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ABSTRACT

Forecasting Multivariate Time Series (MTS) requires capturing complex intra-
channel dynamics and evolving inter-channel dependencies. However, existing
methods often struggle to disentangle meaningful signals from inter-channel noise
and intricate interaction patterns. To address this, we propose a novel frame-
work that operates entirely in the frequency domain, modeling inter-channel re-
lationships at the component level. Our approach first dynamically decomposes
each time series into its constituent frequencies. An Adaptive Band Decompo-
sition mechanism then identifies and isolates the most salient frequency com-
ponents, simultaneously filtering noise and enhancing computational efficiency.
This allows our model to capture time-varying inter-channel dependencies with
high fidelity. Furthermore, our learning objective effectively balances accuracy
against regularization constraints for both computational efficiency and inter-
pretability. Extensive experiments on diverse, real-world datasets demonstrate
that our method achieves competitive performance. Code is available at this repos-
itory: https://anonymous.4open.science/r/FACT.

1 INTRODUCTION

Multivariate time series (MTS) forecasting supports power scheduling, weather prediction and in-
dustrial control, where accuracy, robustness and interpretability are equally critical (Zhou et al.,
2021; Wu et al., 2021a; Zhou et al., 2022). Existing research largely falls into two paradigms.
Channel-Dependent (CD) models explicitly mix variables but easily introduce spurious correlations
and face scalability issues in high dimensions (Zhang & Yan, 2023; Liu et al., 2023; Wang et al.,
2023); Channel-Independent (CI) models improve robustness by per-channel processing, but sacri-
fice genuine couplings and physical interpretability (Nie et al., 2023; Han et al., 2024). This tension
indicates a need for fine-grained, controllable interaction modelling.

The core challenge in MTS forecasting lies in disentangling meaningful signals from the noise
inherent in complex inter-channel interactions. While spectral analysis offers a promising direc-
tion, we observe a critical physical nuance: different spectral components carry distinct seman-
tics—amplitude reflects energy intensity, while phase encodes temporal alignment. For instance,
daily load patterns (high frequency) and seasonal trends (low frequency) often exhibit different in-
teraction modes (coordination vs. antagonism). A difficulty arises, however, in effectively modeling
these “channel-frequency cells” (Fig. 1). Existing spectral methods (Wu et al., 2023; Yi et al., 2023b)
typically rely on global reweighting or fixed decomposition, failing to capture dynamic, cell-level
dependencies and, crucially, ignoring the explicit role of phase shifts in causal alignment.

To address this difficulty, we propose FACT (Frequency-Adaptive Complex Transformer), which
shifts interaction modeling from raw channels to specific frequency components. Unlike real-valued
approaches that struggle with phase alignment, FACT operates in the complex domain to explicitly
model both magnitude coherence Γ and phase offsets Φ. Our solution comprises three steps: (i)
a Dynamic Frequency-Band Decomposition (DynFBD) that adaptively isolates salient frequency
cells; (ii) a ChannelPriorMixer that leverages physical priors (Γ,Φ) to guide interaction; and (iii)
a complex-valued fusion mechanism that aligns these priors with the representation. This design
ensures that interactions are physically grounded and robust to noise.
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Figure 1: Representative channel–frequency interactions: dynamic drift within a channel (left),
same-frequency coordination/antagonism (middle), and cross-frequency modulation/triggering
(right, e.g., a sudden cold snap inducing low-frequency heating demand).

• To establish a frequency-level interaction paradigm, we treat the channel–frequency cell as the
basic unit and design a sparse token pipeline (DynFBD + selector) to suppress noisy bands while
preserving physically meaningful signals.

• We introduce ChannelPriorMixer and adaptive fusion to leverage magnitude/phase-aware priors.
By grounding the interaction mechanism directly in physical properties (coherence Γ and phase
Φ), this design provides intrinsic interpretability, enabling users to trace frequency selection and
channel coupling patterns regardless of the chosen backbone.

• Functioning as a model-agnostic plug-in, FACT separates the Frequency-Aware Interaction Mod-
ule from the representation encoder. This design explicitly prepares frequency-aligned features
and can be plugged into diverse backbones (Transformer/MLP/Linear), yielding consistent im-
provements across datasets compared to raw-channel mixing.

We validate these claims through comprehensive experiments: ablations on each component, reg-
ularization sweeps, and interpretability visualizations. Results demonstrate positive correlation be-
tween our interpretability metrics and accuracy, and consistent gains across backbones. Details are
provided in Section 5.

2 RELATED WORK

2.1 CHANNEL INTERACTION MODELLING

Early multivariate forecasting adopted RNN/CNN backbones with local dependencies (Hochreiter
& Schmidhuber, 1997; Bai et al., 2018), later extended by graph and multi-task formulations that
encode handcrafted adjacencies (Wu et al., 2020; 2021b; Cui et al., 2021). Transformers broaden
the receptive field (Vaswani et al., 2017; Zhou et al., 2021; Wu et al., 2021a; Zhou et al., 2022), but
how to model variable interactions remains contentious. Channel-independent (CI) designs (e.g.,
PatchTST, iTransformer) favor per-channel tokenization for robustness to noise/drift (Nie et al.,
2023; Liu et al., 2023); some even argue high-amplitude frequencies dominate prediction (Dai et al.,
2024; Xu et al., 2024). Channel-dependent (CD) methods (Crossformer, CARD, SOFTS, TimePro,
DUET) reintroduce interactions via cross-dimension routes, alignment-aware attention, global cores
or routing/clustering (Zhang & Yan, 2023; Wang et al., 2023; Han et al., 2024; Ma et al., 2025; Qiu
et al., 2025). Recent works like TimeFilter and TQN also explore advanced filtering mechanisms (Hu
et al., 2025; Lin et al., 2025), yet they largely rely on spatial-temporal graph filtrations. In contrast,
FACT adopts a pure frequency-domain approach to decouple fine-grained interactions. CI may
discard genuine couplings; CD often mixes signals coarsely and is sensitive to noise—motivating
frequency-aware, fine-grained priors as a middle ground.

2.2 TIME–FREQUENCY METHODS AND PHYSICAL PRIORS

Spectral approaches provide efficiency but typically treat amplitude as the sole carrier of informa-
tion, whereas phase determines temporal alignment/lag and spatial shift. TimeMixer/TimeMixer++

2
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mix frequency bands for long contexts yet collapse phase cues into shared representations (Wang
et al.; 2025). FredFormer and TSMixer refine spectra via normalization or MLP mixing, but channel
fusion remains entangled and phase alignment implicit (Piao et al., 2024; Ekambaram et al., 2023).
FreTS/FITS recalibrate responses (Yi et al., 2023a; Xu et al., 2024), yet they average across channels
and cannot reveal which variable drives a specific band or how cross-frequency triggering unfolds.
A complementary line emphasizes that spectral components should not be treated uniformly: FreDF
shows frequency utility is scenario-dependent and benefits from dynamic fusion (Zhang et al., 2024);
periodicity decoupling highlights the role of high-frequency harmonics beyond mere noise (Dai
et al., 2024). These observations motivate modelling interactions at the channel–frequency cell
with explicit magnitude/phase priors and channel-specific reweighting—precisely what FACT op-
erationalizes. Beyond accuracy, recent work values robustness and interpretability. CI strategies
offer stability but little diagnosis (Han et al., 2023); CD designs (SOFTS/CARD) balance the two
via global cores or alignment penalties (Han et al., 2024; Wang et al., 2023). FACT inherits spectral
efficiency and contributes a physically grounded, fine-grained interaction paradigm that plugs into
diverse backbones.

3 PRELIMINARIES

Problem Formulation. Let X = {x1, . . . ,xL} ∈ RL×C represent the historical multivariate time
series with lookback window L and C channels. The objective is to predict the future sequence
Y = {xL+1, . . . ,xL+T } ∈ RT×C of length T . This forecasting task can be formulated as learning
a mapping function Fθ:

Ŷ = Fθ(X), Fθ : RL×C → RT×C . (1)

Our goal is to optimize the parameters θ such that the predicted Ŷ accurately approximates the
ground truth Y, capturing both intra-series temporal dynamics and inter-series channel dependen-
cies.

Frequency Domain Processing. To capture global temporal patterns and periodic dependencies,
FACT operates in the frequency domain. We apply the real Fast Fourier Transform (rFFT) to the
input X along the time dimension:

Xfft = Frfft(X) ∈ CF×C , F = ⌊L/2⌋+ 1. (2)

Unlike methods that process real and imaginary parts separately, we maintain the complex represen-
tation in polar form to explicitly preserve physical semantics:

Xfft(f, c) = A(f, c) · eiθ(f,c), (3)

where A(f, c) ∈ R≥0 denotes the amplitude (representing energy intensity), and θ(f, c) ∈ [−π, π)
denotes the phase (representing temporal alignment). This decomposition serves as the foundation
for our physics-aware interaction modeling. Full derivations and additional notations are detailed in
Appendix F.

4 METHODOLOGY

FACT addresses the CI–CD dilemma by modelling interactions at the channel–frequency level with
explicit magnitude/phase priors. We first outline the pipeline (Fig. 2), then introduce the key modules
and the training-time regularizers. Basic notation and operators are given in Section 3.

4.1 ARCHITECTURE AND COMPLEXITY OVERVIEW

Figure 2 overviews the pipeline: (i) RevIN normalization and rFFT transformation; (ii) Adaptive
Band Decomposition using Gaussian filters to generate frequency bands; (iii) Complex Linear Pro-
jection to create multi-scale tokens and extract mask/weight information; (iv) Feature Alignment
through cross-attention and gated networks; (v) Complex encoder with coherence (Lcoh) and phase
(Lphase) regularization losses. Note that while Figure 2 depicts a Complex Transformer Encoder,
the core Frequency-Aware Interaction Module (steps ii-iv) is backbone-agnostic and can be coupled
with MLP or Linear encoders. A concise summary of the per-module complexity is provided in
Section 5.3 (Table 3).

3
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Figure 2: Overall FACT pipeline: input sequences undergo RevIN normalization and rFFT trans-
formation to frequency domain. Gaussian filters perform adaptive band decomposition generating
low/mid/high frequency bands, mask, and weight information. Complex linear projection creates
multi-scale tokens, followed by Feature Alignment using cross-attention with gated networks. The
encoder processes aligned features with coherence and phase regularization losses, finally recover-
ing time-domain predictions through inverse operations.

      

          

     

          

       

     

    

Figure 3: Fixed frequency band division illustration: the frequency axis is divided into
low/medium/high three segments according to preset thresholds, each segment is compressed
through independent complex linear branches and then concatenated into unified token represen-
tation.

4.2 ADAPTIVE BAND DECOMPOSITION AND FREQUENCY SELECTION

Rationale: From Static to Dynamic. Multi-scale frequencies naturally correspond to seasonalities
and lags. A naive approach involves dividing the spectrum into low/mid/high bands using fixed
thresholds (see Fig. 3). While this provides a basic interaction unit, it suffers from two limitations:
(1) Energy Truncation: fixed boundaries may cut through high-energy peaks in diverse datasets
(e.g., solar vs. traffic), leading to information loss; (2) Rigidity: fixed boundaries lack a mechanism
to dynamically re-weight frequency bands and require tedious manual tuning to adapt to different
dataset characteristics. To overcome this, we propose an Adaptive Band Decomposition (Fig. 4)
driven by learnable Gaussian filters. This design not only softly separates components to avoid
aliasing but also produces continuous masks that bridge the frequency frontend with downstream
attention modules.

We apply learnable Gaussian filters to each channel to obtain Bf soft frequency bands. Crucially,
this process yields both the decomposed tokens Z and a set of soft masks Pmask:

Zi = ComplexLinear(Wgauss,i ⊙Xfft), i = 1, . . . , Bf . (4)

The resulting Pmask and Pweight are not merely outputs but serve as continuous gating priors in-
jected into the Feature Alignment module (Section 4.5), creating a closed-loop feedback where the
model learns to emphasize key frequency bands end-to-end.

The softplus-constrained (µ, σ) parameters are normalized within each band to obtain
(B,C, bands, F ) soft masks, which are point-wise multiplied with the original spectrum and pro-

4
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Figure 4: DynFBD’s learnable Gaussian filters: raw spectrum, (µ, σ) trajectories, soft-band decom-
position, and normalized filter shapes.

jected to (B,K, 3C) via shared complex linear layers. Concurrently, the resulting masks and
weights are compressed into low-dimensional summaries Pproj

mask ∈ RB×F×dm and Pproj
weight ∈

RB×K×dw , providing interpretable attention bias and gating priors. This soft division not only
enables smooth gradients but also forms a closed feedback loop with Feature Alignment, allowing
the model to emphasize key frequency bands early in training (see Fig. 4). Empirical results on
benchmarks like ETTh1 and ECL show that the Gaussian version reduces sMAPE by approximately
1.3% ∼ 2.1% compared to fixed thresholds.

4.3 CHANNEL PRIOR MIXER

Rationale. Direct attention on high-dimensional channels is computationally expensive and prone
to noise. Moreover, real-valued attention struggles to capture phase-based lead-lag relationships.
The Channel Prior Mixer mitigates this by adopting a centralized aggregation-distribution strategy
in the complex domain. Specifically, we compute the amplitude coherence γ = Corr(|Xfft|) and
phase difference ϕ = Angle(Xfft) across channels from the input spectrum, serving as the physical
ground truth. Based on these priors, we obtain the mixing matrix using learnable scalars α, β and
temperature τ :

Mmix = softmax
(αγ + βϕ

τ

)
+ δ I. (5)

where Mmix ∈ RC×C . I is the identity matrix and δ is a learnable bias to preserve self-channel
information. The mixed spectrum is interpolated with strength 0.1, and guided gating compresses
amplitudes to [0, 1].

4.4 ENCODER PLUGGABILITY

The frequency frontend outputs unified complex tokens, allowing flexibility in the encoder choice
based on computational budget: a Complex Transformer (optimal for large channel counts), a Com-
plex MLP (linear cost in BLdmodeldff ), or a single-layer Complex Linear (most lightweight). Full
comparisons are provided in the Appendix.

4.5 FEATURE ALIGNMENT

This module acts as the bridge that injects the physical priors (from Sec 4.3) into the representa-
tion stream. Tokens and the raw spectrum are typically misaligned in length and channels. Simple
concatenation can cause information leakage and ignore priors. To resolve this, we adopt com-
plex cross-attention where the raw spectrum queries the tokens, while prior-driven gating and bias
highlight key bands and suppress noise.

This magnitude–phase pipeline (Fig. 5) allows Feature Alignment to gate strong or weak responses
based on amplitude while retaining phase delays, essential for identifying cross-channel lead–lag
relations. The module comprises three sub-pathways: (i) query/key projection splitting complex
inputs into real/imaginary parts; (ii) value projection preserving phase information; and (iii) a gat-
ing generator that learns injection strength and attention bias from mask/weight summaries. The
formulation is:

Q = WQ[ℜ(Xfft);ℑ(Xfft)], K = WK [ℜ(Z);ℑ(Z)], V = ComplexLinear(Z). (6)

5
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Figure 5: Complex feature handling: traditional real/imaginary split (top) vs. FACT’s magni-
tude–phase processing (bottom). Right: magnitude-softmax and unit-phase reconstruction for com-
plex attention values.

Prior gating and bias are defined as

G = σ
(
Am(M)

)
⊙ σ

(
Aw(W)

)
, B = B(M,W), (7)

where M,W are projected summaries and Am,Aw,B are linear mappings. The attention output is

Hfused = Softmax
(QK⊤
√
d

+B
)(

V ⊙G
)
. (8)

The result is residually interpolated with the original spectrum (α = 0.7) and normalized by Com-
plexLayerNorm. This design maintains O(nheadsKd2) complexity while leveraging prior gating to
focus on key frequency bands early in training. Crucially, the cross-attention map (QK⊤) in this
module serves as a direct visualization window, revealing how the model aggregates multi-scale
frequency tokens, thereby providing feature-level interpretability independent of the subsequent en-
coder backbone.

4.6 COMPLEX TRANSFORMER ENCODER

Following frequency-domain alignment, we employ a Complex Transformer Encoder to model long-
term dependencies while preserving amplitude-phase information. The encoder consists of two
ComplexFullAttentionLayer layers:

Hℓ+1 = ComplexLayerNorm
(
Hℓ +ComplexMultiHeadAttn(Hℓ,Hℓ,Hℓ)

)
, (9)

Hℓ+1 = ComplexLayerNorm
(
Hℓ+1 +ComplexConv1d(Hℓ+1)

)
. (10)

ComplexMultiHeadAttn reuses weights from Equation equation 6 with prior bias, and Complex-
Conv1d performs depthwise separable convolution to capture local smoothness. The output is
mapped back to CF×C , then recovered to time-domain predictions through irFFT and inverse nor-
malization.

4.7 INTERPRETABILITY REGULARIZATION

To align the model with physical mechanisms during optimization, we impose constraints on cached
attention, gating, and priors. This avoids the ”train first, interpret later” disconnect. specifically, we
cache fusion representations Ĥ, gating vectors g, mixing matrices Mmix, and frequency-domain
phases. Averaging these over the frequency dimension yields amplitude correlations γ̂ and mean
phase differences ∆̂θ. These drive the coherence and phase regularizers:

Lcoh = ∥γ̂ − γ∥22 , γ̂ = corr
(
|Ĥ|

)
, (11)

Lphase = 1− cos
(
∆̂θ − ϕ

)
, (12)
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Table 1: Multivariate Long-term Forecasting results with prediction lengths H ∈
{96, 192, 336, 720} and fixed lookback window length L = 96. The results are taken from SOFTS
and iTransformer (Liu et al., 2023).

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.327* 0.361 0.325 0.361 0.334 0.368 0.329 0.365 0.323 0.363* 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419
192 0.376* 0.392 0.375 0.389 0.377 0.391 0.380 0.394 0.376* 0.392 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441
336 0.422 0.418 0.405 0.412* 0.426 0.420 0.400 0.410 0.407* 0.413 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459
720 0.502 0.463 0.466 0.447 0.491 0.459 0.475* 0.453* 0.485 0.459 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453* 0.595 0.550 0.543 0.490

Avg 0.407 0.409 0.393 0.403 0.407 0.410 0.396 0.406 0.398* 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452

E
T

T
m

2

96 0.193 0.275 0.180 0.261 0.180 0.264 0.184 0.264 0.182* 0.266 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287
192 0.271 0.329 0.246 0.306 0.250 0.309* 0.246 0.306 0.249* 0.309* 0.414 0.492 0.290 0.364 0.249* 0.309* 0.284 0.362 0.399 0.445 0.269 0.328
336 0.312 0.349 0.319 0.352 0.311* 0.348* 0.308 0.346 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366
720 0.417 0.408 0.405 0.401 0.412 0.407 0.409* 0.402 0.416 0.408 1.730 1.042 0.558 0.524 0.408 0.403* 0.554 0.522 0.960 0.735 0.421 0.415

Avg 0.298 0.340 0.287 0.330 0.288* 0.332* 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349

E
T

T
h1

96 0.384* 0.404 0.381 0.399 0.386 0.405 0.394 0.406 0.401 0.412 0.423 0.448 0.479 0.464 0.384* 0.402* 0.386 0.400 0.654 0.599 0.376 0.419
192 0.436* 0.436 0.435 0.431 0.441 0.436 0.440 0.435 0.452 0.442 0.471 0.474 0.525 0.492 0.436* 0.429 0.437 0.432* 0.719 0.631 0.420 0.448
336 0.480 0.458 0.480 0.452 0.487 0.458 0.491 0.462 0.492 0.463 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465
720 0.504 0.486 0.499 0.488* 0.503* 0.491 0.487 0.479 0.507 0.490 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507

Avg 0.451* 0.446 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460

E
T

T
h2

96 0.307 0.356 0.297 0.347 0.297 0.349* 0.288 0.340 0.319 0.361 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397
192 0.383 0.400* 0.373 0.394 0.380* 0.400* 0.376 0.395 0.402 0.410 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439
336 0.422 0.430 0.410 0.426 0.428* 0.432* 0.440 0.451 0.444 0.446 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1 0.744 0.496 0.487
720 0.422 0.442 0.411 0.433 0.427* 0.445* 0.436 0.453 0.441 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474

Avg 0.383 0.407 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449

E
C

L

96 0.146 0.241* 0.143 0.233 0.148* 0.240 0.164 0.251 0.157 0.260 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308
192 0.178 0.268 0.158 0.248 0.162 0.253 0.173* 0.262* 0.173* 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315
336 0.187* 0.280 0.178 0.269 0.178 0.269 0.190 0.279* 0.192 0.295 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329
720 0.206 0.300 0.218 0.305 0.225 0.317 0.230 0.313* 0.223 0.318 0.280 0.363 0.284 0.373 0.220* 0.320 0.245 0.333 0.299 0.390 0.246 0.355

Avg 0.179* 0.272* 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327

Tr
af

fic

96 0.409* 0.273 0.376 0.251 0.395 0.268 0.427 0.272* 0.493 0.336 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366
192 0.427* 0.279* 0.398 0.261 0.417 0.276 0.454 0.289 0.497 0.351 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373
336 0.465 0.294 0.415 0.269 0.433 0.283* 0.450* 0.282 0.528 0.361 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383
720 0.512 0.315 0.447 0.287 0.467 0.302* 0.484* 0.301 0.569 0.380 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382

Avg 0.453* 0.290 0.409 0.267 0.428 0.282 0.454 0.286* 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376

W
ea

th
er

96 0.167 0.213* 0.166 0.208 0.174 0.214 0.176 0.217 0.166 0.210 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296
192 0.214 0.255* 0.217 0.253 0.221 0.254 0.221 0.256 0.215* 0.256 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336
336 0.273 0.299* 0.282 0.300 0.278 0.296 0.275* 0.296 0.287 0.300 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380
720 0.350 0.349 0.356 0.351 0.358 0.347 0.352 0.346 0.355 0.348* 0.398 0.418 0.351* 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428

Avg 0.251 0.279* 0.255 0.278 0.258 0.278 0.256* 0.279* 0.256* 0.279* 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360

So
la

r

96 0.192 0.236 0.200 0.230 0.203* 0.237* 0.205 0.246 0.221 0.275 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342
192 0.233 0.269 0.229 0.253 0.233 0.261 0.237 0.267* 0.268 0.306 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380
336 0.240 0.275* 0.243 0.269 0.248* 0.273 0.250 0.276 0.272 0.294 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376
720 0.251* 0.280 0.245 0.272 0.249 0.275 0.252 0.275 0.281 0.313 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427

Avg 0.229 0.265* 0.229 0.256 0.233* 0.262 0.236 0.266 0.260 0.297 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381

Count (1st) 3 2 16 23 2 2 5 7 1 0 3 0 0 0 1 2 1 0 0 0 3 0

Count (2nd) 8 5 12 4 8 11 1 6 2 2 0 0 0 0 1 2 1 2 0 0 0 0

Count (3rd) 8 7 0 2 8 9 6 6 6 3 0 0 1 0 4 3 0 2 0 0 0 0

where γ and ϕ are derived from amplitude/phase priors. The total loss is L = Lforecast+λcohLcoh+
λphaseLphase. By composing Adaptive Band Decomposition, channel priors, and regularized com-
plex encoding, FACT achieves both high accuracy and physical interpretability.

5 EXPERIMENTS

5.1 DATASETS

We follow the public SOFTS benchmarks (Han et al., 2024): ETT (4 subsets), Traffic, Electricity,
Weather, Solar-Energy, and PEMS (4 subsets). These cover electricity, transportation and energy
scenarios with heterogeneous channels and sampling rates. Full statistics (channels, horizons, splits,
sampling) are provided in Appendix E (Table 8).

5.2 TRAINING AND IMPLEMENTATION SETTINGS

Key hyperparameters (optimizer, depth, hidden size, subset protocol) are summarized in Appendix
(Section C).

5.3 MAIN RESULTS AND ABLATION

We evaluate our method against a comprehensive set of baselines, including linear/MLP models
(DLinear, TSMixer, TiDE), Transformers (FEDformer, Stationary, PatchTST, Crossformer, iTrans-
former), and CNN-based approaches (SCINet, TimesNet). Following standard long-sequence pro-
tocols (Zhou et al., 2021; Liu et al., 2022), we fix the lookback window to L = 96 and report
MSE/MAE across standard horizons. Full implementation details are provided in Appendix C.
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Table 2: Multivariate Short-term Forecasting results on PEMS datasets with prediction lengths H ∈
{12, 24, 48, 96} and fixed lookback window length L = 96.

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3 12 0.063 0.166 0.064 0.165 0.071 0.174 0.073 0.178 0.075 0.186 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066* 0.172* 0.126 0.251

24 0.084 0.191 0.083 0.188 0.093 0.201 0.105 0.212 0.095 0.210 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085* 0.198* 0.149 0.275
48 0.127 0.234 0.114 0.223 0.125* 0.236* 0.159 0.264 0.121 0.240 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238 0.227 0.348
96 0.191 0.296 0.156 0.264 0.164 0.275 0.210 0.305 0.184 0.295 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515 0.178* 0.287* 0.348 0.434

Avg 0.116 0.222* 0.104 0.210 0.113 0.221 0.137 0.240 0.119 0.233 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114* 0.224 0.213 0.327

PE
M

S0
4 12 0.075* 0.179* 0.074 0.176 0.078 0.183 0.085 0.189 0.079 0.188 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.073 0.177 0.138 0.262

24 0.091 0.200* 0.088 0.194 0.095 0.205 0.115 0.222 0.089* 0.201 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.084 0.193 0.177 0.293
48 0.118 0.233 0.110 0.219 0.120 0.233 0.167 0.273 0.111* 0.222* 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.099 0.211 0.270 0.368
96 0.162 0.280 0.135* 0.244 0.150 0.262 0.211 0.310 0.133 0.247* 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.114 0.227 0.341 0.427

Avg 0.111 0.223 0.102 0.208 0.111 0.221 0.145 0.249 0.103* 0.215* 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337

PE
M

S0
7 12 0.056 0.150 0.057 0.152 0.067* 0.165 0.068 0.163* 0.073 0.181 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242 0.068 0.171 0.109 0.225

24 0.072 0.168 0.073 0.173 0.088* 0.190* 0.102 0.201 0.090 0.199 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329 0.119 0.225 0.125 0.244
48 0.098 0.196 0.096 0.195 0.110* 0.215* 0.170 0.261 0.124 0.231 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458 0.149 0.237 0.165 0.288
96 0.133 0.227 0.120 0.218 0.139* 0.245 0.236 0.308 0.163 0.255 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553 0.141 0.234* 0.262 0.376

Avg 0.090 0.185 0.087 0.184 0.101* 0.204* 0.144 0.233 0.112 0.217 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283

PE
M

S0
8 12 0.074 0.173 0.074 0.171 0.079* 0.182* 0.098 0.205 0.083 0.189 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.087 0.184 0.173 0.273

24 0.098 0.198 0.104 0.201 0.115* 0.219* 0.162 0.266 0.117 0.226 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.122 0.221 0.210 0.301
48 0.149 0.241 0.164 0.253* 0.186* 0.235 0.238 0.311 0.196 0.299 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.189 0.270 0.320 0.394
96 0.265 0.307 0.211 0.253 0.221 0.267 0.303 0.318 0.266 0.331 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.236* 0.300* 0.442 0.465

Avg 0.147 0.230* 0.138 0.219 0.150* 0.226 0.200 0.275 0.165 0.261 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358

Count (1st) 6 3 7 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0

Count (2nd) 3 7 8 6 2 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0

Count (3rd) 1 2 1 1 8 5 0 1 2 2 0 0 0 0 0 0 0 0 4 5 0 0

Tables 1 and 2 summarize the performance across 12 datasets. FACT exhibits distinct superior-
ity on periodic datasets (e.g., Solar-Energy, Weather), validating that our complex-valued modeling
effectively captures physical phase shifts often overlooked by baselines. Compared to Channel-
Independent methods like PatchTST, FACT better recovers cross-channel coupling, leading to lower
errors on highly correlated data like ECL. On PEMS, it remains competitive against specialized
spatio-temporal models by inferring latent spatial dependencies via channel coherence, demonstrat-
ing robust generalization without pre-defined graph structures. While high-channel regimes like
Traffic indicate room for further scaling, the results collectively validate FACT’s effectiveness.

The results in Tables 1 and 2 demonstrate several key findings: (1) FACT achieves strong per-
formance across diverse datasets, particularly excelling on Solar-Energy and Weather forecasting
tasks; (2) The frequency-domain approach proves effective for capturing temporal dependencies
while maintaining computational efficiency; (3) FACT’s interpretable design does not compromise
prediction accuracy, establishing a favorable trade-off between performance and explainability in
multivariate time series forecasting.

Analysis of Domain Sensitivity. FACT exhibits distinct superiority on Solar and Weather datasets
(ranking 1st in almost all metrics). This aligns with the physical nature of these domains: they
are dominated by strong periodicity and cross-channel phase shifts (e.g., solar irradiance delays
due to geographical longitude). FACT’s complex-valued modeling explicitly captures these phase
differences (ϕ) and amplitude correlations (γ) via the Channel Prior Mixer, offering an inductive bias
that real-valued models (like iTransformer) lack. Conversely, on datasets with irregular load spikes
(e.g., ETT), the advantage of frequency decomposition is less pronounced, though FACT remains
competitive.

Efficiency and Ablation Analysis. To further quantify the contribution of each module and the
efficiency of our design, we conducted detailed ablation studies on the Solar and Weather datasets.
We also explored alternative designs during development: notably, replacing our complex-valued
pipeline with a simple 2-channel real-valued concatenation resulted in inferior performance (ap-
prox. 5% degradation on Solar), as it failed to explicitly capture the phase-based lead-lag rela-
tionships critical for periodic data. As shown in Table 4, removing the Dynamic Frequency Band
Decomposition (DynFBD) leads to a performance drop, confirming the importance of frequency
disentanglement. Crucially, our Adaptive Fusion mechanism demonstrates superior scalability: on
the high-dimensional Electricity dataset (321 channels), it reduces computational overhead by over
82% (10.23s vs. 58.55s per epoch) compared to the concatenation baseline (FACT-concat), which
required a reduced batch size to avoid memory overflow. This validates the efficiency of our ”filter-
then-fuse” strategy for large-scale applications.

We further analyze the theoretical complexity of each module in Table 3. FACT maintains a fa-
vorable efficiency profile; the channel mixer operates on top-k bands with linear dependence on
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channels O(Ck), while the adaptive fusion scales with O(Kd2), avoiding quadratic complexity
w.r.t sequence length L.

Table 3: Time complexity overview of main modules (default Bf = 3, K = 128, top-k=16).
Module Main Complexity Description

rFFT O(LC logL) One rFFT per channel
DynFBD O(BfKC) Complex linear mapping, band projection
Channel Prior Mixer O(Ck) Aggregation after top-k selection
Adaptive Fusion O(nheadsKd2) Complex cross-attention on compressed

tokens
Complex Encoder O(nlayersd

2K) Two ComplexFullAttentionLayer layers

Table 4: Ablation Study on the Interpretability Subset of Solar and Weather Datasets. We compare
MSE performance and training Runtime (seconds per epoch). Note: The subset uses fewer samples
(4,096) for rapid validation, resulting in different MSE scales compared to the full-dataset Main
Results (Table 1).

Config Weather (21) Solar (137) Electricity (321)
MSE Runtime (s) MSE Runtime (s) MSE Runtime (s)

FACT (concat) 0.737 9.98 0.501 40.91 0.453 58.55
FACT (fusion) 0.783 10.51 0.523 17.17 0.468 10.23
w/o DynFBD 0.771 6.35 0.538 10.43 0.470 5.88
w/o Channel Mix 0.746 10.12 0.525 16.21 0.468 10.30
λ = 0.02 0.744 10.49 0.522 16.99 0.468 10.24

5.4 INTERPRETABILITY VISUALIZATION

A key advantage of FACT is its transparency, which is intrinsic to the Interaction Module rather than
dependent on a specific backbone. We visualize the patterns learned by the frontend modules on the
Solar dataset in Figure 6.

The attention heatmaps (left), derived from the Adaptive Feature Fusion layer, reveal distinct
frequency-band activations, indicating that the model selectively attends to specific periodic com-
ponents. Since this attention mechanism is part of the feature alignment process, such fine-grained
frequency interpretability is preserved even if the backend Encoder is replaced by an MLP.

The channel coherence map Γ (center) captures the physical coupling between solar stations, align-
ing with geographical proximity. Guided gating trajectories (right) show how the model dynami-
cally adjusts the importance of frequency bands during training, effectively filtering noise. These
visualizations collectively demonstrate that FACT’s explainability is rooted in its frequency-aware
interaction design.

5.5 REGULARIZATION IMPACT

We investigate the impact of the regularization weight λ (where λcoh = λphase = λ) on the Weather
dataset. As shown in Table 5, increasing the regularization strength from the default λ = 0.01 to
λ = 0.02 leads to a significant improvement in MSE (from 0.783 to 0.744). This indicates that
stronger enforcement of physical constraints (coherence and phase) can help the model generalize
better by pruning spurious correlations.

Table 5: Sensitivity analysis of regularization weight λ on Weather dataset (Interpretability Subset).
λ MSE Runtime (s)

0.01 (Default) 0.783 10.51
0.02 0.744 10.49
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Figure 6: Interpretability on Solar: (Left) Attention heatmap showing frequency selection; (Center)
Learned Amplitude Coherence Γ; (Right) Gating trajectories over training steps.

5.6 MODEL GENERALIZABILITY

Table 6: Model Generalizability: Performance and efficiency of FACT with different backbones
(L = 96, T = 96). Lightweight backends (MLP/Linear) achieve comparable accuracy with signifi-
cant speedups.

Dataset Backbone MSE MAE Time (s/epoch) Speedup

Electricity
Transformer 0.145 0.243 99.37 1.0×

MLP 0.153 0.252 45.72 2.17×
Linear 0.155 0.254 43.14 2.30×

Solar
Transformer 0.192 0.236 74.59 1.0×

MLP 0.198 0.249 43.39 1.72×
Linear 0.211 0.264 39.84 1.87×

To verify the plug-in capability of our frequency frontend (Interaction Module), we evaluated three
backends: Complex Transformer, Complex MLP, and Complex Linear. As shown in Table 6, replac-
ing the heavy Transformer encoder with lightweight MLP or Linear layers results in only a marginal
performance drop (e.g., < 5% MSE increase on Electricity) while delivering up to 2.3× training
speedup. On ETTh1, the FACT+MLP variant also achieved a competitive MSE of 0.456. This con-
firms that FACT’s core benefits stem primarily from the frequency-aware interaction layer, which
successfully disentangles signals for any backbone.

6 CONCLUSION

We propose FACT to resolve the tension between noise suppression and information preserva-
tion in multivariate time series forecasting by elevating interaction modeling from raw channels
to fine-grained frequency components. By integrating Dynamic Frequency Band Decomposition
with complex-valued, prior-guided interaction mechanisms, FACT effectively disentangles mean-
ingful signals from noise while enforcing intrinsic interpretability through physical constraints. Ex-
tensive experiments validate FACT as a model-agnostic plug-in that yields consistent performance
gains across diverse backbones (Transformer, MLP, Linear). While the current quadratic complexity
poses scaling challenges for ultra-high-dimensional data, future integration with sparse attention or
patching mechanisms promises to extend FACT’s applicability, establishing a robust foundation for
efficient, physically grounded forecasting systems. We believe this direction provides a new per-
spective for building efficient and interpretable time series systems in the future, and look forward
to further validating its potential on larger-scale data and richer tasks.
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A SYMBOL EXTENSIONS AND INFERENCE PSEUDOCODE

To facilitate reproduction, we supplement the key steps of FACT inference based on the symbols in
the main text. The pseudocode mirrors the repository implementation, but we present it here using
conceptual module names for clarity:

1. Input tensor X ∈ RB×L×C . If RevIN is enabled, execute X ← RevIN(X) to obtain nor-
malized representation; if reversible normalization is enabled, additionally cache mean and
variance.

2. Compute Xfft = Frfft(X), and pass it through the dynamic frequency-band preprocessor to
obtain sparse frequency-domain tokens Z, mask priors M, and frequency-band weights ω.

3. Apply the frequency selector to smooth these weights, producing low-dimensional mask and
weight summaries that will act as priors in later stages.

4. When channel mixing is enabled, estimate amplitude coherence γ and phase priors ϕ, construct
mixing matrices and guided gating, and cache the resulting channel priors for regularization
use.

5. Activate Adaptive Feature Fusion to re-weight frequency-domain representations through com-
plex cross-attention informed by the aforementioned priors; otherwise, directly reuse the mixed
spectrum Xfft.

6. Transform features back to the time domain and feed them into the chosen complex encoder
(Transformer/MLP/Linear), obtaining prediction hidden states through the complex projection
layer.

7. If reversible normalization or RevIN reverse process is enabled, restore original scale at output
and extract the last T step results.

B DATASET AND PREPROCESSING DETAILS

This paper follows the divisions published in SOFTS (Han et al., 2024), with related statistics in
Table 8. Due to size limitations, the anonymous code package only includes Solar-137 examples.
The loader implementation in the supplementary code package follows the considerations below:

• Data format: By default reads comma-separated floating-point text; for CSV files, skips the
header row.

• Split strategy: Splits training/validation/test in chronological order according to 70/10/20,
and fits the normalizer on the training set to prevent information leakage.

• Window parameters: the default window configuration [96, 48, 96] is maintained as in the
main experiments; the optional subsampling limit is set to 2000 rows for quick validation
and can be disabled to load complete files.

• Temporal features: The anonymous release only supports the multivariate setting with stan-
dard time-encoding flags, consistent with Solar examples.

C TRAINING AND IMPLEMENTATION CONFIGURATION

Training uses the public entry point, with key hyperparameter default values as follows:

• Optimizer uses AdamW with learning rate 5× 10−4, combined with cosine annealing and
linear warmup.

• Batch size 32, training epochs 10, early stopping patience 3. Interpretability subset scripts
reduce the number of training epochs to three to shorten visualization generation time.

• Regularization coefficients λcoh and λphase default to 0.01, and are skipped automatically
when channel priors are unavailable.

• Complex attention defaults to two layers, hidden dimension 128, feedforward dimension
512; the token length produced by DynFBD is 128.

13
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Table 7: FACT default hyperparameters (consistent with open-source implementation).
Module Key Parameters Default Values / Notes

RevIN use revin, use complex revin,
ε

true, false, 1× 10−5

Frequency Embedding dmodel, per-channel scale/bias 128, learnable
BandPreprocessor Bf , K, mask proj dim,

weights proj dim
3, 128, 16, 8

Channel Prior Mixer mixing topk, τ ,
mixing strength, diag bias, α,
β

16, 1.0, 0.1, 0.2, learnable

Guided Gating gate bias, gate scale 0.5, 0.5
Adaptive Feature Fusion nheads, dropout, α 8, 0.1, 0.7
Complex Encoder elayers, dff 2 (main exp.) / 1 (interpretabil-

ity subset), 512

Table 8: Dataset statistics (channels, horizons, splits, sampling rates).
Dataset Channels Prediction Horizon H Data Split (Train, Val, Test) Sampling Rate Domain

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity
ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Traffic
Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy
PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min Traffic
PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min Traffic
PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min Traffic
PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min Traffic

D ADDITIONAL EXPERIMENTAL RESULTS

Detailed interpretability metrics and regularization sensitivity statistics for Solar and Weather
datasets are provided with accompanying CSV files, with values consistent with the main text anal-
ysis and can be directly accessed in the accompanying CSV tables.

E DATASET STATISTICS

Full statistics of the reused benchmarks are reported in Table 8.

F PRELIMINARIES (FULL)

F.1 MULTIVARIATE LONG-TERM FORECASTING SETUP

Let the input sequence be X ∈ RB×L×C . The target is to predict Y ∈ RB×T×C with loss
Lforecast =

1
BCT

∑
b,t,c(Yb,t,c − Ŷb,t,c)

2.

F.2 REAL FAST FOURIER TRANSFORM AND COMPLEX REPRESENTATION

Stack the time series as X ∈ RL×C , rFFT yields Xfft = Frfft(X) ∈ CF×C with F = L/2 + 1. For
frequency f and channel c, Xfft(f, c) = A(f, c)eiθ(f,c).

14
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F.3 DYNAMIC FREQUENCY-BAND DECOMPOSITION

For band i, the Gaussian weight is

ωi(f) =
exp

(
− (f − µi)

2/(2σ2
i )
)∑Bf

j=1 exp
(
− (f − µj)2/(2σ2

j )
) , (13)

where µi, σi are learnable and Bf = 3 by default. Each band is compressed into K-dimensional
tokens via complex linear projection.

F.4 FREQUENCY SELECTION AND PROJECTION

Given Z ∈ CK×CBf , the selector computes

α = softmax
(
Meanb(σ(|W1Z|))

)
, (14)

and projects it into mask/weight summaries Pmask ∈ RF×dm and Pweight ∈ RK×dw for subsequent
priors and attention bias.

F.5 CHANNEL CORRELATION AND PHASE PRIORS

Weighted amplitudes Ac,f = weff(f)(A(f, c)−Meanf A(f, c)) lead to

γ = AD−1A⊤, (15)

where D normalizes γ ∈ [−1, 1]C×C . Phase offsets summarize lead/lag:

ϕ =
sinθ cosθ⊤ − cosθ sinθ⊤

max | sinθ cosθ⊤ − cosθ sinθ⊤|
, (16)

where sinθ, cosθ ∈ RC are weighted by frequency.

F.6 COMPLEX OPERATORS AND GUIDED GATING

For z = zr + i zi, a complex linear layer is

ComplexLinear(z) = (Wrzr −Wizi) + i(Wizr +Wrzi). (17)

Guided gating compresses weighted amplitudes to [0, 1] via

s = Normc(Meanf weff(f)|Xfft(f, ·)|), g = gate bias + gate scale · clip(s, 0, 1), (18)

which stabilizes optimization and supports interpretability regularization.

G ADDITIONAL VISUALIZATIONS

We provide additional interpretability visualizations for the Weather dataset in Figure 7, supple-
menting the Solar-137 analysis in the main text.

H REPRODUCTION WORKFLOW SUMMARY

All figures and tables can be automatically generated through the auxiliary scripts shipped with the
supplementary package. We keep the outline below at a high level and redact internal file names.

• Main results: run the standard FACT training recipe on Solar with DynFBD, channel mix-
ing, and adaptive fusion enabled.

• Interpretability subset: execute the lightweight configuration on curated Solar/Weather sub-
sets (4,096 samples, elayers = 1, 3 epochs).

• Attention heatmaps: post-process cached interpretability tensors to render attention and
gating visualizations for Solar.

15
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Figure 7: Attention, Γ heatmaps and gating trajectories for Weather interpretability subset.

• Physical alignment: consolidate interpretability caches to compute Γ/Φ alignment statistics
against meteorological variables.

• Regularization analysis: sweep coherence/phase regularization coefficients and export the
summarized metrics.

The README in the supplementary scripts directory provides dataset-specific parameter examples
that extend to domains such as Traffic and ECL.

I REPRODUCIBILITY CHECKLIST

High-level command reference for reproducing the main results and analyses:

• Main results: run the standard FACT training recipe with DynFBD, channel mixing, and
adaptive fusion enabled.

• Interpretability subset: execute the lightweight configuration on Solar/Weather (4,096 sam-
ples, one encoder layer, three epochs).

• Heatmaps: post-process cached tensors to render attention and gating visualizations.
• Physical alignment: compute alignment between Γ/Φ and meteorological variables.
• Regularization: sweep λcoh/λphase and export summary tables.

ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. All experiments are based on public bench-
marks.

The release and use of publicly available datasets respect their respective licenses and intended
purposes. The proposed methodology is developed for scientific research and carries minimal risk
of harmful applications. We acknowledge the broader concerns of fairness and bias in machine
learning models, and we have taken steps to evaluate model robustness and to mitigate unintended
discrimination.

No sensitive personal attributes were included in training or evaluation. This work does not involve
conflicts of interest, unauthorized sponsorship, or activities that may compromise privacy, security,
or research integrity.

REPRODUCIBILITY STATEMENT

To facilitate the verification and extension of our work, we provide the following resources:

• Code Availability: The complete implementation is available at: https://
anonymous.4open.science/r/FACT

16

https://anonymous.4open.science/r/FACT
https://anonymous.4open.science/r/FACT


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Datasets: All experiments are based on public benchmarks (ETT, Traffic, Electricity,
Weather, Solar-Energy).

• Key Components: The core innovations include:
– Dynamic Frequency-Band Decomposition (DynFBD)
– ChannelPriorMixer for amplitude-phase priors
– Complex cross-attention fusion

• Training Setup: We employ standard hyperparameters (learning rate=5e-4, batch size=32)
alongside coherence and phase regularization.

We confirm that all reported results can be reproduced with minimal error using the provided re-
sources and configuration.

LLM USAGE

Large Language Models (LLMs) were used exclusively for polishing the language and writing of
this manuscript. The LLM contributed neither to the research conception nor to the core intellectual
content. We bear full responsibility for the work presented herein.
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