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Abstract
Large Language Models (LLMs) are discovered
to suffer from accurately retrieving key informa-
tion. To address this, we propose Mask-Enhanced
Autoregressive Prediction (MEAP), a simple yet
effective training paradigm that seamlessly inte-
grates Masked Language Modeling (MLM) into
Next-Token Prediction (NTP) to enhance the lat-
ter’s in-context retrieval capabilities. Specifically,
MEAP first randomly masks a small fraction of
input tokens and then directly performs the stan-
dard next-token prediction autoregressive using
a decoder-only Transformer. MEAP eliminates
the need for bidirectional attention or encoder-
decoder architectures for MLM, incurring no addi-
tional computational overhead during pre-training
or inference. Intensive experiments demonstrate
that MEAP substantially outperforms NTP on
key information retrieval and long-context rea-
soning tasks, while performing on par or better
on commonsense reasoning tasks. The benefits
of MEAP also extend to supervised fine-tuning,
where it shows remarkable advantages in lost-
in-the-middle scenarios, outperforming NTP by
11.77% percentage points. Our analysis indicates
that MEAP’s effectiveness arises from its ability
to promote more distinguishable attention scores
by concentrating on a reduced set of non-masked
tokens. This mechanism improves the model’s fo-
cus on task-relevant signals while mitigating the
influence of peripheral context. These findings
position MEAP as a promising training paradigm
for large language models. Code is available at
https://github.com/scitix/MEAP.
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1. Introduction
Next-token prediction (NTP) (Radford, 2018) is the
foundational training objective for many large language
models (LLMs), including OpenAI’s GPT series (Brown,
2020). NTP trains models to predict the next word (or
token) in a sequence, given all preceding tokens. Its
scaling efficiency and exceptional performance in text
generation have established it as the dominant paradigm for
state-of-the-art LLMs such as GPT-4 (Achiam et al., 2023),
LLaMa3 (Dubey et al., 2024), Gemini 1.5 Pro (Team et al.,
2024), and DeepSeek-V3 (Liu et al., 2024a). However,
recent studies highlight the limitations of NTP-based LLMs
in accurately retrieving key information from context (Liu
et al., 2024b; Kamradt, 2023; Nelson et al., 2024).

In contrast, masked language modeling (MLM), used in
BERT (Devlin, 2018), adopts a denoising objective that re-
constructs masked inputs using bidirectional attention. This
cloze-type nature makes MLM particularly effective for
tasks requiring precise information retrieval and sentence-
level understanding. However, MLM’s inherent focus on re-
constructing masked tokens reduces its effectiveness in tasks
requiring coherent and long-form text generation (Wang &
Cho, 2019; Dong et al., 2019).

While intuitively appealing, combining NTP and MLM
to leverage their respective strengths remains a non-trivial
challenge. MLM typically operates best within two-stack
encoder-decoder architectures, and performance degrades
significantly when applied to decoder-only Transformers
(Tay et al., 2022). Efforts to integrate the two often rely on
unified pre-training pipelines where multiple objectives are
alternated during the pretraining process (Dong et al., 2019;
Tay et al., 2022). However, this multi-objective approach
introduces substantial complexity to the training pipeline,
making it cumbersome to scale, especially for models with
billions or trillions of parameters.

To this end, we propose Mask-Enhanced Autoregressive
Prediction (MEAP), a simple yet effective LLM training
paradigm that seamlessly integrates masked tokens into
next-token prediction. Specifically, we first randomly mask
a small fraction of the input tokens and then directly perform
standard next-token prediction using a decoder-only Trans-
former in an autoregressive manner. This straightforward
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Figure 1. Overview of next token prediction, masked language
modeling, and our MEAP.

modification eliminates the need for bidirectional attention
or an expensive encoder-decoder architecture, thereby incur-
ring no additional computational overhead during training.
During inference, our resulting LLMs can work as simply
as LLMs that are trained with NTP with no extra engineer-
ing effort. The simplicity of MEAP enables us to enhance
LLMs’ performance of key information retrieval and long-
context reasoning, while retaining the impressive scaling
efficiency of decoder-only LLMs. Figure 1 shows the illus-
trations of different training paradigms.

As a general pre-training paradigm, MEAP works effec-
tively for scenarios of pre-training and fine-tuning. For
the pre-training setting, we conduct control experiments by
pre-training 1.1B LLaMa-style LLMs (Zhang et al., 2024)
with NTP and MEAP, where the training tokens scale from
40B to 200B. Our results demonstrate that MEAP substan-
tially improves the performance in key information retrieval
tasks such as Needle in a Haystack (Kamradt, 2023) by
up to 33% average score and Multi-Document Question
Answering (MDQA) (Liu et al., 2024b) by up to 27.2 per-
centage points, while preserving general knowledge learned
during pre-training. It is noteworthy that MEAP achieves
85.8% accuracy with 60B training tokens on the Needle in
a Haystack, while NTP requires 200B for similar perfor-
mance, highlighting MEAP’s superior data efficiency in key
information retrieval. In addition, compared to the original
NTP, MEAP also suffers less from hallucination.

In addition, the promise of MEAP also holds for LLM
fine-tuning. Our MEAP framework demonstrates consis-
tent improvements across multiple commonsense reasoning
tasks, achieving an average gain of 1.12 scores over the
NTP baseline. On Multi-Document Question Answering,
MEAP achieves an average improvement of 11.77% across
all positions.

Our analysis suggests that MEAP’s effectiveness stems from
its ability to enhance attention distinguishability by focus-
ing on a reduced set of non-masked tokens. This mecha-
nism sharpens the model’s attention to task-relevant signals
while reducing the impact of peripheral context. In essence,
MEAP learns more by attending to fewer tokens.

The structure of this paper is as follows. Section 3 details
the MEAP algorithm. The evaluation of MEAP on LLM pre-

training and fine-tuning is presented in Sections 4.1 and 4.2,
respectively. In Section 5, we further analyze the underlying
reasons for MEAP’s effectiveness. Section 6 provides an
ablation study, and we conclude the paper in Section 7.

2. Related Work
Masked Language Modeling. Pre-training is one of the
most important pillars of LLMs. BERT first trained a
bidirectional, encoder-only Transformer with masked lan-
guage modeling (MLM), where the model is trained to
predict masked input tokens. XLNet (Yang, 2019) intro-
duced the Permutation-based Language Modeling to ac-
count for dependencies between masked tokens during train-
ing. RoBERTa (Liu, 2019) further improves the pre-training
of BERT by training the model longer, over more data, with
longer sequences, etc. MLM was further advanced by T5
(Roberts et al., 2019). Specifically, T5 frames every text
processing task as a ’text-to-text’ problem, leveraging in-
creased lengths of corrupted tokens to achieve improved per-
formance on classification tasks, which has contributed to
its growing popularity. However, these models have shown
limited performance in open-text generation and in-context
learning, limiting their usage in modern LLMs.

Next Token Prediction. In a parallel vein, Radford et al.
(2019) proposed next-token prediction (NTP) where a
decoder-only Transformer is trained to predict the next to-
ken from left to right using unidirectional attention ensured
by casual mask. By predicting the next token based on pre-
viously generated tokens and the given input context, NTP
maintains coherence and logical flow in the generated text,
well-suited for text generation. Moreover, NTP eliminates
the need for an encoder, significantly improving the scal-
ability of language models. Due to the above advantages,
NTP serves as the most popular pre-training objective of
modern LLMs (Brown, 2020; Achiam et al., 2023; Touvron
et al., 2023; Jiang et al., 2023; Yang et al., 2024; Liu et al.,
2024a).

Unified Training Paradigms. There are works that propose
unified training paradigms aiming to train one Transformer
with multiple objective functions. For instance, UniLM
(Dong et al., 2019) trains a bidirectional encoder on unidi-
rectional language modeling (LM), bidirectional LM, and
Sequence-to-Sequence LM. UL2 (Tay et al., 2022) proposes
a unified pre-training paradigm with Mixture-of-Denoisers
(MoD) to combine diverse pre-training paradigms together,
improving the performance over T5 and GPT. While effec-
tive, the preference for encoder-decoder architectures and
the complicated switches among different training objec-
tives hinder their applications in practice.

In contrast, our approach seamlessly integrates masked to-
kens into NTP without incurring any additional pre-training
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Figure 2. Training frameworks of MEAP: Left (Pre-training): A
certain portion of input tokens is randomly masked, followed by
standard next-token prediction (NTP). Right (Fine-tuning): Train-
ing samples are duplicated, and the random masking strategy is
applied to the copied sequences. Standard NTP is then performed
on the modified input for fine-tuning.

or inference costs, while preserving the ultra-efficiency of
NTP. More importantly, MEAP is more suitable for modern
LLMs, as our method does not alter the core mechanism
of NTP, the resulting models remain fully compatible with
existing pipelines, platforms, and hardware optimized for
modern LLMs.

3. Mask-Enhanced Autoregressive Prediction
In this section, we introduce Mask-Enhanced Autoregres-
sive Prediction (MEAP).

LLM pre-training. To enhance the performance of LLM
in handling and understanding long texts, particularly in
key tasks such as key information retrieval and long con-
text, we designed and implemented a simple yet efficient
random masking strategy. The core idea of this method
is to selectively mask portions of the input during the pre-
training phase. Specifically, we employed a fixed proportion
masking mechanism, where tokens in the input sequence
are randomly masked according to a predefined percentage
P . In this way, the model is forced to learn in the absence of
some contextual information, which helps improve its deep
understanding and reasoning capabilities.

Formally, given a decoder-only Transformer θ and a se-
quence of input X = (x1, x2, ...xn−1, xn), we first
randomly mask a fraction of P tokens having X ′ =
(x1, [mask], ..., xt−1, xt). We then perform the standard
next-token prediction using the masked input in a left-to-
right manner:

pθ(X
′) =

T∏
t=1

pθ(xt | x1, [mask], . . . , xt−1)

Same as NTP, when the model is tasked with predicting
a masked token, it employs causal masked attention, us-

ing only the preceding tokens to predict the masked token.
We carefully selected the masking ratio, P = 15% for pre-
training, to ensure that the model receives an adequate level
of training difficulty and learning signals, without exces-
sively disrupting the pre-training process. The relatively
moderate number of masked tokens allows this approach
to be seamlessly integrated into existing NTP frameworks,
without significantly increasing pre-training overhead or
altering the original training procedure.

LLM fine-tuning. MEAP can also be extended to fine-
tuning scenarios. In this scenario, we duplicate the training
samples and apply the same random masking strategy to
the copied sequences during fine-tuning. The original se-
quences and their masked counterparts are then combined
into a single input sequence to feed into the model. The
cross-entropy loss is computed only with the masked tokens
(Um) in the answer tokens (Uq). This design addresses a crit-
ical concern: input sequences in supervised fine-tuning often
contain key information essential for downstream tasks. Di-
rectly masking the original sequence risks removing crucial
information, potentially compromising the model’s perfor-
mance on the target tasks. Masking the duplicated sequence
incorporates MLM to NTP while avoiding this concern. We
choose P = 10% for fine-tuning in our experiment. We
only perform MEAP for the QA pair whose answer length
exceeds 50, otherwise, we perform the standard NTP for
the pair. Formally, the following objective of MEAP for
fine-tuning is:

L(θ) = −
∑

t∈Uq∪Um

log pθ(xt | x1, . . . , xt−1; x̂1, [mask], . . . , x̂t−1)

where the sequence {x̂i} is a copy of the original sequence
{xi} (i.e., x̂i = xi).

Notably, while MEAP doubles the sequence length during
fine-tuning, Figure 5 shows that it achieves superior perfor-
mance to NTP with only half the training time, essentially
attaining stronger results with even fewer training tokens.

We believe that the effectiveness of MEAP stems from its
ability to promote more distinguishable attention by focus-
ing on fewer tokens during LLM training, as masked tokens
typically receive negligible attention. This modification
helps the model focus on task-relevant signals while reduc-
ing the impact of peripheral context, as verified in Section 5.

4. Experimental Results
To evaluate the effectiveness of MEAP in training LLMs,
we conduct controlled experiments comparing LLMs pre-
trained/fine-tuned by MEAP with those trained by NTP.
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Table 1. Pre-training Evaluation. Zero-shot performance of MEAP and NTP on various commonsense reasoning tasks. Results are
measured directly after pre-training on 200B tokens with no fine-tuning.

ARC-c ARC-e BoolQ PIQA HellaSwag WinoGrande OBQA Average

NTP 22.9 55.7 53.3 73.6 44.1 55.0 23.2 46.2
MEAP 25.4 56.4 59.5 72.3 43.4 55.3 22.6 47.8

4.1. Pre-training Evaluation

Setup. We follow the Llama architecture (Touvron et al.,
2023) as our base model. Specifically, we train 1.1B
decoder-only Transformers (Vaswani, 2017) following the
setting of Zhang et al. (2024). Our model has 24 layers with
32 attention heads, a hidden size of 2,048, an intermediate
hidden size of 5,632, and a context length of 4096. We
follow the common configurations of LLM components,
e.g., Rotary Positional Embedding (RoPE) (Su et al., 2024),
Pre-Norm (Ba, 2016) with RMSNorm (Zhang & Sennrich,
2019), SwiGLU (Shazeer, 2020), and Grouped-query At-
tention (Ainslie et al., 2023). To assess the scalability of
MEAP, we increase the training token size from 40B to 60B,
and further to 200B.

For all experiments, we implement a learning rate warm-up
during the first 10% of the training steps, followed by a
cosine annealing schedule, which decays the learning rate to
10% of its initial value. We use the AdamW optimizer with
the following settings: β1 = 0.9, β2 = 0.95. The maximum
learning rate is set to 4× 10−4, the minimum learning rate
is 4× 10−5, and the weight decay is 5× 10−2.

4.1.1. LANGUAGE MODELING EVALUATION

While the primary goal of MEAP is to enhance LLM perfor-
mance in key information retrieval, it is essential to ensure
that integrating MLM into NTP does not compromise the
model’s fundamental language modeling capability. To eval-
uate this, we employ the LM Eval Harness benchmark (Gao
et al., 2024), assessing models in a zero-shot setting. The
results, presented in Table 1, show that MEAP performs
comparably to, or even outperforms, NTP, achieving a 1.6%
improvement in the overall average score. This finding pro-
vides strong evidence that incorporating random masking
into NTP does not degrade the model’s language modeling
capacity. In the following evaluations, we will examine
whether MEAP further improves performance in key infor-
mation retrieval and long-context modeling.

4.1.2. NEEDLE-IN-A-HAYSTACK RETRIEVAL

For key information retrieval, we choose the well-
established Needle-in-a-Haystack evaluation (Liu et al.,
2024b), where the model is asked to retrieve the random fact
or statement (the ‘needle’) in the middle of a long context

Table 2. Single needle accuracy (%) with 32K context.

Token 40B 60B 200B

NTP 65.9 52.8 87.1
MEAP 80.2 85.8 98.2

window (the ‘haystack’). This approach provides quanti-
tative metrics for assessing precise information extraction
from extended contexts, particularly relevant for document
analysis applications.

As this evaluation involves long-context modeling capacity,
we follow the setting of Ye et al. (2024) and conduct a length
extension to 64K. In particular, we continue training our
model for additional 4B tokens from SlimPajama (Soboleva
et al.) using the approach proposed in (Fu et al., 2024). The
implementation utilizes modified Rotary Position Embed-
dings with θbase = 640, 000.

To demonstrate MEAP’s scalability, we increase the training
token size to 40B, 60B, and 200B, reporting the results of
needle retrieval in Table 2. The results show that MEAP con-
sistently outperforms NTP across different training scales.
At 40B tokens, MEAP achieves 80.2% accuracy, signifi-
cantly surpassing the baseline’s 65.9%. The performance
gap peaks at 60B tokens, with MEAP maintaining steady
improvement and reaching 85.8% accuracy. At 200B tokens,
MEAP approaches optimal performance, attaining 98.2%
accuracy, while the NTP baseline still falls short of 90%
accuracy. It is noteworthy that MEAP achieves 85.8% accu-
racy using just 60B training tokens, whereas NTP requires
approximately three times as many (200B tokens) to reach
a similar level. This demonstrates MEAP’s superior data
efficiency over NTP in key information retrieval.

We further illustrate the retrieval performance of our 200B-
token model with a 32K context length in Figure 3. The
accuracy is reported across varying answer needle depths
(y-axis) and context lengths (x-axis). The results show that
MEAP generally maintains perfect accuracy across different
context lengths and depths, with errors limited to only two
grid cells. In contrast, NTP begins to exhibit accuracy degra-
dation at a context length of 24K, affecting a wide range of
depths from 50% to 100%.
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Figure 3. Performance comparison between NTP and MEAP on Needle In A Haystack. Scores are computed using ROUGE-1, measuring
unigram overlap between model responses and expected answers.

4.1.3. MULTI-DOCUMENT QUESTION ANSWERING

Table 3. Pre-training Evaluation. Relative accuracy (%) improve-
ment of MEAP over NTP on multi-document QA.

Answer Position 1 5 10 15 20

10 documents +7.6 +7.0 +30.6 – –
20 documents +12.4 +4.0 +5.1 +3.7 +27.2

We evaluate the model’s ability to retrieve information from
long contexts using a multi-document QA task (Liu et al.,
2024b) based on NaturalQuestions-Open (Kwiatkowski
et al., 2019). The task requires identifying answers from a
target document while ignoring k − 1 distractor documents,
where k is the total number of documents in the context.
We analyze performance across two context lengths with
k = 10 and k = 20 documents and multiple answer posi-
tions. For each query, we construct an input context con-
taining one target document with the annotated answer and
k − 1 distractor documents that do not contain any of the
answers. 64K-extended models are used for this evaluation.

We report the accuracy improvement of MEAP over NTP
in Table 3. MEAP again consistently outperforms NTP
by good margins across all configurations, with significant
gains at later positions (+30.6% at position 3 in 10-doc,
+27.2% at position 5 in 20-doc). These results indicate that
MEAP enhances the model’s ability to retrieve relevant in-
formation from long contexts, maintain performance across
different context lengths and positions, and handle complex
scenarios with multiple distractors. The improvements high-
light the effectiveness of the masking strategy in enhancing
the model’s overall capability for long-context information
retrieval tasks.
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Figure 4. Long-context reasoning performance comparison be-
tween MEAP and NTP on the Multi-Needle Reasoning Task (M-
RS) across different context lengths.

4.1.4. LONG-CONTEXT REASONING EVALUATION

We evaluate long-context reasoning capabilities using the
Multi-Needle Reasoning Task (M-RS) (Li et al., 2024a),
which requires models to retrieve and extract multiple pieces
of information from long texts and using them to logically
answer questions that demand an integrated understanding
and reasoning of various text segments. This forces the
model to distribute attention across contextually relevant
tokens rather than focusing solely on local patterns.

We leverage the OpenCompass evaluation framework (Con-
tributors, 2023) and report the results in Figure 4. MEAP
consistently outperforms NTP across context lengths with
6.6 percentage point average improvement. demonstrates
MEAP’s enhanced capacity to maintain attention coherence
over extended sequences.
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Table 4. Accuracy (i.e., free of hallucinations) on text summariza-
tion datasets evaluated by different LLM judges.

Task XSum MultiNews WikiSum

NTP (Deepseek-V3) 0.09 0.17 0.24
MEAP (Deepseek-V3) 0.13 0.19 0.33
NTP (Qwen-Plus) 0.16 0.11 0.21
MEAP (Qwen-Plus) 0.19 0.14 0.27
NTP(GPT-4o) 0.14 0.10 0.19
MEAP(GPT-4o) 0.16 0.13 0.24

4.1.5. CONTEXTUAL HALLUCINATION EVALUATION

Since MEAP improves more accurate key information re-
trieval, we expect it to suffer less from contextual halluci-
nation. To verify, we evaluate MEAP in reducing contex-
tual hallucinations on three summarization datasets: XSum
(Narayan et al., 1808), WikiSum (Cohen et al., 2021), and
MultiNews (Fabbri et al., 2019), following Ye et al. (2024).
For this setting, we fine-tune the pre-trained models with
Alpaca and evaluate them. We compare model-generated
and reference summaries using (Deepseek-V3 (Liu et al.,
2024a), Qwen-Plus (Yang et al., 2024) and GPT-4o (Hurst
et al., 2024)) as the hallucination detector across 100 ran-
dom samples per dataset. As shown in Table 4, our masking
strategy achieves a consistent reduction in hallucination
rates across all datasets.

4.2. Fine-tuning Evaluation

Setup. We fine-tune the Llama-3-8B (Dubey et al., 2024)
on the Alpaca instruction dataset (Taori et al., 2023a). The
training configuration uses a global batch size of 512. The
model is optimized with AdamW (β1 = 0.9, β2 = 0.95),
a learning rate of 2× 10−5 (with 10% warmup and cosine
decay), and weight decay set to 0.01. We retain key architec-
tural components from Llama-3, such as RoPE embeddings
(Su et al., 2024), RMSNorm (Zhang & Sennrich, 2019), and
grouped-query attention (Ainslie et al., 2023).

During fine-tuning, we randomly mask a portion of tokens
in the assistant’s response, while keeping the source context
intact. Only the masked tokens are predicted during fine-
tuning. The training process uses bfloat16 precision with
DeepSpeed Zero Stage 2 (Ren et al., 2021), and the Llama-3
tokenizer (Dubey et al., 2024) with a maximum sequence
length of 4096 tokens.

4.2.1. LANGUAGE MODELING EVALUATION

Similar to the pre-training evaluation, we first assess
MEAP’s effectiveness in language modeling. Table 5
presents the evaluation results. Our MEAP framework
demonstrates consistent improvements across multiple tasks,
achieving an average gain of 1.12 scores over the NTP

baseline. The performance improvements are particularly
notable on ARC-c and WinoGrande, indicating enhanced
reasoning capabilities. The results highlight MEAP’s effec-
tiveness in fine-tuning complex reasoning tasks.

4.2.2. CROSS-MODEL GENERALIZABILITY

To verify that MEAP’s effectiveness generalizes across dif-
ferent model architectures and scales, we conducted experi-
ments on a diverse set of pre-trained LLMs. Table 6 presents
results across various commonsense reasoning tasks, while
Table 7 shows performance on multi-document QA tasks.

The results demonstrate that MEAP consistently matches or
outperforms NTP across different model architectures and
sizes. On the multi-document QA task, MEAP demonstrates
substantial improvements across all model architectures and
sizes. These results highlight MEAP’s universal effective-
ness in enhancing information retrieval capabilities.

4.2.3. MULTI-DOCUMENT QUESTION ANSWERING

We evaluate MEAP’s context-aware reasoning using the
multi-document QA task with distractor suppression (Liu
et al., 2024b). To ensure a fair comparison, we train MEAP
for 2 epochs and NTP for 4 epochs, such that both ap-
proaches process a similar number of tokens. Table 8 quan-
tifies the exact match (EM) improvements across critical
document positions in the 20-document setting. MEAP con-
sistently achieves notable gains across all positions, further
demonstrating its superiority over NTP. Two key patterns
emerge from the experimental results:

• Consistent Improvement: MEAP achieves substantial
gains across all positions with an average improvement
of 11.77%, showing robust performance throughout
the document range.

• Mid-Context Advantage: The maximum improvement
at position 20 (+15.22%) demonstrates enhanced long-
range dependency modeling, crucial for connecting
concepts across scientific documents.

These findings validate MEAP’s effectiveness in preserv-
ing signal integrity across long contexts while highlight-
ing opportunities for temporal reasoning enhancement and
cross-document entity disambiguation.

4.3. Training Efficiency Analysis

MEAP introduces no additional overhead for pre-training or
inference compared to standard NTP, as the only difference
lies in the masking operation. During fine-tuning, MEAP
requires duplicating the input sequence and training with
a doubled sequence length, resulting in increased training
overhead. This overhead, however, is effectively amortized

6
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Table 5. Fine-tuning Evaluation. Performance of MEAP and NTP on various commonsense reasoning tasks. Results are measured by
fine-tuning with Llama-3-8B.

ARC-c ARC-e BoolQ PIQA HellaSwag WinoGrande OBQA Average

NTP 53.58 81.10 83.98 79.27 62.74 72.06 39.40 67.30
MEAP 55.12 83.21 83.82 81.01 63.31 74.27 38.20 68.42

Table 6. Cross-Model Generalizability. Fine-tuning performance comparison of MEAP and NTP on commonsense reasoning tasks when
applied to different architectures and model sizes.

Model Method ARC-c ARC-e BoolQ PIQA HellaSwag WinoGrande OBQA Average

Llama-3.2-3B NTP 47.95 69.07 75.54 76.50 72.43 64.33 44.40 64.32
Llama-3.2-3B MEAP 49.32 73.06 71.80 77.53 74.26 68.51 44.60 65.58

Qwen2.5-14B NTP 53.67 74.71 86.73 77.64 78.44 68.19 48.00 69.63
Qwen2.5-14B MEAP 56.83 79.38 87.37 79.33 79.37 72.69 47.40 71.77

Mistral-7B-0.2 NTP 35.67 60.10 75.81 71.22 63.03 61.40 35.40 57.52
Mistral-7B-0.2 MEAP 37.20 59.18 72.63 73.50 64.08 61.17 35.60 57.62
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Figure 5. Comparison of fine-tuning efficiency between MEAP
and NTP. ‘MEAP-n’ refers to MEAP training for n epoch.

by MEAP’s higher data utilization efficiency. Specifically,
compared to NTP, MEAP requires only 50% of the epochs
with a similar number of tokens being processed, while
outperforming the latter significantly.

To verify, we report the results on the multi-document QA
retrieval from 20 documents (Liu et al., 2024b), where re-
trieval performance is assessed by computing the average
retrieval values across 5 positions. As shown in Figure 5,
a single epoch of MEAP training significantly outperforms
two epochs of NTP training by a large margin while also
reducing total training time. This highlights MEAP’s data
efficiency, achieving similar or better results while reducing
computational resources.

In summary, MEAP delivers significant training time re-
ductions with improved or comparable performance on the

retrieval task, highlighting its efficiency and effectiveness
in large-scale training scenarios.

5. Why Does MEAP Work?
In this section, we attempt to interpret the underlying rea-
sons for the effectiveness of MEAP. We conjecture that
MEAP’s effectiveness stems from its ability to promote
more distinguishable attention by focusing on fewer tokens
during LLM training, as masked tokens [MASK] are ex-
pected to receive marginal attention scores.

While effective, attention mechanisms in LLMs often strug-
gle with long-context understanding, where redundant and
non-informative attention is assigned to tokens (Liu et al.,
2024b; Li et al., 2024b). A plausible explanation is that the
attention module relies on the Softmax function to normal-
ize attention scores within (0, 1), which tends to minimize
differences among tokens, especially when training on se-
quences of thousands of tokens. This bears some resem-
blance to Martins et al. (2020)’s findings on sparse attention
mechanisms which implicitly relate to their core mechanism
(reducing attention to tokens).

Furthermore, LLMs exhibit a phenomenon known as atten-
tion sinks, where the initial few tokens receive disproportion-
ately high attention scores compared to the rest (Xiao et al.,
2023). Collectively, these factors lead to small and nearly
indistinguishable attention scores across tokens, which is
generally undesirable. When LLMs fail to properly differ-
entiate between tokens, they are more likely to generate
incorrect outputs.

By randomly replacing tokens with masks, MEAP implicitly

7
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Table 7. Cross-Model Generalizability. Accuracy (%) of MEAP and NTP on multi-document QA with 20 documents across different
model architectures and sizes.

Model Method Position 1 Position 5 Position 10 Position 15 Position 20 Average

Llama-3.2-3B NTP 13.60 12.09 12.54 12.69 14.35 13.05
Llama-3.2-3B MEAP 23.47 20.34 20.38 21.96 23.65 21.96

Mistral-7B-0.2 NTP 36.96 30.55 27.82 27.55 38.79 32.33
Mistral-7B-0.2 MEAP 37.91 32.98 31.46 32.22 43.45 35.60

Qwen2.5-14B NTP 60.00 51.98 56.01 56.05 63.39 57.49
Qwen2.5-14B MEAP 61.69 53.71 57.21 56.65 66.29 59.11

Table 8. Fine-tuning Evaluation. Accuracy (%) of MEAP and
NTP on multi-document QA with 20 documents.

Position 1 5 10 15 20

NTP 24.29 22.82 24.11 25.46 31.11
MEAP 33.22 34.16 36.01 36.91 46.33

∆ +8.93 +11.34 +11.90 +11.45 +15.22

penalizes the attention scores at masked positions, thereby
amplifying the attention differences among non-masked
tokens. This masking mechanism encourages the model to
generate more distinguishable attention scores, allowing it
to focus on task-relevant texts while mitigating the influence
of peripheral context. We validate this hypothesis through
the following experiments.

5.1. Masking Leads to More distinguishable Attention

To elucidate the mechanistic impact of our masking strategy
on model behavior, we conducted a detailed analysis of
attention distribution patterns. Our experimental protocol
involved sampling 500 sequences. The original unmodified
samples refer to the input sequence of NTP XN , and their
masked counterparts (same samples with 15% masks), XM ,
designated as the input for MEAP. These sequence pairs
were then processed through our 1.1B models pre-trained
with NTP and MEAP, respectively. We compare two values:
(1) Attention Score Decay: the percentage decrease in the
averaged attention score at masked positions, computed as:

Att(XN [mask = 1])−Att(XM [mask = 1])

Att(XN [mask = 1])

(2) Attention Variance Increase: the attention variance in-
crease at non-mask positions, computed as:

V ar(Att(XM [mask = 0]))−V ar(Att(XN [mask = 0]))

Expectations. We anticipate that the average attention score
at masked positions will undergo a significant decline in the
MEAP-trained model, indicating that masked tokens receive

minimal attention in MEAP. Consequently, this reduction is
expected to increase the attention variance at non-masked
positions, making the attention distribution in MEAP more
distinguishable compared to NTP.

Results. Table 10 confirms our expectations. MEAP as-
signs 53.34% less attention to masked tokens, resulting in a
7.80% increase in attention variance. This finding validates
that MEAP learns more distinguishable attention scores
compared to NTP.

5.2. MEAP Focus More on Task-Relevant Tokens

To verify if MEAP learns more effective attention, we mea-
sure the average attention scores that the model assigns to
different input segments. We structured our input sequences
into distinct segments: context-before, answer, context-after,
query, and EOS token. The complete input sequence was
formed by concatenating these segments sequentially, fol-
lowed by an EOS token. This structured format enabled
precise tracking of attention allocation across different func-
tional components.

Expectation. Our expectation is that MEAP tends to am-
plify attention to answer spans and meanwhile reduce the
attention to less relevant tokens.

Results. The attention distributions during inference for
both models are visualized in Figure 6. Notably, MEAP
exhibits a substantial improvement in answer-relevant at-
tention (34.5% vs. 9.4%) while reducing the dominance of
context-before attention from 73.1% to 49.1%. Both models
maintain similar attention levels for peripheral components,
including context-after, query sections, and EOS tokens (all
approximately 5%–6%). These results demonstrate that
the MEAP framework enhances attention allocation during
inference, prioritizing key information more effectively.

6. Ablation Study
We conduct ablation studies on the mask ratio for both
pre-training and fine-tuning settings. Table 9 summarizes

8
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(a) NTP (b) MEAP

Figure 6. Attention distribution comparison between NTP and MEAP during inference. The input sequence consists of: context-before
(“In the heart of Paris, the Eiffel Tower stands tall, symbolizing both the city and the entire country.”), answer (“Designed by Gustave
Eiffel”), context-after (“, it was completed in 1889 for the World’s Fair. Originally criticized for its unusual design, it has since become
one of the most recognizable landmarks in the world. Tourists from all over the globe visit it every year, making it one of the most
photographed monuments.”), and query (“question: Who designed the Eiffel Tower?”). MEAP allocates a much higher attention score to
answer-relevant tokens (0.345) compared to NTP (0.094).

Table 9. Performance comparison of different mask ratios in pre-training and fine-tuning. The best results are highlighted in bold.

Pre-training Fine-tuning

Mask Ratio NTP 0.05 0.10 0.15 0.20 NTP 0.05 0.10 0.15

Accuracy 0.52 0.54 0.56 0.58 0.56 0.72 0.77 0.81 0.71

Table 10. Statistical analysis of attention score patterns between
NTP and MEAP.

Length Metric Value T-Stat/P-Value

1024 Score Decay 34.08% -25.71/<1e-6
1024 Var. Increase 12.66% 12.26/<1e-6

4096 Score Decay 53.34% -9.97/<1e-6
4096 Var. Increase 7.80% 5.22/<1e-6

the results. For pre-training, we evaluate our pre-trained
model in Section 4.1 on the Multi-Document QA task using
the nq-open-oracle dataset (Liu et al., 2024b). For
fine-tuning, we train MEAP on the Alpaca dataset (Taori
et al., 2023b) for 3 epochs with different mask ratios against
standard NTP baselines with 6 epochs for a fair comparison.
The results show that a mask ratio of 0.15 achieves the
best performance in pre-training, while a mask ratio of
0.10 yields the highest accuracy in fine-tuning. MEAP
consistently outperforms standard NTP in pre-training and
fine-tuning, demonstrating its effectiveness in leveraging
masked tokens for improved performance.

6.1. Effect of Different Masking Strategies

To further investigate the impact of masking patterns, we
compare three distinct masking strategies: Random Masking

(our default approach), 5-Span Masking (consecutive spans
of 5 tokens), and 50-Span Masking (longer spans of 50
consecutive tokens). We evaluate these strategies using a
0.3B parameter model pre-trained on 5B tokens, with results
presented in Table 15.

7. Conclusion
This work addresses challenges in information processing
through a straightforward approach that masks 10%–15% of
input while maintaining traditional prediction methods. Our
results show significant improvements in comprehension
across longer contexts, achieved without additional compu-
tational costs. This approach demonstrates remarkable effi-
ciency, matching performance metrics with just 60B training
examples that typically require 200B examples with conven-
tional methods. The results indicate that this strategy leads
to more effective processing of key information through
improved focus on relevant content. Since it requires no
structural changes, this method can be readily integrated
into existing systems without disrupting workflows.
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Impact Statement
This work proposes a modified pre-training paradigm that
may influence how both industry and academia approach
language model training. MEAP integrates seamlessly with
existing LLM frameworks without requiring additional en-
gineering effort or computational resources. While the im-
provement in information retrieval and reasoning capabili-
ties could have broad implications for downstream applica-
tions, the method’s computational efficiency and architec-
tural compatibility mean it can be readily adopted within
current training infrastructures. We anticipate this work will
contribute to more efficient model development while main-
taining established training pipelines and computational
requirements.
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A. Experimental Details of Pre-training
A.1. Architecture and Hyperparameters

This section outlines the pre-training hyperparameters of the MEAP model, designed to ensure efficient training and optimal
performance. The sequence length is fixed at 4096 tokens, enabling the model to handle long-range dependencies while
maintaining computational efficiency. The learning rate schedule includes an initial warm-up phase for the first 10% of
training steps, followed by cosine decay to 10% of the initial value, allowing gradual and precise parameter adjustments.
The AdamW optimizer is used with standard hyperparameters β1 = 0.9 and β2 = 0.95 to stabilize the optimization process.
Learning rate bounds are set between 4 × 10−4 and 4 × 10−5 to ensure effective learning throughout training, while a
weight decay of 5 × 10−2 helps prevent overfitting and promote generalization by penalizing excessively large weights.
Complete training hyperparameters are documented in Table 11.

The model sizes and corresponding hyperparameters are shown in Table 12.

Table 11. Hyperparameters of training

Name Hyperparameter

optimizer AdamW
lr schedule cosine

clip 1.0
max learning rate 4× 10−4

min learning rate 4× 10−5

weight decay 5× 10−2

sequence length 4096
batch size 256

epoch 1

Table 12. Hyperparameters of pretrained MEAP models. Data amount are specified in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

100M 768 2048 12 12 2K 2 B
500M 1024 4864 16 24 10K 10 B
1.1 B 2048 5632 24 32 190K 200 B

A.2. Pre-training Loss of Difference Model Sizes

The loss curves of the MEAP model at various sizes, as shown in Figure 7, provide a detailed visualization of the model’s
performance across different scales.

A.3. Language Modeling Evaluation Of All Size Models for Pre-training

As shown in Table 13, we present the evaluation results of models of different scales implemented using our method. To
comprehensively assess the language modeling performance of these models, we conducted a detailed analysis for each
model, with particular focus on their performance at varying scales.

A.4. Pretrained Model Evaluation Under Different Masking Rates

As shown in Table 14, we present the evaluation results of models implemented with our approach, where different mask
rates are applied during training. A comprehensive and detailed analysis of the language modeling performance is conducted
for each mask rate, with a focus on how varying levels of masking influence key performance metrics. This analysis
elucidates the effects of mask rates on the model’s ability to handle diverse linguistic tasks, highlighting any changes in
accuracy as the mask rate is adjusted.
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Figure 7. Overview of loss for all size pretrained-models

Table 13. Results of all size MEAP pretrained models

Benchmark 100M 500M 1.1B

ARC-Challenge 17.32 18.4 25.4
ARC-Easy 31.99 42.0 56.4

BoolQ 45.14 55.63 59.5
HellaSwag 26.82 30.77 43.4

OpenBookQA 11.41 16.40 22.6
PIQA 58.49 66.81 72.3

WinoGrande 52.09 49.57 55.3
Avg 34.75 39.94 47.85

A.5. Details Of Contextual Hallucination Evaluation

Here are the prompt for summarization generation, where ”doc” is the original text to be summarized.

Summarize the following article: doc

We use the following prompts to let the Deepseek v3 model perform binary classification to determine whether there is
hallucination in the model output compared to the human summary.

The ”model output” is the output of the model, and the ”predicted label” is the manually annotated
label. Please compare the ”model output” with the ”predicted label”. By comparing the two, check
if the ”model output” is similar. If it is similar, return 1; otherwise, return 0. An explanation of the
output is required. Here is the output format I provide. Please follow it strictly!! Score: xx
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Table 14. Results of the 1.1b MEAP model under different masking rates

Mask Ratio Mask Ratio Mask Ratio
Benchmark 0.15 0.05 0.1

ARC Challenge 25.4 26.11 24.3
ARC Easy 56.4 56.1 54.3

BoolQ 59.5 56.5 53.4
HellaSwag 43.4 43.69 43.85

OpenBookQA 22.6 22.0 21.8
PIQA 72.3 72.63 72.91

Winogrande 55.3 56.4 56.91
Avg 47.84 47.63 46.78

Table 15. Performance comparison of different masking strategies against NTP baseline.

Method ARC-c ARC-e BoolQ PIQA HellaSwag WinoGrande OBQA Average MDQA

NTP-0.3B 18.00 37.75 58.44 62.62 28.56 50.67 13.60 40.09 0.187

Random Mask 21.84 35.44 61.25 61.04 29.50 51.46 27.40 41.13 0.218
5-Span Mask 21.42 35.61 60.40 62.08 29.81 51.07 27.60 41.14 0.168
50-Span Mask 23.46 36.20 59.54 62.84 30.43 50.99 28.00 41.64 0.189

A.6. Details of Attention Distribution of MEAP and NTP

To validate the generality of attention changes, we conducted corresponding tests on additional examples and observed that
the attention changes in these examples are consistent with the results presented in the main text. The specific changes are
detailed in Table 16, Table 17, and Table 18.
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Table 16. Attention change of example 1

Area Content MEAP attention NTP attention

context before The Great Wall of China,stretching
over 13,000 miles, is one of the most
impressive feats of ancient engineer-
ing.

0.491 0.731

answer Built to protect Chinese states from
invasions

0.329 0.108

context after the wall took several dynasties over
2,000 years to complete. Its im-
mense length and historical signif-
icance make it a popular tourist
attraction today. The wall’s con-
struction involved countless work-
ers, many of whom faced difficult
conditions.

0.078 0.80

query question:What was the purpose of
the Great Wall of China?

0.067 0.070

eos <s> 0.069 0.071

Table 17. Attention change of example 2

Area Content MEAP attention NTP attention

context before In the early 20th century, Albert Ein-
stein introduced his theory of rela-
tivity, which changed the way we
understand space, time, and gravity.

0.435 0.694

answer His famous equation, E=mc² 0.386 0.115

context after shows the relationship between en-
ergy and mass. Einstein’s ideas rev-
olutionized physics, and his work
led to the development of technolo-
gies like GPS and nuclear energy.
Despite facing initial skepticism,
his theories were eventually proven
through experiments and observa-
tions, earning him a Nobel Prize in
Physics in 1921.

0.066 0.074

query question:What famous equation did
Albert Einstein create?

0.057 0.060

eos <s> 0.055 0.057
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Table 18. Attention change of example 3

Area Content MEAP attention NTP attention

context before At the center of Rome, the Colos-
seum rises as a magnificent testa-
ment to ancient Roman architecture,
symbolizing the grandeur of the Ro-
man Empire.

0.579 0.748

answer Constructed between 70 and 80 AD
under the emperors Vespasian and
Titus,

0.219 0.065

context after it was used for gladiatorial contests
and public spectacles. Once a sym-
bol of Roman power, the Colosseum
has weathered centuries of change
but remains one of the most iconic
structures in the world. Tourists
flock to see it every year, making it
one of the most photographed mon-
uments in history.

0.071 0.067

query question:Who built the Colosseum? 0.063 0.050

eos <s> 0.068 0.069
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B. Details of Fine-tuning Experiments
B.1. Architecture and Hyperparameters

This section details the MEAP fine-tuning hyperparameters for the Llama3 model. The maximum sequence length is 4096
tokens, optimizing long-range dependencies and efficiency. The batch size is 512, and the learning rate schedule includes a
warm-up for the first 10% of training steps. The AdamW optimizer is used with β1 = 0.9 and β2 = 0.95, and the learning
rate is set to 2× 10−5.

Table 19. MEAP fine-tuning hyperparameters of Llama3 model

Name Hyperparameter

optimizer AdamW
lr schedule cosine

clip 1.0
learning rate 2× 10−5

weight decay 5× 10−2

maximum sequence length 4096
batch size 512
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