
Published as a conference paper at ICLR 2022

QUERY EFFICIENT DECISION BASED SPARSE ATTACKS
AGAINST BLACK-BOX DEEP LEARNING MODELS

Viet Quoc Vo, Ehsan Abbasnejad, Damith C. Ranasinghe
The University Of Adelaide
{viet.vo,ehsan.abbasnejad,damith.ranasinghe}@adelaide.edu.au

ABSTRACT

Despite our best efforts, deep learning models remain highly vulnerable to even
tiny adversarial perturbations applied to the inputs. The ability to extract infor-
mation from solely the output of a machine learning model to craft adversarial
perturbations to black-box models is a practical threat against real-world systems,
such as Machine Learning as a Service (MLaaS), particularly sparse attacks. The
realisation of sparse attacks in black-box settings demonstrates that machine learn-
ing models are more vulnerable than we believe. Because, these attacks aim to
minimize a number of perturbed pixels—measured by l0 norm—required to mis-
lead a model by solely observing the decision (the predicted label) returned to a
model query; the so-called decision-based setting. But, such an attack leads to
an NP-hard optimization problem. We develop an evolution-based algorithm—
SparseEvo—for the problem and evaluate it against both convolutional deep neu-
ral networks and vision transformers. Notably, vision transformers are yet to be in-
vestigated under a decision-based setting. SparseEvo requires significantly fewer
queries than the state-of-the-art sparse attack Pointwise for both untargeted and
targeted attacks. The attack algorithm, although conceptually simple, is compet-
itive with only a limited query budget against the state-of-the-art gradient-based
whitebox attacks in standard computer vision tasks such as ImageNet. Impor-
tantly, the query efficient SparseEvo, along with decision-based attacks, in gen-
eral, raises new questions regarding the safety of deployed systems and poses new
directions to study and understand the robustness of machine learning models.

1 INTRODUCTION

In spite of the impressive performance achieved from deep neural network (DNN) models on a va-
riety of vision tasks, a flurry of research on adversarial attacks over the last few years have demon-
strated the vulnerability of deep learning models to tiny, maliciously crafted perturbations applied
to their inputs (Szegedy et al., 2014). These malicious perturbations, although imperceptible to
humans, are able to evade and mislead DNNs. Thus, embedding DNNs in systems creates a new
attack surface as well as the incentive for malevolent actors to strike systems such as autonomous
cars or machine learning models as a service (MLaaS) employed in real-world applications such as
self-driving cars (Chen et al., 2015), Google Cloud Vision or Amazon Rekognition.

In a black-box setting, an adversary may access all or only the top-1 predicted label and score—a
score-based setting (Chen et al., 2017)—or simply the predicted label for a given input—a decision-
based (Brendel et al., 2018) setting. Importantly, the similarity measure, used to quantify the im-
perceptibility of the perturbation, can describe an attack as a dense attack—l2, l∞ norm constrained
adversarial attack—or a sparse attack—l0 norm constrained adversarial attack.

Significantly, score-based and decision-based settings present a practical threat model for deployed
systems; the latter being particularly more threatening to model owners and applications. Because,
an adversary is still capable of exploiting the very minimal information exposed—the top-1 pre-
dicted label—for constructing an perturbation. Importantly, while dense attacks (Athalye et al.,
2018; Shukla et al., 2021; Ilyas et al., 2018) are widely explored, sparse attacks have not drawn
much attention. This potentially leads to a lack of knowledge on model vulnerabilities to this per-
turbation regime. From a security standpoint, sparse attacks are particularly as threatening as dense
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Figure 1: Targeted Attack. Malicious instances generated for a sparse attack with different
query budgets using our SparseEvo attack algorithm employed on black-box models built for the
ImageNet task. With an extremely sparse perturbation (78 perturbed pixels over a total of 50,176
pixels), an image with ground-truth label traffic light is misclassified as a street sign.

attacks. Therefore, investigating sparse perturbation regimes is as pivotal and necessary as dense
perturbation counterparts; in this study, we spend our efforts to extensively investigate the robust-
ness of DNNs against sparse attacks.

Scope of the Study–Vision Transformers and Convolutional Networks. Attention-based archi-
tectures introduced by Cordonnier et al. (2020); Ramachandran et al. (2019); Touvron et al. (2021),
particularly the Vision Transformer (ViT) model proposed by Dosovitskiy et al. (2021), can be com-
petitive or even outperform convolution-based architectures (Bhojanapalli et al., 2021; Carion et al.,
2020). Existing studies have not considered adversarial attacks in l0 norm constraint based pertur-
bation regimes against ViT, although a few studies have explored robustness against l2 and l∞ norm
constraints (Shao et al., 2021). This raises a critical security concern for reliable deployment of real-
world applications based on vision transformers. Therefore, our efforts will focus on investigating a
method capable of evaluating the robustness of convolutional DNNs as well as transformer networks
to understand the fragility of ViT in relation to CNNs under l0 norm adversarial attacks.

An NP-Hard Problem. Yielding sparse perturbations is incredibly difficult as minimizing l0 norm
leads to an NP-hard problem (Modas & Moosavi-Dezfooli, 2019; Dong et al., 2020). Existing sparse
attacks in black-box settings, particularly in decision-based scenarios, have a key shortcoming—the
algorithms require a large number of model queries to achieve sparsity and invisibility. Conse-
quently, we propose a novel evolutionary algorithm based sparse attack method in the decision-
based setting, we refer to as SparseEvo. The method is significantly more query efficient than the
state-of-the-art counterpart—Pointwise (Schott et al., 2019). We illustrate an example of a targeted
attack with our proposed algorithm in Fig. 1 on the standard computer vision task, ImageNet.

A need for Query Efficiency. In decision-based or black-box settings, achieving query efficiency
with high attack success rate is crucial to adversarial objective. Because: i) adversaries are able
to carry out attacks at scale; ii) the cost of mounting the attack is reduced; and iii) adversaries
are capable of bypassing a system that can employ methods to recognize malicious activities as a
fraud based on pragmatically large number of successive queries with analogous inputs and thwart
their attacks. Further, from a defense perspective, the lower number of queries significantly reduces
the evaluation time of both trained models and defense mechanisms. Therefore, query efficient
attack algorithms facilitate research in designing new defenses, model architectures as well as benefit
MLaaS providers by enabling the evaluation of their models prior to deployment at scale.

We summarize our contributions and results below:

• We formulate a novel sparse attack—SparseEvo—an evolution-based algorithm is capable
of exploiting access to solely the top-1 predicted label from a model to search for an ad-
versarial example in the model’s input space whilst minimizing the number of perturbed
pixels required to mislead the model.

• Our attack algorithm can significantly reduce the number of model queries compared with
the sate-of-the-art counterpart, Pointwise. Further, SparseEvo achieves comparable suc-
cess to PGD0—the state-of-the-art white-box attack—in terms of attack success rate with a
limited query budget.
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• We conduct the first vulnerability evaluation of a Vision Transformer (ViT) on the standard
computer vision task ImageNet in a decision-based and l0 norm constrained setting. We
compare results with ResNet to assess the relative robustness of the ViT model.

2 BACKGROUND AND RELATED WORK ON SPARSE ATTACKS

Adversarial Attack Primer. Three different criteria can be used to categorize adversarial at-
tacks (Chen et al., 2020); the attack goal, similarity measure used to quantify the imperceptibility of
the perturbation and the level of access to information (threat model). In terms of the attack goal, an
adversarial attack is either untargeted (an input is simply misclassified) or targeted. Meanwhile, ad-
versarial attacks can be classified into two sub-categories: white-box or black-box according to the
threat model. In the white-box setting, an adversary has full knowledge and access to the machine
learning model (Goodfellow et al., 2014; Madry et al., 2018; Xu et al., 2019; Carlini & Wagner,
2017) whereas in the black-box setting, solely the outputs of a model are exposed or accessible to
the adversary. In the black-box context, an adversary can access all or top-1 predicted score—a
score-based setting (Suya et al., 2020; Chen et al., 2017; Guo et al., 2019)—or simply the predicted
labels of a given input—a decision-based (Brendel et al., 2018; Cheng et al., 2020) setting. Im-
perceptibility, based on a similarity measure, can describe an attack as a dense attack—l2, l∞ norm
constrained adversarial attacks—or a sparse attack—l0 norm constrained adversarial attacks.

Sparse Attacks. The main aim of sparse attacks is to minimize the number of perturbed pixels
required to mislead a target machine learning model. Only a handful of works have investigated
sparse attacks and these works can be broadly categorised based on various degrees of adversarial
access to a model.

White-box methods. To realize sparse attacks in a white-box setting, SparseFool attack intro-
duced by Modas & Moosavi-Dezfooli (2019) employed the idea of l1 relaxation from (Andrei &
Ion, 2015) and exploited low mean curvature of decision boundaries for l0 minimization. JSMA
(Papernot et al., 2017) constructed a saliency map for an input to search for high impact pixels on
the model’s decision. Recently, Croce & Hein (2019) introduced PGD0 that projects the adversarial
perturbation yielded by PGD (Madry et al., 2018) to the l0 ball. This attack method is capable of
generating significantly lower l0 perturbation and was shown to outperform other white-box algo-
rithms. Therefore, we use the PGD0 algorithm as an ideal case baseline to compare the success
achievable in a black-box setting.

Score-based methods. (Su et al., 2019) proposed the One-Pixel attack based on a differential evo-
lutionary algorithm. Although the One-Pixel method is capable of searching and obtaining the most
sparse perturbation, its attack success rate (ASR) on large neural networks and high resolution im-
ages is relatively low. Importantly, the method requires significant number of queries because it
modifies one pixel at a time while the input search space, dependent on image resolution, can be
enormous. Score-based methods exploit information exposed from a change in confident score to
alter a pixel-subset in an input image; a model owner may prevent this leakage by only exposing the
top-1 predicted label to a model query.

Decision-based methods. In the decision-based setting, only the top-1 predicted label of a DNN
model is exposed to adversaries. Now, perturbing an input image slightly will not expose subtle
changes in the output corresponding to the perturbation; since only the predicted class label is re-
vealed. Therefore, a decision-based attack is the most restrictive and challenging scenario. Most
existing decision-based attack algorithms are dense attacks (the objective is to minimise L2 or L∞
distortion). Interestingly, these methods, including BA (Brendel et al., 2018), HSJA (Chen et al.,
2020), QEBA (Li et al., 2020), NLBA (Li et al., 2021), PSBA (Zhang et al., 2021), Sign-OPT Cheng
et al. (2020) or the covariance matrix adaptation evolution strategy (CMA-ES) based method for
face recognition tasks in (Dong et al., 2019), can be adapted to a sparse attack setting by a projection
to L0-ball; however this is not effective, as we show later in Appendix A.7. Although CMA-ES (Dong
et al., 2019) is an evolutionary algorithm, albeit for a dense attack, the formulation requires indi-
viduals of a population to be real number vectors that can be sampled from a Gaussian distribution.
Thus, CMA-ES is well suited to the problem of dense attacks. In contrast, the optimization problem
in a sparse attack (L0 constrained) aims to minimize the number of perturbed pixels. Importantly,
the discrete search space encountered in a sparse attack hinders the adoption of these dense attack
algorithms to search for a sparse adversarial example, efficiently.
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To the best of our knowledge, the recent attack—Pointwise (Schott et al., 2019)—applying a greedy
search method to find sparse adversarial perturbations is the first decision-based sparse method. This
method is effective in untargeted settings and on low resolution datasets, but it is seen to require
prohibitively large number of queries to achieve low sparse adversarial perturbations on large scale
datasets and in a targeted attack setting (as seen in Section 4). In summary, the current black-
box, sparse adversarial attack approaches still have shortcomings on sparsity and query efficiency.
Developing decision-based sparse attacks poses a challenging optimization problem because of:
i) limited access to only the decision of a target model; and ii) the NP-hard problem of l0 norm
constrained optimization.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

In our sparse attack setting, we are given a normalized source image x ∈ [0, 1]C×W×H and its
corresponding ground truth label y from the label set Y = {1, 2, · · · ,K} where K denotes the
number of classes, C, W and H denotes the number of channels, width and height of an image,
respectively. The classifier that we aim to attack is f : RC×W×H → Y; our access is limited to its
output label. In a targeted setting, x is perturbed such that the instance x̃ ∈ RC×W×H obtained is
misclassified to a desired class label ỹ ∈ Y selected by the adversary. We refer to the desired class
of the input x as the target class and its ground-truth class as the source class. In an untargeted
setting, the adversary manipulates input x to change the decision of the classifier to any class label
other than its ground-truth, i.e. ỹ ∈ Y where ỹ 6= y. Formally, a sparse adversarial attack (either
targetted or untargetted) to find the best adversarial instance x∗ can be formulated as a constrained
optimization problem:

x∗ = arg min
x̃
‖x− x̃‖0 s.t. f(x∗) = ỹ . (1)

where ‖‖0 is the `0 norm denoting the number of perturbed pixels. The optimization problem in
equation 1 aiming to minimize the number of perturbed pixels leads to an NP-hard problem (Modas
& Moosavi-Dezfooli, 2019; Dong et al., 2020). Thus, the solution to the optimisation problem is
non-trivial given the constraint and the fact that f is not differentiable in this setting.

3.2 SPARSEEVO ATTACK ALGORITHM

We devise an efficient parametric search method—SparseEvo—based on an evolutionary algorithm
approach to search for a desirable solution through an iterative process of improving upon poten-
tial solutions. Through a process of recombination, mutation, fitness evaluation and selection, the
quality of a population improves over time to yield a desirable solution. Importantly, our evolution-
based search method does not require prior knowledge about the underlying target model, such as
model architecture or model parameters to construct a fitness function for assessing potential solu-
tions. Consequently, this method detailed in Algorithm 1 and Fig. 2 is well-suited for solving the
non-trivial optimization problem in equation 1 in a black-box setting and provides a possible remedy
for the NP-hard problem. We detail formulation of the algorithm in the following.

Defining a Dimensionality Reduced Search Space. In applying a parametric search method to
the problem, each candidate solution can be defined as a parameter set consisting of coordinates
and RGB values defining all perturbed pixels of an adversarial input in the search space RC×W×H .
Naively applying a generic parametric search method to seek potential solutions—parameter sets—
as observed in One-pixel algorithm (Su et al., 2019), is not effective because the number of queries
to the model grows rapidly with respect to the input image size and the number of perturbed pixels.

We propose two techniques to reduce the search space. To facilitate a parametric search method, in-
stead of searching for parameters defining coordinates and RGB values of each perturbed pixel,
we propose to solely search for parameters defining coordinates of pixels in the source image
to perturb—i.e. image we aim to craft adversarial perturbations for. Constructing all candi-
date solutions which are parameter sets in a form of coordinate values is dependent on the num-
ber of perturbed pixels and hinders the method implementation. Therefore, we vectorize each
candidate solution in a population as a binary vector v ∈ {0, 1}N where 0-bits and 1-bits de-
notes non-perturbed and perturbed pixels respectively and N is the total number of pixels of an
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image. Each element of v corresponds to a pixel and the position i of each element is identified by
a mapping function φ(n,m). Here, we employ a simple flattening technique defined by a mapping
function φ(n,m) = n + W × (m − 1) where n, m are coordinates of a pixel, and W is the width
of an image to reduce the search space further. For the color values of these perturbed pixels, we
select RGB values from their corresponding pixels in a starting image from the target class (we aim
to misclasify the source image to the target class in a targeted attack). We illustrate a source image
and a starting image in the context of the algorithm in Figure 2. All candidate solutions—binary
vectors—can be changed and evolved over iterations until a desirable solution is reached. Thus our
parametric search method essentially transforms to one that will discover the minimum set of most
effective pixels to inject into the source image to construct an adversarial example. Surprisingly,
this method is shown to be an extremely effective strategy for a decision-based sparse attack.

The original search space RC×W×H is now transformed to the new search space {0, 1}N where
N = WH is the total number of pixels. In other words, a search space on RGB values and n, m
coordinates is transformed into a search space on i = φ(n,m) without exploring RGB values. As a
result, these techniques lead to a reduction in the size of the search space when compared with the
original search space.

Binary Differential
Recombination

Population

Mutation

Selection
Population Initialization 

(Algorthm 2) 

Source class 
(source image)

Target class 
(starting image)

Update

Fitness
Computation

Adversarial
Example

Construction
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Figure 2: An illustration of SparseEvo algorithm. Population Initialization creates the first popu-
lation generation. This population is evolved over iterations through Binary Differential Recombi-
nation, Mutation, Fitness Evaluation (Adversarial Example Construction and Fitness Computation)
and Selection stages. The source and starting images (used in a targeted attack) are employed to cre-
ate the initial candidate solutions —binary vector representations—at Population Initialisation and
to construct an adversarial example based on a candidate solution v(m)at Fitness Evaluation stage.

Algorithm 1: SparseEvo
Input: source image x, starting image x′, source label y, target label y∗, model f

population size p, initialization rate α mutation rate µ, query limit T
1 t← 0; V,G← InitialisePopulation(x,x′, f, p, α)
2 kw ← arg max

k
(G), kb ← arg min

k
(G) // Find best and worst individuals

3 for t = 1, · · · , T do
4 Uniformly select v(j),v(q) ∈ V \ vkb at random
5 Yield v(r) using equation 5 and v(kb),v(j),v(q) // Recombination
6 Yield v(m) by uniformly altering a fraction µ of all 1-bits of v(r) at random // Mutation
7 Construct x̃ using equation 2, with x, x′ and v(m)

8 Calculate g(x̃) using equation 3 and f(x̃) // Fitness computation
9 if g(x̃o) < Gkw then // Selection

10 Gkw ← g(x̃)

11 vkw ← v(m)

12 kw ← arg max
k

(G), kb ← arg min
k

(G)

13 end for
14 Construct x̃ using equation 2 with x, x′ and v(kb) // Build adversarial example
15 return x̃

Fitness Evaluation. Prior to describing the other phases of the algorithm, we describe the Fitness
Evaluation employed for determining the goodness of a candidate solution necessary for the Popu-
lation Initialization and the Fitness Evaluation stages, first.
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Adversarial Example Construction. Since a candidate solution—a binary vector v—is used to con-
struct an adversarial example, its fitness is measured by computing an optimization objective for its
corresponding adversarial example. Therefore, we first yield an adversarial example corresponding
to v based on the following with c, n,m representing a channel and two coordinates of a pixel.

x̃c,n,m ← (1− vi)xc,n,m + vix
′
c,n,m . (2)

The Fitness Function Formulation. A fitness function should reflect the optimization objective. In
the score-based setting, the objective is to optimize loss such that a given input can be misclassified,
a reasonable choice for the fitness function is based on output scores as in (Alzantot et al., 2019;
Qiu et al., 2021). However, in our problem, the objective to minimize l0 distortion directly results
in an NP-hard problem. To alleviate this computational burden, Modas & Moosavi-Dezfooli (2019)
relaxed l0 to l1 norm to construct the white-box attack, SparseFool and had access to the output
scores, unlike in a decision-based setting. Nonetheless, in the decision-based setting, we find that
optimizing l2 norm provides a better alternative than l1. Therefore, in this paper, we formulate our
fitness function g (for the targeted attack) as:

g(x̃)←
{
‖x− x̃‖2, iff(x̃) = ỹ

∞, otherwise
, (3)

Where x̃ is an image constructed using equation 2 and ỹ is a target class. A similar fitness function
for the untargeted attack can be formulated as equation 3 but the constraint is now f(x̃) 6= y.

Population Initialization. Recall, our search objective is to discover a minimum perturbation rep-
resented by a binary vector—candidate solution. Hence, we initialize a population of p different
candidate solutions from an initialized vector v(o) formulated as following with C number of chan-
nels.

v(o)
i ←

{
0, if xc,n,m = x′c,n,m ∀c ∈ {1, · · · ,C}
1, otherwise

(4)

Every candidate is generated by only randomly altering d 1-bits of v(o), where d = bαWHc, α is an
initialization rate. A candidate solution is successfully added to the population, if its fitness score is
not∞; we explain our fitness function in equation 3. Otherwise, another d 1-bits is randomly flipped
to generate another candidate solution. This process is repeated until all p successful candidates are
found and stored in a population set V. The corresponding fitness score of each candidate solution
is stored in a fitness score matrix G. The pseudocode of Population Initialization phase is detailed
in Algorithm 2 in Appendix A.1.

uniform

Figure 3: The Binary Differential Recombination is
shown in Algorithm 1 (line 6) and equation 5. � is
an element-wise product, v(kb),v(j),v(q) are the best
and two randomly selected candidate solutions from a
population respectively.

Binary Differential Recombination. In
some recombination methods used in ge-
netic algorithms (GA) e.g. k-point or uni-
form crossover, a couple of parents are
mated to produce an offspring for the next
generation. However, after Population Ini-
tialization stage, all first-generation par-
ents are slightly different from each other
since all of them are generated from an ini-
tialized vector v(o). Consequently, these
crossover variants lead to sub-par solutions
and low query efficiency. To address this
problem, we increase diversity in a popu-
lation. Inspired from the differential evo-
lutionary (DE) algorithms (Storn & Price,
1997), we create the next generation by mu-
tating and combining multiple existing par-

ents. Nonetheless, applying DE naively is impractical since the mutation operation of DE algorithm
adds the weighted difference of multiple selected parents to another parent to yield an offspring.
These individuals are vectors in real coordinate space so the offspring can benefit from weighted
real-valued difference but it cannot be gained in our proposed search space in which all candidate
solutions are binary vectors. Therefore, we propose Binary Differential Recombination scheme—a
hybrid method based on the uniform crossover in GA and the notion of mutation in DE.
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There are different mutation schemes which can influence the overall performance (Manolis &
Vagelis, 2020). In the problem of decision-based attacks, through our empirical results shown in
Appendix A.3, we observe that the approach of recombining the best and two selected candidate
solutions outperforms others. Hence, we first select two candidate solutions v(j),v(q) uniformly at
random from the population. We then employ uniform crossover for selecting each bit from either
selected candidate solutions with equal probability to yield a new candidate solution. Subsequently,
the best individual v(kb) in the population is recombined with the new candidate solution by altering
all 1-bits of v(kb) whose corresponding bits in the new candidate solution are 0-bits. Formally, the
Binary Differential Recombination can be formulated as:

v(r) ← v(kb) � UniformCrossover(v(j),v(q)) (5)

where � is an element-wise product. This operation is visualized in Fig. 3. As a consequence of
gaining from the difference between individuals, our method is capable of boosting evolutionary
progress as shown in Section 4.

Mutation. Diversity in the population is a key factor that enables exploration in the search space to
obtain better individuals. As a result, mutation operation aiming to promote this population diversity
is a crucial component of our method and every offspring after recombination step can be subject
to mutation. In practice, we uniformly select a fraction µ of all 1-bits of the offspring vo at random
and set these bits to zero. We do not select 0-bits for altering because it hinders the optimization
progress and requires more iteration to search for the optimum.

Selection. Our simple intuition is that individuals with better fitness values should lead to survival
over future generations. In problem 1, a smaller fitness value is better and represents a more imper-
ceptible adversarial example. To this end, if the worst individual in the population has higher fitness
value than the offspring’s, it will be discarded and the new offspring is then chosen to take its place.

4 EXPERIMENTS AND EVALUATIONS

4.1 EXPERIMENT SETTINGS

Attacks and Datasets. For a comprehensive evaluation of the effectiveness of SparseEvo, we em-
ploy two standard computer vision tasks with different dimensions: CIFAR10 (Krizhevsky et al.)
and ImageNet (Deng et al., 2009). We compare with the state-of-the-art sparse attack algorithm
in Pointwise (Schott et al., 2019) and use the white-box sparse attack PGD0 (Croce & Hein, 2019)
to benchmark against the black-box decision-based counterparts. For the evaluation sets, we se-
lect a balanced sample set. We randomly draw 1,000 and 200 correctly classified test images from
CIFAR10 and ImageNet, respectively. These selected images are evenly distributed among the
10 (CIFAR10) and 200 randomly selected (ImageNet) classes. In the targeted setting, while each
image from CIFAR10 is attacked to flip its ground-truth label to 9 target classes, a set of five target
classes are randomly selected for each image from ImageNet to reduce the computational burden
of the evaluation tasks. All of the parameter settings are summarized in Appendix A.2

Models. For convolution-based models, we use a state-of-the-art architecture—ResNet—(He et al.,
2016), particularly, ResNet18 for CIFAR10, achieving 95.28% test accuracy, and a pre-trained
ResNet-50 provided by torchvision (Marcel & Rodriguez, 2010) for ImageNet with a 76.15%
Top-1 label test accuracy. For attention-based models, we selected a pre-trained ViT-B/16 model
obtaining 77.91% Top-1 label test accuracy (Dosovitskiy et al., 2021). Notably, this model was
trained by Google on the large scale and high resolution ImageNet dataset.

Evaluation Measures. To evaluate the performance of methods, we define a normalised sparsity
measure as l0-norm distortion divided by the total number of pixels of an image and then compute
the median of sparsity over an evaluation set—since it is not sensitive to outliers. A measure used
to evaluate the robustness of a model is Attack Success Rate (ASR). A generated perturbation is
successful if it can yield an adversarial example with a sparsity below a given sparsity threshold,
then ASR is defined as the number of successful attacks over the entire evaluation set. In black-box
settings, ASR can be calculated at different sparsity thresholds after the assessment of the evaluation
set with a given query budget. Notably, there is no query constraint for PGD0. We run PGD0 with
different perturbation budgets and ASR is calculated based on the best achieved results.
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Attack initialization (targeted and untargeted). We need a starting image x′ to initialize an attack.
For targeted attacks, we consider a randomly chosen correctly classified image from the dataset. For
untargeted attacks, we may perturb the source image by adding a uniform, Gaussian (Cheng et al.,
2020; Chen et al., 2020) or salt and pepper noise (Schott et al., 2019) until it is misclassified. In
practice, we observe that employing salt and pepper noise for our untargeted attack is more effective.

Experimental Regime Summary. We conduct: 1) Attacks against conventional CNNs on
CIFAR10 and ImageNet tasks but we defer the results of CIFAR10 to Appendix A.5; 2) Attacks
Against a Vision Transformer on the ImageNet task; 3) Compare the robustness of the ViT model
with the CNN model; and we defer the following experiments to the Appendix: 4) Attacks against
defended models (Appendix A.4); 5) Comparing with an improved PointWise algorithm as a base-
line (Appendix A.7); 6) Comparing with dense attacks adapted to a sparse setting (Appendix A.8);.
Further, in addition to Figure 1, we provide more visual comparisons in Figure 10.

4.2 ATTACKS AGAINST CONVOLUTIONAL DEEP NEURAL NETWORKS
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Figure 4: Evaluation set from ImageNet using the ResNet50 model with image size (W×H):
224×224. a) Median sparsity with the first and third quartiles used as lower and upper error bars
versus the number of model queries; and b) attack success rate versus sparsity thresholds.

Query Efficiency Evaluation. Fig. 4a shows the median sparsity against model query budgets
on the ImageNet task. Our attack consistently outperforms the the Pointwise method in terms
of queries and sparsity. In the untargeted setting, SparseEvo achieves a lower sparsity than the
Pointwise attack under various query budgets. In the targeted setting, our attack is able to craft
adversarial images with extremely sparse perturbation within 20,000 queries for most images from
ImageNet but Pointwise does not perform well in this task.

Attack Success Rate. Fig. 4b illustrates ASR against different sparsity threshold at different query
budgets for SparseEvo on the ImageNet task and we compare with the best achievement of PGD0

(ideal, whitebox attack) and Pointwise (decision-based sparse attack). In the untargeted setting, we
observe that SparseEvo achieves a higher ASR than Pointwise employing a 5,000 query budget with
the small budget of 1,000 queries. In the targeted setting, our attack with a 10,000 query budget
demonstrates significantly better ASR than Pointwise employing 20,000 queries. Interestingly, a
small query budget of 5,000 queries is adequate to achieve the same ASR as the white-box setting
in the PGD0 attack in the untargeted setting, while around 20,000 queries achieves comparable
performance to the ideal white-box setting for a targeted attack. This is significant for decision-
based attacks since adversaries are given very limited access to a the model.

The evaluation results with CIFAR10 in Appendix A.5 confirm the the observations on the
ImageNet task and demonstrate the generalizability of the SparseEvo algorithm. We also sum-
marise results at query budgets and attack settings on the two vision tasks in Table 2 in the Appendix.

4.3 ATTACKS AGAINST A VISION TRANSFORMER

Query Efficiency Evaluation. Fig. 5a shows the median sparsity against the queries. With a limited
number of queries, SparseEvo is able to achieve significantly lower sparsity than Pointwise in both
targeted and untargeted setting. While our attack is able to converge to a extremely high sparsity
after 3,000 and 15,000 queries for untargeted and targeted setting, respectively. Pointwise fails to
converge to lower values in both settings.

Attack Success Rate. Fig. 5b illustrates that with only 1000 queries, SparseEvo outperforms Point-
wise with a 5,000 query budget across all different sparsity thresholds. Notably, in the untargeted
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Figure 5: Evaluation set from ImageNet using the ViT model with image size (W×H): 224×224.
a) Median sparsity with the first and third quartiles used as lower and upper error bars versus the
number of model queries; and b) attack success rate versus sparsity thresholds.

setting, SparseEvo with a query budget of 5,000 is able to achieve slightly higher ASR than the ideal
white-box PGD0 from a sparsity threshold of 0.002. In the harder, targeted setting—SparseEvo with
only 15,000 queries is able to obtain marginally lower ASR than PGD0 whereas with a 20,000 query
budget, our attack is as robust as PGD0 when sparsity threshold is larger than 0.01.

4.4 COMPARE THE ROBUSTNESS OF THE TRANSFORMER AND THE CNN

In this section, we compare the robustness of ViT and ResNet50 models to sparse perturbation
in untargeted and targeted settings. Fig. 6 reports the accuracy of these models over adversarial
examples of an evaluation set of 100 images from ImageNet. We summarise results at query
budgets and attack settings in Table 3 in the Appendix. Overall, we find that the performance of ViT
degrades as expected but it appears to be less susceptible than the ResNet50 model. Particularly,
in the untargeted setting, the accuracy of ViT across different sparsity thresholds is higher than the
ResNet50 model under both SparseEvo and PGD0. Interestingly, SparseEvo only needs a small
query budget of 2,000 to degrade the accuracy of ResNet50 that is similar to white-box PGD0,
while up to 5,000 queries are needed to make SparseEvo attack on ViT worse than PGD0. In the
targeted scenario, we observe that at a low query budget e.g. 10,000, ResNet50 is much more
robust than ViT under SparseEvo whereas at 20,000 queries, the accuracy of both ResNet50 and
ViT models is almost analogous and drops to approximately zero when sparse perturbation is larger
than 0.02. Notably, SparseEvo with a sufficient query limit e.g. 20,000 is able to maintain its
attack effectiveness against both ViT and ResNet50 while attack effectiveness of PGD0 is reduced—
demonstrated by lower accuracy scores—when attacking ViT.
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Figure 6: Attack success rate versus sparsity thresholds at different query budgets for the evaluation
set from ImageNet with ViT vs ResNet. PGD0 is a white-box attack (ideal).

5 CONCLUSION

In this work, we propose a new algorithm for a sparse attack—SparseEvo—under a decision-based
scenario. Our comprehensive results demonstrate SparseEvo outperforms the state-of-the-art black-
box attack in terms of sparsity and ASR within a given query budget. More importantly, in a high
resolution and large scale dataset, SparseEvo illustrates significant query-efficiency and remark-
ably lower sparsity when compared with the existing sparse attacks in the black-box setting. Most
notably, our black-box attack, under small query budgets, achieves comparable success to the state-
of-the-art white-box attack—PGD0 (for further insights we refer the reader to Appendix A.9).
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A APPENDIX

A.1 POPULATION INITIALIZATION

Algorithm 2 presents pseudo-code for our Population Initialization approach as presented in Sec-
tion 3.2.

Algorithm 2: InitialisePopulation
Input: source image x, starting image x′, source label y, target label y∗, model f

population size p, initialization rate α
1 V← Ø,G←∞
2 n← bαWHc // W, H are image width and height
3

4 Generate a binary vector v using equation 4
5 for t = 1, 2, · · · , p do
6 while True do
7 Generate v(o) by uniformly altering n of all 1-bits of v at random
8 Construct x̃ using equation 2 with x, x′ and v(o)

9 Calculate g(x̃) using equation 3 and f(x̃) // Calculate Fitness Score
10

11 if g(x̃) < Gt then
12 Gt ← g(x̃)

13 V← V ∪ {v(o)}
14 break
15 end while
16 end for
17 return V,G

12

https://doi.org/10.1023/A:1008202821328
https://arxiv.org/abs/1312.6199


Published as a conference paper at ICLR 2022

A.2 HYPER-PARAMETERS

We list in in Table 1 the key hyper-parameters used for SparseEvo on the two different evaluation sets
across CIFAR10 and ImageNet. This hyperparameter set can be applicable for attacking against
ViT-B/16 on large scale and high resolution dataset—ImageNet. Notably, we only needed to
adjust the mutation rate for when moving from the high resolution to the low resolution CIFAR10
task; thus, our method provides a robust algorithm that can be easily adopted for different vision
tasks.

The image size used in all our ImageNet experimental tasks (including experiments on ResNet50
and ViT models) is (3 channels) × 224 (W) × 224 (H). This is the standard input size for the
pre-trained model (PyTorch) on the ImageNet dataset we used.

Table 1: Hyper-parameters setting in our experiments

Parameters CIFAR10 ImageNet
Untargeted Targeted Untargeted Targeted

Population size (p) 10 10 10 10
Initialization rate (α) 0.004 0.004 0.004 0.004

Mutation rate (µ) 0.04 0.01 0.004 0.001

A.3 ROBUSTNESS TO HYPER-PARAMETERS AND INVESTIGATING RECOMBINATION AND
MUTATION SCHEMES

In this section, we conduct comprehensive experiments to study the impacts of hyper-parameters
used in our algorithm and different recombination and mutation schemes we considered. These
experiments are carried on 1,000 randomly selected images from CIFAR10 in an untargeted setting.
For the hyper-parameter study, we tune population size or mutation rate at a time while using the
scheme of recombining the best and two randomly selected candidates from the population as well
as the scheme of mutating only 1-bit binary values.

Fig. 7a shows that with different population sizes and a mutation rate of 0.04, even a small popula-
tion size of 10 is adequate for SparseEvo to converges rapidly. Our method with a larger population
size almost converges to as low sparsity as the population size of 10 after 200 queries. So population
size has a small impact on the overall performance of SparseEvo. A mutation rate at 0.04 and fixed
population size of 10, the algorithm performs well and converges fastest to a low sparsity compared
to others mutation rates as shown in Fig. 7b. Consequently, our attack method is more influenced by
the mutation rate but this is not unexpected.

Query

Population Size 

Population Size = 10
Population Size = 20
Population Size = 40
Population Size = 50

Mutation rate = 0.04
Mutation rate = 0.03
Mutation rate = 0.02
Mutation rate = 0.01

Query

Mutation rate

S
pa

rs
ity

Recombination schemes

Query
best & 2 random candidates
3 random candidates
2 random candidates

Query

Mutation schemes

1-bits mutation
0&1-bits mutation 0.8
0&1-bits mutation 0.9

S
pa

rs
ity

a) b) c) d)

Figure 7: Sparsity versus number of model queries on CIFAR10with ResNet18 to show the impacts
of different hyper-parameters on SparseEvo.

To evaluate how different schemes of recombination and mutation steps affect our method, we use
the population size of 10 and mutation rate of 0.01 and change the recombination or mutation
scheme, one at a time. Figure 7c illustrates that recombining three randomly selected individu-
als does not achieve as high query-efficiency as the scheme of recombining the best and other two

13



Published as a conference paper at ICLR 2022

randomly selected from the population. For mutation schemes, we intend to mutate merely 1-bits—
1-bits mutation—or both 0-bits and 1-bits—0 & 1-bits mutation—of a binary vector at a time. For
1-bits mutation scheme, we randomly alter a factor µ of all 1-bits of a selected binary vector. For
schemes mutating both 0-bits and 1-bits, we randomly flipped n 1-bits and n(1−β)

β 0-bits where
n = µβ. We find that the scheme of mutating only 1-bits performs marginally better than other
schemes with β = 0.8 and β = 0.9 because mutating both 0 and 1-bits possible slows down the
convergent speed as illustrated in Figure 7d.

A.4 ROBUSTNESS OF SPARSE ATTACKS AGAINST AN ADVERSARIALLY TRAINED MODEL

In this section, we study the robustness of different sparse attacks against adversarially trained
ResNet-18 network on the CIFAR10 task using l∞ perturbations—one of the most effective de-
fense mechanisms against adversarial attacks (Athalye et al., 2018). The accuracy of this adversari-
ally trained network is 83.87%. We choose PGD0 (Croce & Hein, 2019), a state-of-the-art white-box
attack as a baseline for comparison. The adversarial training based models used in this experiment
is trained with Projected Gradient Descent (PGD) adversarial training proposed by Madry et al.
(2018).

The experiment is conducted on a balance evaluation set withdrawn from CIFAR10 randomly (we
describe the dataset in Section 4.1. Median sparsity against the number of queries is shown in
Figure 8. The results indicate that SparseEvo converges faster than the Pointwise attack. Figure 8
also shows the attack success rate (ASR) at different distortion levels and query limits for different
attack methods against the adversarially trained model. We observe that our attacks are able to obtain
a comparable performance with the ideal white-box PGD0 baseline attacks with a very limited query
budget of merely 500 queries. Meanwhile SparseEvo is comparable with Pointwise with a given
query budget of 200, and outperforms Pointwise with a query budget of 500.
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Figure 8: Different sparse attacks against an adversarially trained model on the CIFAR10 task. We
show sparsity versus queries and ASR versus sparsity two different query budgets: 200 and 500.

A.5 ATTACKS AGAINST A CNN MODEL FOR THE CIFAR10 TASK

Fig. 9a shows the median sparsity against the queries as well as the first and third quartiles used as
lower and upper error bars. The figure provides a comprehensive comparison for different attacks on
the evaluation set from CIFAR10 in both untargeted and targeted settings. Our attack consistently
outperforms the the Pointwise attack in terms of queries and sparsity. Particularly, in the untargeted
setting, our attack is able to craft adversarial images by perturbing extremely low number of pixels,
on average within 2,000 queries for most images on CIFAR10; while Pointwise only obtains a
sparsity of 0.75 for this evaluation set. In the targeted setting, SparseEvo converges to a lower
sparsity than the Pointwise attack with a given query budget.

Attack Success Rate. Figure 9b illustrates ASR against different sparsity threshold at different
query budgets for SparseEvo on the evaluation set from CIFAR10 and also compare with the best
achievement of PGD0 (ideal, white-box baseline) and Pointwise (state-of-the-art black-box sparse
attack). In the untargeted setting, we observe that SparseEvo using 200 queries or more achieve
higher success rates than Pointwise using 500 queries. Notably, the our black-box sparse attack can
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achieve comparable ASR to PGD0 with a small query budget of 500 queries. In the targeted setting,
with only 500 queries our attack demonstrates significantly better ASR than Pointwise across all
sparsity thresholds, while SparseEvo achieves marginally lower ASR than PGD0 (ideal, white-box
baseline) with a query budget of 2,000.
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Figure 9: Evaluation set from CIFAR10 using a ResNet18 model. a) Median sparsity with the first
and third quartiles used as lower and upper error bars versus number of model queries; and b) attack
success rate (ASR) versus sparsity thresholds.

Table 2: Median sparsity and ASR at different query budgets. A comprehensive comparison among
different attacks (PGD0, Pointwise and SparseEvo) on small and large scale balance datasets.

Setting Query Methods CIFAR10 Query ImageNet
budget Median ASR budget Median ASR

Untargeted

PGD0 0.0059 99.8% 0.0005 100%

200 Pointwise 0.0078 88.0% 2000 0.0016 68.0%
SparseEvo 0.0049 96.5% 0.0008 96.5%

500 Pointwise 0.0078 96.2% 5000 0.0012 77.0%
SparseEvo 0.0049 99.2% 0.0008 99.0%

Targeted

PGD0 0.0703 99.8% 0.0061 99.0%

1000 Pointwise 0.9612 0.0% 10000 0.9997 0.0%
SparseEvo 0.0311 96.5% 0.0511 48.5%

2000 Pointwise 0.7863 0.0% 20000 0.9975 0.0%
SparseEvo 0.0251 99.6% 0.0076 99.1%

Table 3: Accuracy of ResNet50 and ViT under attacks at different query budgets and sparsity thresh-
olds. A comprehensive comparison among different attacks (PGD0 and SparseEvo) on small and
large scale balanced evaluation sets from ImageNet

Setting Methods Query Budget ResNet50 ViT
Sparsity 0.002 0.004 0.002 0.004

Untargeted
PGD0 na 5% 0.0% 31% 14%

SparseEvo 2000 20% 5% 45% 25%
5000 17% 0.0% 35% 7%

Sparsity 0.02 0.03 0.02 0.03

Targeted
PGD0 na 2.0% 1.2% 4.4% 0.2%

SparseEvo 10000 66.8% 52.8% 20% 9.0%
20000 2.2% 0.6% 2.4% 0.2%

A.6 ALGORITHMIC COMPARISON WITH POINTWISE

In this section, we discuss why SparseEvo is capable of searching for a desirable solution (an adver-
sarial example with a smaller number of perturbed pixels) with much fewer queries.
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1. Greedy vs. Evolutionary approach. Pointwise chooses to greedily minimize the number
of perturbed pixels by randomly selecting and altering one dimension (i.e. single colour
channel) of a randomly selected pixel position i,j of the starting image x′ ∈ RC×W×H at a
time (i.e per query). If the alternation successfully fools the model, it will be retained; oth-
erwise, the change will be discarded. In contrast, SparseEvo evaluates candidate proposals
to alter several pixels at a time and all dimensions of a pixel simultaneously to yield new
candidates solutions or offspring for the next evolution; so it is able to converge faster and
with less queries.

2. Smaller search space. Pointwise formulation leads to a search space with a size of C ×
W ×H where C is the three RGB channels, W is image width and H is image height. We
reduce this search space to W ×H because SparseEvo solely searches for pixel positions
but does not try to search for different colors for each pixel (see “Defining a Dimensionality
Reduced Search Space” in Section 3.2 and Appendix A.7).

3. Better scalability to large image sizes. Given that PointWise only changes one dimension
at a time (i.e a pixel), to reduce the number of starting image (target class) pixel values
different from the source image (to minimize l0), the random selection method needs to
select: i) the same pixel position i, j; and ii) a different colour channel for the same pixel
position i, j in subsequent iterations to move a given pixel value i, j in a starting image
(target class image) to be the same as the source image. While this is more likely in a small
image task (with smaller W and H values) like CIFAR10, it is far less likely, even within
the 20,000 query budget used with large input images in the ImageNet task where mean
sparsity values for the 1000 test image pairs remain nearly 1.

4. Iterative improvements to “good” solutions. Importantly, our approach formulates a search
for a solution with the minimum number of perturbed pixels through an iterative process of
improving upon good solutions from previous iterations informed by our objective function.
In contrast, Pointwise employs a purely random method to select the pixel dimension and
position i, j to alter.

A.7 COMPARISON WITH AN IMPROVED POINTWISE ALGORITHM AS A BASELINE

Table 4: Mean sparsity measure at different queries (lower is better) for a targeted attack setting. A
comparison between SparseEvo and improved Pointwise on a set of 100 image pairs on ImageNet
(here PW-np denotes PointWise with number of selections set to np and italicised fonts indicate the
best results for PW.)

Query Budgets 1 500 1000 2000 4000 8000 12000 16000 20000
PW(published version) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PW-4 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93 0.88
PW-8 1.00 1.00 1.00 1.00 0.99 0.94 0.81 0.58 0.35

PW-16 1.00 1.00 1.00 0.99 0.94 0.64 0.45 0.42 0.40
PW-32 1.00 1.00 0.99 0.95 0.71 0.54 0.50 0.46 0.42
PW-64 1.00 1.00 0.95 0.78 0.67 0.62 0.56 0.51 0.46
PW-128 1.00 0.96 0.84 0.77 0.74 0.67 0.61 0.56 0.52

SparseEvo 1.00 0.76 0.63 0.46 0.26 0.08 0.03 0.01 0.01

PointWise randomly selects and alters one dimension (a colour channel) of a randomly selected
pixel position i, j of an image x′ ∈ RC×W×H at a time (i.e per query). Therefore, the Pointwise
formulation leads to a search space with a size of C ×W ×H where C is the three RGB channels,
W is image width and H is image height. Consequently, it is not scalable to large image sizes, for
example ImageNet with a size of 224× 224; this can be observed in Fig. 4 and 5.

In this section, we attempted to make PointWise more query efficient on ImageNet by modifying
PointWise to perform multiple selections at a time (i.e per query) and perform a series of experiments
using different selection parameters np. Table 4 shows the mean sparsity obtained by our improved
Pointwise method with different selection parameter values; np = 4, 8, 16, 32, 64, 128. The results
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show that the best performance of the modified Pointwise algorithm—PW-8—is much better than
the original implementation but it is still far behind our method. SparseEvo still outperforms our
improved Pointwise algorithms across various query budgets.

A.8 COMPARISON WITH DENSE ATTACKS ADAPTED TO CONSTRUCT SPARSE ATTACKS

We are motivated to investigate if decision-based dense attacks (l2 and l∞ constrained) such as
BA (Brendel et al., 2018), HSJA (Chen et al., 2020), QEBA (Li et al., 2020), NLBA (Li et al.,
2021), PSBA (Zhang et al., 2021), SignOPT (Cheng et al., 2020) or RayS (Chen & Gu, 2020) can
be adapted to a sparse setting by a projection to l0-ball. This idea is promising because PGD can be
successfully adapted to a sparse setting to provide a sparse attack algorithm in a white-box setting.
In this section, we conduct a study to evaluate this idea by modifying the HSJA method because it is
shown to be a query-efficient decision-based dense attack (l2 and l∞ constraint), to an l0 constraint
algorithm called l0-HSJA. Notably, the same could be done for other methods e.g. QEBA, NLBA,
PSBA, SignOPT, or RayS.

Importantly, the authors of HSJA proposed two different ways of gradient estimation purposely for-
mulated for l2 and l∞ scenarios. However, the l0 distance metric is non-differentiable and therefore
is ill-suited for standard gradient descent (Carlini & Wagner, 2017; Fan et al., 2020) so we leverage
l2 to estimate the gradient. The difference between the l0-HSJA algorithm and published HSJA is
the projection step. Instead of performing l2 and l∞ projection steps as in HSJA, l0-HSJA performs
an l0 projection as in the PGDl0 method. To search for the minimum number of pixels to perturb,
we adopt a binary search to minimise l0. At each iteration (with the discovered adversarial sample
from HSJA), we perform the following projection procedure:

1. l0-HSJA sorts pixel differences between the sample adversarial crafted by HSJA and the
source image.

2. l0-HSJA then performs a binary search for k denoting the minimum number of (perturbed)
pixels to retain from the sample adversarial crafted by HSJA. Here, k=ur+lr2 where lr and
ur are lower and upper ranges, initialized with 0 andN , respectively. N is the total number
of pixels in an image.

3. Subsequently, we create a candidate sparse adversarial example by keeping only the top-k
pixels of the HSJA crafted adversarial sample and replacing the rest of the pixels of the
crafted sample with their corresponding pixel in the source image we plan to fool. These
top-k pixels have the least difference to their corresponding pixels. This yields the projected
image xp for evaluation. If the projected sample can mislead a victim model successfully,
ur is updated with k (to search for a lower number of perturbed pixels). Otherwise, lr is
updated with k.

4. This step is repeated until the ur and lr difference is less than or equal to the threshold 1.

For the following iteration of l0-HSJA, we use the projected image xp to craft a new adversarial
example x′p to attempt to improve upon the projected adversarial example from the current iteration.

The results we obtained, shown in Table 5, illustrate the average sparsity for a set of 100 image
pairs on CIFAR10. Our evaluations show that applying l0 projection to dense attacks (formulated
for l2 and l∞ methods) does not yield a query efficient sparse attack aiming to minimize the number
of perturbed pixels. We can understand this result, because, at each projection step, the modified
l0-HSJA algorithm still requires a large number of queries to determine a projection that minimises
l0 (in other words, to determine the minimum number of pixels to retain where the crafted sample is
still adversarial).

To the best of our knowledge, there is no efficient method in a black-box decision-based setting to
determine how many pixels and which pixels can be selected to be projected such that the perturbed
image does not cross the unknown decision boundary of the DNN model. Additionally, the problem
of minimizing the number of selected pixels to be projected leads to an NP-hard problem (Modas
& Moosavi-Dezfooli, 2019; Dong et al., 2020). Although we use the projected image with the
minimum number of perturbed pixels, l2 and l∞ decision-based attacks require perturbing a whole
image in the following iteration, thus the next iteration does not necessarily move the input towards
the objective of minimizing the number of perturbed pixels. Thus, l0-HSJA and other dense methods
do not provide an efficient algorithm for sparse attacks.
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Table 5: Mean sparsity measure at different queries (lower is better) for a targeted setting. A com-
parison between l0-HSJA and SparseEvo on a set of 100 image pairs on CIFAR10

Queries 1 500 1000 2000 4000 8000 12000 16000 20000
l0-HSJA 1.00 0.82 0.95 0.92 0.92 0.95 0.95 0.94 0.94

SparseEvo 1.00 0.36 0.027 0.025 0.025 0.025 0.025 0.025 0.025

A.9 A DISCUSSION ON RESULTS WITH THE WHITEBOX BASELINE

Notably, PGD0 is an adapted-to-l0version of the PGD attack with a projection. PGD0 simply
projects the adversarial example generated by PGD attack onto the l0-ball (we described the process
in Appendix A.8 earlier regarding adopting non-sparse decision based attacks). This projection does
not guarantee that a projected solution yields the best gradient descent direction for the following
iteration of PGD to find an adversarial example that minimises l0. Hence, even with full access to
the model, PGD0 may not always yield the optimal solution but rather an approximation. So PGD0

may not always be an upper bound for the attack performance, particularly in the untargeted setting
on ImageNet as shown in Figure 5(b) and the second plot of Figure 6.
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A.10 VISUALIZATION OF SPARSE ADVERSARIAL EXAMPLES

Target model - Vision Transformer

Target model - ResNet50

2000 4000 6000 8000 10000

Target class Source class

Target model - Vision Transformer

Target model - ResNet50

Query Budget

Target class Source class

Figure 10: Visualisations from a targeted attack Settings. Malicious instances generated for a sparse
attack with different query budgets using our SparseEvo attack algorithm employed on black-box
models built for the ImageNet task.

19


	Introduction
	Background and Related Work on Sparse Attacks
	Proposed Method
	Problem Formulation
	SparseEvo Attack Algorithm

	Experiments and Evaluations
	Experiment Settings
	Attacks Against Convolutional Deep Neural Networks
	Attacks Against a Vision Transformer
	Compare The Robustness of the Transformer and the CNN

	Conclusion
	Appendix
	Population Initialization
	Hyper-parameters
	Robustness to Hyper-Parameters and Investigating Recombination and Mutation Schemes
	Robustness of Sparse Attacks Against an Adversarially Trained Model
	Attacks Against a CNN Model for the CIFAR10 Task
	Algorithmic Comparison with PointWise
	Comparison with an Improved PointWise Algorithm as a Baseline
	Comparison with Dense Attacks Adapted to Construct Sparse Attacks
	A Discussion on Results with the Whitebox Baseline
	Visualization of Sparse Adversarial Examples


