SOCIAL AGENTS: COLLECTIVE INTELLIGENCE IMPROVES LLM PREDICTIONS

Anonymous authors

000

001

002003004

005

006 007 008

010 011

012

013

014

015

016

017

018

019

021

023

024

027

029

031

033

035

036 037

038

040

041

042 043 Paper under double-blind review

ABSTRACT

In human society, collective decision making has often outperformed the judgment of individuals. Classic examples range from estimating livestock weights to predicting elections and financial markets, where averaging many independent guesses often yields results more accurate than experts. These successes arise because groups bring together diverse perspectives, independent voices, and distributed knowledge, combining them in ways that cancel individual biases. This principle, known as the Wisdom of Crowds, underpins practices in forecasting, marketing, and preference modeling. Large Language Models (LLMs), however, typically produce a single definitive answer. While effective in many settings, this uniformity overlooks the diversity of human judgments shaping responses to ads, videos, and webpages. Inspired by how societies benefit from diverse opinions, we ask whether LLM predictions can be improved by simulating not one answer but many. We introduce Social Agents, a multi-agent framework that instantiates a synthetic society of human-like personas with diverse demographic (e.g., age, gender) and psychographic (e.g., values, interests) attributes. Each persona independently appraises a stimulus such as an advertisement, video, or webpage, offering both a quantitative score (e.g., click-through likelihood, recall score, likability) and a qualitative rationale. Aggregating these opinions produces a distribution of preferences that more closely mirrors real human crowds. Across eleven behavioral prediction tasks, Social Agents outperforms single-LLM baselines by up to 67.45% on simple judgments (e.g. webpage likability) and 9.88% on complex interpretive reasoning (e.g. video memorability). Social Agents' individual persona predictions also align with human judgments, reaching Pearson correlations up to 0.71. These results position computational crowd simulation as a scalable, interpretable tool for improving behavioral prediction and supporting societal decision making.

1 Introduction

"The many, of whom none is a good man, may yet, when joined together, be better than those few." - Aristotle

The idea that aggregated opinions can surpass the accuracy of a single expert has fascinated thinkers since antiquity. Aristotle captured this insight in Politics (350 BCE) (Aristotle, 2009), observing that ordinary people, taken together, can judge music, poetry, and politics better than trained critics, since each notices a different aspect. He emphasized that diversity of skills, experiences, and insights enhances the quality of collective judgment and decision-making. This early recognition laid the groundwork for what modern scholars now call the wisdom of crowds (Schwartzberg, 2016).

A classic empirical demonstration came from Galton's 1906 analysis of a livestock fair, where nearly eight hundred participants estimated the weight of an ox. Although individual guesses varied widely, the median was within one percent of the true weight, outperforming even the best single estimate and showing robustness to outliers (Galton, 1907). Building on this, Surowiecki (2004) popularized the idea that group

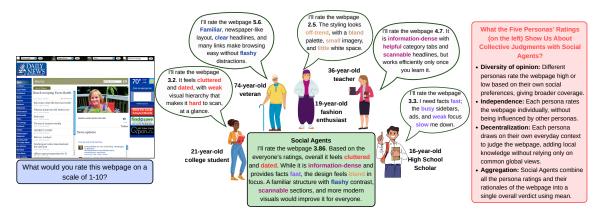


Figure 1: Social Agents are grounded in the principle of the *Wisdom of Crowds*, the idea that collective judgments can outperform individual ones when based on the four key ingredients: (i) Diversity of opinion, (ii) Independence, (iii) Decentralization, and (iv) Aggregation (Surowiecki, 2004). As shown in the figure, to capture diversity of social perspectives in webpage likability judgments, we elicit evaluations from five personas varied across age (to reflect generational viewpoints), profession (to represent occupational contexts), and social preferences (to capture differences in values and tastes). Each persona offers independent ratings and rationales, ensuring varied perspectives, which are then aggregated into one collective verdicts.

decision-making can outperform individuals when four conditions hold (Figure 1): diversity of perspectives, independence of judgment, decentralization of knowledge, and proper aggregation. Over the past two decades, these principles have been applied in practical systems. One example is Best Buy's 2005 internal prediction market, Tag Trade, where employees used virtual currency to bet on outcomes such as holiday gift-card sales. The market's forecast proved accurate, missing actual sales by just 0.6% (Haas et al., 2016). Modern platforms like Polymarket apply the same principles, showing how collective estimation can surpass experts.

We have seen that the wisdom of crowds can yield remarkable accuracy across domains ranging from livestock competitions to geopolitical forecasting. Yet these successes have relied on human participants, which imposes limitations: assembling and incentivizing large groups requires sustained effort, is costly to scale, and cannot easily be applied to every decision-making scenario.

As large language models (LLMs) grow more capable, recent systems such as GPT-40 (Hurst et al., 2024) and DeepSeek-R1 (DeepSeek, 2024) now perform complex reasoning tasks once reserved for humans, excelling in mathematics, code generation, and cross-modal analysis. Many are pretrained on user forum data such as Reddit and other discussion platforms (Radford et al., 2019; Gokaslan & Cohen, 2019; Demszky et al., 2020), giving them an implicit grasp of how personas behave and how individuals with specific psychographic interests interact. For example, (Santurkar et al., 2023) demonstrated that persona prompting can steer LLMs to respond in the voice of a given persona across social and opinion-related questions. Similarly, (Tess et al., 2025) showed that persona prompting allows LLMs to serve as proxy users in psychological and social studies. Together, these studies suggest that when steered to adopt a particular persona, LLMs are capable of embodying that perspective and generating responses consistent with it.

While the wisdom of crowds reliably produces accurate judgments with human groups, scaling it in practice remains costly and logistically difficult. LLMs, however, can be steered to act as human-like participants through persona prompting, providing a scalable way to operationalize the wisdom of crowds in synthetic settings. This motivates our central question: "Can the wisdom of crowds be scaled to LLMs, where each instance embodies a distinct persona and their aggregated responses improve the predictive and reasoning performance of language models?"

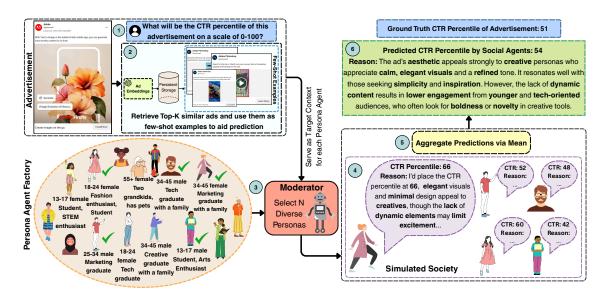


Figure 2: Overview of the Social Agents workflow for Ad Click-Through Rate (CTR) Prediction. Given an advertisement (top-left), our framework computes its embeddings and retrieves the top-K semantically similar ads from a repository of ad embeddings. These serve as few-shot examples that aid CTR prediction. A Persona Agent Factory (bottom-left) contains personas defined by demographic attributes (e.g., age, gender) and traits (e.g., interests, occupation), following templates in Appendix Table 2. From this pool, the moderator selects a diverse panel of N personas and instantiates separate LLM agents for each. Each persona agent outputs a CTR percentile (0-100) with a brief rationale. The right-hand side shows the moderator aggregating these predictions via mean to produce a single CTR percentile, with a collective rationale that is compared against the ground-truth CTR percentile.

Social Agents. We introduce Social Agents, a synthetic crowd intelligence framework that operationalizes the wisdom of crowds principle with ensembles of LLM-based human-like agents. These agents are deliberately diverse in demographic and psychographic characteristics, ensuring a wide range of perspectives. To preserve independence and avoid groupthink, they are prompted separately. Each agent grounds its reasoning in its assigned profile, providing a decentralized basis for judgment. Their outputs are then aggregated into a collective outcome. In this way, Social Agents capture the four classical pillars of the wisdom of crowds: diversity, independence, decentralization, and aggregation, demonstrating that collective intelligence can improve LLM predictions. This aggregation also offers three advantages. First, *error cancellation* occurs when individual errors offset, bringing the aggregate closer to ground truth. Second, *robustness through diversity* arises as heterogeneous perspectives guard against systematic bias and outliers. Third, *interpretable communal dynamics* emerge from the distribution of rationales, revealing drivers of consensus and disagreement. Each agent functions as a simulated evaluator with a unique profile, providing quantitative predictions and qualitative justifications. Aggregating these via a simple mean mitigates variance and bias, improving the accuracy and reliability of population-level predictions.

We conduct a comprehensive empirical evaluation of Social Agents across a suite of challenging tasks. To ground this evaluation, we draw on Construal Level Theory (CLT) (Trope & Liberman, 2010), which posits that psychological distance across temporal, spatial, social, and hypothetical dimensions systematically affects how people represent events. CLT suggests that judgments vary in abstraction: near tasks involve immediate, surface-level evaluations, while distant tasks require deeper semantic elaboration and abstract reasoning. For example, it is straightforward for a user to judge the likability of a webpage based on perceptual cues such as color or layout (a low-level construal), whereas predicting whether the same webpage will be remembered weeks later demands high-level construal, engaging memory, causality, and persuasion. Following this framework, we select 11 diverse tasks spanning the CLT spectrum, including low-level predictions such as click-through rate, tweet engagement, and topic or action classification; medium-level

predictions such as return on ad spend; and high-level constructs such as long-term memorability, causal reasoning, persuasive intent, and emotional response.

Following the wisdom of crowds principle, where collective judgments outperform individuals and often experts, our primary comparison is between Social Agents and a *No-Persona* variant, where a single LLM expert agent is prompted as a domain specialist under the same 5-shot setting (zero-shot for Behavioral Attribute Classification). We further compare against expert state-of-the-art task-specific trained models. LCBM (Khandelwal et al., 2024) is used for CTR, tweet generation, and tweet like prediction, trained on 40,000 YouTube videos and 168 million Twitter posts. Henry (SI et al., 2023) addresses long-term memorability, while behavior-LLaVA (Singh et al., 2025), trained on 730k instruction—response pairs, is the strongest model for behavioral attribution. For ROAS and webpage likability, we include an XGBoost baseline. Together, these baselines let us ask whether collective intelligence can improve LLM predictions, offering a scalable alternative to methods reliant on extensive task-specific datasets and training regimes.

Empirical results demonstrate that Social Agents improves performance across all construal levels. On low-level tasks involving immediate and behavior-oriented predictions, we observe an average improvement of 42.1%, with the largest gain on webpage likability prediction, where performance rises by 164% relative to the baseline. For the medium-level task of return on ad spend prediction, which measures future financial outcomes such as whether ads will generate revenue, Social Agents achieves a 153% improvement. On high-level tasks requiring abstract reasoning, the framework yields an average gain of 12%, with long-term memorability prediction (forecasting whether users will recall an ad later) showing a 24% improvement. As shown in Fig. 3, Social Agents not only outperforms the No-Persona baseline but also surpasses task-specific expert models in most cases. It achieves 24% on tweet engagement, 44% on CTR, 21% on ROAS, and 164% on webpage likability, while also improving content generation and behavioral attribution. The only exception is memorability, where Henry performs better, though Social Agents still provides clear gains over the baseline. Overall, these results suggest that collective intelligence offers a scalable, model-agnostic path to improving LLM predictions, pointing toward a general paradigm for enhancing both predictive and generative tasks.

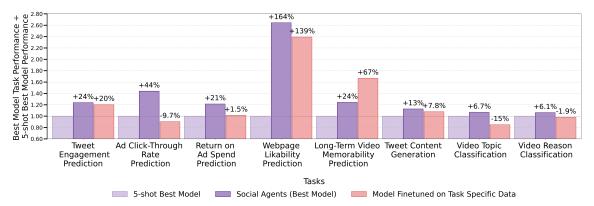


Figure 3: Performance Comparison of Social Agents (Best Model) over 5-shot Best Model and Models Finetuned on Task-Specific Data across eight tasks. Across eight tasks, Social Agents (Best Model) consistently improve over the 5-shot Best Model and often exceed models finetuned on task-specific data, despite not being trained for those tasks. Here, Best Model refers to whichever base model achieves the strongest results, whether used within Social Agents or in the 5-shot baseline. Performance of Social Agents (Best Model) and finetuned baselines is reported relative to a 5-shot Best Model reference (fixed at 1.00). For Models Finetuned on Task Specific Data, we use: Large Content Behavior Models (LCBM) (Khandelwal et al., 2024) for Tweet Engagement Prediction, Ad Click-Through Rate Prediction, and Tweet Content Generation; a trained XGBoost model for Return on Ad Spend Prediction; Henry (SI et al., 2023) for Long-Term Video Memorability Prediction; and Behavior-LLaVA (Singh et al., 2025) for Video Topic and Video Reason Classification tasks.

To summarize, our paper makes the following three contributions:

(i) Social Agents Framework. We introduce *Social Agents*, a multi-agent framework that operationalizes the principle of the Wisdom of Crowds with ensembles of LLM-based human-like persona agents. Each persona agent ensures diversity of opinion, independence, decentralization, and aggregation (Figure 1). Social Agents is *task-agnostic*: evaluated across eleven diverse tasks, it consistently outperforms baselines and trained experts, yielding a 42.1% average improvement on low-level judgments (e.g., webpage likability and ad click-through rate prediction) and a 24% improvement on high-level reasoning tasks such as video persuasion classification and long-term memorability prediction (see Section A.2 for results and Appendix A.3 for ablation analyses).

(ii) Model-Agnostic Framework. The benefits of Social Agents are model-agnostic. Evaluated across seven proprietary and open-source vision—language backbones, it delivers consistent average improvements of 23.9% over baselines across 3 models and 11 diverse tasks, with clear gains even for smaller, lower-parameter models (Appendix A.3.1).

(iii) Synthetic Data Release. We release a dataset of persona-conditioned predictions, definitions, and rationales from Social Agents (e.g., ad CTR, webpage likability), capturing how diverse personas and their interactions with digital content are represented across all eleven behavioral tasks.

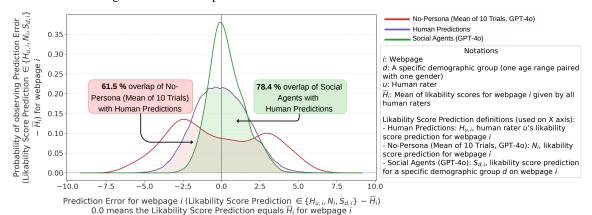


Figure 4: Comparison of Social Agents (GPT-40) prediction errors against No-Persona (Mean of 10 Trials, GPT-40) on the Webpage Likability Prediction task. Social Agents (GPT-40), which incorporate individual persona preferences averaged across 10 diverse personas, exhibit greater overlap with the human distribution than the No-Persona (Mean of 10 Trials, GPT-40) baseline that simply averages 10 calls per webpage. The kernel density estimate (KDE) plot show the error distributions of Social Agents and the No-Persona (Mean of 10 Trials) baseline relative to the perwebpage human mean prediction $\overline{H_i}$. Shaded areas highlight, for each method, its overlap with the human prediction distribution.

2 SETUP

In this section, we describe how the **Social Agents** framework operates. As illustrated in Fig. 2, a moderator orchestrates the process by first selecting a diverse panel of persona agents from the Agent Factory. Each persona is an LLM agent instantiated with the same backbone model but conditioned on different demographic factors (age, gender, location) and psychographic factors (interests, values, lifestyle). The agents are prompted independently so that there is no interaction or influence among them (Appendix A.1.1 for prompting template). When presented with the target query, an agent generates a rationale from the perspective of its assigned persona and, conditioned on this rationale, provides a quantitative prediction. The individual predictions are then aggregated using the wisdom of crowds principle to produce a final ensemble score. For

interpretability, the same LLM, configured in a neutral and unconditioned expert mode, synthesizes the set of rationales into a single collective explanation.

2.1 Theory

Social Agents instantiate diverse persona agents, each offering an independent perspective, and aggregate their outputs. Much like the wisdom of crowds, this design captures subjective variability while mitigating bias through ensemble averaging, producing predictions that generalize across domains and approximate population-level responses. Since foundational models are pretrained on diverse human corpora, including social forums like Reddit, they inherently capture a wide range of perspectives (Hu & Collier, 2024; Radford et al., 2019; Gokaslan & Cohen, 2019). By conditioning the same backbone model on different personas, Social Agents samples this distribution of viewpoints rather than relying on a single static prompt, exploiting the model's latent space to simulate psychologically grounded and socially plausible *simulacra* of human responses.

To illustrate, consider predicting the click-through rate (CTR) percentile for the advertisement in Fig. 2. The ad's calm, elegant visuals may resonate with creative professionals but seem less appealing to younger, novelty-seeking users. Social Agents evaluates the ad through multiple personas: for example, a 34-45 year old female marketing graduate with a family predicts 66, a 25-34 year old male marketing graduate 52, a 34-35 year old tech professional 60, an 18-24 year old fashion-conscious female 42, and a 13-17 year old male 66. While these judgments differ, averaging tempers extremes and yields an ensemble score of 54, close to the ground truth of 51. The aggregation is defined as the mean of persona agent predictions, $\hat{S} = \frac{1}{N} \sum_{i=1}^{N} s_i$, where s_i is the score from persona i and \hat{S} is the collective estimate. Unlike classical ensembles that assume independent judgments, persona conditioning induces systematic variation: each agent draws from a distinct yet related distribution, while the shared backbone introduces correlations across agents. This structure mirrors human crowds, where collective intelligence arises from combining diverse perspectives rather than relying on brute-force repetition of the same model call.

To illustrate this distinction, we compare Social Agents to a baseline, *No-Persona (Mean of 10 Trials)*, which averages predictions from ten repeated calls of the same LLM per webpage or ad. This setup mimics a traditional Law of Large Numbers (Bernoulli, 1713) setting: variation comes only from randomness in model sampling, not from systematically different perspectives. As shown in Fig. 4, on the Webpage Likability Prediction task, No-Persona (Mean of 10 Trials) produces a wide distribution of signed errors with only 61.5% KDE overlap with human predictions, whereas Social Agents achieve a tighter error distribution and a higher overlap of 78.4%. The reason is that persona conditioning induces structured variation: different demographic and psychographic profiles yield distinct but complementary distributions, and aggregation cancels bias while preserving diversity. In contrast, repeated calls without personas merely reduce variance and miss the meaningful social heterogeneity that underpins collective intelligence.

Since we operate under small cost constraints due to limited budget, we restrict N to small values, making it appropriate to compare Social Agents with the No-Persona (Mean of 10 Trials) baseline under the same conditions. As shown in the ablation study in Appendix A.3.3, both approaches plateau after about 10-20 calls per datum, indicating diminishing returns beyond this range. Thus, restricting experiments to small N (10 as default in our experiments) offers a fair basis for comparison across tasks.

2.2 TASKS & DATASETS

To evaluate Social Agents across diverse cognitive domains, we adopt a suite of tasks grounded in Construal Level Theory (CLT) (Trope & Liberman, 2010), which posits that the level of construal, or the degree to which thinking is abstract versus concrete, varies systematically with psychological distance across temporal, spatial, and social dimensions. For example, it is easier for a person to rate the likability of a webpage based on its aesthetic appeal (a near, surface-level judgment) than to predict whether they will remember that webpage weeks later, which requires deeper semantic elaboration and abstract processing (a more dis-

tant, high-level construal). Building on these insights from CLT, we operationalize Social Agents through eleven tasks spanning low-, medium-, and high-level construals, capturing how persona agents perceive, engage with, and retain digital content. Full formulations and task-specific evaluation rules are provided in Appendix A.1.2.

Low-Construal Tasks. These tasks involve immediate, surface-level, or perceptual judgments.

(1) **Tweet Engagement Prediction.** Persona agents predict whether a tweet will receive High or Low likes, with outputs aggregated by majority vote (ties re-run). We use the LCBM dataset (Khandelwal et al., 2024), evaluating on 2,339 test tweets. Performance is measured by *accuracy*, the fraction of correct High/Low predictions.

(2) Ad Click-Through Rate (CTR) Prediction. Agents estimate the percentile position (0-100) of an ad campaign's CTR relative to other campaigns. CTR captures immediate behavioral outcomes, aligning it with low-level construal. Evaluation uses three families of metrics: k-way accuracy, which bins both prediction and ground truth into k equal-width bins (e.g., k=3 or 10) and checks for exact matches; PE@,K, the proportion of predictions whose error lies within K% of the ground-truth percentile; and error metrics, including mean absolute percentage error (MAPE), mean percentage error (MPE), and root mean squared error (RMSE).

(3) **Webpage Likability Prediction.** Agents assess webpage aesthetics using the Web Aesthetics dataset (Reinecke & Gajos, 2014) of 398 screenshots. Evaluation combines binary *accuracy* (thresholded at 5), error metrics (MAPE, MPE, RMSE), and *Pearson correlation* (r) with human ratings.

(4) Behavioral Attribute Classification (Topic, Action). Using the Image and Video Ads dataset (Hussain et al., 2017), persona agents classify ads by semantic topic or by identifying explicit actions (e.g., "Buy now"). Both tasks require surface content recognition and observable cues, consistent with low construal. Evaluation is based on *accuracy*, computed as exact match with ground-truth labels.

Medium-Construal Task. These tasks involve future-oriented but still concrete outcomes.

(1) **Return on Ad Spend (ROAS) Prediction.** Agents predict the percentile rank of ROAS (revenue-to-spend ratio) for ad campaigns from a dataset of Fortune 500 campaigns (3,422 creative industry and 410 real estate campaigns). ROAS reflects near-term financial consequences, placing it at a medium construal level. Evaluation follows the same protocol as CTR: k-way accuracy, PE@,K, and error metrics (MAPE, MPE, RMSE).

High-Construal Tasks. These tasks require abstract reasoning, long-term forecasting, or inference of internal states.

(1) Long-Term Video Memorability Prediction. Using the LAMBDA dataset (SI et al., 2023), persona agents predict how well video ads will be remembered over time, rescaled to a 0-10 range. Because this task involves forecasting retention beyond immediate perception, it reflects a high-level construal. Evaluation uses *Spearman's rank correlation* (ρ), which measures agreement between the rank order of predicted recall scores and human annotations.

(2) Behavioral Attribute Classification (Reason, Persuasion, Emotion). These tasks involve deeper semantic reasoning: identifying an ad's justification (Reason), persuasive strategy (Persuasion), or evoked emotion (Emotion). We use the Image and Video Ads dataset (Hussain et al., 2017) for reason and emotion, and the Video4096 dataset (Bhattacharyya et al., 2023) for persuasion. Evaluation uses *accuracy*, measured as exact match with ground truth.

Although traditionally applied to prediction, we also test whether Social Agents can extend the wisdom of crowds to performative content generation by leveraging diverse social perspectives.

Tweet Content Generation. Social Agents generate tweets conditioned on an input advertisement. We use the test set of 2,339 questions from the LCBM dataset (Khandelwal et al., 2024), which includes 168 million multimodal tweets from 10,135 enterprise accounts (2007–2023) with associated like counts. Each persona agent independently generates a tweet with a supporting rationale. A moderator agent, defined as an expert in tweet generation, synthesizes these into a consolidated tweet that reflects the collective social perspective, along with an aggregated rationale. Evaluation uses *BLEU-N* (*1-4*) and *ROUGE-1* for lexical overlap with references, and *G-Eval* (Liu et al., 2023), a reference-free evaluator that rates prompt alignment, factual reasonableness, and content suitability.

3 RESULTS AND DISCUSSION

3.1 EXPERIMENTAL SETUP

To test the model-agnostic nature of Social Agents, we evaluate it on three state-of-the-art LLMs: GPT-4o (Hurst et al., 2024), LLaMA 3.3 70B (Dubey et al., 2024), and Qwen3 32B (Yang et al., 2025). For Webpage Likability Prediction, which requires image understanding, we use their vision-language counterparts: GPT-4o, LLaMA 3.2 70B Vision (Meta AI, 2024), and Qwen2.5 VL 72B (Bai et al., 2025). We also test smaller backbones: LLaMA 3.1 8B and Qwen3 8B, LLaMA 3.2 11B Vision and Qwen2.5 VL 7B to evaluate robustness under reduced capacity.

Following the wisdom of crowds principle, our main comparison is between Social Agents and a *No-Persona* variant, where a single LLM expert agent is prompted as a domain specialist. Both are evaluated in a 5-shot setting, except Behavioral Attribute Classification, which uses zero-shot for comparability. For all tasks, we retrieve the top-5 nearest examples (excluding the target item) with OpenAI's text-embedding-3 model (OpenAI, 2024), using them as few-shot exemplars to ground responses. We further compare Social Agents with task-specific expert models: LCBM (Khandelwal et al., 2024) for Ad CTR, tweet content generation, and engagement prediction; Henry (SI et al., 2023) for memorability; behavior-LLaVA (Singh et al., 2025) for behavioral attribution; and an XGBoost baseline for ROAS and webpage likability prediction. All experiments run with temperature 0.85 to encourage output diversity.

3.2 DISCUSSION

Social Agents is Model Agnostic. A key strength of Social Agents is that its benefits are not tied to a specific model family or scale. Across nine vision and language backbones, both proprietary and open-source, we observe consistent improvements over the No-Persona baseline, averaging 23.9% across all tasks and models (Appendix A.2.1). Larger models such as GPT-40 and Qwen3 32B consistently outperform task-specific experts, with Qwen3 32B achieving the strongest CTR performance and the best ROAS gains, improving PE@30 by 145.5% in the real estate domain (Table 6). In ablation studies, even smaller models such as LLaMA 8B and Qwen 7B, despite lower absolute accuracy, still show clear improvements over their no-persona counterparts (Appendix A.3.1). This demonstrates that Social Agents provides model-agnostic benefits, with diversity and aggregation yielding consistent gains across scales.

Performance across prediction and generation tasks. Social Agents delivers its strongest improvements on low- and medium-level construal tasks, where judgments are immediate and behavior-oriented. On webpage likability prediction, it improves over the No-Persona baseline by 164.2% (Table 5). In Ad CTR prediction, it reduces error by 32.8% (Table 3), while tweet engagement accuracy rises by 23.7% (Table 4). For the medium-level ROAS task, gains are also substantial, with a 39.8% MAPE reduction and a 145.5% improvement in PE@20 (Table 6). In generative settings, Social Agents improves tweet quality by 18.7% (ROUGE-1), and 7.7% on G-Eval (Table 8). These results suggest that diversity and aggregation provide the greatest benefits for near-term behavioral predictions and creative generation, which, much like human judgments, are easier to assess at lower construal levels (e.g., whether something is likable).

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Performance on high construal level tasks. On high-level construal tasks requiring abstract reasoning and long-term forecasting, Social Agents produces more moderate but consistent improvements over baselines. In long-term video memorability prediction, it improves over No-Persona by 24.2% (Table 7). For behavioral attribution, gains include 11.6% on reason, 55.3% on persuasion, and 34.3% on emotion (all labels) (Table 9). These results highlight that while improvements are smaller on distant, cognitively demanding tasks, much as they are for humans, the framework reliably outperforms single-agent baselines.

Comparison of Social Agents vs trained expert models. We benchmark Social Agents against taskspecific expert models trained on large behavioral datasets. On low- and medium-level tasks, it often surpasses these experts: in Ad CTR prediction it outperforms fine-tuned LCBMs by 33.2% in MAPE reduction (Table 3), while in webpage likability it exceeds XGBoost by 139-164% (Table 5). On ROAS, it improves PE@30 by 128.6%, again outperforming XGBoost (Table 6). In tweet generation, it also surpasses fine-tuned LCBMs on BLEU-2 and ROUGE-1 (Table 8). Gains are strongest with larger backbones such as GPT-40, while smaller models provide more modest improvements. High CLT tasks are harder: in long-term memorability, Social Agents improves over No-Persona but does not match Henry, trained on dedicated memorability corpora (Table 7). In behavioral attribution, however, it narrows the gap, outperforming Behavior-LLaVA (Zero-shot) with up to 55.3% gains on persuasion and over 30% on action and reason (Table 9). Strikingly, these results are achieved with only 5-shot prompting, while expert baselines rely on hundreds of thousands to millions of curated training examples. Overall, Social Agents readily surpasses experts on low- and medium-level tasks, though matching highly specialized models on distant, cognitively demanding ones remains difficult.

Contribution of Personas in Social Agents. Figure A.3.3 shows that gains come from persona diversity rather than increasing inference calls. In Ad CTR prediction (Figure 6a), the No-Persona baseline, which averages repeated calls to one prompt, quickly plateaus with higher error. Likewise, the "Wisdom of the Silicon Crowd" Schoenegger et al. (2024), aggregating multiple LLMs without persona conditioning, underperforms compared to a single model with diverse personas. Social Agents achieves lowest MAPE with $N \approx 10-20$ personas before diminishing returns. In webpage likability (Figure 6b), the pattern repeats: repeated calls or multi-model ensembles fall short, while just N=10 personas yield the strongest human alignment. This highlights that conditioning on demographic and psychographic profiles provides greater collective intelligence than brute-force scaling.

Correlation of Social Agents with Human Judgments. On Webpage Likability Prediction, Social Agents' persona-conditioned predictions show strong alignment with human ratings, particularly among younger demographics. GPT-40 achieves correlations of r=0.71 for 18-24 males and r=0.69 for 18-24 females, while correlations drop to 0.22-0.25 for 55+ groups, reflecting limited training coverage (Appendix A.3.2). Female personas align more closely than male counterparts within the same age bracket. GPT-40 consistently outperforms models with weaker alignment with human preferences translates into lower task performance. These results suggest that as LLMs better capture demographic variation, Social Agents' collective predictions will become even more accurate.

412 413 414

CONCLUSION

416 417 418

419

420

421

422

415

We present Social Agents, a framework that adapts the "Wisdom of Crowds" to LLMs by instantiating diverse persona agents whose independent judgments are aggregated into collective outcomes. By utilizing demographic and psychographic attributes, the system surfaces heterogeneous social perspectives rather than a single uniform response. Across eleven behavioral tasks and nine models, Social Agents consistently improves performance, demonstrating that collective intelligence not only enhances LLM predictions but also shows promise as a scalable paradigm for improving decision-making and generation tasks.

423 REFERENCES

- Aristotle. *The Politics*. Oxford World's Classics. Oxford University Press, Oxford, 2009. ISBN 9780199538737.
 - Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Jakob Bernoulli. *Ars Conjectandi*. Thurnisiorum Fratrum, Basel, 1713. Original formulation of the Law of Large Numbers.
- Aanisha Bhattacharyya, Yaman K Singla, Balaji Krishnamurthy, Rajiv Ratn Shah, and Changyou Chen. A video is worth 4096 tokens: Verbalize videos to understand them in zero shot. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 9822–9839, 2023.
- Pew Research Center. Social media fact sheet. https://www.pewresearch.org/internet/fact-sheet/social-media/, 2024. Accessed: 2025-08-03.
- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794, 2016.
- DeepSeek. Deepseek-r1: A 671b moe-based reasoning model. Technical report, Open Source, 2024.
- Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi. Goemotions: A dataset of fine-grained emotions. In *Proceedings of the 58th annual meeting of the Association for Computational Linguistics*, pp. 4040–4054, 2020.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
- Francis Galton. Vox populi. *Nature*, 75:450–451, 1907.
- Aaron Gokaslan and Vanya Cohen. Openwebtext: An open source recreation of the gpt-2 training dataset. *Skylion007/OpenWebText-Corpus*, 2019. URL https://github.com/jcpeterson/openwebtext.
- Michael Haas et al. Analysis of data from a corporate prediction market. *Management Science*, 63(5): 1617–1634, 2016. Study of Best Buy's internal "Tag Trade" market.
 - Thomas Hagen and Thomas Espeseth. Image memorability prediction with vision transformers. *arXiv* preprint arXiv:2301.08647, January 2023. doi: 10.48550/arXiv.2301.08647. URL https://arxiv.org/abs/2301.08647.
 - Tiancheng Hu and Nigel Collier. Quantifying the persona effect in LLM simulations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10289–10307, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.554.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Zaeem Hussain, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas, Zuha Agha, Nathan Ong, and Adriana Kovashka. Automatic understanding of image and video advertisements. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1705–1715, 2017.

Yu Qiao. Videochat: Chat-centric video understanding, 2023.

out: Proceedings of the ACL-04 workshop, pp. 74–81, 2004.

//aclanthology.org/2024.emnlp-main.1094/.

docs/models/gpt-3-5, 2023. Accessed: 2025-07-24.

are unsupervised multitask learners. volume 1, pp. 9, 2019.

New embedding models and api updates.

new-embedding-models-and-api-updates/, January 2024.

Linguistics, pp. 311–318. Association for Computational Linguistics, 2002.

of the SIGCHI conference on human factors in computing systems, pp. 11–20, 2014.

September 2024. Meta AI blog post.

text-embedding-3 family of models.

470 471 472

473

Ashmit Khandelwal, Aditya Agrawal, Aanisha Bhattacharyya, Yaman Kumar, Somesh Singh, Uttaran Bhattacharya, Ishita Dasgupta, Stefano Petrangeli, Rajiv Ratn Shah, Changyou Chen, and Balaji Krishnamurthy. Large content and behavior models to understand, simulate, and optimize content and behavior. In The Twelfth International Conference on Learning Representations, 2024. URL https: //openreview.net/forum?id=TrKq4Wlwcz.

474 475

476 477

478 479

480 481

482 483 484

485 486

487 488

489 490 491

492 493

494 495

496 497 498

499 500 501

> 503 504 505

502

511 512 513

510

514 515

Melissa Schwartzberg. Aristotle and the judgment of the many: Equality, not collective quality. *The Journal* 516

of Politics, 78(3), 2016. doi: 10.1086/685000. Published online May 19, 2016.

1126/sciadv.adp1528.

11

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches

Siyang Liu, Trisha Maturi, Bowen Yi, Siqi Shen, and Rada Mihalcea. The generation gap: Exploring age

bias in the value systems of large language models. In Proceedings of the 2024 Conference on Empirical

Methods in Natural Language Processing, pp. 19617-19634, Miami, Florida, USA, November 2024.

Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1094. URL https:

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg evaluation

Meta AI. Llama 3.2: Revolutionizing Edge AI and Vision with Open, Customizable Models. https://

ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/,

OpenAI. OpenAI GPT-3.5 Turbo API [large language model]. https://platform.openai.com/

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-jing Zhu. Bleu: a method for automatic evaluation

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models

Katharina Reinecke and Krzysztof Z Gajos. Quantifying visual preferences around the world. In Proceedings

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori Hashimoto. Whose

Philipp Schoenegger, Inés T. Park, Peter S. Pospisil, Pinar E. Tuncel, and Mihaela van der Schaar. Wisdom of

the silicon crowd: Llm ensemble prediction capabilities rival human crowd accuracy. Science Advances,

10(e adp1528), 2024. doi: 10.1126/sciadv.adp1528. URL https://www.science.org/doi/10.

opinions do language models reflect? In Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 29971–30004. PMLR, 2023.

of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational

https://openai.com/index/

Blog post announcing the

using gpt-4 with better human alignment. arXiv preprint arXiv:2303.16634, 2023.

Harini SI, Somesh Singh, Yaman K Singla, Aanisha Bhattacharyya, Veeky Baths, Changyou Chen, Rajiv Ratn Shah, and Balaji Krishnamurthy. Long-term ad memorability: Understanding & generating memorable ads. *arXiv preprint arXiv:2309.00378*, 2023.

Somesh Kumar Singh, Harini S I, Yaman Kumar Singla, Changyou Chen, Rajiv Ratn Shah, Veeky Baths, and Balaji Krishnamurthy. Teaching human behavior improves content understanding abilities of vlms. In *International Conference on Learning Representations (ICLR) 2025 Poster*. ICLR, 2025. URL https://openreview.net/forum?id=ff2V3UR9sC.

James Surowiecki. The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations. Doubleday, 2004.

A. Tess, J. Smith, and R. Lee. Generative ai meets open-ended survey responses. *SAGE Open*, 15(4):1–20, 2025. doi: 10.1177/00491241251327130.

Yaacov Trope and Nira Liberman. Construal-level theory of psychological distance. *Psychological Review*, 117(2):440–463, 2010. doi: 10.1037/a0018963.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang, and Yu Qiao. Internvideo: General video foundation models via generative and discriminative learning, 2022.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 PROMPTING PERSONAS IN SOCIAL AGENTS

We use structured prompts that elicit nuanced, persona-driven judgments. Each prompt grounds the persona agent in a specific demographic-psychographic profile, provides context, and defines the evaluation task. We can define the complete prompt P_i for an agent i as a structured concatenation of four key components:

$$P_i = \operatorname{System}(\mathcal{S}) \oplus \operatorname{Persona}(\mathcal{D}_i) \oplus \operatorname{Task}(\mathcal{C}, \mathcal{T}) \oplus \operatorname{Format}(\mathcal{F})$$

where S is a system-level instruction, D_i is the unique demographic profile for agent i, C is the task context including few-shot examples, T is the specific task goal, F is the required output format, and \oplus denotes string concatenation.

The general structure of our prompts is encapsulated in the template shown below. We can use this structure to adapt Social Agents to rest of the eleven behavioral tasks by simply modifying the task-specific components while keeping the core persona agent descriptions consistent.

565

567

569 570 571

572 573 574

575 576 577

578 579 580

581

582 583 584

585 586 587

588

593 594 595

597 599

596

601 602 603

604

605

606

600

607 608 609

610

Prompt Structure

Persona Description (\mathcal{D}_i): You are a [Demographic Attributes]. [A detailed, narrative description of the persona's values, media consumption habits, cultural touchstones, and what typically influences their judgments and preferences.]

Task Context & Goal (C, T): You are given 5 examples [stimuli] and their corresponding [metric] scores (on a 0-100 or 0-10 scale). You are now shown a new [stimulus]. Your task is to judge how [target attribute] this [stimulus] is likely to be for [your demographic group]. [Further clarification on what cognitive or emotional factors to consider for the judgment.]

Output Format (\mathcal{F}) : Return: Reason: [Provide a concise explanation for your judgment, rooted in your persona's perspective.] numerical score in the specified range, e.g., 0-100 or 0-10, based on the task.] \leftarrow You must include this score.

For our experiments, we instantiate a panel of 10 distinct personas based on a cross-section of age and gender. These personas, summarized in Table 2, are used across all evaluation tasks. The only exception is for the Long-Term Video Memorability Prediction task. To align with the demographics of the original dataset's human annotators, we use a more focused panel consisting of only the first four personas: 18-24 female, 18-24 male, 25-34 female and 25-34 male.

A.1.2 DETAILED TASKS AND METRIC FORMULATION

We provide the mathematical formulations for the evaluation metrics used in our study. Throughout, an item refers to an ad, webpage, or video depending on the task. Predictions are produced by the system under evaluation (e.g., our Social Agents, or the No-Persona baseline). For Social Agents, persona outputs are aggregated by majority vote for categorical predictions in the Tweet Engagement Prediction and Behavioral Attribute Classification tasks, while for rest of the tasks, the predictions are averaged using an aggregator before evaluation. The full mapping of tasks to their construal levels with justification and evaluation metrics is summarized in Table 1.

Accuracy: Accuracy measures the fraction of items (ads, webpages, or videos) for which the system's final predicted label matches the human-provided label. It is defined as:

Accuracy =
$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}[y_i = \hat{y}_i],$$

where y_i is the human label (e.g., High or Low engagement for a tweet, High or Low likability score for a webpage, or a behavioral attribute for a video) and \hat{y}_i is the system's prediction for item i.

For Webpage Likability Prediction, the averaged predicted likability score (0-10) is converted into a binary label using a threshold of 5 (High if score > 5, Low if ≤ 5). This predicted category is then compared against the human-rated category. For Tweet Engagement Prediction, each persona agent outputs a binary label (High or Low engagement), and the final system prediction is obtained by majority voting across personas. In case of ties in Social Agents, the framework is re-run for that tweet to resolve the decision. For Behavioral Attribute Classification on videos, the prediction is correct only if the chosen attribute label (one of Topic, Action, Reason, Persuasion, or Emotion) exactly matches one of the five human annotated label.

For discretized continuous prediction tasks on ads, such as CTR or ROAS percentile estimation, we also report k-way accuracy. In this setting, both the ground-truth percentile and the predicted percentile are

Task Name	Construal Level	Construal Level Justification	Metrics Used
Tweet Engagement Prediction	Low	Judging likes from surface tweet cues; fast, low-abstraction decision.	Accuracy
Ad Click-Through Rate (CTR) Prediction	Low	Predicts immediate clicks based on perceptual and short- horizon content cues.	k-way Accuracy, PE@K, MAPE, MPE, RMSE
Webpage Likability Prediction	Low	Judgments rely on immediate perceptual features (e.g. color, layout, and visual hierarchy); requires rapid, surface-level evaluation.	Pearson Correlation, Accuracy, MAPE, MPE, RMSE
Behavioral Attribute Classification (Topic)	Low	Topic can be identified directly from explicit video ad text or visuals, without abstraction or long-term reasoning.	Accuracy
Behavioral Attribute Classification (Action)	Low	Detects explicit calls-to-action (e.g., "Buy now") that are visible on the surface of the video ad; minimal inference required.	Accuracy
Return on Ad Spend (ROAS) Prediction	Medium	Involves forecasting near-term financial outcomes; requires reasoning about consumer response and cost effectiveness beyond immediate perceptual cues.	k-way Accuracy, PE@K, MAPE, MPE, RMSE
Long-Term Video Memorability Predic- tion	High	Requires predicting whether content will be recalled weeks later; demands abstract reasoning about memory processes, semantic associations, and persuasive impact.	Spearman Correlation
Behavioral Attribute Classification (Reason, Persuasion, Emotion)	High	Goes beyond surface features to infer latent intent, per- suasive strategies, and emotional resonance, which re- quire deeper abstraction.	Accuracy
Tweet Content Generation	-	-	BLEU-N (1-4), ROUGE-1, G-Eval

Table 1: Tasks, their construal levels, justifications, and evaluation metrics. Low-level tasks focus on immediate, perceptual judgments; medium-level tasks address near-term outcomes; and high-level tasks involve abstract reasoning or long-horizon forecasting. The *tweet content generation* task is not associated with construal levels, as it involves producing performative content or text rather than making predictive judgments.

discretized into k equal-width bins (e.g., k=3 or k=10). A prediction is counted correct if the predicted bin matches the actual bin:

$$Accuracy_{k-way} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} [bin(A_i) = bin(P_i)],$$

where A_i is the actual percentile and P_i is the predicted percentile for item i.

BLEU and ROUGE (Papineni et al., 2002; Lin, 2004) For the tweet content generation task, BLEU-N measures n-gram overlap precision between a generated tweet and a human reference tweet, combined with a brevity penalty to avoid favoring short outputs:

BLEU = BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
, BP =
$$\begin{cases} 1 & c > r \\ \exp(1 - r/c) & c \le r \end{cases}$$

where p_n is the modified precision for n-grams and c, r are the predicted and reference lengths. We report BLEU-1 through BLEU-4. ROUGE-1 reports unigram overlap between generated and reference tweets, with precision, recall, and F1 score. Standard normalization (lowercasing, punctuation stripping, tokenization) is applied.

Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE): These metrics are used for numerical prediction tasks such as Ad Click-Through Rate (CTR) percentile, Return on Ad Spend (ROAS) percentile, and Webpage Likability Prediction. They capture the average proportional error magnitude (MAPE) and the average signed bias (MPE):

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{A_i - P_i}{A_i} \right| \times 100\%$$
, MPE = $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{A_i - P_i}{A_i} \right) \times 100\%$.

Here, A_i is the human-provided ground-truth value for the i^{th} item (e.g., actual CTR percentile, or actual ROAS percentile), and P_i is the system's predicted value for the same item. MAPE reports the average absolute percentage deviation, while MPE indicates whether the predictions systematically overestimate (positive) or underestimate (negative) relative to human ground truth.

Root Mean Squared Error (RMSE): Used webpage likability prediction task; RMSE summarizes the magnitude of prediction errors by penalizing larger deviations more strongly:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - A_i)^2}.$$

Here, n is the total number of items, A_i is the human-provided ground-truth value for the ith item, and P_i is the system's predicted value for that item.

Pearson Correlation Coefficient (r: For webpage likability prediction task, Pearson's r measures the strength of linear association between system predictions and human provided ground truth across webpages:

$$r = \frac{\sum_{i=1}^{n} (A_i - \bar{A})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (A_i - \bar{A})^2} \sqrt{\sum_{i=1}^{n} (P_i - \bar{P})^2}}, \quad \bar{A} = \frac{1}{n} \sum_{i=1}^{n} A_i, \quad \bar{P} = \frac{1}{n} \sum_{i=1}^{n} P_i.$$

Here, A_i is the human-provided ground-truth value for the i^{th} item, and P_i is the corresponding system-predicted value for that same item. \bar{A} is the mean of all human-provided ground-truth values across the webpages, and \bar{P} is the mean of all system-predicted values across the webpages.

Spearman Rank Correlation (ρ): For long-term video memorability prediction, Spearman's ρ measures whether the ranking of system-predicted recall scores aligns with the ranking of human-measured recall scores for the videos:

$$\rho = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}, \quad d_i = \text{rank}(A_i) - \text{rank}(P_i).$$

Here, A_i is the human recall score, P_i is the predicted recall score by the system, and d_i is the difference between the ranks of these two scores for the ith video.

Prediction Error at K (**PE**@K): For ad CTR and ROAS percentile prediction, PE@K measures the percentage of ads whose absolute percentage error falls within a tolerance of K% of the ground-truth percentile:

$$\text{PE@}K = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left[\left| \frac{P_i - A_i}{A_i} \right| \times 100 \le K \right],$$

with $K \in \{10, 20, 30\}$. Here, A_i is the human-provided ground-truth percentile for the i^{th} ad, P_i is the predicted percentile for that ad, and the indicator function counts an ad as correct if its prediction error is within the specified tolerance K.

G-Eval (Liu et al., 2023): For the tweet content generation task, G-Eval uses a large language model (GPT-40) as an evaluator. It takes three inputs: the original ad prompt, the system-generated tweet, and one human reference tweet. Guided by a rubric, the evaluator assigns scores along three dimensions: (i) Prompt Alignment: whether the generated tweet effectively addresses the intent or theme of the target context (i.e., the ad's intent, theme, or message), even if phrased differently from the human reference tweet; (ii) Factual Reasonableness: whether the generated tweet is factually accurate or at least plausible given the target context (i.e., the ad's intent, theme, or message), avoiding clear inaccuracies; and (iii) Content Suitability: whether the generated tweet is coherent, well-structured, clear, and appropriate for the Twitter platform in terms of tone and brevity.

Each dimension is scored separately, and the final G-Eval score is the average of the three sub-scores:

$$G-Eval \ Score = \tfrac{1}{3} \left(Score_{prompt_alignment} + Score_{factual_reasonableness} + Score_{content_suitability} \right).$$

Demographic Profile	Key Psychographic Traits
18-24 female	Values bold aesthetics, authenticity, and viral social media trends.
18-24 male	Attuned to humor, shock value, memes, and gaming culture.
25-34 female	Values aesthetics, emotional resonance, and lifestyle relevance.
25-34 male	Values clarity, style, and visuals related to aspiration and technology.
35-44 female	Appreciates authenticity, emotional intelligence, and meaningful content.
35-44 male	Responds to visuals that are smart, grounded, and purpose-driven.
45-54 female	Drawn to emotional clarity, purpose, and community-oriented themes.
45-54 male	Appreciates thoughtful, honest visuals grounded in wisdom and reality.
55+ female	Resonates with warmth, purpose, legacy, and deep emotional connection.
55+ male	Values sincerity, legacy, and visuals with clear, meaningful value.

Table 2: **Demographic Profiles and Psychographic Traits of the 10 Social Agent Personas.** Each persona combines a demographic group (age group paired with a gender) with its corresponding key psychographic traits. The table highlights the types of aesthetics, values, and content themes that each group is most likely to prefer when evaluating or responding to an ad, webpage, or video.

This setup allows the evaluation to capture not only word overlap but also the overall quality and contextual appropriateness of the generated tweets.

A.2 EXPERIMENTAL RESULTS

A.2.1 Performance of Social Agents

Tables 3, 4, 6, 5, 7, 8 and 9 summarize results across all eleven behavioral prediction tasks. GPT-4o, as the strongest model, consistently outperforms both baselines and trained experts, whereas all models show consistent gains. By contrast, LLaMA, with weaker alignment to human preferences, struggles to match the performance of specialized expert models.

Model	Accuracy (%)↑
GPT-3.5 (OpenAI, 2023)	61.52
LCBM (Finetuned on Twitter Data) (Khandelwal et al., 2024)	85.99
LCBM (Finetuned on Twitter + Youtube Data) (Khandelwal et al., 2024)	84.53
No-Persona (GPT-4o)	70.27
Social Agents (GPT-40)	86.90
No-Persona (Qwen3 32B)	54.20
Social Agents (Qwen3 32B)	63.85
No-Persona (LLaMA 3.3 70B)	51.50
Social Agents (LLaMA 3.3 70B)	63.75
Improvement of Social Agents over No-Persona	21.75%

Table 4: **Tweet Engagement Prediction.** Performance evaluated using Accuracy (%, higher is better). Social Agents outperform the No-Persona baseline across all models, with individual improvements of 23.68% (GPT-4o), 17.78% (Qwen3 32B), and 23.79% (LLaMA 3.3 70B). Our approach achieves performance closely comparable to that of fine-tuned LCBMs, with Social Agents (GPT-4o) surpassing the average LCBM performance by 1.92% (averaged across both variants). Positive gains are shown in green. Best models are denoted in green, and runner-ups in blue.

Model & Dataset	MAPE ↓	3-way accuracy (%) ↑	10-way accuracy (%) ↑		
Creative & Real Estate Industries					
Human Baseline	111.03	33.33	10.00		
Creative Industry					
XGBoost (Chen & Guestrin, 2016)	55.40	48.82	22.62		
LCBM (Zero-shot) (Khandelwal et al., 2024)	80.21	71.75	43.90		
LCBM (Finetuned) (Khandelwal et al., 2024)	75.67	70.68	42.77		
No-Persona (LLaMA 3.3 70B)	85.80	53.97	29.96		
Social Agents (LLaMA 3.3 70B)	62.44	69.00	25.20		
No-Persona (Qwen3 32B)	59.13	70.40	39.00		
Social Agents (Qwen3 32B)	43.31	75.70	29.60		
No-Persona (GPT-4o)	72.45	40.04	18.91		
Social Agents (GPT-40)	47.60	77.19	45.79		
Improvement of Social Agents over No-Persona	28.2%	29.6%	4.8%		
Improvement of Social Agents over LCBM	33.2%	9.1%	5.1%		
Real Estate Industry					
XGBoost (Chen & Guestrin, 2016)	48.90	60.92	24.27		
No-Persona (Qwen3 32B)	63.36	60.00	26.10		
Social Agents (Qwen3 32B)	50.79	65.90	23.40		
No-Persona (LLaMA 3.3 70B)	75.14	63.40	27.30		
Social Agents (LLaMA 3.3 70B)	55.59	55.60	19.30		
No-Persona (GPT-4o)	70.27	61.50	23.20		
Social Agents (GPT-40)	45.62	69.40	29.60		
Improvement of Social Agents over No-Persona	27.2%	6.8%	1.8%		

Table 3: Ad Click-Through Rate (CTR) Prediction. Results on datasets we constructed from Creative and Real Estate industries listed in the Forbes Fortune 500, evaluated using MAPE (lower is better) and 3-way and 10-way accuracy (higher is better). Social Agents reduce prediction error compared to No-Persona baselines, with average MAPE reductions of 26.6% (LLaMA 3.3 70B), 23.3% (Qwen3 32B), and 32.8% (GPT-40) across both industries. Compared to LCBM, Social Agents achieve a further 33.2% lower MAPE in the creative industry. We report the average improvements across all metrics: Social Agents compared to No-Persona (averaged over all models) and Social Agents compared to LCBM (averaged over zero-shot and finetuned models). Positive gains are shown in green and declines in red. Best models are highlighted in green, and runner-ups in blue.

Model	Pearson Correlation (r) \uparrow	MPE (%) ↓	RMSE ↓	Accuracy (%)↑
XGBoost	0.67	19.70	0.72	77.55
No-Persona (LLaMA 3.2 90B Vision)	0.35	36.55	1.98	57.73
Social Agents (LLaMA 3.2 90B Vision)	0.61	25.94	1.31	56.70
No-Persona (Qwen2.5 VL 72B)	0.38	21.25	1.15	70.10
Social Agents (Qwen2.5 VL 72B)	0.59	19.69	1.03	73.20
No-Persona (GPT-4o)	0.28	59.31	2.86	61.22
Social Agents (GPT-4o)	0.74	14.95	0.84	80.61
Improvement of Social Agents over No-Persona	95.84%	36.53%	37.76%	11.40%

Table 5: **Webpage Likability Prediction.** Performance evaluated using Pearson correlation (r, higher is better), Mean Percentage Error (MPE, lower is better), Root Mean Squared Error (RMSE, lower is better), and Accuracy (%, higher is better). Social Agents consistently outperform No-Persona baselines across all metrics. Social Agents outperform the No-Persona baseline across all models, with individual improvements of 74.29% (LLaMA 3.2 90B Vision), 55.26% (Qwen2.5 VL 72B), and 164.29% (GPT-4o). Overall improvement percentages represent the relative improvement of Social Agents over No-Persona (averaged across all models) for each metric. Positive gains are shown in green. Best models are denoted in green, and runner-ups in blue.

Model & Dataset	MAPE ↓	PE@10↑	PE@20↑	PE@30↑
Creative & Real Estate Industries				
Human Baseline	104.70	0.071	0.176	0.307
Creative Industry				
XGBoost (Chen & Guestrin, 2016)	52.12	0.08	0.17	0.26
No-Persona (LLaMA 3.3 70B)	81.15	0.20	0.31	0.42
Social Agents (LLaMA 3.3 70B)	74.57	0.12	0.24	0.34
No-Persona (Qwen3 32B)	52.90	0.18	0.36	0.47
Social Agents (Qwen3 32B)	43.57	0.16	0.32	0.45
No-Persona (GPT-4o)	75.70	0.16	0.32	0.42
Social Agents (GPT-40)	58.76	0.27	0.47	0.59
Improvement of Social Agents over No-Persona	17.7%	-7.4%	10.6%	5.1%
Real Estate Industry				
XGBoost (Chen & Guestrin, 2016)	48.63	0.13	0.26	0.39
No-Persona (LLaMA 3.3 70B)	134.13	0.03	0.09	0.12
Social Agents (LLaMA 3.3 70B)	125.19	0.06	0.11	0.17
No-Persona (Qwen3 32B)	105.91	0.02	0.03	0.04
Social Agents (Qwen3 32B)	80.21	0.04	0.09	0.15
No-Persona (GPT-4o)	199.93	0.06	0.10	0.14
Social Agents (GPT-40)	50.23	0.15	0.32	0.46
Improvement of Social Agents over No-Persona	39.8%	136.4%	145.5%	128.6%

Table 6: **Return on Ad Spend (ROAS) Prediction.** Results on datasets we constructed from Creative and Real Estate industries listed in the Forbes Fortune 500, evaluated using **MAPE** (lower is better) and **PE@K** (higher is better). Social Agents reduce prediction error compared to No-Persona baselines, with average MAPE reductions of 7.4% (LLaMA 3.3 70B), 20.95% (Qwen3 32B), and 48.65% (GPT-40) across both industries. We report the average improvements across all metrics: Social Agents compared to No-Persona (averaged over all models). Positive gains are shown in green and declines in red. Best models are denoted in green, and runner-ups in blue.

Model	Spearman Correlation $(\rho) \uparrow$		
Human Consistency	0.55		
10-shot GPT-3.5 (OpenAI, 2023)	0.06		
Regression using ViT feats (ViTMem) (Hagen & Espeseth, 2023)	0.08		
Henry trained on individual datasets (Singh et al., 2025)	0.55		
Henry trained on all (combined) datasets (Singh et al., 2025)	0.52		
No-Persona (LLaMA 3.3 70B)	0.26		
Social Agents (LLaMA 3.3 70B)	0.30		
No-Persona (Qwen3 32B)	0.33		
Social Agents (Qwen3 32B)	0.33		
No-Persona (GPT-40)	0.33		
Social Agents (GPT-40)	0.41		

Improvement of Social Agents over No-Persona

Table 7: **Long-Term Video Memorability (LAMBDA) Prediction.** Performance evaluated using Spearman correlation (ρ , higher is better). Among non-trained methods, Social Agents (GPT-4o) shows the best performance, highlighted in vellow. Social Agents outperform No-Persona baselines with individual improvements of 15.38% (LLaMA 3.3 70B), 0.00% (Qwen3 32B), and 24.24% (GPT-4o). We report the average improvements: Social Agents compared to No-Persona (averaged over all models). Positive gains are shown in green and no improvement in gray. Best models are denoted in green, and runner-ups in blue.

13.2%

Model	BLEU-1↑	BLEU-2↑	BLEU-3↑	BLEU-4↑	ROUGE-1↑	G-Eval↑
GPT-3.5 (ICL) (OpenAI, 2023)	55.82	43.74	32.76	24.90	15.26	-
LCBM (Finetuned on Twitter Data) (Khandelwal et al., 2024)	66.15	50.50	37.71	25.95	15.91	-
LCBM (Finetuned on Twitter + Youtube Data) (Khandelwal et al., 2024)	67.26	51.32	38.35	29.59	16.14	-
No-Persona (GPT-4o)	62.41	47.33	32.90	23.77	14.57	0.57
Social Agents (GPT-4o)	70.31	54.54	40.38	31.71	14.89	0.61
No-Persona (Qwen3 32B)	64.98	48.14	34.45	25.60	9.39	0.53
Social Agents (Qwen3 32B)	66.43	49.73	36.10	27.12	14.01	0.57
No-Persona (LlaMA 3.3 70B)	49.58	36.16	25.48	18.88	6.98	0.46
Social Agents (LlaMA 3.3 70B)	55.87	40.70	28.64	21.01	7.83	0.50
Improvement of Social Agents over No-Persona	8.83%	10.12%	13.25%	16.97%	18.72%	7.69%

Table 8: **Tweet Content Generation.** Results across models measured via BLEU (1-4), ROUGE-1, and G-Eval metrics (higher is better). Social Agents outperform No-Persona baselines across all models, with individual improvements of 33.40% (GPT-40), 5.94% (Qwen3 32B), and 11.28% (LlaMA 3.3 70B) for BLEU-4; 2.20% (GPT-40), 49.20% (Qwen3 32B), and 12.18% (LlaMA 3.3 70B) for ROUGE-1. Our approach also outperforms the fine-tuned LCBM baselines (averaged across both variants) on multiple metrics, with Social Agents (GPT-40) achieving a 7.14% improvement on BLEU-2 and a 14.69% improvement on BLEU-4. Overall improvement percentages represent the relative improvement of Social Agents over No-Persona (averaged across all models) for each metric. Best performing models are highlighted in green, and runner-ups in blue.

Model	Topic	Emo	tion	Persuasion	Action	Reason
		All labels	Clubbed			
Random	2.63	3.37	14.3	8.37	3.34	3.34
Hussain et al. (Finetuned) (Hussain et al., 2017) Intern-Video (Finetuned) (Wang et al., 2022)	35.1 57.47	32.8 36.08	86.59	5.47	6.8	48.45 7.1
VideoChat (Zero-shot) (Li et al., 2023)	9.07	3.09	5.1	10.28	-	-
Video4096 (GPT-3.5 Generated Story + GPT-3.5 Classifier) (Bhattacharyya et al., 2023) Video4096 (GPT-3.5 Generated Story + Flan-t5-xxl Classifier) (Bhattacharyya et al., 2023) Video4096 (Vicuna Generated Story + Flan-t5-xxl Classifier) (Bhattacharyya et al., 2023) Video4096 (Vicuna Generated Story + Roberta Classifier, Finetuned) (Bhattacharyya et al., 2023)	51.6	11.68	79.69	35.02	66.27	59.59
	60.5	10.8	79.10	33.41	79.22	81.72
	57.38	9.8	76.60	30.11	77.38	80.66
	71.3	33.02	84.20	64.67	42.96	39.09
Behavior-LLaVA (Zero-shot, w/video + GPT-3.5 story) (Singh et al., 2025)	60.09	12.84	79.94	36.12	67.10	79.18
Behavior-LLaVA (Finetuned, w/video + GPT-3.5 story) (Singh et al., 2025)	71.2	39.55	86.17	65.03	80.44	81.67
No-Persona (GPT-40 + GPT-40 Story)	70.76	16.21	61.53	50.20	91.20	80.75
Social Agents (GPT-40 + GPT-40 Story)	75.47	17.24	61.81	56.09	92.30	85.71
Improvement of Social Agents over No-Persona	6.7%	6.4%	0.5%	11.7%	1.2%	6.1%
Improvement of Social Agents over behavior-LLaVA (Zero-shot)	25.6%	34.3%	-22.7%	55.3%	37.6%	8.2%
No-Persona (Qwen3 32B + GPT-4o Story) Social Agents (Qwen3 32B + GPT-4o Story) Improvement of Social Agents over No-Persona Improvement of Social Agents over behavior-LLaVA (Zero-shot)	67.85	16.01	63.01	41.72	88.90	80.75
	69.45	15.96	61.71	52.89	90.30	83.95
	2.4%	-0.3%	-2.0%	26.8%	1.6%	4.0%
	15.6%	24.3%	-22.8%	46.4%	34.6%	6.0%
No-Persona (LlaMA 3.3 70B + GPT-4o Story) Social Agents (LlaMA 3.3 70B + GPT-4o Story) Improvement of Social Agents over No-Persona Improvement of Social Agents over behavior-LLaVA (Zero-shot)	70.11	18.11	61.67	46.31	88.70	81.80
	70.86	17.21	62.03	53.49	88.80	88.40
	1.1%	-5.0%	0.6%	15.5%	0.1%	8.1%
	17.9%	34.0%	-22.40%	48.1%	32.3%	11.6%

Table 9: **Behavioral Attribution Classification.** Performance evaluated using Accuracy (%, higher is better) across five key dimensions: Topic, Emotion (All-labels and Clubbed), Persuasion, Action, and Reason. Social Agents show improvements upto 26.8% over No-Persona baselines, and outperform Behavior-LLaVA (Zero-shot) by margins up to 55.3%. However, we observe occasional declines in Emotion classification (both All-labels and Clubbed) for some configurations. Positive gains are highlighted in green, declines in red. Best models are marked in green, runner-ups in blue.

A.3 ABLATION RESULTS

942 943 944

945

EVALUATION OF SOCIAL AGENTS ON LOWER PARAMETER MODELS

946 947 948

949

Social Agents

974

975

969

982 983 984

985

981

To assess whether compact, lower-parameter models can still capture the human preference signals required for Social Agents to function effectively, we evaluate such models on the Webpage Likability Prediction and

Model and Method Pearson RMSE ↓ Accuracy (%)↑ LLaMA 3.2 11B Vision No-Persona 0.02 49 21 2.50 60.22 No-Persona (Mean of 10 Trials) 0.37 41.44 1.81 40.21 0.38 27.47 1.21 Social Agents 60.82 Owen2.5 VL 7B No-Persona 0.54 No-Persona (Mean of 10 Trials) 0.54 26.22 1.33 68.42

0.58

Long-Term Video Memorability Prediction tasks (Table 10, 11).

27.54

1.34

63.27

Table 10: Performance comparison on the Web-
page Likability Prediction task using lower-
parameter models. Metrics reported include Pear-
son Correlation (†), Mean Percentage Error (MPE)
(↓), Root Mean Squared Error (RMSE) (↓), and Ac-
curacy (†). Qwen2.5 VL 7B with Social Agents out-
performs all other configurations across all metrics,
achieving the highest correlation and accuracy, and the
lowest MPE and RMSE. For LLaMA 3.2 11B Vision,
we find that the No-Persona (Mean of 10 Trials) base-
line performs better than Social Agents, highlighting
the limitation of these smaller models in understand-
ing personas. Best-performing models are highlighted
in green, and runner-ups in blue.

Model and Method	Spearman Correlation ↑		
LLaMA 3.1 8B			
No-Persona	0.08		
No-Persona (Mean of 10 Trials)	0.12		
Social Agents	0.12		
Qwen3 8B			
No-Persona	0.21		
No-Persona (Mean of 10 Trials)	0.19		
Social Agents	0.26		

Table 11: **Performance comparison on the Long-**Term Video Memorability task using lowerparameter models. Metrics reported include Spearman correlation (†). Qwen3 8B with Social Agents achieves the highest rank-order correlation with human judgments. For LLaMA 3.1 8B, we observe that the No-Persona (Mean of 10 Trials) configuration performs comparably to the Social Agents variant, highlighting the model's limited ability to interpret personas. Best-performing strategies are highlighted in green, and runnerups in blue.

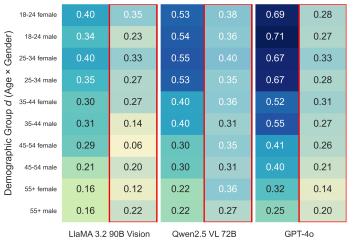
In the Webpage Likability Prediction task, Owen 2.5 VL 7B with Social Agents achieves a 7% relative gain in correlation, a 15% reduction in mean percentage error (MPE), and a 3% uplift in accuracy. LLaMA 3.2 11B Vision shows the largest error reduction, with a 21% drop in MPE and a 42% reduction in RMSE when using Social Agents compared to the No-Persona configuration. However, its best absolute performance in correlation and accuracy is obtained by the No-Persona (Mean of 10 Trials) baseline rather than Social Agents, suggesting that some smaller models benefit primarily in error reduction while missing finer gains in discrimination and alignment with human judgments.

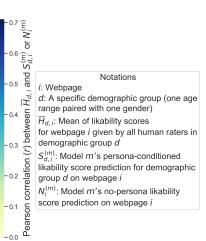
In the Long-Term Video Memorability Prediction task, Qwen3 8B with Social Agents improves performance by 24% over the No-Persona baseline, while LLaMA 3.1 8B yields similar moderate gains across both No-Persona (Mean of 10 Trials) and Social Agents configurations.

Overall, Social Agents generally outperform the No-Persona baseline, though the magnitude of improvement varies. Gains tend to be smaller or inconsistent in lower-capacity models, reflecting limits in model expressivity and reduced exposure to diverse human data. Even so, Social Agents help narrow the performance gap to larger models by reducing prediction errors.

A.3.2 ALIGNMENT OF SOCIAL AGENTS' PREDICTIONS WITH HUMAN JUDGMENTS

To measure how well simulated persona agents in the Social Agents framework reproduce real human preferences, we use the Webpage Likability Prediction task (Figure 5). The dataset contains 98 webpages, each rated on a 10-point Likert scale by nearly 40,000 participants from 179 countries, providing diverse demographic coverage. For evaluation, we compute the Pearson correlation (r) between the likability scores predicted by Social Agents persona demographic groups and the average human ratings from the corresponding demographic groups for each webpage. Results are reported across three different model backbones.





Model m with Social Agents and with No-Persona (represented in Red border)

Figure 5: Correlation between Social Agents' predictions and human judgments across demographic groups on the Webpage Likability Prediction task. Stronger correlations are observed in younger demographic groups, while performance gradually declines in older groups, likely reflecting limited training data used from older populations for the models. Pearson correlation coefficients (r) are reported between human demographic group ratings and Social Agents' simulated demographic group predictions, shown for three models: LLaMA 3.2 90B, Qwen2.5 VL 72B, and GPT-40.

GPT-40 most closely matches human preferences, achieving r=0.71 for 18-24 male (i.e., 71% of the maximum attainable linear agreement between Social Agents' predictions and the average ratings from this demographic group) and r=0.69 for 18-24 female (69% agreement). Correlations decline steadily with age, with 55+ personas yielding r between 0.22-0.25 (22-25% agreement with human ratings from the corresponding demographic groups). Across all models, female personas show consistently higher alignment, averaging 5-10% stronger correlations than male personas within the same age bracket. Similar trends are observed across the other models.

As noted in prior work on demographic performance disparities in LLMs (Liu et al., 2024), a likely explanation for the weaker correlations among older demographics is the training data composition. Most Large vision and language models are trained predominantly on large-scale web and social media corpora (sources heavily skewed toward younger, digitally native users). Supporting this, Pew Research Center data (Center, 2024) show that only 19% of U.S. adults aged 65+ report using Instagram and just 10% use TikTok (compared with 76% and 59% of adults aged 18-29, respectively). This skew means the latent representations learned by models reflect the aesthetic norms and preferences of younger cohorts. Older users, whose visual tastes are shaped by different cultural influences, design eras, and usage contexts, are underrepresented

in training, reducing the model's ability to simulate their preferences and leading to lower alignment with human judgments in those age groups.

A.3.3 IMPACT OF NUMBER OF PERSONAS AND CALLS ON PREDICTIVE PERFORMANCE

We study how predictive performance varies with the computational budget N, defined as the total number of model calls allocated per item (i.e., per webpage or per ad) in Figure 6a and 6b. Budget can be spent in two ways: by repeatedly calling the same model prompt (increasing the number of calls), or by expanding the diversity of simulated persona agents. This is done by increasing the number of unique personas across demographic dimensions. We generate person agents by sampling from a broad set of demographic and psychographic dimensions designed to capture a wide spectrum of human experiences and viewpoints. These dimensions include:

- **Age:** [18-29, 30-49, 50-64, 65+]
- Education Level: [Less than high school, High school graduate, Some college (no degree), Associate's degree, College graduate/some postgraduate, Postgraduate]
- Gender: [Male, Female]
- Race/Ethnicity: [White, Black, Asian, Hispanic]
- Annual Income: [< \$30,000, \$30K-\$100K, > \$100K]
- Political Ideology: [Liberal, Moderate, Conservative]
- Political Affiliation: [Democrat, Republican]
- Religion: [Protestant, Jewish, Atheist, Muslim, Hindu]

Let D_i be the number of categories in demographic dimension i. The total potential persona space is:

$$|\mathcal{P}| = \prod_{i=1}^{8} D_i = 4 \times 6 \times 2 \times 4 \times 3 \times 3 \times 2 \times 5 = 17,280.$$

From this universe of 17,280 possible combinations, we curate and expand a subset of up to N personas for our experiments.

To study how different allocations of this computational budget affect predictive performance, we compare the following five strategies:

- No-Persona (Mean over N Calls): A No-Persona baseline with GPT-40, where budget N is spent on N repeated calls using the same input prompt per webpage or ad.
- Social Agents (10 Personas, N/10 Calls per Persona): A fixed, panel of 10 persona agents, where given budget N, the calls per webpage or ad are evenly distributed across the panel such that each persona is queried N/10 times. For example, if N=20, each persona is queried twice ($10\times 2=20$ total calls).
- Social Agents (N Personas): Here, number of persona agents and it's diversity scales directly with budget. For $N \le 100$, we instantiate N unique personas and query each once. Starting from a base pool $\mathcal{P}_{\text{base}}$ of 10 personas (five age groups \times two genders), we apply an expansion function,

$$f: \mathcal{P}_{\text{base}} \times A \to \mathcal{P}$$

where A is a set of auxiliary demographic and trait attributes. Iteratively enriching $\mathcal{P}_{\text{base}}$ yields up to 100 personas. For a given budget N, we sample N distinct personas (e.g., if N=20, 20 unique persona prompts are generated and each is used once).

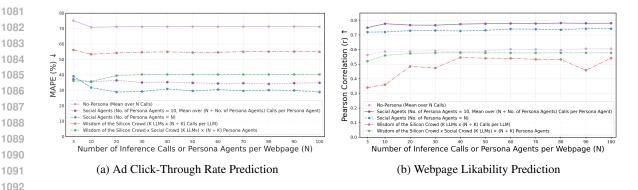


Figure 6: Impact of number of inference calls or persona agents (N) on two tasks. The x-axis denotes the per-item budget, realized either as N independent calls to a single prompt or as N persona agents with one call each for a given ad or webpage. (a) Ad Click-Through Rate Prediction. Evaluated using Mean Absolute Percentage Error (MAPE; lower is better). Performance plateaus by $N \approx 20$ -30, indicating that increasing the budget beyond this yields negligible gains. The best MAPE is achieved by Social Agents with N=20 persona agents (also matched at N=100), using one call per persona. (b) Webpage Likability Prediction. Evaluated using Pearson correlation (r; higher is better). Performance plateaus around $N \in \{20,30,40\}$, and the highest correlation is obtained by Social Agents with N=10 persona agents and one call per persona.

- Wisdom of the Silicon Crowd (WoSC) (Schoenegger et al., 2024): K LLMs \times (N/K) Calls per LLM. An ensemble of K=3 distinct LLMs, $\mathcal{M}=\{\text{GPT-4o}, \text{Qwen3 32B}, \text{LLaMA 3.3 70B}\}$. Each model receives $\lfloor N/K \rfloor$ calls. For example, with N=20, each model is queried 6 times, yielding $\approx N$ total calls. This setup tests the value of model diversity while keeping the total budget fixed.
- WoSC \times Social Crowd: K LLMs \times (N/K) Personas. A hybrid approach that combines model diversity with persona agent diversity. With K=3 models and total budget N, each model m_i is paired with N/K distinct persona agents, queried once each. This ensures exactly N persona agent-model calls per ad or webpage.

Ad CTR Prediction Performance

As shown in Figure 6 (a), the clearest gains emerge when scaling persona diversity. **Social Agents** (N **Personas**) variant consistently delivers the lowest mean absolute percentage error (MAPE), dropping from about 32% at N=10 to below 29% at N=100. This steady decline highlights the value of incorporating an increasingly diverse set of personas, which broadens the range of simulated viewpoints and reduces systematic error. By contrast, the **WoSC** ensemble achieves a substantial reduction relative to the No-Persona baseline (mid 50% versus \approx 71% MAPE), but exhibits little to no further improvement as N increases, demonstrating that model diversity alone plateaus quickly. The hybrid **WoSC** \times **Social Crowd** settles near 39-40% MAPE, showing minimal benefit from larger budgets, as splitting calls across multiple models dilutes the effective persona coverage and constrains overall gains.

Webpage Likability Prediction Performance

Figure 6 (b) show that **Social Agents** with 10 Personas achieve the strongest Pearson correlations of $r \approx 0.74$ -0.76 across all budgets. This demonstrates that a carefully curated, representative panel is especially effective for subjective, aesthetic judgments. The **Social Agents** (N **Personas**) variant also improves over both the **No-Persona** baseline ($r \approx 0.56$) and the **WoSC** ensemble ($r \approx 0.35$ -0.55), but does not surpass the

fixed 10 persona panel, suggesting that indiscriminate persona agents expansion may introduce noise rather than strengthen signal. The **WoSC** ensemble underperforms sharply, with unstable correlations that reflect the misalignment of some constituent models with this subjective task. The hybrid **WoSC** \times **Social Crowd** provides modest improvements ($r \approx 0.56\text{-}0.59$) over WoSC alone, yet remains below both Social Agents configurations.

A.3.4 DIVERSITY ACROSS INTER-PERSONA PREDICTIONS IN SOCIAL AGENTS

To understand how simulated personas differ in their individual perspectives, we measure inter-persona prediction divergence on the Webpage Likability Prediction task using Wasserstein distance. Figure 7 presents a heatmap of Wasserstein distances between predicted likability distributions for ten persona archetypes defined by a age group combine with a gender. Each cell quantifies the distributional difference between two demographic groups' predictions, with higher values indicating greater divergence.

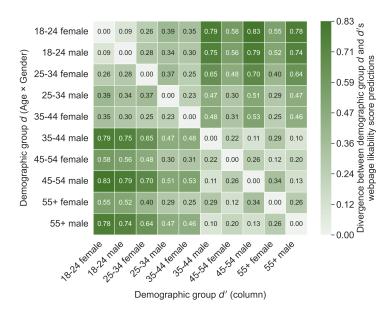


Figure 7: Inter-Persona Prediction Divergence on the Webpage Likability Prediction task. The heatmap shows clear clustering by age, with adjacent age groups exhibiting lower divergence (lighter cells along the diagonal) and sharp separations between younger females and older male groups (darkest cells, up to 0.83). Divergences between male and female personas within the same age bracket are comparatively smaller. Each cell reports the pairwise Wasserstein distance between predicted webpage-likability prediction distributions for GPT-40 when prompted with personas from different age and gender groups, where larger values indicate greater divergence in predictions.

We observe the following patterns:

Age-Based Divergence. Age is the dominant source of divergence. Younger personas (18-24) show only moderate differences with adjacent groups (divergences of 0.26-0.39 against 25-34), but diverge strongly from older cohorts. For instance, the 18-24 female persona reaches distances of 0.58-0.83 when compared with 45+ groups, reflecting clear generational gaps in aesthetic preferences.

Gender Effects. Within the same age group, male-female divergences are present but smaller, typically ranging from 0.09 to 0.34. This indicates that gender contributes to variation in predictions.

Extreme Divergence Cases. The most pronounced divergence (0.83) occurs between 18-24 females and 45-54 males, reflecting maximal separation across both age and gender. The 45-54 male persona also shows consistently high divergence from younger groups (0.70-0.83). By contrast, older males (55+) display slightly lower but still substantial divergence (0.64-0.78) from younger females, remaining significantly higher than within age comparisons.