449		
1450		
1451		
1452		
1453		
1454		
1455		
1456		
1457		

1458	Wrong color	Distributed errors
1459		
1460		
1461	True: A boy wearing a orange Doritos jersey jumps up in the air.	True: A bride in a light pink dress poses for a picture with male relatives and is being photographed by a man in a cream shirt with white pants.
1462	Noisy: A girl wearing a blue Doritos jersey jumps up in the air.	Noisy: A bride in a light pink dress poses for a picture with her siblings and is being photographed by a girl in a green shirt with a floral skirt.
1463		
1464		
1465		
1466		
1467		
1468		
1469	True: A brown dog about to catch a green Frisbee.	True: A band of four members including a woman and three men are playing their instruments with an open guitar case in front of them.
1470	Noisy: A black dog about to catch a red Frisbee.	Noisy: An orchestra of ten members including a woman and nine men are playing their instruments with an open violin case in front of them.
1471		
1472		
1473	True: A man in brown building a raft.	True: A young man in a gray tee-shirt and gray sweatpants stands by a metal tiered shelf in an industrial kitchen, holding the top edge of the metal structure, with one leg resting on the knee of the other leg.
1474	Noisy: A man in red building a raft.	Noisy: A young woman in a blue tee-shirt and black sweatpants stands by a metal tiered shelf in an industrial kitchen, holding the bottom edge of the metal structure, with one leg resting on the knee of the other leg.
1475		
1476		
1477		
1478		
1479		
1480		
1481		
1482		
1483		
1484	Table 13: Examples of true versus noisy captions with fine-grained noise from our new benchmark dataset, derived from Flickr30k, illustrating color errors and distributed errors.	
1485		
1486		
1487		
1488		
1489	Wrong color	Distributed errors
1490		
1491		
1492	True: A young man wearing black attire and a flowered tie is standing and smiling.	True: Woman taking a picture of someone standing behind a sculpture and a child pushing another woman towards the sculpture.
1493	Noisy: A young man wearing blue attire and a flowered tie is standing and smiling.	Noisy: A woman taking a picture of a dog standing behind a sculpture and a child pushing another woman away from the sculpture.
1494		
1495		
1496		
1497		
1498		
1499		
1500	True: A small blue plane sitting on top of a field.	True: Several birds that are flying together over a body of water.
1501	Noisy: A large red plane sitting on top of a field.	Noisy: A flock of ravens that are cawing together above a forest.
1502		
1503		
1504	True: white flowers in a vase with arranged leaves	True: A woman holding a blue birthday cake with stars and candles on it and another woman in front of the cake.
1505	Noisy: Red flowers in a vase with arranged leaves.	Noisy: A woman holding a green birthday cake with stars and no candles on it and another woman in front of the cake.
1506		
1507		
1508		
1509		
1510		
1511	Table 14: Examples of true versus noisy captions with fine-grained noise from our new benchmark dataset, derived from MS COCO, illustrating color errors and distributed errors.	

1512 A.17 PROMPT FOR CAPTION CORRECTION
1513

1514 We present the prompts used for caption correction in Section 3.4. To isolate the effect of *TRACED*,
 1515 we employ identical prompts across settings, with the only modification being the addition of a
 1516 sentence specific to our framework ([1] in Figures 13 and 14). For instance, in Figure 4, [1] is
 1517 replaced with: “The following words are wrong: ‘a’, ‘player’, ‘female’, ‘a’, ‘rack’, ‘is’, ‘:’, ‘the’.
 1518 Other words might be wrong too.”

1519
1520
1521
1522
1523
1524
1525
1526
1527
1528 <|image|>
1529 ### Task:
1530 You are an expert caption editor.
1531
1532 Please check the caption for factual or visual accuracy. [1]
1533
1534 If the caption is inaccurate, rewrite it using only the original words or minimal substitutions to make it accurate.
1535 **Avoid adding new details or descriptions. Keep the revised caption short and concise.**
1536
1537 If the caption is accurate, return it exactly as is. Don't make any changes.
1538
1539 Respond with only the corrected caption, enclosed in quotation marks.
1540
1541 ### Caption:
1542 "A female tennis player is on the court with a racket."
1543 ### Corrected Caption:

1544
1545 Figure 13: Prompt used for caption correction. In the case of *TRACED*, token-level error information
1546 is provided in [1].
1547

1548 <|image|>
1549 ### Task:
1550 You are an expert caption editor.
1551
1552 Please check the caption for factual or visual accuracy. [1]
1553
1554 If the caption is inaccurate, rewrite it using only the original words or minimal substitutions to make it accurate.
1555 **Avoid adding new details or descriptions. Keep the revised caption short and concise.**
1556
1557 If the caption is accurate, return it exactly as is. Don't make any changes.
1558
1559 Think step by step, explain why there is one or multiple errors, and then provide the corrected caption, enclosed in
1560 quotation marks. Don't output anything after the corrected sentence.
1561
1562 ### Caption:
1563 "A female tennis player is on the court with a racket."

1564
1565 Figure 14: Prompt used for caption correction using Chain-of-Thought prompting. In the case of
1566 *TRACED*, token-level error information is provided in [1].
1567

1566 A.18 PROMPT FOR FINE-GRAINED NOISE TYPE
15671568 We use the prompts in Figures 15 and 16 to generate 20 candidate noisy captions for each caption
1569 in the MS COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) datasets.
1570

```

1571 # Sentence Variation Generator
1572
1573 For a given input sentence, generate up to 20 variations that have similar structure but convey clearly different meanings.
1574 Follow these systematic modification rules:
1575
1576 ## Analysis Requirements
1577 1. First, identify the basic structure of the sentence
1578 2. Identify all components: subject, predicate, object (if any), attributives (if any), adverbials (if any), and clauses (if any)
1579 3. Create variations by modifying one or two components per variation
1580
1581 ## Component Modification Guidelines
1582
1583 ### Subject Modifications (1-2 variations)
1584 - Change the quantity of the subject: e.g., "A man" → "Two men"; "A group of people" → "One person"
1585 - Change the subject itself: e.g., "A man" → "A woman"; "A person" → "An animal"; "A group of students" → "A group of police
1586 officers"
1587
1588 **Examples:**
1589 - Original: "The doctor examined the patient carefully."
1590 - Variation: "The nurse examined the patient carefully." (Changed subject identity)
1591 - Variation: "Several doctors examined the patient carefully." (Changed subject quantity)
1592
1593 ### Predicate Modifications (1-2 variations)
1594 - Replace the verb with an unrelated verb: e.g., "standing" → "sitting"; "waving" → "running"
1595 - Ensure the object (if present) is also modified to fit the new verb context
1596
1597 **Examples:**
1598 - Original: "The chef prepared a delicious meal for the guests."
1599 - Variation: "The chef served a delicious meal for the guests." (Changed verb)
1600 - Variation: "The chef ruined a delicious meal for the guests." (Changed verb to opposite meaning)
1601
1602 ### Object Modifications (1-2 variations)
1603 - Replace the noun in the object with a different noun: ensure it still fits the context but differs significantly from the original
1604 - If there is an object complement, modify it to express an opposite or completely different meaning
1605
1606 **Examples:**
1607 - Original: "She bought a new car with her bonus."
1608 - Variation: "She bought a new house with her bonus." (Changed object noun)
1609 - Variation: "She bought an old car with her bonus." (Changed object attribute to opposite)
1610
1611 ### Attributive Modifications (1-2 variations)
1612 - For adjectives or nouns serving as attributives, replace with contextually appropriate words that convey completely
1613 different meanings
1614 - For numerical attributives, change the quantity
1615 - For prepositional phrases or infinitives, modify to maintain context while expressing significantly different meaning
1616
1617 **Examples:**
1618 - Original: "The tall building on the corner was recently renovated."
1619 - Variation: "The historic building on the corner was recently renovated." (Changed attributive adjective)
- Variation: "The tall building in the downtown area was recently renovated." (Changed attributive prepositional phrase)

```

1610 Figure 15: First part of the prompt used to create the fine-grained noise using gpt-04-mini.
1611
1612
16131614 A.19 USE OF LLM
16151616 LLMs were used to polish the writing of this paper.
1617
1618
1619

```

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633     ### Adverbial Modifications (1-2 variations)
1634     - For time and place adverbials, change to completely different times or locations
1635     - For manner and degree adverbials, change the adverb to its antonym or to a completely different adverb
1636     - For reason, result, condition adverbials, modify the corresponding clause
1637
1638     **Examples:**
1639     - Original: "They quickly finished their homework before dinner."
1640         - Variation: "They slowly finished their homework before dinner." (Changed manner adverbial to opposite)
1641         - Variation: "They quickly finished their homework after midnight." (Changed time adverbial)
1642
1643     ### Clause Modifications (1-2 variations)
1644     - Identify the components within the clause and modify them according to the guidelines above
1645
1646     **Examples:**
1647     - Original: "She said that she would come to the party if she finished her work."
1648         - Variation: "She said that she would skip the party if she finished her work." (Changed predicate in the clause)
1649         - Variation: "She said that she would come to the party unless she finished her work." (Changed condition in the adverbial clause)
1650
1651     ## Important Requirements
1652
1653     1. Each variation should differ from the original in 1-2 components only
1654     2. Modifications must be significant enough to clearly change the meaning of the sentence
1655     3. The modified sentence must maintain grammatical correctness and contextual coherence
1656     4. If the original sentence is too short to generate 20 variations, provide as many as reasonably possible
1657     5. Consider the context of the sentence and ensure modifications are contextually appropriate
1658     6. Number each variation sequentially (1-20)
1659
1660     ## Output Format
1661     1. [Modified sentence 1]
1662     2. [Modified sentence 2]
1663     ...
1664     20. [Modified sentence 20]
1665
1666     Original: {sentence}
1667
1668
1669
1670
1671
1672
1673

```