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ABSTRACT

Forecasting Multivariate Time Series (MTS) requires capturing complex intra-
channel dynamics and evolving inter-channel dependencies. However, existing
methods often struggle to disentangle meaningful signals from inter-channel noise
and intricate interaction patterns. To address this, we propose a novel frame-
work that operates entirely in the frequency domain, modeling inter-channel re-
lationships at the component level. Our approach first dynamically decomposes
each time series into its constituent frequencies. An Adaptive Band Decompo-
sition mechanism then identifies and isolates the most salient frequency com-
ponents, simultaneously filtering noise and enhancing computational efficiency.
This allows our model to capture time-varying inter-channel dependencies with
high fidelity. Furthermore, our learning objective effectively balances accuracy
against regularization constraints for both computational efficiency and inter-
pretability. Extensive experiments on diverse, real-world datasets demonstrate
that our method achieves competitive performance. Code is available at this repos-
itory: https://anonymous.4open.science/r/FACT.

1 INTRODUCTION

Multivariate time series (MTS) forecasting supports power scheduling, weather prediction and in-
dustrial control, where accuracy, robustness and interpretability are equally critical (Zhou et al.,
2021; Wu et al.| 2021aj [Zhou et al.| 2022). Existing research largely falls into two paradigms.
Channel-Dependent (CD) models explicitly mix variables but easily introduce spurious correlations
and face scalability issues in high dimensions (Zhang & Yan| 2023} [Liu et al., |2023; [Wang et al.,
2023)); Channel-Independent (CI) models improve robustness by per-channel processing, but sacri-
fice genuine couplings and physical interpretability (Nie et al., 2023 |Han et al., | 2024). This tension
indicates a need for fine-grained, controllable interaction modelling.

The core challenge in MTS forecasting lies in disentangling meaningful signals from the noise
inherent in complex inter-channel interactions. While spectral analysis offers a promising direc-
tion, we observe a critical physical nuance: different spectral components carry distinct seman-
tics—amplitude reflects energy intensity, while phase encodes temporal alignment. For instance,
daily load patterns (high frequency) and seasonal trends (low frequency) often exhibit different in-
teraction modes (coordination vs. antagonism). A difficulty arises, however, in effectively modeling
these “channel-frequency cells” (Fig.[I). Existing spectral methods (Wu et al.l 2023} [Yi et al.| 2023b)
typically rely on global reweighting or fixed decomposition, failing to capture dynamic, cell-level
dependencies and, crucially, ignoring the explicit role of phase shifts in causal alignment.

To address this difficulty, we propose FACT (Frequency-Adaptive Complex Transformer), which
shifts interaction modeling from raw channels to specific frequency components. Unlike real-valued
approaches that struggle with phase alignment, FACT operates in the complex domain to explicitly
model both magnitude coherence I' and phase offsets ®. Our solution comprises three steps: (i)
a Dynamic Frequency-Band Decomposition (DynFBD) that adaptively isolates salient frequency
cells; (ii) a ChannelPriorMixer that leverages physical priors (I', @) to guide interaction; and (iii)
a complex-valued fusion mechanism that aligns these priors with the representation. This design
ensures that interactions are physically grounded and robust to noise.
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Figure 1: Representative channel-frequency interactions: dynamic drift within a channel (left),
same-frequency coordination/antagonism (middle), and cross-frequency modulation/triggering
(right, e.g., a sudden cold snap inducing low-frequency heating demand).

* To establish a frequency-level interaction paradigm, we treat the channel-frequency cell as the
basic unit and design a sparse token pipeline (DynFBD + selector) to suppress noisy bands while
preserving physically meaningful signals.

* We introduce ChannelPriorMixer and adaptive fusion to leverage magnitude/phase-aware priors.
By grounding the interaction mechanism directly in physical properties (coherence I" and phase
®), this design provides intrinsic interpretability, enabling users to trace frequency selection and
channel coupling patterns regardless of the chosen backbone.

* Functioning as a model-agnostic plug-in, FACT separates the Frequency-Aware Interaction Mod-
ule from the representation encoder. This design explicitly prepares frequency-aligned features
and can be plugged into diverse backbones (Transformer/MLP/Linear), yielding consistent im-
provements across datasets compared to raw-channel mixing.

We validate these claims through comprehensive experiments: ablations on each component, reg-
ularization sweeps, and interpretability visualizations. Results demonstrate positive correlation be-
tween our interpretability metrics and accuracy, and consistent gains across backbones. Details are
provided in Section 5]

2 RELATED WORK

2.1 CHANNEL INTERACTION MODELLING

Early multivariate forecasting adopted RNN/CNN backbones with local dependencies (Hochreiter
& Schmidhuber, [1997; Bai et al.l [2018]), later extended by graph and multi-task formulations that
encode handcrafted adjacencies (Wu et al.l [2020; |2021b; |Cui et al.l [2021). Transformers broaden
the receptive field (Vaswani et al., 2017 |Zhou et al.| 2021} Wu et al.| 2021a; Zhou et al., |[2022), but
how to model variable interactions remains contentious. Channel-independent (CI) designs (e.g.,
PatchTST, iTransformer) favor per-channel tokenization for robustness to noise/drift (Nie et al.,
2023} |Liu et al., 2023)); some even argue high-amplitude frequencies dominate prediction (Dai et al.,
2024; Xu et al., 2024). Channel-dependent (CD) methods (Crossformer, CARD, SOFTS, TimePro,
DUET) reintroduce interactions via cross-dimension routes, alignment-aware attention, global cores
or routing/clustering (Zhang & Yan, [2023; Wang et al., 2023} |Han et al.| 2024} Ma et al., 2025} |Qiu
et al.,|2025). Recent works like TimeFilter and TQN also explore advanced filtering mechanisms (Hu
et al.l 2025} |Lin et al.l 2025), yet they largely rely on spatial-temporal graph filtrations. In contrast,
FACT adopts a pure frequency-domain approach to decouple fine-grained interactions. CI may
discard genuine couplings; CD often mixes signals coarsely and is sensitive to noise—motivating
frequency-aware, fine-grained priors as a middle ground.

2.2 TIME-FREQUENCY METHODS AND PHYSICAL PRIORS

Spectral approaches provide efficiency but typically treat amplitude as the sole carrier of informa-
tion, whereas phase determines temporal alignment/lag and spatial shift. TimeMixer/TimeMixer++
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mix frequency bands for long contexts yet collapse phase cues into shared representations (Wang
et al.; 2025). FredFormer and TSMixer refine spectra via normalization or MLP mixing, but channel
fusion remains entangled and phase alignment implicit (Piao et al., 2024; |[Ekambaram et al., [2023).
FreTS/FITS recalibrate responses (Yi et al.,[2023a; | Xu et al.,[2024), yet they average across channels
and cannot reveal which variable drives a specific band or how cross-frequency triggering unfolds.
A complementary line emphasizes that spectral components should not be treated uniformly: FreDF
shows frequency utility is scenario-dependent and benefits from dynamic fusion (Zhang et al.|2024);
periodicity decoupling highlights the role of high-frequency harmonics beyond mere noise (Dai
et al., 2024). These observations motivate modelling interactions at the channel-frequency cell
with explicit magnitude/phase priors and channel-specific reweighting—precisely what FACT op-
erationalizes. Beyond accuracy, recent work values robustness and interpretability. CI strategies
offer stability but little diagnosis (Han et al., [2023)); CD designs (SOFTS/CARD) balance the two
via global cores or alignment penalties (Han et al., [2024; [Wang et al.|[2023). FACT inherits spectral
efficiency and contributes a physically grounded, fine-grained interaction paradigm that plugs into
diverse backbones.

3 PRELIMINARIES

Problem Formulation. Let X = {x;,...,x;} € RE*C represent the historical multivariate time
series with lookback window L and C' channels. The objective is to predict the future sequence
Y = {xr11,..., X017} € RTXC of length T'. This forecasting task can be formulated as learning
a mapping function Fjy:

Y = Fp(X), Fp:REXC 5 RTXC (1)

Our goal is to optimize the parameters 6 such that the predicted Y accurately approximates the
ground truth Y, capturing both intra-series temporal dynamics and inter-series channel dependen-
cies.

Frequency Domain Processing. To capture global temporal patterns and periodic dependencies,
FACT operates in the frequency domain. We apply the real Fast Fourier Transform (rFFT) to the
input X along the time dimension:

X = Fere(X) € CF*C F=|L/2] + 1. )

Unlike methods that process real and imaginary parts separately, we maintain the complex represen-
tation in polar form to explicitly preserve physical semantics:

X (f,c) = A(f,c) - ), 3)

where A(f, c) € R>¢ denotes the amplitude (representing energy intensity), and 6(f, c) € [—m, )
denotes the phase (representing temporal alignment). This decomposition serves as the foundation
for our physics-aware interaction modeling. Full derivations and additional notations are detailed in

Appendix [F}
4 METHODOLOGY

FACT addresses the CI-CD dilemma by modelling interactions at the channel—frequency level with
explicit magnitude/phase priors. We first outline the pipeline (Fig.[2), then introduce the key modules
and the training-time regularizers. Basic notation and operators are given in Section 3]

4.1 ARCHITECTURE AND COMPLEXITY OVERVIEW

Figure [2] overviews the pipeline: (i) RevIN normalization and rFFT transformation; (ii) Adaptive
Band Decomposition using Gaussian filters to generate frequency bands; (iii) Complex Linear Pro-
jection to create multi-scale tokens and extract mask/weight information; (iv) Feature Alignment
through cross-attention and gated networks; (v) Complex encoder with coherence (L., ) and phase
(Lphase) regularization losses. Note that while Figure 2 depicts a Complex Transformer Encoder,
the core Frequency-Aware Interaction Module (steps ii-1v) is backbone-agnostic and can be coupled
with MLP or Linear encoders. A concise summary of the per-module complexity is provided in

Section [5.3](Table [3).
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Figure 2: Overall FACT pipeline: input sequences undergo RevIN normalization and rFFT trans-
formation to frequency domain. Gaussian filters perform adaptive band decomposition generating
low/mid/high frequency bands, mask, and weight information. Complex linear projection creates
multi-scale tokens, followed by Feature Alignment using cross-attention with gated networks. The
encoder processes aligned features with coherence and phase regularization losses, finally recover-
ing time-domain predictions through inverse operations.

Figure 3: Fixed frequency band division illustration: the frequency axis is divided into
low/medium/high three segments according to preset thresholds, each segment is compressed
through independent complex linear branches and then concatenated into unified token represen-
tation.

4.2 ADAPTIVE BAND DECOMPOSITION AND FREQUENCY SELECTION

Rationale: From Static to Dynamic. Multi-scale frequencies naturally correspond to seasonalities
and lags. A naive approach involves dividing the spectrum into low/mid/high bands using fixed
thresholds (see Fig. [3). While this provides a basic interaction unit, it suffers from two limitations:
(1) Energy Truncation: fixed boundaries may cut through high-energy peaks in diverse datasets
(e.g., solar vs. traffic), leading to information loss; (2) Rigidity: fixed boundaries lack a mechanism
to dynamically re-weight frequency bands and require tedious manual tuning to adapt to different
dataset characteristics. To overcome this, we propose an Adaptive Band Decomposition (Fig. [)
driven by learnable Gaussian filters. This design not only softly separates components to avoid
aliasing but also produces continuous masks that bridge the frequency frontend with downstream
attention modules.

We apply learnable Gaussian filters to each channel to obtain B soft frequency bands. Crucially,
this process yields both the decomposed tokens Z and a set of soft masks P ,qk:

Z; = ComplexLinear(Wgausss © Xmy), @=1,...,By. )

The resulting P a5k and Preignt are not merely outputs but serve as continuous gating priors in-
jected into the Feature Alignment module (Section [£.3), creating a closed-loop feedback where the
model learns to emphasize key frequency bands end-to-end.

The softplus-constrained (u,o) parameters are normalized within each band to obtain
(B, C,bands, F) soft masks, which are point-wise multiplied with the original spectrum and pro-
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Figure 4: DynFBD’s learnable Gaussian filters: raw spectrum, (y, o) trajectories, soft-band decom-
position, and normalized filter shapes.

jected to (B, K,3C) via shared complex linear layers. Concurrently, the resulting masks and

weights are compressed into low-dimensional summaries PP € REXFXdm apd PP -

weight
RE*Kxdw ' providing interpretable attention bias and gating priors. This soft division not only

enables smooth gradients but also forms a closed feedback loop with Feature Alignment, allowing
the model to emphasize key frequency bands early in training (see Fig. @). Empirical results on
benchmarks like ETTh1 and ECL show that the Gaussian version reduces sMAPE by approximately
1.3% ~ 2.1% compared to fixed thresholds.

4.3 CHANNEL PRIOR MIXER

Rationale. Direct attention on high-dimensional channels is computationally expensive and prone
to noise. Moreover, real-valued attention struggles to capture phase-based lead-lag relationships.
The Channel Prior Mixer mitigates this by adopting a centralized aggregation-distribution strategy
in the complex domain. Specifically, we compute the amplitude coherence v = Corr(|Xg|) and
phase difference ¢ = Angle(Xgy) across channels from the input spectrum, serving as the physical
ground truth. Based on these priors, we obtain the mixing matrix using learnable scalars «a, 5 and
temperature 7:

oy +5¢
T

M = softmax( ) 4oL )

where Mpix € RE*C. I is the identity matrix and J is a learnable bias to preserve self-channel
information. The mixed spectrum is interpolated with strength 0.1, and guided gating compresses
amplitudes to [0, 1].

4.4 ENCODER PLUGGABILITY

The frequency frontend outputs unified complex tokens, allowing flexibility in the encoder choice
based on computational budget: a Complex Transformer (optimal for large channel counts), a Com-
plex MLP (linear cost in B Ld,,0qc1dsr), Or a single-layer Complex Linear (most lightweight). Full
comparisons are provided in the Appendix.

4.5 FEATURE ALIGNMENT

This module acts as the bridge that injects the physical priors (from Sec .3 into the representa-
tion stream. Tokens and the raw spectrum are typically misaligned in length and channels. Simple
concatenation can cause information leakage and ignore priors. To resolve this, we adopt com-
plex cross-attention where the raw spectrum queries the tokens, while prior-driven gating and bias
highlight key bands and suppress noise.

This magnitude—phase pipeline (Fig.[5) allows Feature Alignment to gate strong or weak responses
based on amplitude while retaining phase delays, essential for identifying cross-channel lead—lag
relations. The module comprises three sub-pathways: (i) query/key projection splitting complex
inputs into real/imaginary parts; (ii) value projection preserving phase information; and (iii) a gat-
ing generator that learns injection strength and attention bias from mask/weight summaries. The
formulation is:

Q= WoR(Xa); 3(Xa:)], K=Wg[R(Z);Z)], V = ComplexLinear(Z). (6)
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Figure 5: Complex feature handling: traditional real/imaginary split (top) vs. FACT’s magni-
tude—phase processing (bottom). Right: magnitude-softmax and unit-phase reconstruction for com-
plex attention values.

Prior gating and bias are defined as
G =0(A4n,(M)) ©® o(Au(W)), B=BM,W), @)

where M, W are projected summaries and A,,, A, B are linear mappings. The attention output is
T

Hiusead = Softmax( QK

Vd

The result is residually interpolated with the original spectrum (o = 0.7) and normalized by Com-

plexLayerNorm. This design maintains O(ny,caqs K d?) complexity while leveraging prior gating to

focus on key frequency bands early in training. Crucially, the cross-attention map (QK ) in this

module serves as a direct visualization window, revealing how the model aggregates multi-scale

frequency tokens, thereby providing feature-level interpretability independent of the subsequent en-
coder backbone.

+B)(VoG), (8)

4.6 COMPLEX TRANSFORMER ENCODER

Following frequency-domain alignment, we employ a Complex Transformer Encoder to model long-
term dependencies while preserving amplitude-phase information. The encoder consists of two
ComplexFullAttentionLayer layers:

H,,1 = ComplexLayerNorm (H@ + ComplexMultiHead Attn(H,, Hy, Hg)), 9
H;;1 = ComplexLayerNorm (He+1 + CompleXConvld(HgH)). (10)

ComplexMultiHeadAttn reuses weights from Equation equation [6] with prior bias, and Complex-
Convld performs depthwise separable convolution to capture local smoothness. The output is
mapped back to C*¢ then recovered to time-domain predictions through irFFT and inverse nor-
malization.

4.7 INTERPRETABILITY REGULARIZATION

To align the model with physical mechanisms during optimization, we impose constraints on cached
attention, gating, and priors. This avoids the “train first, interpret later” disconnect. specifically, we

cache fusion representations H, gating vectors g, mixing matrices M,ix, and frequency-domain
phases. Averaging these over the frequency dimension yields amplitude correlations 4 and mean

phase differences Af. These drive the coherence and phase regularizers:
Leon = 5 =713, 5 = corr (H]) . an

Lpase = 1 = cos (80 - ¢), (12)
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Table 1:  Multivariate Long-term Forecasting results with prediction lengths H €
{96,192, 336, 720} and fixed lookback window length L = 96. The results are taken from SOFTS
and iTransformer (Liu et al., [2023)).

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer

Metic ~ MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 0327 0361|0325 0361 | 0334 0368 | 0329 0365 | 0.323 0363 | 0404 0426 | 0364 0387 | 0338 0375 | 0345 0372 | 0418 0438 | 0379 0419
E| 192 |0376° 0392 | 0375 0389 | 0377 0391 | 0380 0394 |0376° 0392 | 0450 0451 [ 0398 0404 | 0.374 0.387 | 0380 0389 | 0439 0450 | 0426 0.441
] 336 | 0422 0418 | 0405 0412° | 0426 0420 | 0.400 0410 | 0.407° 0413 | 0.532 0515 [ 0428 0425 | 0.410 04LL | 0413 0413 | 0490 0485 | 0445 0459
B] 720 | 0502 0463 | 0466 0.447 | 0491 0459 | 0475° 0453° | 0485 0459 | 0.666 0.589 | 0487 0461 | 0478 0450 | 0474 0453 [ 0595 0550 | 0543 0490
Avg | 0407 0409 | 0.393 0403 | 0407 0410 | 03% 0398° 0407 | 0513 0496 | 0419 0419 | 0400 0406 | 0403 0407 | 0485 0481 | 0448 0452
96 | 0.193 0275 [ 0.180 0261 | 0.180 0264 | 0.184 0182 0266 | 0287 0366 | 0207 0305 | 0.187 0267 | 0193 0292 | 0286 0377 | 0.203 0.287
2| 192 | 0271 0329 | 0246 0306 | 0250 0309° | 0.246 0249" 0309° | 0414 0492 | 0290 0364 | 0249" 0309° | 0.284 0362 | 0.399 0445 [ 0269 0328
] 336 | 0312 0349 | 0319 0352 | 0311° 0348 | 0.308 0309 0347 | 0597 0542 | 0377 0422 | 0321 0351 | 0369 0427 | 0637 0591 | 0325 0366
2] 720 | 0417 0408 | 0405 0.401 | 0412 0407 | 0.409° 0402 | 0416 0408 | 1730 1042 | 0558 0524 | 0.408 0403 | 0.554 0522 [ 0960 0735 | 0421 0415
Avg | 0298 0340 [ 0.287 0330 | 0288° 0332 | 0.287 0.330 | 0289 0333 | 0757 0610 | 0358 0404 | 0291 0333 | 0350 0401 |0.571 0537 | 0.305 0.349
96 | 0384° 0404 | 0381 0399 | 0386 0405 | 0394 0406 | 0401 0412 | 0423 0448 | 0479 0464 | 0.384° 0.402° | 0386 0400 | 0.654 0.599 | 0.376 0.419
Z| 192 | 0436 0436 | 0435 0431 | 0441 0436 | 0440 0435 | 0452 0442 | 0471 0474 | 0525 0492 | 0436" 0429 | 0437 0432° | 0719 0631 | 0.420 0448
E| 336 | 0480 0458 | 0480 0.452 | 0487 0458 | 0491 0462 | 0492 0463 | 0.570 0.546 [ 0565 0515 | 0.491 0469 | 0.481 0459 | 0778 0659 | 0.459 0465
2] 720 | 0504 0486 | 0499 0488 | 0.503° 0491 | 0487 0.479 | 0507 0490 | 0.653 0.621 | 0594 0558 | 0.521 0500 | 0.519 0516 [ 0836 0699 | 0506 0507
Avg | 0451° 0446 | 0449 0442 | 0454 0447 | 0453 0446 | 0463 0452 | 0529 0522 ] 0541 0507 | 0458 0450 | 0456 0452 | 0747 0.647 | 0.440 0460
96 | 0307 0356 | 0297 0347 | 0297 0349" | 0.288 0319 0361 | 0.745 0584 | 0400 0440 | 0.340 0374 | 0333 0387 | 0707 0621 | 0358 0397
o] 192 | 0383 0400° | 0.373 0.394 | 0380° 0400 | 0.376 0402 0410 | 0.877 0656 | 0528 0509 | 0.402 0414 | 0.477 0476 | 0.860 0689 | 0429 0.439
E| 336 | 0422 0430 | 0410 0.426 | 0.428° 0432 | 0.440 0444 0446 | 1043 0731 | 0643 0571 | 0452 0452 | 0.594 0541 | 1 0744 | 0496 0487
S 720 | 0422 0442 | 0411 0433 | 0427 0445 | 0436 0441 0450 | 1104 0763 | 0874 0679 | 0462 0468 | 0.831 0657 | 1249 03838 | 0463 0474
Avg | 0383 0407 [0.373 0400 | 0383 0407 | 0385 0410 | 0401 0417 | 0942 0684 [ 0.611 0550 | 0414 0427 | 0559 0515 | 0.954 0723 | 0437 0449
96 | 0146 0241 [ 0.143 0233 | 0.148" 0240 | 0.164 0251 | 0157 0260 | 0219 0314 | 0237 0329 | 0.168 0272 | 0.197 0282 | 0247 0345 | 0.193 0308
S| 192 | 0178 0268 | 0158 0.248 | 0062 0253 | 0.073° 0262° | 0.173° 0274 | 0231 0322 [ 0236 0330 | 0.184 0289 | 0.196 0285 | 0257 0355 | 0201 0315
Q| 336 | 0187 0280 | 0178 0.269 | 0.178 0. 0190 0279° | 0192 0295 | 0246 0337 | 0249 0344 | 0.198 0300 | 0209 0301 | 0269 0369 | 0214 0329
720 | 0.206 0300 | 0218 0305 | 0.225 0230 0313° | 0223 0318 | 0280 0363 | 0284 0373 | 0220° 0320 | 0245 0333 [ 0299 0390 | 0246 0355
Avg [ 0179° 0272 [ 0174 0264 ] 0178 0270 | 0.189 0276 | 0.186 0287 | 0244 0334 ] 0251 0344 ] 0192 0295 | 0212 0300 | 0268 0365 | 0214 0327
96 | 0409° 0273 | 0.376 0251 | 0395 0268 | 0427 0272 | 0493 0336 | 0522 0290 | 0.805 0493 | 0593 0321 | 0.650 0396 | 0.788 0499 | 0.587 0.366
2] 192 |0427° 0279° | 0.398 0.261 | 0417 0276 | 0454 0289 | 0497 0351 | 0.530 0293 [ 0756 0474 | 0.617 0336 | 0.598 0370 [ 0.789 0505 | 0.604 0373
E| 336 | 0465 0294 | 0415 0.269 | 0.433 0450° 0282 | 0528 0361 | 0558 0305 | 0762 0477 | 0629 0336 | 0605 0373 | 0797 0508 | 0.621 0.383
1 720 | 0512 0315 | 0447 0.287 | 0467 0484 0560 0380 | 0.589 0328 | 0719 0449 | 0.640 0350 | 0.645 0394 | 0841 0523 | 0626 0382
Avg | 0453 0290 | 0.409 0.267 | 0428 0.454 0522 0357 | 0.550 0304 | 0760 0473 | 0.620 0336 | 0.625 0383 | 0804 0509 | 0610 0376
| 96 ] 0167 0213 | 0166 0.208 | 0.174 0176 0217 | 0166 0210 | 0.158 0230 | 0202 0261 | 0.172 0220 | 0.19 0255 | 0221 0306 | 0217 0296
5| 192 | 0214 0255|0217 0253 | 0221 0221 0256 | 0215° 0256 | 0.206 0277 | 0242 0298 | 0219 0261 | 0237 0296 | 0.261 0340 [ 0276 0336
| 336 0299 | 0282 0300 | 0278 0275 0206 | 0287 0300 | 0.272 0335 | 0287 0335 | 0280 0306 | 0283 0335 | 0309 0378 | 0339  0.380
| 720 | 0350 0349 | 0356 0351 | 0.358 0352 0346 | 0355 0348° | 0398 0418 | 0351 0386 | 0.365 0359 | 0.345 0381 [ 0377 0427 | 0403 0428
Avg | 0251 0279 | 0255 0278 | 0258 0256 0279 | 0256 0279 | 0259 0315 | 0271 0259 0287 | 0265 0317 |0.292 0363 | 0.309 0.360
9 | 0192 0200 0.230 | 0.203° 0205 0246 | 0221 0275 | 0310 0331 | 0312 0250 0292 | 0290 0378 | 0237 0344 | 0242 0342
S| 192 | 0233 0229 0253 | 0233 0237 0267 | 0268 0306 | 0.734 0725 | 0339 0296 0318 | 0320 0398 | 0280 0380 | 0.285 0.380
S| 3% |0240 0243 0.269 | 0.248° 0250 0276 | 0272 0294 | 0.750 0735 | 0368 0319 0330 | 0353 0415 | 0304 0389 | 0282 0376
720 | 0251" 0245 0.272 | 0249 0252 0275 | 0281 0313 | 0.769 0.765 | 0370 0338 0337 | 0356 0413 | 0308 0388 | 0357 0427
| Ave [o0229 0229 0.256 | 0233 0. 0236 0266 | 0260 0297 | 0.641  0.639 | 0347 0301 0319 | 0330 0401 | 0282 0375 ] 0291 0381 |
Count(Isy) | 3 2 |16 B 2 | s 7 | 1 EE 0o | o 0o ] 1 2 ] 0o | o 0] 3 0|
Count2nd) | 8 5 |2 4 |8 T 6 | 2 2 | o 0] o 0o | 2 | 2 | o 0] o 0]
Count (3rd) | 8 7] 0 R v | 6 6 | 6 3]0 0 | 1 0 | 4 3] 0 2 | o 0] o 0|

where -y and ¢ are derived from amplitude/phase priors. The total loss is £ = Liorecast + Acoh Lecoh +
Aphase Lphase- By composing Adaptive Band Decomposition, channel priors, and regularized com-
plex encoding, FACT achieves both high accuracy and physical interpretability.

5 EXPERIMENTS

5.1 DATASETS

We follow the public SOFTS benchmarks (Han et al., 2024): ETT (4 subsets), Traffic, Electricity,
Weather, Solar-Energy, and PEMS (4 subsets). These cover electricity, transportation and energy
scenarios with heterogeneous channels and sampling rates. Full statistics (channels, horizons, splits,
sampling) are provided in Appendix [E| (Table|8).

5.2 TRAINING AND IMPLEMENTATION SETTINGS

Key hyperparameters (optimizer, depth, hidden size, subset protocol) are summarized in Appendix
(Section[C).

5.3 MAIN RESULTS AND ABLATION

We evaluate our method against a comprehensive set of baselines, including linear/MLP models
(DLinear, TSMixer, TiDE), Transformers (FEDformer, Stationary, PatchTST, Crossformer, iTrans-
former), and CNN-based approaches (SCINet, TimesNet). Following standard long-sequence pro-
tocols (Zhou et al., 2021; [Liu et al., [2022), we fix the lookback window to L = 96 and report
MSE/MAE across standard horizons. Full implementation details are provided in Appendix [C]
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Table 2: Multivariate Short-term Forecasting results on PEMS datasets with prediction lengths H €
{12, 24, 48,96} and fixed lookback window length L = 96.

Models FACT (ours) SOFTS iTransformer PatchTST TSMixer Crossformer TiDE TimesNet DLinear SCINet FEDformer
Metric MSE  MAE ‘ MSE  MAE ‘ MSE  MAE ‘ MSE MAE ‘ MSE  MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE  MAE ‘ MSE MAE ‘
12 0.063 0.166 | 0.064 0.165 | 0.071 0.174 | 0.073  0.178 | 0.075  0.186 | 0.090 0.203 | 0.178 0.305 | 0.085 0.192 | 0.122 0.243 | 0.066° 0.172° | 0.126 0.251

S| 24 | 0084 0191 | 0.083 0.188 | 0093 0201 | 0105 0212 | 0.095 0210 | 0121 0240 | 0257 0371 | 0118 0223 | 0201 0317 | 0.085" 0.198" | 0.149 0275
=| 48 | 0127 0234 | 0114 0223 | 0125 0236 | 0159 0264 | 021 0240 | 0202 0317 | 0.379 0463 | 0.155 0.260 | 0.333 0425 | 0.127 0238 | 0.227 0.348
E| 96 | 0191 0296 | 0156 0264 | 0164 0275 | 0210 0305 | 0.084 0295 | 0262 0367 | 0490 0539 | 0228 0317 | 0457 0515 | 0.178° 0287° | 0348 0434
Avg | 0116 0222° | 0104 0210 | 0.113 0221 [ 0137 0240 | 0.119 0233 | 0.169 0281 | 0326 0419 | 0.147 0248 | 0278 0375 | 0.114° 0224 | 0213 0327

S| 12 0075 0179 | 0074 0176 | 0078 0.183 | 0.085 0.189 | 0.079 0.188 | 0.098 0218 | 0.219 0340 | 0.087 0.195 | 0.148 0272 | 0.073 0177 | 0.138 0.262
S| 24 | 0091 0200" | 0088 0194 | 0.095 0205 | 0.115 0222 | 0.089° 0201 |0.131 0256|0292 0398 | 0.103 0215 | 0.224 0.340 [ 0.084 0.193 | 0.177 0.293
S| 48 | 0118 0233 | 0110 0219 | 0120 0233 | 0167 0273 [0.111° 0222° | 0205 0326 | 0409 0478 | 0.136 0250 | 0355 0437 | 0.099 0.211 | 0270 0.368
E| 96 | 0162 0280 | 0135 0244 | 0150 0262 | 0211 0310 | 0133 0247° | 0402 0457 | 0492 0532 | 0190 0303 | 0452 0504 | 0.114 0.227 | 0341 0427
| Avg | 0011 0223 | 0102 0208 | 0.111 0221 [0.145 0249 | 0.103° 0215" | 0209 0314 | 0.353 0437 | 0.129 0.241 [ 0295 0.388 | 0.092 0.202 | 0.231 0337

12 0.056 0.150 | 0.057 0.152 | 0.067" 0.165 | 0.068 0.163" | 0.073  0.181 | 0.094 0.200 | 0.173 0.304 | 0.082 0.181 | 0.115 0.242 | 0.068 0.171 | 0.109 0.225
24 0.072 0.168 | 0.073  0.173 | 0.088" 0.190" | 0.102  0.201 0.090  0.199 | 0.139 0247 | 0271 0.383 | 0.101  0.204 | 0.210 0.329 | 0.119 0225 | 0.125 0.244
. 0.110° 0215 | 0.170 0261 | 0.124 0231 | 0311 0.369 | 0.446 0495 | 0.134 0.238 | 0.398 0458 | 0.149 0237 | 0.165 0.288
96 0133 0227 | 0.120 0.218 | 0.139" 0.245 | 0236 0308 | 0.163  0.255 | 0.396 0.442 | 0.628 0577 | 0.181 0.279 | 0.594 0.553 | 0.141 0.234" | 0.262 0.376

PEMS07
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=
=
2
2
©
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=
o
o
@
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o
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©
&

| Avg | 0090 0185 | 0.087 0.184 | 0.101" 0204" | 0.144 0233 | 0.112 0217 | 0235 0315 | 0380 0440 | 0.124 0.225 | 0329 0.395 | 0.119  0.234 | 0.165 0.283
L| 12 0074 0173 | 0074 0171 ]0079° 0.182° | 0.098 0205 | 0.083 0189 | 0.165 0214 | 0227 0343 | 0.112 0212 | 0154 0276 | 0.087 0.184 | 0.173 0273
S| 24 | 0098 0198 | 0104 0201 |0.115° 0219° | 0.162 0266 | 0.117 0226 | 0215 0260 | 0318 0409 | 0.141 0238 | 0.248 0353 | 0.122 0221 | 0210 0301
S| 48 |0149 0241 | 0164 0253 | 0.186" 0.235 | 0238 0311 | 0.196 0299 | 0315 0355|0497 0510 [ 0.198 0283 [ 0.440 0470 | 0.189 0270 | 0.320 0.394
£] 96 | 0265 0307|0211 0253|0220 0267 | 0303 0318 | 0266 0331 | 0377 0397 | 0.721 0592|0320 0351 | 0.674 0565 | 0.236" 0.300° | 0442 0.463

| Avg | 0147 0230° | 0138 0.219 | 0.150° 0226 [ 0200 0275 | 0165 0261 | 0268 0.307 | 0.441 0464 | 0.193 0271 | 0379 0416 | 0.158 0244 | 0286 0358 |
Count (Ist) | 6 30 7 9 | 0 1|0 0o | 0 0o | 0 0 | 0 0 | 0 0 | 0 0 | 4 3] 0 0 |
Count 2nd) | 3 7 | 8 6 | 2 2 | o 0o | 2 0o | o0 0o ] o0 0 | 0 o] o 0| o 1 ] 0 0 |
Count3rd) | 1 2 |1 1] 8 s | o ]2 2 |0 0 | 0 0 | 0 0 | 0 0 | 4 s | o 0 |

Tables [I] and [2] summarize the performance across 12 datasets. FACT exhibits distinct superior-
ity on periodic datasets (e.g., Solar-Energy, Weather), validating that our complex-valued modeling
effectively captures physical phase shifts often overlooked by baselines. Compared to Channel-
Independent methods like PatchTST, FACT better recovers cross-channel coupling, leading to lower
errors on highly correlated data like ECL. On PEMS, it remains competitive against specialized
spatio-temporal models by inferring latent spatial dependencies via channel coherence, demonstrat-
ing robust generalization without pre-defined graph structures. While high-channel regimes like
Traffic indicate room for further scaling, the results collectively validate FACT’s effectiveness.

The results in Tables |I| and |2| demonstrate several key findings: (1) FACT achieves strong per-
formance across diverse datasets, particularly excelling on Solar-Energy and Weather forecasting
tasks; (2) The frequency-domain approach proves effective for capturing temporal dependencies
while maintaining computational efficiency; (3) FACT’s interpretable design does not compromise
prediction accuracy, establishing a favorable trade-off between performance and explainability in
multivariate time series forecasting.

Analysis of Domain Sensitivity. FACT exhibits distinct superiority on Solar and Weather datasets
(ranking 1st in almost all metrics). This aligns with the physical nature of these domains: they
are dominated by strong periodicity and cross-channel phase shifts (e.g., solar irradiance delays
due to geographical longitude). FACT’s complex-valued modeling explicitly captures these phase
differences (¢) and amplitude correlations () via the Channel Prior Mixer, offering an inductive bias
that real-valued models (like iTransformer) lack. Conversely, on datasets with irregular load spikes
(e.g., ETT), the advantage of frequency decomposition is less pronounced, though FACT remains
competitive.

Efficiency and Ablation Analysis. To further quantify the contribution of each module and the
efficiency of our design, we conducted detailed ablation studies on the Solar and Weather datasets.
We also explored alternative designs during development: notably, replacing our complex-valued
pipeline with a simple 2-channel real-valued concatenation resulted in inferior performance (ap-
prox. 5% degradation on Solar), as it failed to explicitly capture the phase-based lead-lag rela-
tionships critical for periodic data. As shown in Table 4] removing the Dynamic Frequency Band
Decomposition (DynFBD) leads to a performance drop, confirming the importance of frequency
disentanglement. Crucially, our Adaptive Fusion mechanism demonstrates superior scalability: on
the high-dimensional Electricity dataset (321 channels), it reduces computational overhead by over
82% (10.23s vs. 58.55s per epoch) compared to the concatenation baseline (FACT-concat), which
required a reduced batch size to avoid memory overflow. This validates the efficiency of our “filter-
then-fuse” strategy for large-scale applications.

We further analyze the theoretical complexity of each module in Table 3] FACT maintains a fa-
vorable efficiency profile; the channel mixer operates on top-k bands with linear dependence on
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channels O(Ck), while the adaptive fusion scales with O(Kd?), avoiding quadratic complexity
w.r.t sequence length L.

Table 3: Time complexity overview of main modules (default By = 3, K = 128, top-k=16).

Module Main Complexity Description

rFFT O(LClog L) One rFFT per channel

DynFBD O(ByKC) Complex linear mapping, band projection

Channel Prior Mixer O(Ck) Aggregation after top-k selection

Adaptive Fusion O(nheaas Kd?) Complex cross-attention on compressed
tokens

Complex Encoder O(nlaycrsdQK ) Two ComplexFullAttentionLayer layers

Table 4: Ablation Study on the Interpretability Subset of Solar and Weather Datasets. We compare
MSE performance and training Runtime (seconds per epoch). Note: The subset uses fewer samples
(4,096) for rapid validation, resulting in different MSE scales compared to the full-dataset Main
Results (Table[T).

Weather (21) Solar (137) Electricity (321)
MSE Runtime (s) | MSE Runtime (s) | MSE  Runtime (s)

FACT (concat) 0.737 9.98 0.501 40.91 0.453 58.55
FACT (fusion) 0.783 10.51 0.523 17.17 0.468 10.23

Config

w/o DynFBD 0.771 6.35 0.538 10.43 0.470 5.88
w/o Channel Mix | 0.746 10.12 0.525 16.21 0.468 10.30
A=0.02 0.744 10.49 0.522 16.99 0.468 10.24

5.4 INTERPRETABILITY VISUALIZATION

A key advantage of FACT is its transparency, which is intrinsic to the Interaction Module rather than
dependent on a specific backbone. We visualize the patterns learned by the frontend modules on the
Solar dataset in Figure 6]

The attention heatmaps (left), derived from the Adaptive Feature Fusion layer, reveal distinct
frequency-band activations, indicating that the model selectively attends to specific periodic com-
ponents. Since this attention mechanism is part of the feature alignment process, such fine-grained
frequency interpretability is preserved even if the backend Encoder is replaced by an MLP.

The channel coherence map I" (center) captures the physical coupling between solar stations, align-
ing with geographical proximity. Guided gating trajectories (right) show how the model dynami-
cally adjusts the importance of frequency bands during training, effectively filtering noise. These
visualizations collectively demonstrate that FACT’s explainability is rooted in its frequency-aware
interaction design.

5.5 REGULARIZATION IMPACT

We investigate the impact of the regularization weight A (where A¢coh = Aphase = A) on the Weather
dataset. As shown in Table [5] increasing the regularization strength from the default A = 0.01 to
A = 0.02 leads to a significant improvement in MSE (from 0.783 to 0.744). This indicates that
stronger enforcement of physical constraints (coherence and phase) can help the model generalize
better by pruning spurious correlations.

Table 5: Sensitivity analysis of regularization weight A on Weather dataset (Interpretability Subset).

A | MSE | Runtime (s)
0.01 (Default) | 0.783 | 10.51
0.02 0.744 10.49
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Figure 6: Interpretability on Solar: (Left) Attention heatmap showing frequency selection; (Center)
Learned Amplitude Coherence I'; (Right) Gating trajectories over training steps.

5.6 MODEL GENERALIZABILITY

Table 6: Model Generalizability: Performance and efficiency of FACT with different backbones
(L =96,T = 96). Lightweight backends (MLP/Linear) achieve comparable accuracy with signifi-
cant speedups.

Dataset | Backbone | MSE MAE | Time (s/epoch) | Speedup
Transformer | 0.145 0.243 99.37 1.0x
Electricity MLP 0.153 0.252 45.72 2.17x
Linear 0.155 0.254 43.14 2.30x
Transformer | 0.192 0.236 74.59 1.0x
Solar MLP 0.198 0.249 43.39 1.72x
Linear 0.211 0.264 39.84 1.87 %

To verify the plug-in capability of our frequency frontend (Interaction Module), we evaluated three
backends: Complex Transformer, Complex MLP, and Complex Linear. As shown in Table[f] replac-
ing the heavy Transformer encoder with lightweight MLP or Linear layers results in only a marginal
performance drop (e.g., < 5% MSE increase on Electricity) while delivering up to 2.3x training
speedup. On ETThl, the FACT+MLP variant also achieved a competitive MSE of 0.456. This con-
firms that FACT’s core benefits stem primarily from the frequency-aware interaction layer, which
successfully disentangles signals for any backbone.

6 CONCLUSION

We propose FACT to resolve the tension between noise suppression and information preserva-
tion in multivariate time series forecasting by elevating interaction modeling from raw channels
to fine-grained frequency components. By integrating Dynamic Frequency Band Decomposition
with complex-valued, prior-guided interaction mechanisms, FACT effectively disentangles mean-
ingful signals from noise while enforcing intrinsic interpretability through physical constraints. Ex-
tensive experiments validate FACT as a model-agnostic plug-in that yields consistent performance
gains across diverse backbones (Transformer, MLP, Linear). While the current quadratic complexity
poses scaling challenges for ultra-high-dimensional data, future integration with sparse attention or
patching mechanisms promises to extend FACT’s applicability, establishing a robust foundation for
efficient, physically grounded forecasting systems. We believe this direction provides a new per-
spective for building efficient and interpretable time series systems in the future, and look forward
to further validating its potential on larger-scale data and richer tasks.

10
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A

SYMBOL EXTENSIONS AND INFERENCE PSEUDOCODE

To facilitate reproduction, we supplement the key steps of FACT inference based on the symbols in
the main text. The pseudocode mirrors the repository implementation, but we present it here using
conceptual module names for clarity:

1.

B

Input tensor X € RBEXLXC If RevIN is enabled, execute X < RevIN(X) to obtain nor-
malized representation; if reversible normalization is enabled, additionally cache mean and
variance.

. Compute Xgy = Fr:(X), and pass it through the dynamic frequency-band preprocessor to

obtain sparse frequency-domain tokens Z, mask priors M, and frequency-band weights w.

. Apply the frequency selector to smooth these weights, producing low-dimensional mask and

weight summaries that will act as priors in later stages.

. When channel mixing is enabled, estimate amplitude coherence y and phase priors ¢, construct

mixing matrices and guided gating, and cache the resulting channel priors for regularization
use.

. Activate Adaptive Feature Fusion to re-weight frequency-domain representations through com-

plex cross-attention informed by the aforementioned priors; otherwise, directly reuse the mixed
spectrum X.

. Transform features back to the time domain and feed them into the chosen complex encoder

(Transformer/MLP/Linear), obtaining prediction hidden states through the complex projection
layer.

. If reversible normalization or RevIN reverse process is enabled, restore original scale at output

and extract the last 7" step results.

DATASET AND PREPROCESSING DETAILS

This paper follows the divisions published in SOFTS (Han et al., |2024), with related statistics in
Table [8] Due to size limitations, the anonymous code package only includes Solar-137 examples.
The loader implementation in the supplementary code package follows the considerations below:

C

 Data format: By default reads comma-separated floating-point text; for CSV files, skips the
header row.

 Split strategy: Splits training/validation/test in chronological order according to 70/10/20,
and fits the normalizer on the training set to prevent information leakage.

* Window parameters: the default window configuration [96, 48, 96] is maintained as in the
main experiments; the optional subsampling limit is set to 2000 rows for quick validation
and can be disabled to load complete files.

* Temporal features: The anonymous release only supports the multivariate setting with stan-
dard time-encoding flags, consistent with Solar examples.

TRAINING AND IMPLEMENTATION CONFIGURATION

Training uses the public entry point, with key hyperparameter default values as follows:

* Optimizer uses AdamW with learning rate 5 x 10~%, combined with cosine annealing and
linear warmup.

* Batch size 32, training epochs 10, early stopping patience 3. Interpretability subset scripts
reduce the number of training epochs to three to shorten visualization generation time.

* Regularization coefficients A¢on and Aphase default to 0.01, and are skipped automatically
when channel priors are unavailable.

* Complex attention defaults to two layers, hidden dimension 128, feedforward dimension
512; the token length produced by DynFBD is 128.

13
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Table 7: FACT default hyperparameters (consistent with open-source implementation).

Module Key Parameters Default Values / Notes
RevIN use_revin, use_complex revin, true, false, 1 x 10~°
€
Frequency Embedding dmodel, per-channel scale/bias 128, learnable
BandPreprocessor By, K, mask_proj_dim, 3,128, 16,8
weights_proj_dim
Channel Prior Mixer mixing_topk, T, 16,1.0,0.1,0.2, learnable
mixing_strength, diag_bias, a,
B
Guided Gating gate_bias, gate_scale 0.5,0.5
Adaptive Feature Fusion  nyeaqs, dropout, a 8,0.1,0.7
Complex Encoder Clayers> A 2 (main exp.) / 1 (interpretabil-

ity subset), 512

Table 8: Dataset statistics (channels, horizons, splits, sampling rates).

Dataset | Channels | Prediction Horizon H | Data Split (Train, Val, Test) | Sampling Rate | Domain
ETThl, ETTh2 7 {96,192, 336, 720} (8545, 2881, 2881) Hourly Electricity
ETTml, ETTm2 7 {96,192, 336,720} (34465, 11521, 11521) 15min Electricity
Weather 21 {96,192, 336,720} (36792, 5271, 10540) 10min Weather
ECL 321 {96,192, 336,720} (18317, 2633, 5261) Hourly Electricity
Traffic 862 {96,192, 336,720} (12185, 1757, 3509) Hourly Traffic
Solar-Energy 137 {96,192, 336,720} (36601, 5161, 10417) 10min Energy
PEMSO03 358 {12,24,48,96} (15617, 5135, 5135) Smin Traffic
PEMSO04 307 {12,24,48,96} (10172, 3375, 3375) Smin Traffic
PEMSO07 883 {12,24,48,96} (16911, 5622, 5622) Smin Traffic
PEMSO08 170 {12,24,48,96} (10690, 3548, 3548) Smin Traffic

D ADDITIONAL EXPERIMENTAL RESULTS

Detailed interpretability metrics and regularization sensitivity statistics for Solar and Weather
datasets are provided with accompanying CSV files, with values consistent with the main text anal-
ysis and can be directly accessed in the accompanying CSV tables.

E DATASET STATISTICS

Full statistics of the reused benchmarks are reported in Table

F PRELIMINARIES (FULL)

F.1 MULTIVARIATE LONG-TERM FORECASTING SETUP

Let the input sequence be X € RBEXLXC  The target is to predict Y € RE*T*C with loss
N .

Eforecast = BCT mec(ifb,t,c - )/b,t,c)2~

F.2 REAL FAST FOURIER TRANSFORM AND COMPLEX REPRESENTATION

Stack the time series as X € RY*C rFFT yields Xg, = Frge(X) € CF*C with F = L/2 + 1. For
frequency f and channel ¢, X (f, c) = A(f,c)e?/0).

14



Under review as a conference paper at ICLR 2026

F.3 DYNAMIC FREQUENCY-BAND DECOMPOSITION

For band 7, the Gaussian weight is

exp (— (f — pi)?/(207))

B )
idrexp (= (f = py)?/(207))

where 11;,0; are learnable and By = 3 by default. Each band is compressed into K -dimensional
tokens via complex linear projection.

wi(f) = 13)

F.4 FREQUENCY SELECTION AND PROJECTION
Given Z € CK*CB;  the selector computes
a= softmax(Meanb(a(\W1Z|))), (14)

and projects it into mask/weight summaries P a5 € R %% and Pyeighe € RE >4 for subsequent
priors and attention bias.

F.5 CHANNEL CORRELATION AND PHASE PRIORS

Weighted amplitudes A, ; = wer (f)(A(f, c) — Meany A(f,c)) lead to
v=AD AT, (15)
where D normalizes v € [—1,1]9*¢. Phase offsets summarize lead/lag:

= sin® cos@' —cos sin@’ (16)
~ max|sin® cos@T —cos@ sinfT|’

where sin 6, cos @ € R are weighted by frequency.

F.6 COMPLEX OPERATORS AND GUIDED GATING

For z = z, 4+ iz;, a complex linear layer is
ComplexLinear(z) = (W, z, — W;z;) + i(W;z, + W,.z;). 17
Guided gating compresses weighted amplitudes to [0, 1] via
s = Norm.(Mean s weg ()| Xt (f,)]), g = gate_bias + gate_scale - clip(s, 0, 1), (18)

which stabilizes optimization and supports interpretability regularization.

G ADDITIONAL VISUALIZATIONS

We provide additional interpretability visualizations for the Weather dataset in Figure [/ supple-
menting the Solar-137 analysis in the main text.

H REPRODUCTION WORKFLOW SUMMARY

All figures and tables can be automatically generated through the auxiliary scripts shipped with the
supplementary package. We keep the outline below at a high level and redact internal file names.

* Main results: run the standard FACT training recipe on Solar with DynFBD, channel mix-
ing, and adaptive fusion enabled.

* Interpretability subset: execute the lightweight configuration on curated Solar/Weather sub-
sets (4,096 samples, e1ayers = 1, 3 epochs).

* Attention heatmaps: post-process cached interpretability tensors to render attention and
gating visualizations for Solar.

15
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Figure 7: Attention, I heatmaps and gating trajectories for Weather interpretability subset.

* Physical alignment: consolidate interpretability caches to compute I'/® alignment statistics
against meteorological variables.

» Regularization analysis: sweep coherence/phase regularization coefficients and export the
summarized metrics.

The README in the supplementary scripts directory provides dataset-specific parameter examples
that extend to domains such as Traffic and ECL.

I REPRODUCIBILITY CHECKLIST

High-level command reference for reproducing the main results and analyses:

* Main results: run the standard FACT training recipe with DynFBD, channel mixing, and
adaptive fusion enabled.

* Interpretability subset: execute the lightweight configuration on Solar/Weather (4,096 sam-
ples, one encoder layer, three epochs).

» Heatmaps: post-process cached tensors to render attention and gating visualizations.
* Physical alignment: compute alignment between I'/® and meteorological variables.

* Regularization: sweep A¢oh/Aphase and export summary tables.

ETHICS STATEMENT

This research complies with the ICLR Code of Ethics. All experiments are based on public bench-
marks.

The release and use of publicly available datasets respect their respective licenses and intended
purposes. The proposed methodology is developed for scientific research and carries minimal risk
of harmful applications. We acknowledge the broader concerns of fairness and bias in machine
learning models, and we have taken steps to evaluate model robustness and to mitigate unintended
discrimination.

No sensitive personal attributes were included in training or evaluation. This work does not involve
conflicts of interest, unauthorized sponsorship, or activities that may compromise privacy, security,
or research integrity.

REPRODUCIBILITY STATEMENT

To facilitate the verification and extension of our work, we provide the following resources:

* Code Availability: The complete implementation is available at: |https://
anonymous .4open.science/r/FACT
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» Datasets: All experiments are based on public benchmarks (ETT, Traffic, Electricity,
Weather, Solar-Energy).

¢ Key Components: The core innovations include:

— Dynamic Frequency-Band Decomposition (DynFBD)
— ChannelPriorMixer for amplitude-phase priors
— Complex cross-attention fusion

* Training Setup: We employ standard hyperparameters (learning rate=5e-4, batch size=32)
alongside coherence and phase regularization.

We confirm that all reported results can be reproduced with minimal error using the provided re-
sources and configuration.

LLM USAGE

Large Language Models (LLMs) were used exclusively for polishing the language and writing of
this manuscript. The LLM contributed neither to the research conception nor to the core intellectual
content. We bear full responsibility for the work presented herein.
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