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ABSTRACT

Error detection is critical for enhancing multimodal dataset reliability and down-
stream model performance. Existing error filters, while increasingly powerful,
typically rely on a single similarity score per image–caption pair. This is lim-
iting: captions with subtle errors (e.g., mislabeled objects, incorrect colors, or
negations) can still score highly, while correct but imprecisely worded captions
may score poorly. To address this, we introduce the notion of a caption trajec-
tory: an ordered sequence of captions produced by iteratively editing a caption to
maximize an image-text relevance score. This trajectory carries rich signals for
error detection. Correct captions typically stabilize after minor edits, while erro-
neous captions undergo substantial improvements. Building on these insights, we
introduce TRACED, a cost-efficient and model-agnostic framework that leverages
trajectory statistics for more accurate caption error detection. Beyond detection,
TRACED also serves as an interpretable tool for identifying the origins of errors.
We further demonstrate that, in the case of error correction, these interpretable
token-level error information can be provided to VLMs to enhance the alignment
scores of the generated captions. On MS COCO and Flickr30k, TRACED achieves
up to 2.8% improvement in accuracy for error detection across three noise types.

1 INTRODUCTION

Vision models have achieved remarkable success across diverse applications, including visual un-
derstanding (Dosovitskiy et al., 2021), multimodal reasoning (Alayrac et al., 2022), and content
generation (Esser et al., 2024). These models require extensive training on massive datasets, often
containing millions of image-caption pairs (Ordonez et al., 2011; Lin et al., 2014; Russakovsky et al.,
2015; Schuhmann et al., 2021; Bain et al., 2021; Changpinyo et al., 2021; Li et al., 2022). However,
many rely on pre-training with web-scraped (Radford et al., 2021; Li et al., 2021; Lin et al., 2024)
or even synthetic data (Li et al., 2022; 2023; Hammoud et al., 2024). These datasets often contain
significant errors (Northcutt et al., 2021b; Liao et al., 2021; Zhang et al., 2024), which not only
hampers model convergence during training but can also reinforce biases and reduce generalization
capabilities. Recent studies have demonstrated that removing incorrect image-caption pairs (Zhang
et al., 2024; Li et al., 2022) can substantially improve model performance. Therefore, detecting such
errors is essential for boosting data quality and training better models.

As manual annotation is infeasible at scale, many works have proposed automated error detection.
Existing error detection methods typically rely on assigning a quality or similarity score to each
image-caption pair, using either model confidence (Pleiss et al., 2020; Swayamdipta et al., 2020;
Northcutt et al., 2021a), neighborhood consistency (Bahri et al., 2020; Zhu et al., 2022; Zhang et al.,
2024), or multimodal alignment (Radford et al., 2021; Li et al., 2022; Zhang et al., 2024). While
these existing methods are increasingly powerful, they typically rely on a single similarity score
per image-caption pair. This poses a key limitation: not all errors are equally detectable. Some
captions may mostly align with the image but include subtle mistakes—incorrect object labels, color
description, or negation—that still yield high similarity scores. Conversely, a correct caption might
receive a low score if the image is difficult to describe or if the wording is imprecise (see Figure 1).
In both cases, relying on a single similarity score can lead to unreliable error detection.

In this paper, we propose a novel approach that leverages caption improvement trajectories for more
accurate error detection. Our key insight is that the potential for improvement varies significantly
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Noisy Caption: A man is 
standing in front of a brick 
storefront wearing no
jacket.

BLIP Alignment Score: 
0.55 (no error)

Correct Caption: Vehicles 
on a street near a green 
traffic light.

BLIP Alignment Score: 
0.44 (error)

Figure 1: Left: the BLIP-based alignment score (ITM block) is high (above 0.5), likely because
the caption is mostly correct except for a single erroneous word (“no”). Right: the BLIP-based
alignment score is low (below 0.5) even though the caption is correct.

between correct and incorrect captions, a pattern we observe consistently across the state-of-the-art
alignment scoring functions we evaluated. Specifically, when starting with an accurate caption, iter-
ative attempts to improve it yield minimal gains in similarity scores. In contrast, an incorrect caption
presents substantial improvement potential. We formalize these intuitions by generating a sequence
of increasingly refined captions for each image-caption pair and analyzing the resulting trajectory.
Rather than making error detection decisions based on a single similarity score, our method exam-
ines the pattern of improvement across the entire sequence. Importantly, this trajectory-based frame-
work is model-agnostic and can be combined with existing state-of-the-art error detection baselines
to enhance their performance.

To evaluate error detection in image captioning, synthetic noise is typically injected through caption
swaps (Zhang et al., 2024). More sophisticated swaps (e.g., between captions sharing nouns or
metadata) can create harder cases but still often yield captions that are unrelated to the image and
easy to detect. To test our framework under more challenging and realistic conditions, we introduce
a new form of fine-grained noise generated with GPT-4o-mini (OpenAI, 2024). By prompting the
model to make minimal yet semantically significant alterations, this noise yields captions that remain
plausible but contain subtle errors, making them harder to detect (see left example in Figure 1).

We further show that our error detection framework has broader applicability. In particular, it pro-
vides interpretable insights into the origin of errors, which can then be leveraged to guide a VLM
toward potential error sources, thereby correcting them and enhancing the alignment score of the
edited captions.

Our contributions are as follows:

1. We introduce a new error detection framework called TRACED (Trajectory Creation for
Error Detection), based on the novel idea of creating caption trajectories. By iteratively
improving captions through token replacements and deletions, we generate a sequence of
captions and analyze both their alignment with the corresponding image and the semantic
changes between iterations. This trajectory-based approach provides richer signals and
enables more accurate identification of mismatched image-caption pairs. TRACED is cost-
efficient and interpretable. It is also flexible and can be applied on top of many existing
error detection methods to enhance their performance.

2. We evaluate how TRACED improves the performance of several state-of-the-art error de-
tection methods, including CLIP (Radford et al., 2021), LEMON (Zhang et al., 2024), and
BLIP (Li et al., 2022). Our experiments contain various types of label noise, including
traditional random caption swaps and a more challenging type of synthetic noise we gen-
erated by prompting GPT-4o-mini (OpenAI, 2024). Compared to the existing benchmarks,
this novel type of noise consists of plausible yet incorrect captions designed to better re-
flect real-world annotation errors. On average across all noise types, TRACED consistently
improves detection Accuracy by up to 2.5% on MS COCO (Lin et al., 2014), 2.8% on
Flickr30k (Plummer et al., 2015), and 2.4% on MM-IMDb (Arevalo et al., 2017).

3. We show how TRACED can be used to provide interpretable outputs and identify specific
misaligned tokens in erroneous captions. On InternVL3 models, we evaluate the impact
of this interpretable token-level error information on caption correction. We show that this
information can be used to improve the alignment of the generated captions, and observe an
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improvement of up to 14.5% in the BLIP-alignment score for the corrected captions using
TRACED compared to unguided caption correction.

Our code and datasets will be made open-source in the camera-ready version if the paper is accepted.

2 RELATED WORK

Handling Noise in Vision Datasets. Vision datasets often contain labeling errors that degrade
model performance (Zhang et al., 2021; Northcutt et al., 2021b; Liao et al., 2021; Zhang et al.,
2024). To address this problem, two main research directions have emerged: (i) learning with noisy
labels by adapting the loss function or reducing the influence of likely corrupted pairs (Natarajan
et al., 2013; Bennouna et al., 2023; Arazo et al., 2019; Huang et al., 2023), and (ii) data cleaning,
which aims to detect and remove mislabeled samples (Grivas et al., 2020; Zhang et al., 2024). Our
work follows the second line, improving the filtering of noisy image–caption pairs.

Error Detection for Classification Datasets. Label noise can be detected through various ap-
proaches. Confidence-based methods such as Confident Learning (Northcutt et al., 2021a), AUM
(Pleiss et al., 2020), and Dataset Cartography (Swayamdipta et al., 2020) flag mislabeled samples
based on model confidence. Neighbor-based approaches, including Deep k-NN (Bahri et al., 2020)
and SimiFeat (Zhu et al., 2022), detect label noise by checking agreement with nearest neighbors
in an embedding space. With the emergence of foundation models, new stronger baselines for la-
bel error detection have appeared. Liang et al. (2024) and Kang et al. (2022) propose leveraging
CLIP (Radford et al., 2021), pretrained on 400M image-text pairs, to score image-label consistency.
Building on this, LEMoN (Zhang et al., 2024) introduces a neighborhood-based method that aggre-
gates relevance scores from multimodal nearest neighbors to improve error detection in classification
and image captioning datasets. It outperforms prior confidence- and neighborhood-based methods,
making it a strong baseline, which we further enhance with our trajectory-based framework.

Error Detection for Image Captioning. In this paper, we focus on error detection in image caption-
ing, a more challenging task than image classification, as it requires a deeper semantic understanding
of both language and visual content. To improve caption quality, BLIP (Li et al., 2022) builds on
CLIP by learning a shared image-text embedding space but also by training a classifier to distinguish
high-quality from noisy image-caption pairs. Although not originally intended for error detection,
Zhang et al. (2024) show that BLIP’s filtering component performs very well in identifying misla-
beled image–caption pairs on the dataset it was fine-tuned on. We therefore also examine how our
framework can further enhance BLIP on caption error detection.

Evaluation via Synthetic Noise Injection. Error detection methods are often evaluated by in-
jecting synthetic label noise into clean datasets. Prior work has studied symmetric noise, where
labels are randomly swapped (Pleiss et al., 2020; Kang et al., 2022), asymmetric noise, where labels
are replaced with semantically similar ones via a transition matrix (Northcutt et al., 2021a), and
instance-dependent noise, where incorrect labels depend on instance features (Liang et al., 2024;
Zhu et al., 2022). These noise models, however, are designed for classification tasks. Zhang et al.
(2024) extend noise modeling to image captioning via random caption swaps, swaps between cap-
tions with shared nouns, and swaps within the same category using metadata. While more realistic,
these approaches still replace entire captions, producing descriptions that can be unrelated to the im-
age. In practice, noise is often subtler: annotators may describe the correct image but misrepresent
specific elements, and provide captions that are mostly accurate yet partially wrong. In this paper,
we introduce another type of noise for image captioning that aims at capturing this fine-grained form
of caption noise and evaluate our framework in this more challenging setting.

Error Correction for Image Captioning. Prior work on caption correction has followed two main
directions: (a) structured editing frameworks, where models are trained to add or delete words in a
sentence (Wang et al., 2022), and (b) dedicated correction models designed to fix a caption (Sam-
mani & Melas-Kyriazi, 2020; Huang et al., 2024; Berger et al., 2025). Our framework has direct
applications to the second line of work. Early efforts used LSTMs for correction (Sammani &
Melas-Kyriazi, 2020), while later work fine-tuned small VLMs (Berger et al., 2025) or leveraged
large closed-source models (Huang et al., 2024) such as GPT-4 (OpenAI et al., 2024) . These stud-
ies highlight the effectiveness of transformer-based architectures for caption correction, with large
models offering strong but costly performance, and smaller VLMs providing an efficient alterna-
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tive for large-scale dataset cleaning. In this paper, we study both settings: we evaluate TRACED
on InternVL3-14B, the leading open-source VLM under 20B parameters on the OpenVLM Leader-
board (Duan et al., 2024), and on smaller fine-tuned versions of InternVL3-1B.

3 TRACED: A TRAJECTORY-BASED FRAMEWORK FOR ERROR DETECTION

To address the limitations of single-score image-caption alignment methods, we propose TRACED,
a trajectory-based framework that leverages iterative caption refinement for improved error detec-
tion. TRACED iteratively modifies the caption to increase its alignment with the image and tracks
how alignment evolves across these edits. This produces a caption trajectory, i.e. a sequence of
increasingly refined captions, which we use as a signal for error detection. Our core insight is as
follows: (i) If the original caption is correct, alignment scores should improve only slightly, and
edits will leave the meaning largely intact. (ii) If the caption is incorrect, alignment can typically be
improved substantially—often requiring major revisions. By capturing how easily and meaningfully
a caption can be improved, TRACED provides a richer and more interpretable signal than any single
similarity score. TRACED is flexible and can be integrated with any existing scoring-based error de-
tection method. TRACED can be used for interpretability: using trajectory statistics, we can identify
tokens that are likely incorrect in a caption. Another application of TRACED is caption correction.
The interpretable information on the origin of the error can be provided to VLMs to guide caption
correction and improve the alignment score of the generated captions.

3.1 TRAJECTORY GENERATION AND ASSESSMENT

Trajectory Creation and Evaluation. Let X denote the set of captions and Y the set of images.
We assume access to a relevance scoring function:

s : X × Y −→ R
(x, y) 7→ s(x, y)

This function assigns a real-valued relevance score to an image-caption pair, with higher values
indicating stronger alignment. The choice of s is flexible: it may represent the matching probability
in BLIP (Li et al., 2022), the cosine similarity of CLIP image and text embeddings (Kang et al.,
2022), or a multi-modal similarity metric like LEMoN (Zhang et al., 2024).

To capture how a caption evolves during the procedure, we define a trajectory evaluation function:

e : X T+1 × Y −→ Rd

(x0, . . . , xT , y) 7→ e(x0, . . . , xT , y)

Algorithm 1 Trajectory Creation and Eval-
uation

Input: initial caption x, image y, scoring
function s, evaluation function e, number
of exploration steps T , number of caption
candidates N at each exploration step
Initialize x0 ← x
for t = 1 to T do

Generate candidate alternatives:
x
(1)
t , . . . , x

(N)
t

Select best candidate:
jt ← argmaxj∈[N ] s(x

(j)
t , y)

Set xt ← x
(jt)
t

end for
Output: e(x0, . . . , xT , y)

where T + 1 is the trajectory length and d is the di-
mensionality of the trajectory representation used for
error detection.

A simple choice of e is the concatenation of relevance
scores: e(x0, . . . , xT , y) = [s(x0, y), . . . , s(xT , y)].

Another interesting metric to keep track of is the
semantic similarity between the caption at step t
and the original (potentially noisy) caption x0, de-
noted c(xt, x0). This captures the degree of semantic
change introduced at each step.

In this paper, we focus on these two key signals and
construct the following evaluation function:

e(x0, . . . , xT , y) = [s(x0, y), . . . , s(xT , y),

c(x1, x0), . . . , c(xT , x0)]

While any metrics can be used here, we observe in
Appendix A.1 that relying solely on s or c for exam-
ple is suboptimal. Using both is consistently better. Given access to s and e, TRACED constructs
and evaluates a caption trajectory as described in Algorithm 1.
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Some students sit outside 
school buildings in the grass.

1. some students sit 
outside school 
buildings in the frost.

2. some students 
serve outside school 
buildings in the frost .
…

Trajectory  Creation1
Trajectory 
Evaluation2

Train model on 
trajectories for 
error detection 

Learning3

Figure 2: TRACED Pipeline for error detection on an example from Flickr30k (Plummer et al.,
2015). Given a noisy image-caption pair, a caption trajectory is generated by iteratively maximizing
a relevance scoring function s. The trajectory is then evaluated using various alignment metrics,
which serve as features to distinguish between correct and incorrect image-caption pairs.

Learning From Trajectories. We apply Algorithm 1 to each image-caption pair in the dataset.
From the resulting trajectory embeddings, we train a classifier to distinguish between correct and
erroneous pairs. The overall framework is described in Figure 2.

3.2 CAPTION EXPLORATION

A critical component of Algorithm 1 is the generation of candidate captions at each step. We explore
and evaluate several strategies for this purpose:

• Elimination (Elim). This simple and efficient method generates candidates by removing one
token at a time from the current caption. Formally, for a caption x = (w1, . . . , wL) with L tokens,
we set N = L in Algorithm 1 and produce L candidates:

x(i) = (w1, . . . , wi−1, wi+1, . . . , wL)

This strategy is computationally cheap: it requires only L forward passes through the scoring
function s in Algorithm 1 and no gradient computations.

• Greedy Coordinate Descent (GCD). Inspired by Zou et al. (2023), this method aims to find im-
proved captions by replacing individual tokens with alternatives that increase the relevance score
s. For each token in a caption of length L, we consider the top-K gradient-guided replacements,
leading to a candidate pool of size KL. Since this is often too large to evaluate exhaustively, we
randomly sample N token replacements from this space.

• Fast GCD (FGCD). To balance the efficiency and quality of the caption trajectory, we introduce a
hybrid strategy that combines Elimination with Greedy Coordinate Descent (GCD). We first apply
the Elimination method to identify the token whose removal most improves the relevance score.
Then, we explore only the top-K replacements for that specific token, reducing the search space
to K candidates. This approach requires only one gradient computation and K+L forward passes
per iteration in Algorithm 1, a significant reduction compared to the KL evaluations needed for
full exploration. Moreover, by focusing on the most impactful token, we promote more effective
substitutions than would be achieved by randomly sampling from a large candidate pool.

The full algorithm descriptions are provided in Appendix A.2.

3.3 INTERPRETABILITY

Examining the caption trajectory can help identify the source of the error. As shown in Figure 3,
the first tokens whose removal or replacement leads to the greatest improvement in alignment score
often correspond to the source of the misalignment.

In this example, the initial alignment score from BLIP’s classifier is 0.55, indicating a 55% prob-
ability that the image-caption pair is correct. Relying on this score would result in misclassify-
ing the image-caption pair. However, the trajectory shows that a meaningful semantic change can
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Correct Caption: A man is 
standing in front of a brick 
storefront wearing a black 
jacket.

Noisy Caption: A man is 
standing in front of a brick 
storefront wearing no
jacket.

1. a man is 
standing in front of 
a brick storefront 
wearing jacket.

2. a man is 
standing in front of 
a brick storefront 
wearing jacket 

…

6. man standing in 
front brick 
storefront wearing 
jacket

…

Caption 
Trajectory

Removed 
word

no

.

…

of

…

Figure 3: TRACED offers interpretability on
a Flickr30k example (Plummer et al., 2015),
identifying “no” as the source of misalignment.
The BLIP-based alignment score (ITM block)
peaks at step 6, where the caption accurately
matches the image. Removing “no” leads to
a notable decline in semantic alignment in the
caption trajectory.

increase the alignment score to around 99.4%, in-
dicating that the original caption was likely erro-
neous.

On the contrary, for correct captions, the improve-
ments in alignment scores are often associated
with minor semantic changes, as seen on Figure
6 in Appendix A.3. Similar observations can be
made when using the GCD and Fast GCD al-
gorithms. Wrong captions are often improved
through substitutions with semantically different
words, and correct captions tend to be refined with
minor edits. Full GCD and Fast GCD trajectories
are provided in Figures 7 and 8 in Appendix A.3.

3.4 APPLICATION TO CAPTION CORRECTION

Zero-shot Correction. The trajectories produced
by TRACED contain rich information, particularly
about the origin of errors. While interpretability
can also be derived from GCD and FGCD (by ex-
amining which tokens are replaced), we adopt the
Elimination Algorithm because it is both computa-
tionally efficient and achieves performance com-
parable or even superior to GCD and Fast GCD,
suggesting that the extracted signals are of high
quality. In this procedure, we remove one token at
a time and observe the change in alignment score:
increases suggest that the token is likely incorrect
(it is better to remove it), while decreases sug-
gest that it is likely correct. This token-level er-
ror localization is then provided to the VLM in the
prompt, as illustrated in Figure 4. We also investigate the use of Chain-of-Thought (CoT) prompting
to test whether reasoning over the flagged words can further aid correction. The exact prompts used
are provided in Appendix A.17. In our experiments, we find that both the number of correction
prompts and the way the token-level error information is provided play an important role in the final
alignment scores. More information on the exact procedure we used is available in Appendix A.5.

Correction After Fine-tuning. For large-scale data cleaning, smaller VLMs are advantageous due
to their lower cost and faster inference. When sufficient data is available, a small model can be
fine-tuned for caption correction using a larger model as teacher. Given the alignment score gains
observed for InternVL3-14B when applying TRACED in the zero-shot setting (see Figure 5), we

Flagged words: ”a", ”female", …

Caption: A female 
tennis player is on the 

court with a racket.
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Image caption pair Error Detection Error Correction

VLM
No Error 
or max 

iterations?

Men are 
on the 
court 
with 

rackets.

A male 
tennis 

player is on 
the court 

with a 
racket.

Yes

No

No flagged words
Using flagged words

1 2 3

Repeat     
step 2

Correct Incorrect

Figure 4: TRACED correction pipeline on an example from MS-COCO (Lin et al., 2014). The
Elimination procedure identifies words whose removal increases the alignment score (in red on the
bar plot). These flagged words are then provided as hints to the VLM, and the process is repeated
until no further errors are detected or the maximum number of iterations is reached. Following the
hint-guided path (blue) leads to captions with fewer errors compared to the unguided path (orange).
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fine-tune InternVL3-1B on captions corrected by InternVL3-14B using TRACED ’s token-level
guidance in the prompts. The resulting model is referred to as InternVL3-1B-FT. At inference time,
we isolate the contribution of TRACED by comparing two use-cases on the same fine-tuned model:
(i) TRACED-guided inference, which supplies TRACED trajectory information to the VLM, and
(ii) a baseline InternVL3-1B-FT model, which uses only the image and noisy caption. This design
controls for distillation effects and measures the incremental benefit of TRACED at inference.
Additional details on the fine-tuning process of InternVL3-1B is available in Appendix A.6.

4 EXPERIMENTS

4.1 SETUP

All experiments are conducted using 4 NVIDIA L40 GPUs, each with 40GB of memory. TRACED is
highly parallelizable (see Appendix A.7). Thus, the datasets are split into 4 subsets, with each GPU
processing one subset independently. Sentences are processed in batches of size 128 on each GPU.
TRACED is implemented using PyTorch (Paszke et al., 2019). Details on the computation overhead
are provided in Appendix A.8. In general, TRACED is efficient and scalable: with BLIP (ITM), the
most computationally expensive baseline, TRACED-BLIP classifies 1,000,000 image–caption pairs
in roughly 6.5 hours on 4 L40 GPUs using the Elimination algorithm.

4.2 BASELINES AND DATASETS

We evaluate TRACED against common error detection baselines on benchmark datasets by injecting
noise into previously clean captions, with the goal of identifying erroneous image–caption pairs.

Baselines. We consider BLIP (Li et al., 2022), LEMoN (Zhang et al., 2024) and CLIP (Radford
et al., 2021; Kang et al., 2022). CLIP uses cosine similarity in a joint embedding space, LEMoN ag-
gregates CLIP scores from nearest neighbors, and BLIP combines contrastive learning (ITC block)
to learn a shared image-text embedding space with a classification head (ITM block) for alignment
prediction. LEMoN supports two versions: FIX (default hyperparameters) and OPT (hyperparame-
ters tuned via validation).

Integration with TRACED. We apply TRACED on top of each of these baselines by using their
respective alignment scores as the scoring function s during trajectory construction. For BLIP, we
evaluate TRACED using both the ITC and ITM modules. For LEMoN, we apply our method to both
the FIX and OPT variants. For CLIP, we use the standard cosine similarity between image and text
embeddings.

Datasets. We evaluate the impact of TRACED on LEMoN and CLIP using Flickr30k (Plummer
et al., 2015), MS COCO (Lin et al., 2014) and MM-IMDb (Arevalo et al., 2017). For Flickr30k and
MS COCO, we use the standard Karpathy split (Karpathy & Li, 2015). For MM-IMDb, we adopt
the same random 80/10/10 train-validation-test split as Zhang et al. (2024).

For BLIP, finetuned models are publicly available only for Flickr30k and MS COCO. Therefore, we
evaluate the improvements from TRACED on these two datasets only.

Noise Types. We evaluate TRACED’s improvements under three types of synthetic label noise,
introducing 50% erroneous image-caption pairs for each seed:

• Random noise: A subset of captions is randomly replaced with others from the dataset.
• Noun noise: Captions are swapped with others that share at least one noun, introducing partial

semantic overlap.
• Fine-grained noise: Captions are minimally perturbed using gpt-o4-mini to introduce sub-

tle semantic inconsistencies, as described in Appendix A.4. Some illustrative examples of the
generated errors are provided in Appendix A.16.

Due to the higher cost of generating fine-grained noise using the ChatGPT API, we limit its use to
Flickr30k and MS-COCO. For both random and noun noise, we follow the methodology introduced
in Zhang et al. (2024).
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4.3 EXPERIMENTAL DETAILS FOR TRAJECTORY CONSTRUCTION AND LEARNING
FRAMEWORK

Table 1: Comparison of TRACED with baselines.
Mean accuracy and mean accuracy improvement
of TRACED vs. baselines, averaged over 3 seeds
and noise types (noun, random for MM-IMDB;
noun, random, fine-grained for Flickr30k and MS-
COCO at 50% noise), with standard errors.

DATASET METHOD
ALGOR-

ITHM ACC. (%) IMPROVE-
MENT (%)

FLICKR-
30K

TRACED-
BLIP (ITM)

ELIM 89.5 ± 0.2 1.3 ± 0.2
FGCD 89.2 ± 0.2 0.8 ± 0.2
GCD 88.8 ± 0.2 0.3 ± 0.2

BLIP (ITM) - 88.5 ± 0.3 0.0 ± 0.0

TRACED-
BLIP (ITC)

ELIM 88.1 ± 0.2 0.9 ± 0.1
FGCD 88.1 ± 0.1 0.9 ± 0.3
GCD 88.0 ± 0.2 0.7 ± 0.1

BLIP (ITC) - 87.4 ± 0.3 0.0 ± 0.0

TRACED-
LEMONOPT

ELIM 85.6 ± 0.4 1.8 ± 0.2
FGCD 85.5 ± 0.3 1.9 ± 0.2
GCD 85.7 ± 0.4 2.1 ± 0.5

LEMONOPT - 84.3 ± 0.3 0.0 ± 0.0

TRACED-
LEMONFIX

ELIM 85.0 ± 0.3 1.7 ± 0.5
FGCD 85.0 ± 0.3 1.7 ± 0.1
GCD 85.6 ± 0.4 2.6 ± 0.5

LEMONFIX - 83.9 ± 0.3 0.0 ± 0.0

TRACED-
CLIP

ELIM 85.7 ± 0.1 2.8 ± 0.4
FGCD 85.5 ± 0.1 2.6 ± 0.2
GCD 85.5 ± 0.3 2.5 ± 0.5

CLIP - 83.8 ± 0.2 0.0 ± 0.0

MM-
IMDB

TRACED-
LEMONOPT

ELIM 79.0 ± 0.0 1.4 ± 0.2
FGCD 78.0 ± 0.1 0.2 ± 0.1
GCD 78.3 ± 0.1 0.5 ± 0.1

LEMONOPT - 77.9 ± 0.2 0.0 ± 0.0

TRACED-
LEMONFIX

ELIM 78.3 ± 0.1 2.4 ± 0.2
FGCD 77.2 ± 0.1 0.9 ± 0.2
GCD 77.6 ± 0.1 1.4 ± 0.2

LEMONFIX - 76.5 ± 0.1 0.0 ± 0.0

TRACED-
CLIP

ELIM 78.5 ± 0.0 1.8 ± 0.1
FGCD 77.5 ± 0.1 0.4 ± 0.2
GCD 77.8 ± 0.1 0.9 ± 0.0

CLIP - 77.2 ± 0.1 0.0 ± 0.0

MS-
COCO

TRACED-
BLIP (ITM)

ELIM 90.5 ± 0.2 1.7 ± 0.1
FGCD 89.8 ± 0.1 0.9 ± 0.1
GCD 89.7 ± 0.1 0.8 ± 0.1

BLIP (ITM) - 89.1 ± 0.1 0.0 ± 0.0

TRACED-
BLIP (ITC)

ELIM 88.7 ± 0.1 1.8 ± 0.0
FGCD 88.4 ± 0.0 1.4 ± 0.1
GCD 88.1 ± 0.1 1.0 ± 0.1

BLIP (ITC) - 87.4 ± 0.1 0.0 ± 0.0

TRACED-
LEMONOPT

ELIM 85.0 ± 0.3 1.6 ± 0.0
FGCD 84.6 ± 0.3 1.0 ± 0.1
GCD 84.5 ± 0.3 1.0 ± 0.1

LEMONOPT - 83.8 ± 0.3 0.0 ± 0.0

TRACED-
LEMONFIX

ELIM 84.3 ± 0.1 2.3 ± 0.1
FGCD 83.9 ± 0.2 1.8 ± 0.2
GCD 83.9 ± 0.3 1.8 ± 0.2

LEMONFIX - 82.6 ± 0.1 0.0 ± 0.0

TRACED-
CLIP

ELIM 84.5 ± 0.2 2.5 ± 0.2
FGCD 83.7 ± 0.2 1.5 ± 0.2
GCD 83.8 ± 0.1 1.6 ± 0.1

CLIP - 82.7 ± 0.2 0.0 ± 0.0

Trajectory Generation Hyperparameters.
The trajectory generation hyperparameters for
Elimination, GCD, and Fast GCD are detailed
in Appendix A.9.

Trajectory Evaluation Metrics. For the align-
ment score s(xt, y), we use the scoring function
of the baseline being evaluated — either CLIP,
LEMoN, or BLIP. For the semantic similarity
c(xt, x0), we compute the cosine similarity be-
tween the embeddings of xt and x0. When the
baseline is BLIP, we use its ITC block to ex-
tract embeddings. For CLIP and LEMoN, we
use CLIP embeddings.

Learning Procedure Details. Once the tra-
jectory embeddings are constructed, they can
be used as features to predict whether a given
image-caption pair contains an error. While any
standard classification model could be applied
at this stage, we use XGBoost and CART due
to their simplicity, as our primary goal is to
demonstrate the effectiveness of our approach.
More sophisticated models could be explored to
further improve the performance gap between
TRACED and the original baseline.

For datasets that use the Karpathy split, we
combine the original training and validation
sets. We then perform 3-fold grid-search cross-
validation to select the best model and hyperpa-
rameters. The complete grid searches are pro-
vided in Appendix A.9. The best-performing
model (XGBoost or CART) and its correspond-
ing hyperparameters are selected based on the
highest cross-validation AUC score.

4.4 MAIN RESULTS AND ANALYSIS

Error Detection. The results on error detection
are presented in Table 1, where accuracy scores
and accuracy improvements are averaged over
all applicable noise types and random seeds.
TRACED yields consistent and significant gains
over each baseline, highlighting its effective-
ness for error detection.

Table 1 suggests that the Elimination algorithm
often generates more informative trajectories
for error detection compared to GCD and Fast
GCD. We attribute this to two main factors.

• The Elimination algorithm progressively
removes words from the caption, producing
a trajectory in which the alignment score
typically increases before decreasing. Unlike
GCD and FGCD, which replace some tokens
to increase alignment, Elimination reflects
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Figure 5: Impact of TRACED on BLIP alignment scores of the corrected captions from InternVL3-
1B, InternVL3-1B-FT, and InternVL3-14B (with CoT prompting for the 14B model) on Flickr30k
and MS COCO. Results are shown after five fixing steps with two fixing prompts at each step
(see Appendix A.5), and averaged over three seeds with standard errors. 50% of the samples are
corrupted using fine-grained noise. InternVL3 models are abbreviated as IVL3 in the plot.

both the positive and negative contributions of each individual word, showing which align with
the image and which do not.

• The Elimination algorithm operates in a much more constrained search space, which introduces
a form of regularization. In contrast, GCD and Fast GCD allow broader substitutions, sometimes
leading to non-meaningful token replacements that nonetheless increase the alignment score.

A detailed breakdown by noise type is provided in Table 6 (Appendix A.10). The largest gains from
TRACED occur under the fine-grained noise setting, where subtle word changes make detection
especially challenging and baseline methods struggle most. Under this regime, TRACED achieves
up to 7.5% improvement in accuracy compared to the baseline. These results highlight TRACED ’s
strength in handling more realistic and semantically nuanced errors.

Importance of N , T , and c. Appendix A.13 and Appendix A.14 analyze the effect of the number of
candidate edits N , the trajectory length T , and the semantic similarity metric c on the performance
of TRACED. We find that TRACED is primarily sensitive to T : increasing T lead to significant and
consistent gains in accuracy. However, only a few exploration steps are typically required to locate
the erroneous token (Figure 3), and small values of T already achieve near-optimal performance.

Performance of TRACED across caption lengths and noise levels. Appendix A.15 reports the
performance of TRACED as a function of caption length, showing consistent improvements across
sentence lengths. Appendix A.11 further evaluates TRACED under varying noise levels, with results
indicating consistent gains over the baseline.

Application of TRACED on Error Correction. Figure 5 shows the impact of TRACED on
the correction performance of InternVL3-1B, including with fine-tuning (InternVL3-1B-FT) and
InternVL3-14B, with and without CoT prompting. We omit CoT results for the 1B variants here,
as this smaller model exhibits limited reasoning capabilities. We observe that TRACED consistently
enhances the BLIP alignment score of the generated captions, regardless of model scale. Notably, for
InternVL3-14B, performance improves further when combined with CoT prompting, suggesting that
token-level error information is highly informative to optimize over the alignment metric. Our re-
sults show that our procedure can successfully optimize caption quality with respect to an alignment
metric. In particular, our approach is metric-agnostic and could also benefit future scoring methods.

Downstream captioning performance. Appendix A.12 evaluates the impact of using TRACED to
identify erroneous samples for filtering or correction prior to fine-tuning BLIP-2 Li et al. (2023).
Both approaches improve BLIP-2’s captioning performance, with correction yielding the largest
gains, and TRACED consistently outperforming baseline methods. Overall, on Flickr30k, our pro-
cedure yields up to a 1-point improvement in BLEU-4 over training on the noisy data.

4.5 IMPORTANCE OF THE TRAJECTORY

To assess the importance of the caption trajectory for effective error detection, we compare the full
TRACED trajectory to three simplified single point variants: (i) using only the first step (s(x0, y);
note that c(x0, x0) = 1 provides no additional signal, (ii) using only the last step (s(xT , y) and

9
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c(xT , x0), and (iii) using the mean of all alignment and similarity values across the trajectory
( 1
T+1

∑T
t=0 s(xt, y) and 1

T

∑T
t=1 c(xt, x0)). Table 2 reports the mean percent change in test ac-

curacy for each variant, relative to using the complete trajectory.

Table 2: Mean percent improvement in Test Acc. when using only the first step, last step or mean
trajectory alone in TRACED, compared to using the whole trajectory. Experiments are conducted on
Flickr30k using the Elimination algorithm. Results are averaged over 3 seeds and all 3 noise types
(50% noise), with standard errors reported.

METHOD
FIRST
STEP

LAST
STEP

MEAN
TRAJECTORY

BLIP (ITM) −1.25± 0.23 −43.07± 0.61 −4.90± 0.16
BLIP (ITC) −0.85± 0.08 −40.54± 0.39 −5.48± 0.30
LEMONOPT −1.75± 0.17 −38.67± 0.82 −5.72± 0.09
LEMONFIX −1.62± 0.46 −38.18± 0.42 −5.67± 0.55
CLIP −2.62± 0.35 −38.49± 0.30 −5.37± 0.02

Retaining only the first step causes the mildest decline. Using only the last step yields the sharpest
drop (over 38% in all cases), and averaging over the trajectory performs slightly better but still
falls far behind the full sequence. These results highlight the importance of modeling the trajectory,
which captures how alignment evolves and provides richer information than a single-point summary.

4.6 MAXIMIZING OR MINIMIZING THE SCORING FUNCTION?

In TRACED, we proposed to generate the trajectories by maximizing the image-caption alignment
score s at each step. To test whether the opposite strategy is also effective, we compare against a
variant that minimizes s instead. Table 3 reports the mean percent improvement in test accuracy
when using the minimization approach, relative to maximization.

Table 3: Mean percent improvement in Test Acc. when generating TRACED’s trajectory by mini-
mizing s rather than maximizing it. Experiments are conducted on Flickr30k using the Elimination
algorithm. Results are averaged over 3 seeds and all 3 noise types (50% noise), with standard errors.

BLIP
(ITM)

BLIP
(ITC) LEMONFIX LEMONOPT CLIP

−0.76
±0.12

−0.46
±0.17

−0.70
±0.24

−0.58
±0.34

−0.24
±0.15

Across all baselines, maximizing the alignment score yields modest but consistent improvements
over minimization. This suggests that constructing trajectories toward higher-scoring captions,
rather than worse ones, provides a more reliable signal for detecting inconsistencies.

5 CONCLUSION

We presented TRACED, a flexible and efficient framework for image-caption error detection. By
iteratively improving captions and analyzing alignment and semantic similarity over time, TRACED
extracts rich signals that help distinguish between correct and erroneous image-caption pairs. Our
framework can be applied on top of existing error detection methods such as CLIP, LEMoN and
BLIP, consistently boosting their performance across multiple datasets and noise types. We also
introduced a new fine-grained noise generation process that reflects real-world annotation errors
and provides a more challenging benchmark for evaluation. Beyond improving error detection,
TRACED can be used for interpretability by revealing which parts of a caption contribute most to
misalignment. We show that this token-level error information can effectively guide VLMs for
caption correction, producing captions that are better aligned with their corresponding images.
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A APPENDIX

A.1 CONTRIBUTION OF IMAGE-CAPTION ALIGNMENT AND CAPTION-CAPTION
SIMILARITY METRICS

To isolate the contribution of each trajectory evaluation metric, we conduct ablation studies using
TRACED with either the alignment score s or the semantic similarity score c alone. Table 4 reports
the mean percent change in test accuracy when using one of the two metrics alone, relative to using
both jointly.

Across all baselines, using either metric in isolation results in a consistent and significant drop in
performance. The alignment score s alone is much more informative, likely because a notable in-
crease in alignment often signals an error in the original caption. In contrast, the semantic similarity
score c is less useful on its own, as captions along the trajectory may differ substantially from the
original, reducing its standalone discriminative power. However, combining s and c consistently
yields the best performance: s captures the degree of alignment improvement, while c indicates
whether that improvement involves a substantial semantic change or only a minor rephrasing.
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Table 4: Mean percent improvement in Test Acc. when using either s or c alone in TRACED,
compared to using both jointly. Experiments are conducted on MS-COCO using the Elimination
algorithm. Results are averaged over 3 seeds and all 3 noise types (50% noise), with standard errors
reported.

METHOD

ALIGNMENT
IMAGE-CAPTION

s(x, y)

SIMILARITY
CAPTION-CAPTION

c(xt, x0)

BLIP (ITM) −0.41± 0.13 −6.03± 0.11
BLIP (ITC) −0.59± 0.12 −10.18± 0.16
LEMONOPT −0.55± 0.12 −7.22± 0.17
LEMONFIX −0.41± 0.21 −6.44± 0.33
CLIP −0.60± 0.04 −7.00± 0.19

A.2 EXPLORATION ALGORITHMS DETAILS

The Elimination algorithm iteratively removes the token whose deletion increases in alignment score
the most, until no tokens remain.

Algorithm 2 Elimination Algorithm

Input: initial caption x
Note x = (w1, . . . , wL) with w1, . . . , wL the tokens in caption x
for i = 1 to L do
x(i) ← (w1, . . . , wi−1, wi+1, . . . , wL)

end for
Output: {x(1), . . . , x(L)}

The Greedy Coordinate Descent (GCD) algorithm perturbs the caption by replacing individual to-
kens. For each position, it selects top-K promising replacements based on the gradient of the align-
ment score. A subset of candidate captions is then generated by sampling token replacements at
random.

Algorithm 3 Greedy Coordinate Descent (GCD)

Input: Initial caption x = (w1, . . . , wL), image y, scoring function s, evaluation function e,
number of candidates N , top-K promising replacements per position
Let V be the vocabulary, and e(v) the embedding of token v ∈ V
for j = 1 to L do

Compute top-K replacements for wj0 :

Xj ← Top-K
{
∇e(wj0 )

s(x, y)T (e(v)− e(wj)) | v ∈ V
}

end for
for k = 1 to N do
j ∼ Uniform ({1, . . . , L})
w′

j ∼ Uniform(Xj)

x(k) ← (w1, . . . , wj−1, w
′
j , wj+1, . . . , wL)

end for
Output: {x(1), . . . , x(N)}

This algorithm is inspired by the GCD method proposed by Zou et al. (2023), which was originally
developed for adversarial attacks on large language models. In our work, we adapt this approach for
the purpose of improving image captions.

The Fast GCD algorithm is a more efficient alternative to full GCD. It first applies the Elimination
Algorithm to identify the token position j0 ∈ [L] that most negatively impacts alignment. Gradient-
based substitution is then restricted to this single position. Unlike full GCD, which randomly sam-
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ples N captions from a pool of K×L candidates (N ≪ K×L), Fast GCD can exhaustively evaluate
all K candidate replacements at position j0. This approach enables to find better token substitutions
using a reduced number of forward passes through the alignment scoring function s.

Algorithm 4 Fast Greedy Coordinate Descent (Fast GCD)

Input: Initial caption x = (w1, . . . , wL), image y, scoring function s, evaluation function e,
top-K promising replacements per coordinate
Let V be the vocabulary and e(v) the embedding of token v ∈ V
Run Elimination Algorithm: {x(e,1), . . . , x(e,L)} ← Elim(x)
Select most promising coordinate: j0 ← argmaxj∈[L] s(x

(e,j), y)
Compute top-K replacements for wj0 :

Xj0 ← Top-K
{
∇e(wj0

)s(x, y)
T (e(v)− e(wj0)) | v ∈ V

}
for w′ ∈ Xj0 do
x(w′) ← (w1, . . . , wj0−1, w

′, wj0+1, . . . , wL)
end for
Output: {x(w′) | w′ ∈ Xj0}

A.3 ADDITIONAL EXAMPLES OF CAPTION TRAJECTORIES

Figure 8 illustrates the behavior of TRACED using the Elimination Algorithm on an example with a
correct caption.

Correct Caption: Vehicles 
on a street near a green 
traffic light.

1. vehicles on a 
near a green traffic 
light.

2. vehicles on a 
near a green traffic 
light

3. vehicles on near 
a green traffic light

…

Caption 
Trajectory

Removed 
word

street

.

a

…

Figure 6: TRACED improves the BLIP-based image-caption alignment score (ITM) on an MS
COCO example Lin et al. (2014), with minimal semantic change in the revised captions, suggesting
the original pair is likely accurate.

We then show in Figures 7 and 8 the trajectories obtained with GCD and Fast GCD on the examples
in Figures 3 and 6 respectively.
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1. a man is 
standing in front of 
a brick storefront 
wearing jacket. 

2. a man is 
standing in front of 
a brick storefront 
wearing jacket

3. a man is 
standing in front of 
some brick 
storefront wearing 
jacket

…

Caption 
Trajectory

Changed 
word

no

.

some

…

1. a man is 
standing in front of 
a brick storefront 
wearing the jacket. 

2. his man is 
standing in front of 
a brick storefront 
wearing the jacket.

3. his man is 
standing in front of 
a brick storefront 
wearing thecoat. 

…

Caption 
Trajectory

Changed  
word

no

his

thecoat

…

Figure 7: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 3.
In both cases, TRACED identifies ”no” as the source of misalignment and further improves the
caption’s alignment with the image.

1. vehicles on a 
crossroads near a 
green traffic light. 

2. vehicles on a 
crossroads 
underneath a 
green traffic light.

3. vehiclesl a 
crossroads 
underneath a 
green traffic light.

…

Caption 
Trajectory

Changed 
word

crossr
oads

under
neath

vehicl
esl

…

1. vehicles on a 
street near a 
greenish traffic 
light.

2. vehicles on 
street near a 
greenish traffic 
light.

3. vehicles on 
street approaching 
a greenish traffic 
light.

…

Caption 
Trajectory

Changed  
word

greeni
sh

a

appro
aching

…

Figure 8: Caption trajectories using GCD (left) and Fast GCD (right) for the example in Figure 6.
In both cases, TRACED improves the caption’s alignment with the image using only minor semantic
edits.

A.4 NEW BENCHMARK DATASET CREATION

Prior work on error detection in image captioning introduces noise via full caption swaps as a means
of constructing evaluation benchmarks (Zhang et al., 2024). However, such swaps replace the entire
caption, often resulting in text unrelated to the original. In contrast, real-world annotation errors can
be more subtle, with annotators correctly describing an image but misrepresenting specific details.
To better capture fine-grained noise, we propose a new approach for constructing a challenging
benchmark by modifying only a few words within each caption. More specifically, for each original
caption, we leverage a large language model to generate K = 20 variants that maintain the same
structure but introduce small semantic errors. The exact prompt is provided in Appendix A.18.

While many generated options are useful, some may be too similar to the initial caption. To filter
these, we apply Alignscore (Zha et al., 2023), a factual consistency metric based on a fine-tuned
natural language inference model. Alignscore assigns low scores to captions that either omit key
information or contradict the original caption. The selected variants thus differ meaningfully in
content while remaining structurally close, effectively modeling fine-grained semantic noise. To
increase variability across seeds, we select the 2 least-aligned sentences for each sample.
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ScoresSentences

0.43A man is standing on a chair.

0.44A woman is standing on a ladder.

……

0.8A man is standing on a ladder 
carefully.

0.84A man is standing on a small ladder.

A man is standing on a ladder.

A man is standing on a chair.
A woman is standing on a ladder.

Sentences 
generated using 

gpt-o4-mini

Alignscore between 
original and generated 

sentence

Only the top-2 sentences are 
kept

Figure 9: Fine-grained noise generation pipeline.
Given an original caption, an LLM generates 20
variants. Alignscore then evaluates the factual
consistency of each variant with respect to the
original. The least aligned (lowest-scoring) sen-
tences are selected as fine-grained noisy captions.

Figure 9 illustrates this generation and filtering
process.

A.5 CAPTION
CORRECTION HYPERPARAMETERS

Figure 4 outlines the general caption correction
framework used in this paper, where TRACED
is applied to improve the alignment metric of
corrected sentences and fix the potential er-
rors. The way trajectory information is pro-
vided, however, can vary. In our experiments,
we find that repeating the same prompt across
multiple iterations often improves performance,
as the model progressively refines the caption.
We also observe that asking the model first to
fix the caption without any guidance (to avoid
bias from our signals) and then with our token-
level error information appears to be the best
strategy.

The main hyperparameters of our correction
framework are:

• The number of fixing steps: how many times the procedure of error detection followed by
error correction is applied. At each step, new flagged words are obtained with TRACED.

• The number of correction attempts per fixing step, denoted as k: at each fixing step, how
many times the VLM is asked to revise the caption (using the same flagged words).

• The correction strategy: the manner in which token-level information from TRACED is
provided to the VLM.

In our experiments, we evaluate the following correction strategies:

• Without TRACED: the model is asked k times to correct the caption without any guidance
from our interpretable error detection framework. In this case, the prompt in Figure 13 is
used with [1] empty.

• With TRACED only: the model receives token-level error information from our framework
and is asked to fix the caption with this informtion k times. Here, the prompt in Figure 13
is used with [1] containing guidance on the errors in the caption.

• Without then with TRACED: the model performs k−1 correction steps without token-level
guidance ([1] empty), followed by a final step where TRACED provides token-level error
information ([1] filled).

Figure 10 highlights the impact of correction strategies. Supplying token-level error information to
the VLM in a direct, naive way can sometimes perform worse than providing no guidance at all. In
contrast, with an improved strategy, both the 1B and 14B models are able to leverage the information
provided to generate captions that align more closely with the image. Interestingly, we find that only
two prompts are often sufficient to consistently surpass the baseline which doesn’t use TRACED.
This is why we show results for two fixing iterations (Without–then–with TRACED (2) and Without
TRACED only (2)) after five fixing steps in Figure 5.

A.6 FINE-TUNING INTERNVL3-1B.

To construct a fine-tuning dataset for InternVL3-1B, we apply the correction procedure described in
Section 3.4 on the train and validation sets of MS COCO and Flickr30k using InternVL3-14B, with
50% fine-grained noise. For MS COCO, we sub-sample the train set and keep the first 30% (27,594
samples).
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Figure 10: Caption correction results for InternVL3-1B and InternVL3-14B (with and without CoT
prompting) across fixing steps. We compare three correction strategies: (1) without TRACED, (2)
with TRACED only, and (3) without TRACED for k − 1 iterations followed by one iteration with
TRACED. Numbers in parentheses indicate the number of times k the VLM is asked to fix the caption
at each fixing step. BLIP alignment scores (ITM block) on the corrected sentences are averaged over
3 seeds with standard errors.

For each dataset and seed, InternVL3-1B is trained using cross-entropy loss (next token prediction)
for five epochs, and the best checkpoint is selected based on validation correction performance
(measured as the number of errors detected by TRACED-BLIP-ITM). The same hyperparameters
(learning rate, optimizer, etc.) as in the original InternVL3 paper were used (Zhu et al., 2025). This
model is denoted InternVL3-1B-FT.

A.7 PARALLELIZATION BENEFITS

TRACED applies the trajectory creation and evaluation from Algorithm 1 independently to each
sentence in the dataset. This enables efficient large-scale parallelization. Our method benefits from
both intra-GPU and multi-GPU parallelism: given access to n GPUs, the dataset can be split into n
subsets processed in parallel, with each GPU handling batches of samples.

A.8 COMPUTATION OVERHEAD

Table 5 reports the computation time required by TRACED and the original baselines to process
1,000 image-caption pairs on a single L40 GPU. Baseline models such as BLIP, LEMoN, and CLIP
are very fast as they require only a single forward pass per pair. Despite performing multiple model
evaluations to construct trajectories, all variants of TRACED, including Elimination, Fast GCD,
and GCD, remain practical and scalable. Among the proposed methods, Elimination is the most
efficient, offering substantial speed advantages while maintaining among the best performance. Fast
GCD achieves a strong balance between speed and trajectory quality. For example, when scaled to
1,000,000 image-caption pairs using BLIP (ITM), the most expensive baseline, and 4 L40 GPUs,
Elimination completes in approximately 6.5 hours and Fast GCD takes about 2.6 days.

As described in Appendix A.7, thanks to the high degree of parallelism in our method, leveraging
more GPUs can substantially further reduce total processing time.

We want to emphasize that TRACED needs to be applied only once to identify and filter out incor-
rect image-caption pairs. This one-time computational cost is reasonable for generating a cleaner
dataset that can be reused across various downstream tasks, including pre-training, fine-tuning, and
evaluation.
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Table 5: Computation time comparison across algorithms. Reported times (in seconds) corresponds
to the duration required to process 1,000 sentences with a single L40 GPU, including both trajectory
exploration and alignment score evaluation.

METHOD ALGORITHM COMPUTATION TIME (S)

BLIP (ITM) - 3.82 ± 0.11

TRACED-
BLIP (ITM)

ELIMINATION 92.53 ± 1.16
FAST GCD 905.22 ± 0.99

GCD 1617.06 ± 0.13

BLIP (ITM) - 3.56 ± 0.24

TRACED-
BLIP (ITM)

ELIMINATION 49.05 ± 0.28
FAST GCD 389.19 ± 0.51

GCD 688.90 ± 0.55

LEMONOPT - 3.13 ± 0.08

TRACED-
LEMONOPT

ELIMINATION 43.77 ± 0.59
FAST GCD 451.28 ± 0.43

GCD 799.03 ± 1.79

LEMONFIX - 3.19 ± 0.40

TRACED-
LEMONFIX

ELIMINATION 43.44 ± 0.44
FAST GCD 452.48 ± 1.07

GCD 802.13 ± 1.76

CLIP - 2.40 ± 0.07

TRACED-
CLIP

ELIMINATION 43.10 ± 0.57
FAST GCD 444.80 ± 0.55

GCD 788.97 ± 0.29

A.9 HYPERPARAMETERS

Trajectory Generation Hyperparameters. Depending on the exploration strategy, the caption
trajectory generation from Algorithm 1 involves a few hyperparameters:

• Elimination Algorithm: We set T = L and N = L(L−1)
2 , where L is the caption length. The algo-

rithm removes one token at a time, selecting the one whose removal most improves the alignment
score s, and continues until there is no token in the sentence.

• GCD Algorithm: We use T = 10, K = 128, and N = 256.
• Fast GCD Algorithm: We set T = 10, k = 128 and N = K = 128 since we explore all K

promising replacements for the single token identified via Elimination Algorithm.

Grid Searches. The hyperparameter grids used for model selection are as follows:

XGBoost hyperparameters:

• max depth ∈ {3, 4, 5}
• learning rate ∈ {0.01, 0.05, 0.1, 0.5}
• n estimators ∈ {50, 100, 200, 400}

CART hyperparameters:

• max depth ∈ {1, 5, 10,+∞}

A.10 RESULTS PER NOISE TYPE

We present in Table 6 the impact of TRACED on various baselines across the three noise types
we evaluate. TRACED consistently improves performance across all baselines and noise settings.
Notably, the gains are more substantial for noise types that are harder to detect. For example,
improvements are modest for random noise, where baselines already achieve over 97% Accuracy on
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Flickr30k and MS COCO. On the contrary, improvements are much more pronounced on the Fine-
Grained noise and on MM-IMDb, which present more challenging errors for the existing methods.

Table 6: Comparison of TRACED with baselines. ”Elim” and ”FGCD” denote Elimination and Fast
GCD, respectively. Results are averaged over 3 seeds for each noise type (50% noise). We report
mean accuracy and mean accuracy improvement compared to the baseline, with standard errors.

DATASET METHOD ALG.
RANDOM NOUN FINE-GRAINED

ACC. (%) IMPROVE-
MENT (%) ACC. (%) IMPROVE-

MENT (%) ACC. (%) IMPROVE-
MENT (%)

FLICKR-
30K

TRACED-
BLIP (ITM)

ELIM 98.2 ± 0.1 0.4 ± 0.1 93.8 ± 0.3 0.2 ± 0.2 76.6 ± 0.3 3.3 ± 0.8
FGCD 98.3 ± 0.1 0.5 ± 0.0 93.8 ± 0.3 0.3 ± 0.1 75.4 ± 0.4 1.7 ± 0.7
GCD 98.1 ± 0.2 0.3 ± 0.1 93.6 ± 0.3 0.0 ± 0.0 74.5 ± 0.5 0.5 ± 0.7

BLIP (ITM) - 97.8 ± 0.1 0.0 ± 0.0 93.6 ± 0.3 0.0 ± 0.0 74.2 ± 0.8 0.0 ± 0.0

TRACED-
BLIP (ITC)

ELIM 97.8 ± 0.1 0.1 ± 0.0 93.4 ± 0.2 1.1 ± 0.4 73.1 ± 0.4 1.4 ± 0.3
FGCD 97.9 ± 0.1 0.2 ± 0.1 93.0 ± 0.3 0.7 ± 0.2 73.3 ± 0.3 1.9 ± 0.7
GCD 97.8 ± 0.1 0.1 ± 0.1 93.1 ± 0.5 0.6 ± 0.4 73.0 ± 0.0 1.4 ± 0.5

BLIP (ITC) - 97.7 ± 0.1 0.0 ± 0.0 92.5 ± 0.5 0.0 ± 0.0 72.0 ± 0.4 0.0 ± 0.0

TRACED-
LEMONOPT

ELIM 97.5 ± 0.1 0.0 ± 0.0 90.8 ± 0.1 1.8 ± 0.4 68.5 ± 1.0 3.6 ± 0.8
FGCD 97.5 ± 0.1 -0.0 ± 0.0 89.7 ± 0.1 0.6 ± 0.3 69.4 ± 0.9 5.0 ± 0.9
GCD 97.3 ± 0.0 -0.2 ± 0.1 90.0 ± 0.3 0.9 ± 0.3 69.8 ± 1.0 5.5 ± 1.3

LEMONOPT - 97.5 ± 0.1 0.0 ± 0.0 89.2 ± 0.3 0.0 ± 0.0 66.1 ± 0.7 0.0 ± 0.0

TRACED-
LEMONFIX

ELIM 97.7 ± 0.1 0.5 ± 0.1 89.7 ± 0.2 0.4 ± 0.2 67.7 ± 0.7 4.1 ± 1.4
FGCD 97.1 ± 0.2 -0.1 ± 0.1 89.5 ± 0.3 0.2 ± 0.1 68.4 ± 0.6 5.1 ± 0.4
GCD 97.0 ± 0.2 -0.1 ± 0.2 90.0 ± 0.3 0.8 ± 0.2 69.8 ± 0.8 7.2 ± 1.3

LEMONFIX - 97.2 ± 0.0 0.0 ± 0.0 89.3 ± 0.4 0.0 ± 0.0 65.1 ± 0.6 0.0 ± 0.0

TRACED-
CLIP

ELIM 97.6 ± 0.1 0.4 ± 0.1 90.7 ± 0.2 1.6 ± 0.4 68.9 ± 0.4 6.2 ± 1.2
FGCD 97.3 ± 0.1 0.1 ± 0.1 89.4 ± 0.1 0.1 ± 0.2 69.7 ± 0.3 7.5 ± 0.7
GCD 97.1 ± 0.2 -0.1 ± 0.2 89.9 ± 0.3 0.7 ± 0.0 69.4 ± 0.4 7.0 ± 1.4

CLIP - 97.2 ± 0.1 0.0 ± 0.0 89.3 ± 0.3 0.0 ± 0.0 64.8 ± 0.6 0.0 ± 0.0

MM-
IMDB

TRACED-
LEMONOPT

ELIM 81.4 ± 0.3 1.3 ± 0.1 76.6 ± 0.3 1.5 ± 0.5 - -
FGCD 80.6 ± 0.3 0.3 ± 0.1 75.5 ± 0.3 0.1 ± 0.2 - -
GCD 80.8 ± 0.4 0.6 ± 0.2 75.8 ± 0.3 0.4 ± 0.4 - -

LEMONOPT - 80.3 ± 0.3 0.0 ± 0.0 75.4 ± 0.2 0.0 ± 0.0 - -

TRACED-
LEMONFIX

ELIM 80.9 ± 0.2 2.0 ± 0.1 75.7 ± 0.1 2.8 ± 0.4 - -
FGCD 80.0 ± 0.1 0.8 ± 0.1 74.4 ± 0.0 1.0 ± 0.5 - -
GCD 80.1 ± 0.1 1.0 ± 0.2 75.0 ± 0.3 1.8 ± 0.4 - -

LEMONFIX - 79.3 ± 0.2 0.0 ± 0.0 73.6 ± 0.3 0.0 ± 0.0 - -

TRACED-
CLIP

ELIM 80.9 ± 0.3 1.5 ± 0.1 76.1 ± 0.2 2.1 ± 0.1 - -
FGCD 80.1 ± 0.2 0.5 ± 0.2 74.9 ± 0.1 0.4 ± 0.2 - -
GCD 80.3 ± 0.1 0.7 ± 0.2 75.3 ± 0.1 1.0 ± 0.2 - -

CLIP - 79.7 ± 0.3 0.0 ± 0.0 74.6 ± 0.2 0.0 ± 0.0 - -

MS-
COCO

TRACED-
BLIP (ITM)

ELIM 98.9 ± 0.2 0.4 ± 0.0 92.1 ± 0.1 0.5 ± 0.0 80.4 ± 0.4 4.4 ± 0.1
FGCD 98.8 ± 0.0 0.4 ± 0.1 92.1 ± 0.1 0.4 ± 0.0 78.6 ± 0.5 2.0 ± 0.3
GCD 98.9 ± 0.1 0.4 ± 0.1 92.1 ± 0.1 0.4 ± 0.1 78.2 ± 0.3 1.5 ± 0.2

BLIP (ITM) - 98.5 ± 0.1 0.0 ± 0.0 91.7 ± 0.1 0.0 ± 0.0 77.0 ± 0.2 0.0 ± 0.0

TRACED-
BLIP (ITC)

ELIM 98.7 ± 0.0 0.2 ± 0.1 90.8 ± 0.1 0.9 ± 0.1 76.8 ± 0.4 4.4 ± 0.1
FGCD 98.5 ± 0.1 0.0 ± 0.0 90.2 ± 0.1 0.2 ± 0.1 76.5 ± 0.3 4.1 ± 0.4
GCD 98.6 ± 0.1 0.1 ± 0.1 90.3 ± 0.2 0.2 ± 0.1 75.5 ± 0.3 2.6 ± 0.2

BLIP (ITC) - 98.5 ± 0.1 0.0 ± 0.0 90.0 ± 0.0 0.0 ± 0.0 73.6 ± 0.5 0.0 ± 0.0

TRACED-
LEMONOPT

ELIM 97.8 ± 0.1 0.1 ± 0.1 86.3 ± 0.3 1.4 ± 0.2 70.8 ± 0.6 3.2 ± 0.1
FGCD 97.7 ± 0.1 0.0 ± 0.1 85.5 ± 0.4 0.4 ± 0.1 70.4 ± 0.6 2.6 ± 0.2
GCD 97.7 ± 0.1 -0.0 ± 0.1 85.2 ± 0.5 0.1 ± 0.1 70.7 ± 0.6 3.1 ± 0.1

LEMONOPT - 97.7 ± 0.1 0.0 ± 0.0 85.1 ± 0.4 0.0 ± 0.0 68.7 ± 0.5 0.0 ± 0.0

TRACED-
LEMONFIX

ELIM 97.7 ± 0.1 0.0 ± 0.0 85.6 ± 0.2 2.9 ± 0.3 69.6 ± 0.4 3.9 ± 0.5
FGCD 97.8 ± 0.1 0.1 ± 0.0 84.6 ± 0.3 1.8 ± 0.3 69.3 ± 0.7 3.4 ± 0.6
GCD 97.7 ± 0.1 0.1 ± 0.1 84.2 ± 0.3 1.3 ± 0.5 69.7 ± 0.6 3.9 ± 0.2

LEMONFIX - 97.7 ± 0.1 0.0 ± 0.0 83.1 ± 0.5 0.0 ± 0.0 67.1 ± 0.6 0.0 ± 0.0

TRACED-
CLIP

ELIM 97.7 ± 0.1 0.2 ± 0.0 85.8 ± 0.2 2.3 ± 0.2 69.9 ± 0.4 4.9 ± 0.2
FGCD 97.5 ± 0.1 -0.0 ± 0.1 84.6 ± 0.1 0.9 ± 0.3 69.0 ± 0.6 3.6 ± 0.4
GCD 97.6 ± 0.1 0.1 ± 0.0 84.4 ± 0.2 0.7 ± 0.1 69.3 ± 0.4 4.0 ± 0.3

CLIP - 97.5 ± 0.1 0.0 ± 0.0 83.8 ± 0.3 0.0 ± 0.0 66.6 ± 0.3 0.0 ± 0.0

A.11 PERFORMANCE OF TRACED ACROSS NOISE LEVELS

The main results of the paper (Table 1 and Table 6) are reported for a noise ratio of 50%. In this
section, we evaluate the performance of TRACED across additional noise levels—10%, 20%, 30%,
and 40%. Because these settings introduce class imbalance, we report Test AUC scores in Table 7.
Across all noise levels, TRACED consistently outperforms the baselines. As seen previously, the
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Noise type Method 10% 20% 30% 40%

Fine-grained

TRACED-BLIP (ITM) 83.5± 1.5 82.6± 0.8 84.0± 1.3 84.4± 0.8
BLIP (ITM) 80.8± 1.0 79.1± 0.6 80.6± 1.1 81.4± 0.7

TRACED-LEMoNOPT 76.4± 1.1 75.4± 2.1 75.0± 0.7 74.7± 1.0
LEMoNOPT 73.5± 2.1 70.7± 0.9 71.4± 0.8 72.1± 1.5

TRACED-CLIP 76.7± 1.4 76.0± 1.8 75.4± 1.0 75.8± 1.1
CLIP 71.5± 2.5 70.0± 1.5 70.7± 1.3 70.6± 1.2

Noun

TRACED-BLIP (ITM) 99.1± 0.3 98.8± 0.2 98.8± 0.2 98.5± 0.2
BLIP (ITM) 99.0± 0.3 98.8± 0.2 98.8± 0.2 98.5± 0.2

TRACED-LEMoNOPT 96.2± 0.5 95.9± 0.7 96.0± 0.3 95.1± 0.2
LEMoNOPT 95.7± 0.5 95.6± 0.8 95.3± 0.4 94.5± 0.1

TRACED-CLIP 96.4± 0.3 96.3± 0.4 96.2± 0.3 95.5± 0.2
CLIP 95.5± 0.3 95.6± 0.7 95.4± 0.3 94.7± 0.3

Random

TRACED-BLIP (ITM) 99.7± 0.2 99.6± 0.1 99.8± 0.1 99.8± 0.1
BLIP (ITM) 99.6± 0.3 99.7± 0.1 99.7± 0.1 99.7± 0.1

TRACED-LEMoNOPT 99.5± 0.1 99.6± 0.2 99.5± 0.1 99.5± 0.1
LEMoNOPT 99.4± 0.1 99.5± 0.2 99.3± 0.3 99.4± 0.1

TRACED-CLIP 99.3± 0.2 99.6± 0.1 99.6± 0.2 99.6± 0.1
CLIP 99.3± 0.2 99.5± 0.2 99.5± 0.1 99.5± 0.1

Table 7: Comparison of TRACED, using the Elimination Algorithm, against baseline models across
noise levels (10%, 20%, 30%, and 40%) on Flickr30k. Test AUCs are averaged over three seeds on
with standard errors.

gains are especially substantial under fine-grained noise, where baseline methods tend to struggle
the most.

A.12 DOWNSTREAM CAPTIONING PERFORMANCE

In this section, we evaluate the impact of our filtering and correction procedure on the downstream
performance of a captioning model, BLIP-2 Li et al. (2023). In particular, we fine-tune BLIP-2
on (i) the Flickr30k datasets containing 50% fine-grained noise and (ii) cleaned datasets obtained
by removing sentences flagged as incorrect by BLIP (the strongest baseline) or by TRACED-BLIP.
In addition to filtering, we also test the correction strategy, where sentences predicted as wrong
by TRACED-BLIP are replaced with corrected versions produced either by InternVL3-1B alone or
using the token-level correction procedure described in Section 3.4.

We fine-tune BLIP-2 using LoRA (rank = 4) and report BLEU-4, ROUGE, and CIDEr scores. We
train the models for 3 epochs, with a learning rate of 1e-5, AdamW and using early stopping. The
table below summarizes the results:

Method BLEU-4 (%) ROUGE (%) CIDEr (%)

Noisy 31.5± 0.2 56.5± 0.1 69.2± 0.4
Filtering with BLIP 30.8± 0.5 56.1± 0.3 67.9± 1.3
Filtering with TRACED-BLIP 31.8± 0.1 56.6± 0.1 69.6± 0.2
Ideal Filtering 31.8± 0.1 56.8± 0.1 70.2± 0.4
Correction with InternVL3-1B 32.0± 0.1 56.8± 0.0 70.2± 0.4
Correction with InternVL3-1B + TRACED 32.5± 0.1 56.9± 0.1 70.4± 0.5

Table 8: Impact of filtering and correction, using either the baseline or TRACED, on the downstream
caption quality of BLIP-2. In both correction settings, corrections are applied to the same samples
predicted as erroneous by TRACED-BLIP, isolating the effect of TRACED ’s interpretable tokens in
the correction pipeline.
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Filtering with TRACED-BLIP achieves performance very close to Ideal Filtering and substantially
outperforms the baseline (BLIP-filtering) across all metrics. Applying caption correction to the
samples flagged as erroneous by TRACED-BLIP yields additional gains in BLEU-4, ROUGE, and
CIDEr, and incorporating TRACED ’s interpretable tokens into the correction process further boosts
downstream caption quality. Overall, our TRACED-based correction pipeline improves BLIP-2’s
captioning performance by up to 1 point in BLEU-4, 0.4 in ROUGE, and 1.2 in CIDEr compared to
training on the noisy dataset.

A.13 IMPACT OF N AND T ON TRACED

Algorithm 1 relies on two key hyperparameters: N , the number of candidate edits considered at
each step, and T , the trajectory length. In this section, we analyze the sensitivity of TRACED to
these hyperparameters.

Impact of N . For the Elimination algorithm, N is inherently small: by construction it matches
the number of tokens in the caption and decreases by one at each iteration, making exploration
progressively faster. Consequently, we focus our analysis on the role of N in the GCD algorithm,
and report in Figure 11 the impact of varying N on performance on Flickr30k.

TRACED-BLIP (ITM) TRACED-LEMoNOPT TRACED-CLIP

Figure 11: Impact of varying N on the performance of TRACED when applied to BLIP (ITM),
LEMoNOPT, and CLIP using the GCD algorithm. Mean accuracies on Flickr30k over 3 seeds and
noise types (noun, random and fine-grained at 50% noise), are reported.

Impact of T . We evaluated the influence of trajectory length to determine how much information
is gained from longer versus shorter paths. We used the Elimination algorithm to conduct this
experiment. The results on Flickr30k are presented in Figure 12. We observe that larger values
of T generally lead to improved performance, particularly for CLIP and LEMoNOPT. However, a
single step of Elimination (T = 1) is often sufficient to achieve near-optimal, and sometimes even
optimal, performance. This behavior can be explained by the fact that in many cases, only one or a
few exploratory steps are required for our procedure to identify an incorrect token along the caption
trajectory (see Figure 3) and therefore determine whether the caption is correct or not.

TRACED-BLIP (ITM) TRACED-LEMoNOPT TRACED-CLIP

Figure 12: Impact of varying T on the performance of TRACED (Elimination algorithm) when
applied to BLIP (ITM), LEMoNOPT, and CLIP. Mean accuracies on Flickr30k over 3 seeds and
noise types (noun, random and fine-grained at 50% noise), are reported with standard errors.

A.14 IMPORTANCE OF THE SEMANTIC SIMILARITY SCORE

We additionally study the impact of the semantic similarity function c on the performance of
TRACED. For BLIP (ITM), we compared using the ITC component (as described in Section 4.3)
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with using CLIP. For both LEMoNOPT and CLIP, we performed the other substitution and evalu-
ated whether replacing CLIP with BLIP (ITC) affected performance. The resulting comparisons are
provided below.

s Noise Type c = CLIP c = BLIP (ITC)

BLIP (ITM)
fine-grained 76.0± 0.2 76.6± 0.3
noun 93.7± 0.3 93.8± 0.3
random 98.0± 0.1 98.2± 0.1

LEMoNOPT

fine-grained 68.5± 1.0 69.2± 1.0
noun 90.8± 0.1 90.5± 0.2
random 97.5± 0.1 97.4± 0.3

CLIP
fine-grained 68.9± 0.4 70.0± 0.2
noun 90.7± 0.2 90.9± 0.3
random 97.6± 0.1 97.5± 0.3

Table 9: Impact of changing c on the performance of TRACED. Mean accuracies on Flickr30k for
each noise type are computed over 3 seeds with standard errors.

While the choice of BLIP (ITC) seems preferable for s = BLIP (ITM), the choice of c does not
seem to have a decisive impact on the final performance, and both CLIP and BLIP (ITC) appear to
be effective metrics c for error-detection.

A.15 PERFORMANCE OF TRACED ACROSS CAPTION LENGTH

To assess whether the effect of TRACED on the baseline depends on caption length, we compute
test accuracies for both TRACED and the baselines across caption-length bins on MS COCO. The
corresponding results are shown in Table 10. We find that TRACED consistently improves upon the
different baselines across all caption-length ranges, indicating that the trajectory-guided approach is
beneficial regardless of the caption length.

Noise type Method (6.999, 9.0] (9.0, 10.0] (10.0, 11.0] (11.0, 14.0] (14.0, 34.0]

Fine-grained

TRACED-BLIP (ITM) 80.5± 0.5 80.9± 1.2 80.1± 0.5 80.2± 0.2 79.1± 0.4
BLIP 76.5± 0.3 78.3± 0.9 76.8± 0.7 77.8± 0.4 74.4± 2.0

TRACED-LEMoNOPT 70.5± 0.9 70.4± 0.9 71.1± 0.5 71.2± 0.5 71.3± 1.5
LEMON OPT 68.6± 0.7 68.5± 1.0 68.0± 1.3 69.6± 1.0 68.1± 1.1

TRACED-CLIP 70.3± 0.5 68.9± 0.3 69.8± 1.2 70.3± 0.6 68.5± 1.3
CLIP 66.7± 0.4 66.8± 0.9 65.0± 0.8 68.1± 0.3 65.4± 2.0

Noun

TRACED-BLIP (ITM) 91.9± 0.3 92.6± 0.1 92.6± 0.1 91.6± 0.3 91.7± 0.6
BLIP 91.7± 0.4 91.8± 0.1 92.1± 0.2 90.9± 0.4 92.1± 0.9

TRACED-LEMoNOPT 86.0± 0.5 86.3± 0.7 86.4± 0.8 86.6± 0.2 87.8± 1.2
LEMON OPT 84.1± 0.3 85.4± 1.1 85.6± 0.7 85.8± 0.2 88.3± 1.1

TRACED-CLIP 85.6± 0.3 86.2± 1.0 85.6± 0.7 85.3± 0.0 87.3± 2.1
CLIP 83.1± 0.2 83.9± 0.7 84.3± 0.4 84.5± 0.7 86.0± 1.2

Random

TRACED-BLIP (ITM) 98.8± 0.0 98.8± 0.4 99.1± 0.2 99.0± 0.2 98.5± 0.5
BLIP 98.3± 0.1 98.7± 0.3 98.4± 0.4 98.5± 0.3 98.5± 0.5

TRACED-LEMoNOPT 97.7± 0.1 98.3± 0.1 97.8± 0.1 97.4± 0.2 98.7± 0.2
LEMON OPT 97.6± 0.2 98.1± 0.0 97.7± 0.0 97.5± 0.2 98.0± 0.2

TRACED-CLIP 97.7± 0.3 98.2± 0.0 97.6± 0.2 97.3± 0.2 98.0± 0.2
CLIP 97.5± 0.3 98.1± 0.1 97.4± 0.1 97.2± 0.1 98.0± 0.2

Table 10: Comparison of TRACED, using the Elimination Algorithm, with baseline models across
caption-length bins on MS COCO. The bins correspond to the (0%, 25%], (25%, 50%], (50%,
75%], (75%, 95%], and (95%, 100%] percentiles of caption length. For each bin, test accuracies are
averaged over three seeds, with standard errors reported.
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A.16 EXAMPLES OF ERRORS WITH FINE-GRAINED NOISE

We show below a list of examples of noisy captions generated as described in A.4.

Wrong object/element

True: A black and white dog is
running through the grass.
Noisy: A black and white cat is
running through the grass.

True: Several students waiting
outside an igloo.
Noisy: Several students waiting
outside a car.

True: A man in a white shirt
stands high up on scaffolding.
Noisy: A woman in a red shirt
stands high up on scaffolding.

Wrong negation

True: Three people are sitting at
an outside picnic bench with an
umbrella.
Noisy: Two people are sitting at an
inside picnic table without an um-
brella.
True: A man is standing in front
of a brick storefront wearing a
black jacket.
Noisy: A man is standing in front
of a brick storefront wearing no
jacket.

True: A man playing an acous-
tic guitar and singing with a group
of people behind him including a
woman who is singing along.
Noisy: A man not playing any
instrument and speaking with a
group of people behind him in-
cluding a woman who is taking
notes.

Wrong action

True Girl wearing blue shirt and
black shorts plays trumped out-
side.
Noisy: The girl wearing a blue
shirt and black shorts sings out-
side.

True: One man holds another
man’s head down and prepares to
punch him in the face.
Noisy: One man holds another
man’s head down while his friends
cheer him on.

True: A group of people are hik-
ing up an icy hillside.
Noisy: A group of people are ski-
ing down an icy hillside.

Wrong number

True: A group of spectators watch
a men’s sand volleyball game.
Noisy: A solitary spectator
watches a men’s sand volleyball
game.

True: Shaft of light in a cave
shows three spelunkers.
Noisy: A shaft of light in a cave
reveals one spelunker.

True: Person standing on rocky
edge of water with hilly land in
background.
Noisy: A group of people standing
on the sandy beach with flat land in
the background.

Table 11: Examples of true versus noisy captions with fine-grained noise from our new benchmark
dataset, derived from Flickr30k, illustrating errors in the objects, negations, actions and quantities.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Wrong object/element

True: a guy that is riding his bike
next to a train
Noisy: A guy that is riding his
bike next to a bus.

True: An old black and white
photo of Pennsylvania Avenue.
Noisy: An old black and white
photo of Fifth Avenue.

True: a cat that is eating some
kind of banana
Noisy: A dog that is eating some
kind of banana.

Wrong negation

True: Many people gather around
a building with clocks
Noisy: Many people gather
around a building without clocks.

True: A pencil is sitting on a ruler
with a pair of scissors.
Noisy: A pencil is sitting on a
ruler without any scissors.

True: a pole that has a sign on it
Noisy: A pole that has no sign on
it.

Wrong action

True Little girl smiles for the
camera as she eats her sandwich
Noisy: Little girl smiles for the
camera as she drinks her juice.

True: A couple riding a motorcy-
cle down a street.
Noisy: A couple walking down a
street.
True: a giraffe bending down to
drink from a body of water
Noisy: A giraffe stretching its
neck to eat from a tree.

Wrong number

True: a photo of a train heading
down the tracks
Noisy: A photo of multiple trains
heading down the tracks.

True: Two friends are skateboard-
ing down the street to their next
destination.
Noisy: Three friends are skate-
boarding down the street to their
next destination.
True: a group of three people talk-
ing to each other on the sidewalk
with a skateboard
Noisy: A group of four people
talking to each other on the side-
walk with a bicycle.

Table 12: Examples of true versus noisy captions with fine-grained noise from our new benchmark
dataset, derived from MS COCO, illustrating errors in the objects, negations, actions and quantities.
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Wrong color

True: A boy wearing a or-
ange Doritos jersey jumps
up in the air.
Noisy: A girl wearing a
blue Doritos jersey jumps
up in the air.

True: A brown dog about
to catch a green Frisbee.
Noisy: A black dog about
to catch a red Frisbee.

True: A man in brown
building a raft.
Noisy: A man in red
building a raft.

Distributed errors

True: A bride in a light pink dress poses
for a picture with male relatives and is be-
ing photographed by a man in a cream shirt
with white pants.
Noisy: A bride in a light pink dress poses
for a picture with her siblings and is being
photographed by a girl in a green shirt with
a floral skirt.
True: A band is of four members includ-
ing a woman and three men are playing
their instruments with an open guitar case
in front of them.
Noisy: An orchestra is of ten members in-
cluding a woman and nine men are playing
their instruments with an open violin case
in front of them.
True: A young man in a gray tee-shirt and
gray sweatpants stands by a metal tiered
shelf in an industrial kitchen, holding the
top edge of the metal structure, with one
leg resting on the knee of the other leg.
Noisy: A young woman in a blue tee-shirt
and black sweatpants stands by a metal
tiered shelf in an industrial kitchen, hold-
ing the bottom edge of the metal struc-
ture, with one leg resting on the knee of
the other leg.

Table 13: Examples of true versus noisy captions with fine-grained noise from our new benchmark
dataset, derived from Flickr30k, illustrating color errors and distributed errors.

Wrong color

True: A young man wear-
ing black attire and a flow-
ered tie is standing and
smiling.
Noisy: A young man
wearing blue attire and a
flowered tie is standing
and smiling.

True: A small blue plane
sitting on top of a field.
Noisy: A large red plane
sitting on top of a field.

True: white flowers in a
vase with arranged leaves
Noisy: Red flowers in a
vase with arranged leaves.

Distributed errors

True: Woman taking a picture of someone
standing behind a sculpture and a child p
ushing another woman towards the sculp-
ture.
Noisy: A woman taking a picture of a dog
standing behind a sculpture and a child
pushing another woman away from the
sculpture.

True: Several birds that are flying together
over a body of water.
Noisy: A flock of ravens that are cawing
together above a forest.

True: A woman holding a blue birthday
cake with stars and candles on it and an-
other woman in front of the cake.
Noisy: A woman holding a green birthday
cake with stars and no candles on it and an-
other woman in front of the cake.

Table 14: Examples of true versus noisy captions with fine-grained noise from our new benchmark
dataset, derived from MS COCO, illustrating color errors and distributed errors.
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A.17 PROMPT FOR CAPTION CORRECTION

We present the prompts used for caption correction in Section 3.4. To isolate the effect of TRACED,
we employ identical prompts across settings, with the only modification being the addition of a
sentence specific to our framework ([1] in Figures 13 and 14). For instance, in Figure 4, [1] is
replaced with: “The following words are wrong: ‘a’, ‘player’, ‘female’, ‘a’, ‘rack’, ‘is’, ‘.’, ‘the’.
Other words might be wrong too.”

<|image|>
### Task:
You are an expert caption editor.

Please check the caption for factual or visual accuracy. [1]

If the caption is inaccurate, rewrite it using only the original words or minimal substitutions to make it accurate. 

**Avoid adding new details or descriptions. Keep the revised caption short and concise.**

If the caption is accurate, return it exactly as is. Don't make any changes.

Respond with only the corrected caption, enclosed in quotation marks.

### Caption:
"A female tennis player is on the court with a racket."
### Corrected Caption:

Figure 13: Prompt used for caption correction. In the case of TRACED, token-level error information
is provided in [1].

<|image|>
### Task:
You are an expert caption editor.

Please check the caption for factual or visual accuracy. [1]

If the caption is inaccurate, rewrite it using only the original words or minimal substitutions to make it accurate. 

**Avoid adding new details or descriptions. Keep the revised caption short and concise.**

If the caption is accurate, return it exactly as is. Don't make any changes.

Think step by step, explain why there is one or multiple errors, and then provide the corrected caption, enclosed in 
quotation marks. Don't output anything after the corrected sentence.

### Caption:
"A female tennis player is on the court with a racket."

Figure 14: Prompt used for caption correction using Chain-of-Thought prompting. In the case of
TRACED, token-level error information is provided in [1].
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A.18 PROMPT FOR FINE-GRAINED NOISE TYPE

We use the prompts in Figures 15 and 16 to generate 20 candidate noisy captions for each caption
in the MS COCO (Lin et al., 2014) and Flickr30k (Plummer et al., 2015) datasets.

# Sentence Variation Generator

For a given input sentence, generate up to 20 variations that have similar structure but convey clearly different meanings. 
Follow these systematic modification rules:

## Analysis Requirements
1. First, identify the basic structure of the sentence
2. Identify all components: subject, predicate, object (if any), attributives (if any), adverbials (if any), and clauses (if any)
3. Create variations by modifying one or two components per variation

## Component Modification Guidelines

### Subject Modifications (1-2 variations)
- Change the quantity of the subject: e.g., "A man" → "Two men"; "A group of people" → "One person"
- Change the subject itself: e.g., "A man" → "A woman"; "A person" → "An animal"; "A group of students" → "A group of police 
officers"

**Examples:**
- Original: "The doctor examined the patient carefully."
- Variation: "The nurse examined the patient carefully." (Changed subject identity)
- Variation: "Several doctors examined the patient carefully." (Changed subject quantity)

### Predicate Modifications (1-2 variations)
- Replace the verb with an unrelated verb: e.g., "standing" → "sitting"; "waving" → "running"
- Ensure the object (if present) is also modified to fit the new verb context

**Examples:**
- Original: "The chef prepared a delicious meal for the guests."
- Variation: "The chef served a delicious meal for the guests." (Changed verb)
- Variation: "The chef ruined a delicious meal for the guests." (Changed verb to opposite meaning)

### Object Modifications (1-2 variations)
- Replace the noun in the object with a different noun: ensure it still fits the context but differs significantly from the original
- If there is an object complement, modify it to express an opposite or completely different meaning

**Examples:**
- Original: "She bought a new car with her bonus."
- Variation: "She bought a new house with her bonus." (Changed object noun)
- Variation: "She bought an old car with her bonus." (Changed object attribute to opposite)

### Attributive Modifications (1-2 variations)
- For adjectives or nouns serving as attributives, replace with contextually appropriate words that convey completely 
different meanings
- For numerical attributives, change the quantity
- For prepositional phrases or infinitives, modify to maintain context while expressing significantly different meaning

**Examples:**
- Original: "The tall building on the corner was recently renovated."
- Variation: "The historic building on the corner was recently renovated." (Changed attributive adjective)
- Variation: "The tall building in the downtown area was recently renovated." (Changed attributive prepositional phrase)

Figure 15: First part of the prompt used to create the fine-grained noise using gpt-o4-mini.

A.19 USE OF LLM

LLMs were used to polish the writing of this paper.
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### Adverbial Modifications (1-2 variations)
- For time and place adverbials, change to completely different times or locations
- For manner and degree adverbials, change the adverb to its antonym or to a completely different adverb
- For reason, result, condition adverbials, modify the corresponding clause

**Examples:**
- Original: "They quickly finished their homework before dinner."
- Variation: "They slowly finished their homework before dinner." (Changed manner adverbial to opposite)
- Variation: "They quickly finished their homework after midnight." (Changed time adverbial)

### Clause Modifications (1-2 variations)
- Identify the components within the clause and modify them according to the guidelines above

**Examples:**
- Original: "She said that she would come to the party if she finished her work."
- Variation: "She said that she would skip the party if she finished her work." (Changed predicate in the clause)
- Variation: "She said that she would come to the party unless she finished her work." (Changed condition in the adverbial 

clause)

## Important Requirements

1. Each variation should differ from the original in 1-2 components only
2. Modifications must be significant enough to clearly change the meaning of the sentence
3. The modified sentence must maintain grammatical correctness and contextual coherence
4. If the original sentence is too short to generate 20 variations, provide as many as reasonably possible
5. Consider the context of the sentence and ensure modifications are contextually appropriate
6. Number each variation sequentially (1-20)

## Output Format
1. [Modified sentence 1]
2. [Modified sentence 2]
...
20. [Modified sentence 20]

Original: {sentence}

Figure 16: Second part of the prompt used to create the fine-grained noise using gpt-o4-mini.
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