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Abstract

Forecasting Multivariate Time Series (MTS) requires capturing complex
intra-channel dynamics and evolving inter-channel dependencies. How-
ever, existing methods often struggle to disentangle meaningful signals
from inter-channel noise and intricate interaction patterns. To address
this, we propose a novel framework that operates entirely in the frequency
domain, modeling inter-channel relationships at the component level. Our
approach first dynamically decomposes each time series into its constituent
frequencies. A channel masking mechanism then identifies and isolates the
most salient frequency components, simultaneously filtering noise and en-
hancing computational efficiency. This allows our model to capture time-
varying inter-channel dependencies with high fidelity. Furthermore, our
learning objective effectively balances accuracy against regularization con-
straints for both computational efficiency and interpretability. Extensive
experiments on diverse, real-world datasets demonstrate that our method
achieves competitive performance. Code is available at this repository:
https://anonymous.4open.science/r/FACT.

1 Introduction

Multivariate time series (MTS) forecasting supports power scheduling, weather prediction
and industrial control, where accuracy, robustness and interpretability are equally criti-
cal (Zhou et al., 2021; Haixu Wu & Long, 2021; Zhou et al., 2022). Existing research largely
falls into two paradigms. Channel-dependent (CD) models explicitly mix variables but eas-
ily introduce spurious correlations and face scalability issues in high dimensions (Zhang
& Yan, 2023; Liu et al., 2023; Xue Wang & Jin, 2023); channel-independent (CI) models
improve robustness by per-channel processing, but sacrifice genuine couplings and physi-
cal interpretability (Nie et al., 2023; Han et al., 2024). This tension indicates a need for
fine-grained, controllable interaction modelling.
Our key observation is physical: different spectral components of each channel carry distinct
semantics—amplitude corresponds to intensity/energy, and phase encodes temporal align-
ment or spatial shift. Daily/weekly/yearly patterns (high/mid/low frequencies) in electricity
demand are not “just noise”; they interact across channels (coordination or antagonism),
and can trigger cross-frequency effects (e.g., a sudden cold snap induces sustained changes
in low-frequency heating demand). Hence, interactions should be modeled at the channel–
frequency cell level with both magnitude and phase.
However, most spectral approaches focus on single-sequence decomposition or global
reweighting (Wu et al., 2023; Yi et al., 2023b; Xu et al., 2024; Yi et al., 2024; Zhang et al.,
2024b;a; Yang et al., 2023; Yi et al., 2023a), overlooking dynamic, cell-level dependencies and
the indispensable role of phase. This leaves room for methods that are physically grounded
yet computationally efficient.
We introduce FACT (Frequency-Adaptive Complex Transformer), which lifts interaction
modelling from raw channels to frequency components. FACT (i) performs dynamic
frequency-band decomposition (DynFBD) with a frequency selector to obtain sparse,
confidence-weighted tokens; (ii) estimates magnitude coherence Γ and phase offsets Φ via
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Figure 1: Representative channel–frequency interactions: dynamic drift within a chan-
nel (left), same-frequency coordination/antagonism (middle), and cross-frequency modu-
lation/triggering (right).

ChannelPriorMixer to form channel priors and guided gating; and (iii) fuses tokens with
the original spectrum through complex cross-attention and encodes them with a complex
Transformer. During training, coherence/phase regularizers align priors with the learned
attention, and cached signals provide diagnosis.
Contributions.

• Frequency-level interaction paradigm. We treat the channel–frequency cell as the
basic unit and design a sparse token pipeline (DynFBD + selector) to suppress
noisy bands while preserving physically meaningful signals.

• Magnitude/phase-aware priors and fusion. We introduce ChannelPriorMixer and
adaptive fusion to encode Γ/Φ-aware gating and attention, and integrate coher-
ence/phase regularizers for training-time guidance and post-hoc diagnostics.

• Model-agnostic plug-in with consistent gains. By lifting interaction modelling to
frequency components, FACT more effectively separates informative signals from
noise than raw-channel mixing. The design plugs into diverse backbones (Trans-
former/MLP/Linear) and yields consistent improvements across datasets.

We validate these claims through comprehensive experiments: ablations on each compo-
nent, regularization sweeps, and interpretability visualizations. Results demonstrate pos-
itive correlation between our interpretability metrics and accuracy, and consistent gains
across backbones. Details are provided in Section 5.

2 Related Work

2.1 Channel Interaction Modelling

Early multivariate forecasting adopted RNN/CNN backbones with local dependen-
cies (Hochreiter & Schmidhuber, 1997; Shaojie Bai & Koltun, 2018), later extended by
graph and multi-task formulations that encode handcrafted adjacencies (Zonghan Wu &
Zhang, 2020; Xinle Wu & Jensen, 2021; Yue Cui & Zhou, 2021). Transformers broaden the
receptive field (Vaswani et al., 2017; Zhou et al., 2021; Haixu Wu & Long, 2021; Zhou et al.,
2022), but how to model variable interactions remains contentious. Channel-independent
(CI) designs (e.g., PatchTST, iTransformer) favor per-channel tokenization for robustness to
noise/drift (Nie et al., 2023; Liu et al., 2023); some even argue high-amplitude frequencies
dominate prediction (Dai et al., 2024; Xu et al., 2024). Channel-dependent (CD) meth-
ods (Crossformer, CARD, SOFTS, TimePro, DUET) reintroduce interactions via cross-
dimension routes, alignment-aware attention, global cores or routing/clustering (Zhang &
Yan, 2023; Xue Wang & Jin, 2023; Han et al., 2024; Ma et al., 2025; Qiu et al., 2025). CI
may discard genuine couplings; CD often mixes signals coarsely and is sensitive to noise—
motivating frequency-aware, fine-grained priors as a middle ground.
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2.2 Time–Frequency Methods and Physical Priors

Spectral approaches provide efficiency but typically treat amplitude as the sole car-
rier of information, whereas phase determines temporal alignment/lag and spatial shift.
TimeMixer/TimeMixer++ mix frequency bands for long contexts yet collapse phase cues
into shared representations (Wang et al.; 2025). FredFormer and TSMixer refine spec-
tra via normalization or MLP mixing, but channel fusion remains entangled and phase
alignment implicit (Piao et al., 2024; Ekambaram et al., 2023). FreTS/FITS recalibrate
responses (Kun Yi & Niu, 2023; Xu et al., 2024), yet they average across channels and
cannot reveal which variable drives a specific band or how cross-frequency triggering un-
folds. A complementary line emphasizes that spectral components should not be treated
uniformly: FreDF shows frequency utility is scenario-dependent and benefits from dynamic
fusion (Zhang et al., 2024a); periodicity decoupling highlights the role of high-frequency har-
monics beyond mere noise (Dai et al., 2024). These observations motivate modelling interac-
tions at the channel–frequency cell with explicit magnitude/phase priors and channel-specific
reweighting—precisely what FACT operationalizes. Beyond accuracy, recent work values ro-
bustness and interpretability. CI strategies offer stability but little diagnosis (Lu Han &
Zhan, 2023); CD designs (SOFTS/CARD) balance the two via global cores or alignment
penalties (Han et al., 2024; Xue Wang & Jin, 2023). FACT inherits spectral efficiency and
contributes a physically grounded, fine-grained interaction paradigm that plugs into diverse
backbones.

3 Preliminaries

We briefly state the basic forecasting setup and notations; full details are deferred to Ap-
pendix H.

Task. Given X ∈ RL×C , predict T future steps Y ∈ RT×C with a squared loss. We process
sequences in the frequency domain via rFFT, obtaining complex coefficients Xfft(f, c) =
A(f, c)eiθ(f,c).

Key operators. DynFBD applies learnable Gaussian masks to form Bf soft bands and
compresses each into K-dimensional tokens; a frequency selector produces low-dimensional
mask/weight summaries used as priors. Channel priors include amplitude coherence Γ and
phase offsets Φ, which summarize cross-channel coupling. Complex Linear/LayerNorm are
used to preserve amplitude/phase; a guided gating normalizes weighted amplitudes to [0, 1]
for stabilizing learning.
Please refer to Appendix H for the complete formulas and derivations.

4 Method

FACT addresses the CI–CD dilemma by modelling interactions at the channel–frequency
level with explicit magnitude/phase priors. We first outline the pipeline (Fig. 2), then
introduce the key modules and the training-time regularizers. Basic notation and operators
are given in Section 3.

4.1 Architecture and Complexity Overview

Figure 2 overviews the pipeline: (i) RevIN normalization and rFFT transformation; (ii)
Adaptive Band Decomposition using Gaussian filters to generate frequency bands; (iii) Com-
plex Linear Projection to create multi-scale tokens and extract mask/weight information;
(iv) Feature Alignment through cross-attention and gated networks; (v) Complex encoder
with coherence (Lcoh) and phase (Lphase) regularization losses.

Complexity overview. A concise summary of the per-module complexity is deferred to
Appendix (Table 3).
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Figure 2: Overall FACT pipeline: input sequences undergo RevIN normalization and rFFT
transformation to frequency domain. Gaussian filters perform adaptive band decomposition
generating low/mid/high frequency bands, mask, and weight information. Complex linear
projection creates multi-scale tokens, followed by Feature Alignment using cross-attention
with gated networks. The encoder processes aligned features with coherence and phase
regularization losses, finally recovering time-domain predictions through inverse operations.

      

          

     

          

       

     

    

Figure 3: Fixed frequency band division illustration: the frequency axis is divided into
low/medium/high three segments according to preset thresholds, each segment is compressed
through independent complex linear branches and then concatenated into unified token
representation.

4.2 Adaptive Band Decomposition and Frequency Selection

Motivation. Multi-scale frequencies correspond to seasonalities and lags. Adaptive Band
Decomposition uses learnable Gaussian filters to softly separate low/mid/high components,
avoiding aliasing and supplying priors for cross-channel modelling.
Apply learnable Gaussian filters to each channel to obtain Bf soft frequency bands, then
generate tokens through ComplexLinear:

Zi = ComplexLinear(ωi ⊙Xfft) ∈ CK×C , i = 1, . . . , Bf . (1)

Concatenating gives Z ∈ CK×CBf . A frequency selector produces two summaries
Pmask,Pweight that act as priors for channel mixing and attention bias.

Starting from fixed thresholds. An intuitive approach is to use fixed thresholds to divide the
frequency axis into low/medium/high three segments and construct independent complex
linear branches for each segment. This approach can quickly obtain frequency domain

4
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Figure 4: DynFBD’s learnable Gaussian filters: raw spectrum, (µ, σ) trajectories, soft-band
decomposition, and normalized filter shapes.

tokens of consistent length and finally concatenate them into (B,K, 3C) channel-frequency
representation; however, it only outputs a set of amplitude weights and no additional mask
signals, making it difficult to guide downstream modules to highlight key frequency bands.

Gaussian adaptive division. To break free from manual threshold dependence, we further
introduce learnable Gaussian kernels to perform soft division of frequency points for each
channel. The softplus-constrained (µ, σ) parameters are normalized within each frequency
band to obtain (B,C, bands, F ) soft masks, which are point-wise multiplied with the original
spectrum and then projected back to (B,K, 3C) through shared complex linear layers.
Meanwhile, the resulting masks and weights are compressed into low-dimensional summaries
Pproj

mask ∈ RB×F×dm and Pproj
weight ∈ RB×K×dw , providing interpretable attention bias and

gating priors for adaptive fusion and channel mixing. Fig. 4 visualizes how (µ, σ) drift
during training and yield normalized filter shapes that persist as frequency-domain priors.

Why turn to soft division. Fixed thresholds gradually expose two bottlenecks on multi-
source data: first, hard segmentation when processing low-amplitude high-frequency signals
causes some frequency bands to almost lose energy, leading to projection outputs close to
zero and gradient sparsity; second, when seasonality or sampling rates change, manual read-
justment of thresholds is needed, making it difficult to handle cross-dataset drift. Learnable
Gaussian masks not only bring smooth gradients but also form a ”frequency band → mask
→ attention bias” closed loop with Feature Alignment, enabling key frequency bands to be
emphasized by gating in early training. Experiments show that on benchmarks like ETTh1,
ETTm2, ECL, the Gaussian version reduces sMAPE by approximately 1.3% ∼ 2.1% on av-
erage compared to the fixed version, and also provides direct mask signals for interpretability
visualization in subsequent sections.

4.3 Channel Prior Mixer

Motivation. Direct attention on high-dimensional channels is costly and prone to intro-
ducing noise. Channel Prior Mixer adopts a centralized aggregation-distribution strategy:
first aggregating into shared priors, then distributing to individual channels.
Based on the computed amplitude coherence γ and phase offsets ϕ, we obtain the mixing
matrix using learnable scalars α, β and temperature τ :

Mmix = softmax
(αγ + βϕ

τ

)
+ δ I. (2)

where Mmix ∈ RC×C , and γ and ϕ are computed from channel priors. The mixed spectrum
is interpolated with strength 0.1; guided gating compresses amplitudes to [0, 1].

4.4 Encoder Pluggability

The frequency frontend outputs unified complex tokens, so the encoder can be chosen by
budget: a Complex Transformer (best when channels are large), a Complex MLP (linear
cost in BLdmodeldff), or a single-layer Complex Linear (lightest). Full comparisons are given
in Appendix.

5
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Figure 5: Complex feature handling: traditional real/imaginary split (top) vs. FACT’s
magnitude–phase processing (bottom). Right: magnitude-softmax and unit-phase recon-
struction for complex attention values.

4.5 Feature Alignment

Motivation. Tokens and the raw spectrum are misaligned in length and channels. Simple
concatenation causes leakage and ignores priors. We therefore adopt complex cross-attention
where the raw spectrum queries the tokens, while prior-driven gating and bias highlight key
bands and suppress noise.
This magnitude–phase pipeline (Fig. 5) allows Feature Alignment to gate strong/weak re-
sponses based on amplitude while retaining phase delays, which are essential for identifying
cross-channel lead–lag relations.

Structure Analysis. The module contains three sub-pathways: (i) query/key projection,
which splits complex inputs into real and imaginary parts and then generates multi-head
vectors through linear layers; (ii) value projection employs complex linear mappings to
preserve phase information; (iii) a gating generator consumes the projected mask and weight
summaries, learning injection strength and attention bias for each head through lightweight
affine layers. The specific form is:

Q = WQ[ℜ(Xfft);ℑ(Xfft)], K = WK [ℜ(Z);ℑ(Z)], V = ComplexLinear(Z). (3)

Prior gating and bias are written as

G = σ
(
Am(M)

)
⊙ σ

(
Aw(W)

)
, B = B(M,W), (4)

where M and W correspond to the projected mask and weight summaries respectively, and
Am, Aw, B are lazily initialized linear mappings as needed. The attention output is

Hfused = Softmax
(QK⊤
√
d

+B
)(

V ⊙G
)
. (5)

The final result is residually interpolated with the original spectrum according to α = 0.7
and normalized by ComplexLayerNorm; complex dropout ensures amplitude consistency.
The module caches attention weights, gating strength, and entropy metrics to provide data
for subsequent interpretability visualization. The overall complexity remains O(nheadsKd2),
but thanks to prior gating, it can focus on key frequency bands early in training.

4.6 Complex Transformer Encoder

Motivation. After completing alignment in the frequency domain, it is still necessary
to model dependencies over long time spans. Complex Transformer Encoder preserves
amplitude-phase information and can simultaneously handle interactions between time and
channel dimensions.

6
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The encoder consists of two ComplexFullAttentionLayer layers, with input being the fused
features from Section 4.5:

Hℓ+1 = ComplexLayerNorm
(
Hℓ +ComplexMultiHeadAttn(Hℓ,Hℓ,Hℓ)

)
, (6)

Hℓ+1 = ComplexLayerNorm
(
Hℓ+1 +ComplexConv1d(Hℓ+1)

)
. (7)

where ComplexMultiHeadAttn reuses the weights from Equation equation 3 and adds the
same prior bias, and ComplexConv1d performs depthwise separable convolution in the fre-
quency dimension to capture local smoothness. The output is mapped back to CF×C through
ComplexProjection, and then recovered to time-domain predictions through irFFT and the
inverse operations of RevIN and the auxiliary normalization layer.

4.7 Interpretability Regularization

Motivation. During the training phase, directly imposing constraints on cached attention,
gating, and priors can avoid the fragmentation of ẗrain first, interpret lateränd enable the
model to naturally align with physical mechanisms in the optimization objective.

The specific approach is to cache fusion representations Ĥ, gating vectors g, mixing ma-
trices Mmix, and frequency-domain phases within each mini-batch. After averaging these
cached tensors over the frequency dimension, we estimate amplitude correlations and phase
differences: the final-channel embeddings are modulated and normalized to obtain γ̂, while
the mean phase of complex attention yields ∆̂θ. These statistics drive the coherence and
phase regularizers and are logged for post-hoc interpretability analysis.

Lcoh = ∥γ̂ − γ∥22 , γ̂ = corr
(
|Ĥ|

)
, (8)

Lphase = 1− cos
(
∆̂θ − ϕ

)
, (9)

where γ and ϕ come from the amplitude/phase priors. The total loss is

L = Lforecast + λcohLcoh + λphaseLphase (10)

Default weights and sensitivity analyses are reported in Section 5 and Appendix.

Summary. FACT composes Adaptive Band Decomposition with Gaussian filters, chan-
nel priors and complex Feature Alignment/encoding, with coherence/phase regularizers for
training-time guidance and diagnosis.

5 Experiments

5.1 Datasets

We follow the public SOFTS benchmarks (Han et al., 2024): ETT (4 subsets), Traffic, Elec-
tricity, Weather, Solar-Energy, and PEMS (4 subsets). These cover electricity, transporta-
tion and energy scenarios with heterogeneous channels and sampling rates. Full statistics
(channels, horizons, splits, sampling) are provided in Appendix G (Table 4).

5.2 Training and Implementation Settings

Key hyperparameters (optimizer, depth, hidden size, subset protocol) are summarized in
Appendix (Section C).

5.3 Main Results and Ablation

Baselines. We compare against representative linear/MLP (DLinear, TSMixer, TiDE),
Transformer (FEDformer, Stationary, PatchTST, Crossformer, iTransformer), and CNN
(SCINet, TimesNet) models.

7
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Protocol. We follow standard long-sequence settings (Zhou et al., 2021; Liu et al., 2022):
historical window L = 96, horizons as in prior work, and MSE/MAE as metrics. Full
implementation details are in Appendix C.
Results. Table 5 presents the comprehensive comparison between FACT and state-of-the-
art baselines across 12 datasets, showing average performance metrics (MSE/MAE). FACT
demonstrates competitive performance on Solar/Weather datasets while leaving headroom
for improvement on high-channel regimes (Traffic/PEMS). Notably, FACT achieves 15 first-
place results in MSE and 22 first-place results in MAE metrics across all dataset-horizon
combinations. The results validate FACT’s effectiveness in multivariate long-term fore-
casting while maintaining interpretability through frequency-domain analysis. Ablations
and sensitivity analysis (Appendix J, K) show that removing DynFBD or channel priors
consistently degrades accuracy and Γ/Φ, and moderate regularization improves both inter-
pretability metrics and prediction.

Table 1: Multivariate forecasting results with prediction lengths H ∈ {12, 24, 48, 96} for
PEMS and H ∈ {96, 192, 336, 720} for others and fixed lookback window length L = 96.
The results are taken from SOFTS (Han et al., 2024) and iTransformer (Liu et al., 2023).

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 Avg 0.407 0.409 0.393 0.403 0.407 0.410 0.396 0.406 0.398 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452
ETTm2 Avg 0.298 0.340 0.287 0.330 0.288 0.332 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349
ETTh1 Avg 0.451 0.446 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460
ETTh2 Avg 0.383 0.407 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449

ECL Avg 0.179 0.272 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327
Traffic Avg 0.453 0.290 0.409 0.267 0.428 0.282 0.454 0.286 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376

Weather Avg 0.251 0.279 0.255 0.278 0.258 0.278 0.256 0.279 0.256 0.279 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360
Solar-Energy Avg 0.229 0.265 0.229 0.256 0.233 0.262 0.236 0.266 0.260 0.297 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381

PEMS03 Avg 0.116 0.222 0.104 0.210 0.113 0.221 0.137 0.240 0.119 0.233 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327
PEMS04 Avg 0.111 0.223 0.102 0.208 0.111 0.221 0.145 0.249 0.103 0.215 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337
PEMS07 Avg 0.090 0.185 0.087 0.184 0.101 0.204 0.144 0.233 0.112 0.217 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283
PEMS08 Avg 0.147 0.230 0.138 0.219 0.150 0.226 0.200 0.275 0.165 0.261 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358

The results in Table 5 demonstrate several key findings: (1) FACT achieves strong per-
formance across diverse datasets, particularly excelling on Solar-Energy and Weather fore-
casting tasks; (2) The frequency-domain approach proves effective for capturing temporal
dependencies while maintaining computational efficiency; (3) FACT’s interpretable design
does not compromise prediction accuracy, establishing a favorable trade-off between perfor-
mance and explainability in multivariate time series forecasting.

5.4 Interpretability Visualization

We visualize attention, channel priors and gating trajectories on the interpretability subset;
see Appendix L (Fig. 6, Fig. 7).

5.5 Regularization Impact

Sweeping λcoh and λphase yields a positive correlation between interpretability metrics and
accuracy; see Appendix K (tables) and Appendix L (plots).

6 Conclusion

This paper addresses the core challenge of modeling channel interactions in multivariate
time series. We identify that existing methods mostly process correlations at the original
channel dimension level, often struggling to balance noise suppression with preserving ef-
fective information, especially in high-dimensional or long-sequence tasks where they either
lose fine-grained mechanisms or introduce high computational complexity. To address this,
FACT elevates channel interactions to the frequency-domain component level, more effec-
tively distinguishing signals from noise through dynamic frequency band decomposition and
prior-guided complex modeling, while directly integrating fine-grained interpretability con-
straints into the training process, thereby improving prediction stability while maintaining
efficiency.
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Beyond serving as an independent predictor, FACT’s frequency domain channel modeling
ideas can also be integrated into mainstream sequence models in a modular fashion. Ex-
perimental results show that using FACT as a model-agnostic plugin can bring consistent
performance gains across multiple backbone networks. We believe this direction provides
a new perspective for building efficient and interpretable time series systems in the future,
and look forward to further validating its potential on larger-scale data and richer tasks.
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A Symbol Extensions and Inference Pseudocode

To facilitate reproduction, we supplement the key steps of FACT inference based on the
symbols in the main text. The pseudocode mirrors the repository implementation, but we
present it here using conceptual module names for clarity:

1. Input tensor X ∈ RB×L×C . If RevIN is enabled, execute X ← RevIN(X) to obtain nor-
malized representation; if reversible normalization is enabled, additionally cache mean
and variance.

2. Compute Xfft = Frfft(X), and pass it through the dynamic frequency-band preproces-
sor to obtain sparse frequency-domain tokens Z, mask priors M, and frequency-band
weights ω.

3. Apply the frequency selector to smooth these weights, producing low-dimensional mask
and weight summaries that will act as priors in later stages.

4. When channel mixing is enabled, estimate amplitude coherence γ and phase priors ϕ,
construct mixing matrices and guided gating, and cache the resulting channel priors for
regularization use.

5. Activate Adaptive Feature Fusion to re-weight frequency-domain representations
through complex cross-attention informed by the aforementioned priors; otherwise, di-
rectly reuse the mixed spectrum Xfft.

6. Transform features back to the time domain and feed them into the chosen complex
encoder (Transformer/MLP/Linear), obtaining prediction hidden states through the
complex projection layer.

7. If reversible normalization or RevIN reverse process is enabled, restore original scale at
output and extract the last T step results.

B Dataset and Preprocessing Details

This paper follows the divisions published in SOFTS (Han et al., 2024), with related statis-
tics in Table ?? in the main text. Due to size limitations, the anonymous code package
only includes Solar-137 examples. The loader implementation in the supplementary code
package follows the considerations below:

• Data format: By default reads comma-separated floating-point text; for CSV files,
skips the header row.
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Table 2: FACT default hyperparameters (consistent with open-source implementation).
Module Key Parameters Default Values / Notes
RevIN use_revin,

use_complex_revin, ε
true, false, 1× 10−5

Frequency Embedding dmodel, per-channel scale/bias 128, learnable
BandPreprocessor Bf , K, mask_proj_dim,

weights_proj_dim
3, 128, 16, 8

Channel Prior Mixer mixing_topk, τ ,
mixing_strength, diag_bias,
α, β

16, 1.0, 0.1, 0.2, learnable

Guided Gating gate_bias, gate_scale 0.5, 0.5
Adaptive Feature Fusion nheads, dropout, α 8, 0.1, 0.7
Complex Encoder elayers, dff 2 (main exp.) / 1 (inter-

pretability subset), 512

• Split strategy: Splits training/validation/test in chronological order according to
70/10/20, and fits the normalizer on the training set to prevent information leakage.

• Window parameters: the default window configuration [96, 48, 96] is maintained as
in the main experiments; the optional subsampling limit is set to 2000 rows for
quick validation and can be disabled to load complete files.

• Temporal features: The anonymous release only supports the multivariate setting
with standard time-encoding flags, consistent with Solar examples.

C Training and Implementation Configuration

Training uses the public entry point, with key hyperparameter default values as follows:

• Optimizer uses AdamW with learning rate 5×10−4, combined with cosine annealing
and linear warmup.

• Batch size 32, training epochs 10, early stopping patience 3. Interpretability sub-
set scripts reduce the number of training epochs to three to shorten visualization
generation time.

• Regularization coefficients λcoh and λphase default to 0.01, and are skipped auto-
matically when channel priors are unavailable.

• Complex attention defaults to two layers, hidden dimension 128, feedforward di-
mension 512; the token length produced by DynFBD is 128.

• Hardware configuration needs to be specified via the environment variable
CUDA_VISIBLE_DEVICES before execution; the reference launch script in the
supplementary package defaults to single-card operation.

D Complexity and Parameter Count Supplement

A concise per-module complexity summary is reported in Table 3. Additional notes:
DynFBD uses only three Gaussian kernels with token length K = 128; the channel mixer
computes correlations on the top-k frequency bands with complexity O(BCk); adaptive
fusion inherits the multi-head attention structure with cost O(nheadsKd2).

E Additional Experimental Results

Detailed interpretability metrics and regularization sensitivity statistics for Solar and
Weather datasets are provided with accompanying CSV files, with values consistent with
the main text analysis and can be directly accessed in the accompanying CSV tables.
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Table 3: Time complexity overview of main modules (default Bf = 3, K = 128, top-k=16).
Module Main Complexity Description
rFFT O(LC logL) One rFFT per channel
DynFBD O(BfKC) Complex linear mapping, band projec-

tion
Channel Prior Mixer O(Ck) Aggregation after top-k selection
Guided Gating O(CF ) Weighted amplitude normalization
Adaptive Fusion O(nheadsKd2) Complex cross-attention
Complex Encoder O(nlayersd

2K) Two ComplexFullAttentionLayer layers

Table 4: Dataset statistics (channels, horizons, splits, sampling rates).
Dataset Channels Prediction Horizon H Data Split (Train, Val, Test) Sampling Rate Domain
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity
ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather
ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity
Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Traffic
Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy
PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min Traffic
PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min Traffic
PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min Traffic
PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min Traffic

F Encoder Pluggability Experiments

To echo the discussion in Section 4.4 of the main text, we evaluate three backends: Com-
plex Transformer, Complex MLP, and Complex Linear under the unified configuration of
seq_len=96 and pred_len=96. Core data as follows:

• Electricity: Linear/MLP/Transformer MSE are 0.1547/0.1527/0.1454, MAE are
0.2541/0.2516/0.2428; single epoch times are 43.14s/45.72s/99.37s respectively, with
lightweight backends compressing training time by half while error increases by less
than 5%.

• Solar-137: Linear/MLP/Transformer MSE are 0.2109/0.1982/0.1921, MAE are
0.2642/0.2489/0.2356; single epoch times are 39.84s/43.39s/74.59s, similarly demon-
strating the trend of “lightweight backends significantly saving computational re-
sources”.

Therefore, under the condition of keeping the frequency-domain frontend and interpretabil-
ity regularization unchanged, Linear and MLP can provide more cost-effective options for
computationally constrained deployment scenarios.

G Dataset Statistics

Full statistics of the reused benchmarks are reported in Table 4.

H Preliminaries (Full)

H.1 Multivariate Long-term Forecasting Setup

Let the input sequence be X ∈ RB×L×C . The target is to predict Y ∈ RB×T×C with loss
Lforecast =

1
BCT

∑
b,t,c(Yb,t,c − Ŷb,t,c)

2.
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H.2 Real Fast Fourier Transform and Complex Representation

Stack the time series as X ∈ RL×C , rFFT yields Xfft = Frfft(X) ∈ CF×C with F = L/2+1.
For frequency f and channel c, Xfft(f, c) = A(f, c)eiθ(f,c).

H.3 Dynamic Frequency-Band Decomposition

For band i, the Gaussian weight is

ωi(f) =
exp

(
− (f − µi)

2/(2σ2
i )
)∑Bf

j=1 exp
(
− (f − µj)2/(2σ2

j )
) , (11)

where µi, σi are learnable and Bf = 3 by default. Each band is compressed into K-
dimensional tokens via complex linear projection.

H.4 Frequency Selection and Projection

Given Z ∈ CK×CBf , the selector computes

α = softmax
(
Meanb(σ(|W1Z|))

)
, (12)

and projects it into mask/weight summaries Pmask ∈ RF×dm and Pweight ∈ RK×dw for
subsequent priors and attention bias.

H.5 Channel Correlation and Phase Priors

Weighted amplitudes Ac,f = weff(f)(A(f, c)−Meanf A(f, c)) lead to

γ = AD−1A⊤, (13)

where D normalizes γ ∈ [−1, 1]C×C . Phase offsets summarize lead/lag:

ϕ =
sin θ cosθ⊤ − cosθ sin θ⊤

max | sin θ cosθ⊤ − cosθ sin θ⊤|
, (14)

where sin θ, cosθ ∈ RC are weighted by frequency.

H.6 Complex Operators and Guided Gating

For z = zr + i zi, a complex linear layer is

ComplexLinear(z) = (Wrzr −Wizi) + i(Wizr +Wrzi). (15)

Guided gating compresses weighted amplitudes to [0, 1] via

s = Normc(Meanf weff(f)|Xfft(f, ·)|), g = gate_bias + gate_scale · clip(s, 0, 1), (16)

which stabilizes optimization and supports interpretability regularization.

I Full Results

The complete cross-dataset comparison Table ?? is provided below.

J Ablations and Regularization Tables

We report full ablation and regularization sweeps.
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Table 5: Multivariate forecasting results with prediction lengths H ∈ {12, 24, 48, 96} for
PEMS and H ∈ {96, 192, 336, 720} for others and fixed lookback window length L = 96.
The results are taken from SOFTS and iTransformer (?).

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
T

m
1 96 0.327 0.361 0.325 0.361 0.334 0.368 0.329 0.365 0.323 0.363 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419

192 0.376 0.392 0.375 0.389 0.377 0.391 0.380 0.394 0.376 0.392 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441
336 0.422 0.418 0.405 0.412 0.426 0.420 0.400 0.410 0.407 0.413 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459
720 0.502 0.463 0.466 0.447 0.491 0.459 0.475 0.453 0.485 0.459 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490
Avg 0.407 0.409 0.393 0.403 0.407 0.410 0.396 0.406 0.398 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452

ET
T

m
2 96 0.193 0.275 0.180 0.261 0.180 0.264 0.184 0.264 0.182 0.266 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287

192 0.271 0.329 0.246 0.306 0.250 0.309 0.246 0.306 0.249 0.309 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328
336 0.312 0.349 0.319 0.352 0.311 0.348 0.308 0.346 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366
720 0.417 0.408 0.405 0.401 0.412 0.407 0.409 0.402 0.416 0.408 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415
Avg 0.298 0.340 0.287 0.330 0.288 0.332 0.287 0.330 0.289 0.333 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349

ET
T

h1

96 0.384 0.404 0.381 0.399 0.386 0.405 0.394 0.406 0.401 0.412 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419
192 0.436 0.436 0.435 0.431 0.441 0.436 0.440 0.435 0.452 0.442 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448
336 0.480 0.458 0.480 0.452 0.487 0.458 0.491 0.462 0.492 0.463 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465
720 0.504 0.486 0.499 0.488 0.503 0.491 0.487 0.479 0.507 0.490 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507
Avg 0.451 0.446 0.449 0.442 0.454 0.447 0.453 0.446 0.463 0.452 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460

ET
T

h2

96 0.307 0.356 0.297 0.347 0.297 0.349 0.288 0.340 0.319 0.361 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397
192 0.383 0.400 0.373 0.394 0.380 0.400 0.376 0.395 0.402 0.410 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439
336 0.422 0.430 0.410 0.426 0.428 0.432 0.440 0.451 0.444 0.446 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487
720 0.422 0.442 0.411 0.433 0.427 0.445 0.436 0.453 0.441 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474
Avg 0.383 0.407 0.373 0.400 0.383 0.407 0.385 0.410 0.401 0.417 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449

EC
L

96 0.146 0.241 0.143 0.233 0.148 0.240 0.164 0.251 0.157 0.260 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308
192 0.178 0.268 0.158 0.248 0.162 0.253 0.173 0.262 0.173 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315
336 0.187 0.280 0.178 0.269 0.178 0.269 0.190 0.279 0.192 0.295 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329
720 0.206 0.300 0.218 0.305 0.225 0.317 0.230 0.313 0.223 0.318 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355
Avg 0.179 0.272 0.174 0.264 0.178 0.270 0.189 0.276 0.186 0.287 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327

Tr
af

fic

96 0.409 0.273 0.376 0.251 0.395 0.268 0.427 0.272 0.493 0.336 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366
192 0.427 0.279 0.398 0.261 0.417 0.276 0.454 0.289 0.497 0.351 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373
336 0.465 0.294 0.415 0.269 0.433 0.283 0.450 0.282 0.528 0.361 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383
720 0.512 0.315 0.447 0.287 0.467 0.302 0.484 0.301 0.569 0.380 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382
Avg 0.453 0.290 0.409 0.267 0.428 0.282 0.454 0.286 0.522 0.357 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376

W
ea

th
er

96 0.167 0.213 0.166 0.208 0.174 0.214 0.176 0.217 0.166 0.210 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296
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Figure 6: Attention, Γ heatmaps and gating trajectories for Solar-137 interpretability subset.

Figure 7: Attention, Γ heatmaps and gating trajectories for Weather interpretability subset.

K Regularization Sweeps

L Interpretability Visualizations (Full)

Additional attention heatmaps, channel priors, and gating trajectories for Solar and
Weather. Figures would be included here when images are available
(Figures of fixed-threshold baseline and learnable Gaussian filters are presented in the main
text; we omit duplicates here.) Figures would be included here when images are available

M Reproduction Workflow Summary

All figures and tables can be automatically generated through the auxiliary scripts shipped
with the supplementary package. We keep the outline below at a high level and redact
internal file names. [Placeholder: provide the finalized reproducibility checklist for the
camera-ready submission.]

• Main results: run the standard FACT training recipe on Solar with DynFBD, chan-
nel mixing, and adaptive fusion enabled.

• Interpretability subset: execute the lightweight configuration on curated So-
lar/Weather subsets (4,096 samples, elayers = 1, 3 epochs).

• Attention heatmaps: post-process cached interpretability tensors to render atten-
tion and gating visualizations for Solar.

• Physical alignment: consolidate interpretability caches to compute Γ/Φ alignment
statistics against meteorological variables.

• Regularization analysis: sweep coherence/phase regularization coefficients and ex-
port the summarized metrics.
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The README in the supplementary scripts directory provides dataset-specific parameter
examples that extend to domains such as Traffic and ECL.

N Reproducibility Checklist

High-level command reference for reproducing the main results and analyses:

• Main results: run the standard FACT training recipe with DynFBD, channel mix-
ing, and adaptive fusion enabled.

• Interpretability subset: execute the lightweight configuration on Solar/Weather
(4,096 samples, one encoder layer, three epochs).

• Heatmaps: post-process cached tensors to render attention and gating visualiza-
tions.

• Physical alignment: compute alignment between Γ/Φ and meteorological variables.
• Regularization: sweep λcoh/λphase and export summary tables.

O Ethics Statement

This research complies with the ICLR Code of Ethics. All experiments are based on public
benchmarks.
The release and use of publicly available datasets respect their respective licenses and in-
tended purposes. The proposed methodology is developed for scientific research and carries
minimal risk of harmful applications. We acknowledge the broader concerns of fairness and
bias in machine learning models, and we have taken steps to evaluate model robustness and
to mitigate unintended discrimination.
No sensitive personal attributes were included in training or evaluation. This work does not
involve conflicts of interest, unauthorized sponsorship, or activities that may compromise
privacy, security, or research integrity.

P Reproducibility Statement

To facilitate the verification and extension of our work, we provide the following resources:

• Code Availability: The complete implementation is available at: https://
anonymous.4open.science/r/FACT

• Datasets: All experiments are based on public benchmarks (ETT, Traffic, Electric-
ity, Weather, Solar-Energy).

• Key Components: The core innovations include:
– Dynamic Frequency-Band Decomposition (DynFBD)
– ChannelPriorMixer for amplitude-phase priors
– Complex cross-attention fusion

• Training Setup: We employ standard hyperparameters (learning rate=5e-4, batch
size=32) alongside coherence and phase regularization.

We confirm that all reported results can be reproduced with minimal error using the provided
resources and configuration.

Q LLM Usage

Large Language Models (LLMs) were used exclusively for polishing the language and writing
of this manuscript. The LLM contributed neither to the research conception nor to the core
intellectual content. We bear full responsibility for the work presented herein.
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