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ABSTRACT

Unsupervised anomaly detection methods typically learn the feature patterns of
normal samples during training, subsequently identifying samples that deviate
from the learned patterns as anomalies during testing. However, most existing
methods assume that the normal patterns in the test set are similar to those in the
training set, ignoring the fact that a limited number of training samples may not
cover all possible normal patterns. As a result, when the normal patterns in the
test set differ from those in the training set, the model may struggle to distin-
guish whether these samples are normal or anomalous, leading to incorrect pre-
dictions. To address this issue, we propose a novel Test-time Contrastive learning
approach for unsupervised Anomaly Detection in tabular data (namely TCAD).
Specifically, TCAD consists of two core stages: Collaborative Dual-task Training
and Test-Time Contrastive Learning. In training, Collaborative Dual-task Training
uses two self-supervised tasks to capture multi-level features of normal samples
and model normal patterns. At test time, Test-Time Contrastive Learning assigns
pseudo labels to high-confidence samples and updates the model in two ways:
First, it facilitates model adaptation to pseudo-normal samples while preventing
overfitting to pseudo-abnormal ones. Second, it employs a KNN-based contrastive
strategy to align pseudo-normal samples with the training distribution while push-
ing pseudo-abnormal samples away. By combining robust normal pattern model-
ing with iterative test-time adaptation, TCAD improves anomaly discrimination,
especially under distribution shifts between training and test sets. We construct
distribution shifts on 15 widely used tabular datasets, and the results show that
TCAD achieves state-of-the-art performance, outperforming the best baseline by
4.19% in AUC-ROC, 3.15% in AUC-PR, and 6.64% in F1 score.

1 INTRODUCTION

Anomaly detection aims to identify data points that deviate significantly from the majority of in-
stances in a dataset (Zha et al., 2020) and plays a crucial role in various fields, such as medical
diagnosis (Fernando et al., 2021), network intrusion detection (Ahmad et al., 2021; Qiao & Pang,
2023; Qiao et al., 2024b; Niu et al., 2024), financial fraud detection (Al-Hashedi & Magalingam,
2021; Qiao et al., 2024a; 2025), and industrial inspection (Liu et al., 2024). Due to the difficulty of
obtaining labeled anomaly data in real-world scenarios, unsupervised anomaly detection methods
that utilize only normal samples for training have become the mainstream approach.

Existing unsupervised anomaly detection methods can be broadly classified into 4 categories:
one-class classification methods (Schölkopf et al., 1999; Ruff et al., 2018), clustering/feature-
distribution-based methods (Liu et al., 2022; Ali et al., 2024; Li et al., 2022), reconstruction-based
methods (Schlegl et al., 2017; Gong et al., 2019), and self-supervised learning methods (Schlegl
et al., 2017; Gong et al., 2019). Although these methods differ in their design strategies, they share
a common core idea: learning feature patterns from normal samples during the training phase and
identifying test samples that deviate from these learned patterns as anomalies during the testing
phase.

However, most existing methods overlook the fact that limited training samples cannot encompass
all possible patterns of normal samples. When the representations of normal test samples deviate
from the learned representation space, it becomes challenging for the model to distinguish between
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normal and abnormal samples, resulting in many incorrect predictions. As illustrated in Fig. 1, case
(a) represents a scenario where the representations of normal samples in the test set are aligned with
those in the training set, maintaining a clear separation from the representations of abnormal sam-
ples. In contrast, case (b) depicts a scenario where the representations of normal samples in the test
set are misaligned with those in the training set. Existing methods typically identify anomalies by
detecting samples that deviate from known representation space during testing. Therefore, in case
(b), they classify test samples that are misaligned with the representations of normal samples in the
training set as anomalies, resulting in many incorrect classifications. Intuitively, allowing a trained
model to adapt to the test data could help align the representation spaces of the training and test sets,
thereby reducing the likelihood of falsely identifying normal test samples as anomalies. However,
this adaptation poses a critical challenge: if the model learns representations of potentially anoma-
lous samples during the adaptation process, it may compromise its ability to distinguish between
normal and abnormal instances, ultimately impairing anomaly detection. Therefore, it is crucial to
ensure that the model retains its discriminative capability while undergoing adaptive optimization.

Figure 1: Two cases of the sample distribu-
tion. (a) The normal pattern in the test set aligns
with that in the training set, while remaining
far from the abnormal pattern. (b) The normal
pattern in the test set is misaligned with that
in the training set and overlaps with the abnor-
mal pattern. (c) During the test-time contrastive
learning, TCAD employs self-supervised tasks to
learn multi-level features of pseudo-normal sam-
ples, while avoiding accurate reconstruction of
pseudo-abnormal samples. Additionally, TCAD
employs k-nearest neighbor contrastive learning
to pull pseudo-normal samples closer to the train-
ing distribution and push pseudo-anomalous sam-
ples away from it.

In this paper, we propose TCAD, a novel test-
time contrastive learning approach for unsuper-
vised anomaly detection in tabular data. TCAD
comprises two key stages: (1) Collaborative
Dual-task Training, and (2) Test-Time Con-
trastive Learning. During training, TCAD em-
ploys a dual-task learning framework that in-
tegrates a main task and an auxiliary task to
capture multi-level feature representations of
samples. This design facilitates the effective
extraction of latent patterns associated with
normal samples in the training set. During
testing, instead of indiscriminately assigning
high anomaly scores to all samples that devi-
ate from known normal patterns, TCAD em-
ploys test-time contrastive learning (TTCL) to
refine the anomaly detection process. As shown
in Fig. 1(c), at test time, the core idea of
TTCL is to enable the model to learn multi-
level representations of test samples, while op-
timizing their embeddings such that pseudo-
normal samples are pulled closer to the training
distribution (blue dashed circle) and pseudo-
abnormal samples are pushed away from it (red
dashed circle). Specifically, TTCL first assigns
pseudo-labels to high-confidence samples pre-
dicted by the model. It then employs self-
supervised tasks to help the model learn multi-
level feature representations of pseudo-normal
samples, while avoiding accurate reconstruc-
tion of pseudo-abnormal samples. Next, TCAD
performs k-nearest neighbor (KNN) contrastive
learning in the embedding space to optimize the
feature representations of samples. Finally, the
optimized model is used to repeat the same process on the remaining unlabeled test samples until
all samples are assigned pseudo-labels. Extensive experiments on 15 tabular datasets demonstrate
that our method achieves state-of-the-art performance, outperforming the previous best approach by
nearly 7% in average F1 score across all datasets.

Our main contributions can be summarized as follows:

• We investigate a practical yet underexplored problem in unsupervised anomaly detection,
where the distribution of normal samples in the test set deviates from that in the training
set.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose a novel test-time contrastive learning approach for unsupervised anomaly de-
tection in tabular data under the studied setting, which enhances the model’s ability to
effectively distinguish test samples that deviate from known normal patterns.

• Two core stages, Collaborative Dual-task Training and Test-Time Contrastive Learning, are
designed to capture multi-level feature representations of samples and enhance the model’s
capacity to discriminate between normal and abnormal samples during testing.

• Extensive experiments on 15 tabular datasets demonstrate that our method outperforms 13
unsupervised anomaly detection baseline models. TCAD outperforms the best baseline by
4.19% in AUC-ROC, 3.15% in AUC-PR, and 6.64% in F1 score.

2 RELATED WORK

2.1 UNSUPERVISED ANOMALY DETECTION

Unsupervised anomaly detection, which does not rely on anomaly labels during the training phase, is
one of the most practical approaches to anomaly detection. Existing studies typically aim to learn the
underlying feature patterns of normal samples during the training phase by modeling their feature
distributions, densities, compact embeddings, and internal structures. At test time, samples that
significantly deviate from these learned normal patterns are classified as anomalies. These methods
can be broadly classified into 4 categories: One-class classification-based methods (Schölkopf et al.,
1999; Tax & Duin, 2004; Ruff et al., 2018; Goyal et al., 2020; Massoli et al., 2021; Xu et al.,
2024) learn a decision boundary that encloses the normal samples, classifying those that fall outside
this boundary as anomalies during testing. Clustering/feature-distribution-based methods (Breunig
et al., 2000; Zong et al., 2018; Liu et al., 2022; Ali et al., 2024; Li et al., 2022) detect anomalies
by estimating the density of data points or evaluating their positions within the feature distribution.
Reconstruction-based methods (Schlegl et al., 2017; 2019; Gong et al., 2019; Zavrtanik et al., 2021;
Zaheer et al., 2022; Zhang et al., 2023; Guo et al., 2024) learn compact embeddings to model normal
feature patterns and classify samples with high reconstruction errors as anomalies. Self-supervised
learning-based methods (Bergman & Hoshen, 2020; Qiu et al., 2021; Shenkar & Wolf, 2022; Yin
et al., 2024) design auxiliary tasks to uncover latent data structures and patterns; samples that fail
these tasks at test time are flagged as anomalies.

Although these methods adopt a variety of model architectures, they all share the assumption that
the distribution of normal samples in the test set is similar to that in the training set. As a result, all
samples that deviate from the training distribution are detected as anomalies. In contrast, our pro-
posed method explicitly addresses the practical challenge where the distribution of normal samples
in the test set may differ from that in the training set. Consequently, it achieves improved detection
performance on datasets exhibiting distributional shifts.

2.2 TEST-TIME ADAPTION

Test-time training (TTT), a domain adaptation approach, aims to mitigate performance degradation
caused by domain shift by enabling models to adapt to test data without labels. It introduces a self-
supervised task during training, which is later used to fine-tune the model at test time, improving
robustness to distributional changes (Kouw & Loog, 2018; Liu et al., 2021a; Sun et al., 2020).
Various self-supervised tasks have been proposed to enhance model performance during the testing
phase, including rotation prediction(Feng et al., 2019; Sun et al., 2020), moment matching(Long
et al., 2018; Liu et al., 2021b), entropy minimization(Shu et al., 2022), self-training (Zou et al.,
2019; Jang et al., 2023), etc. In addition, several approaches have been proposed recently in anomaly
detection to address the issue of distribution shift. For example, AnoShift (Dragoi et al., 2022)
constructs datasets where shifts naturally emerge over time. Kim et al. (2024) adapt models at test
time to potential normal data in time series anomaly detection tasks. OWAD (Han et al., 2023)
combines human supervision with unsupervised methods to reduce the labeling cost induced by
distribution shift. Cao et al. (2023) and Carvalho et al. (2023) tackle image anomaly detection by
learning distribution-invariant representations to mitigate the shift problem.

Although TTT has achieved promising results in many tasks, its application to unsupervised anomaly
detection tasks remains challenging. The fundamental reason lies in the fact that unsupervised
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anomaly detection models are trained without access to anomalous samples, while such anomalies
may exist in the test set. If the model inadvertently learns the feature representations of anomalies
during adaptation, it may entirely lose its ability to detect them. To address this issue, our proposed
method explicitly considers the possible presence of anomalies during test-time training. It prevents
the model from accurately modeling abnormal patterns and pushes anomalous samples away from
the learned distribution.

3 METHODOLOGY

Figure 2: The overview of TCAD. During the training phase, TCAD utilizes two reconstruction
tasks to extract multi-level feature information from the training samples. The main task recon-
structs the input samples to capture low-level features, while the auxiliary task reconstructs their
embeddings to capture high-level features. During the testing phase, TCAD iteratively updates the
trained model using Test-Time Contrastive Learning, which adapts the model to the characteristics
of high-confidence samples while refining their embedding distributions relative to the training sam-
ples.

3.1 PROBLEM STATEMENT

In this paper, we focus on unsupervised anomaly detection methods in tabular data that do not rely
on labeled anomalies during training. Specifically, these methods are trained solely on datasets
composed of normal samples. Given the training set Dtrain = {xtrain

i }Ni=1 and test set Dtest =

{xtest
i }N ′

i=1, N and N ′ represent the number of training set and the test set respectively, α is the con-
tamination rate of the test set Dtest. Unsupervised anomaly detection model M is trained on Dtrain

to learn the feature pattern of the normal samples, then the trained model Mtrain is employed to pre-
dict the anomaly probabilities of test samples Pabnormal. Samples with high anomaly probabilities
are detected as anomalies A. The process of model training and label predicting can be formulated
as Mtrain = M(Dtrain), Pabnormal = Mtrain(Dtest), A = Dtest(Norm(Pabnormal) > 1− α),
where Norm is the Min-Max Scaler, which scales the anomaly probability Pabnormal to [0, 1].

3.2 OVERVIEW OF THE PROPOSED TCAD

The key insight of TCAD lies in enabling the model to adapt to normal test samples whose distribu-
tion differs from that of the training set, while mitigating the risk of learning abnormal features that
could degrade anomaly detection performance. To achieve this, TCAD employs two core stages:
Collaborative Dual-task Training and Test-Time Contrastive Learning, which are responsible for
training and test-time adaptation, respectively. As shown in Fig. 2, TCAD captures both low-level
and high-level features of tabular data during the training phase through a main task and an auxiliary
task, effectively learning the normal patterns. During the testing phase, TCAD performs Test-Time
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Contrastive Learning to refine the trained model. Specifically, TTCL first assigns pseudo labels to
high-confidence outputs of the trained model and then leverages the two training-phase tasks to learn
the feature representations of pseudo-normal samples while preventing the model from accurately
learning pseudo-abnormal patterns. Second, a KNN-based contrastive learning module is designed
to pull pseudo-normal samples closer to the training distribution and push pseudo-abnormal sam-
ples away from it. Through this process, the model gradually improves its ability to distinguish
between normal and abnormal test samples that deviate from the training distribution using the
high-confidence samples selected in each iteration. Finally, the optimized model is repeatedly fine-
tuned on the remaining unlabeled samples using the same procedure until pseudo labels are assigned
to all test samples.

3.3 COLLABORATIVE DUAL-TASK TRAINING

The model’s ability to capture normal patterns is closely tied to the richness of informative features
extracted from normal samples during training. To strengthen this capability, TCAD employs a
collaborative dual-task learning method that integrates two complementary tasks (main task and
auxiliary task), enabling the model to learn multi-level feature representations of samples effectively.

Model Details. The backbone of the model is built upon a masked autoencoder. Give the input
X ∈ RB×d from the training set Dtrain, B is the batch size, d denotes the dimension of the feature
vector. The input X is first passed through the masked encoder E, which serves as a shared feature
extractor for both tasks. This mask encoder E consists of two components: a mask generator g1
and an encoder g2, E = g1 + g2. g1 produces multiple mask tensors Xmask = g1(X) of the
same size as X, and leverage a sigmoid function to scale each value of Xmask between 0 and 1.
Element-wise multiplication is then applied between Xmask and X, the obtained masked input is
subsequently passed into g2 to obtain the masked representation emask = E(X) = g2(Xmask ⊙ X)
in the embedding space. Furthermore, to capture a broader spectrum of information from normal
samples, we ensure sufficient diversity in the masking patterns. This is essential, as using similar
masks may cause the model to learn redundant features, which not only fail to improve anomaly
detection performance but may also degrade it. Inspired by MCM (Yin et al., 2024), the diversity
of masking patterns is promoted by incorporating a dedicated loss function, as defined in Ldiv =∑T

i=1

[
ln

(∑T
j=1

(
Ii̸=j · e

<Xi
mask,Xj

mask
>

τ

))
· s
]

, where <> denotes the inner product operation,

Ii̸=j is the indicator function, if i = j, Ii̸=j = 0, otherwise Ii̸=j = 1, τ is a temperature parameter,
and s is a scaling factor to adjust the range of the diversity loss, T denotes the number of masks.

Main task: learning low-level features. In the main task, the masked representation is fed into
the decoder D to reconstruct the original input X, as shown in X̂ = D(emask). By minimizing the
reconstruction loss Lm = 1

T

∑T
i=1 ∥X̂i − X∥2 between the input and its reconstruction, the model

learns low-level feature representations of the tabular data.

Auxiliary task: capturing high-level features. In the auxiliary task, the masked representation
emask is fed into a multi-layer perceptron (MLP) to reconstruct the embedding e of the unmasked
input. By minimizing the reconstruction loss between the predicted and original embeddings, the
model captures the intrinsic knowledge embedded in the encoded representations, thereby learning
high-level feature representations of the data. To ensure that e and emask have the same size, we
replicate X T times to match the size of Xmask, and then pass the replicated input through the
encoder g2 to obtain e = g2(XT ), XT represents the input X that has been replicated T times. The
auxiliary task is trained by minimizing the reconstruction loss La = 1

T

∑T
i=1 ∥êi − e∥2 between the

predicted embedding ê = MLP (emask) and the embedding e.

Model Training Loss. The overall training loss of the model integrates the reconstruction losses
from the main and auxiliary tasks, as well as the mask diversity loss, and is formally defined as
LTrain = Lm + λLa + γLdiv , where λ and γ are the weights used to adjust the overall loss
function.

3.4 TEST-TIME CONTRASTIVE LEARNING

During the testing phase, prior unsupervised anomaly detection methods typically apply the trained
model directly to estimate anomaly scores for test samples, without accounting for the possibility
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that the distribution of test data may differ from that of the training data. This oversight hampers
the model’s adaptability on certain datasets, thereby limiting its detection accuracy. To address this
issue, we propose a Test-Time Contrastive Learning approach to update the trained model during
the testing phase.

High-Confidence Samples Selection. Given the test set Dtest, we first apply the trained model
to output the losses for all test samples and normalize them into the range [0, 1]. Then the
normalized losses of test samples can be regarded as their anomaly probability, Pabnormal =
Norm(Mtrain(Dtest)), where Mtrain represents the trained model, Pabnormal denotes the anomaly
probabilities of all test samples, Norm denotes the Min-Max Scaler. Subsequently, TTCL se-
lects the most confident normal and abnormal samples from the test set based on sorted anomaly
scores, referring to them as pseudo-normal and pseudo-abnormal samples. The confidence thresh-
old for sample selection is manually specified. Its default value is 10%, with a predefined nor-
mal–abnormal ratio of 5:1. In addition, similar to prior works (Ruff et al., 2018; Li et al., 2022;
Yin et al., 2024) that assumes access to the true contamination rate, our method can also use the
actual contamination rate as threshold whenever it is available. The selected samples can be denoted
as Hnormal = {hnormal

i }Cnormal
i=1 ,Habnormal = {habnormal

i }Cabnormal
i=1 , where Hnormal represents

the set of high-confidence normal samples and Habnormal represents the set of high-confidence
abnormal samples, Cnormal and Cabnormal denote the number of samples in two sets.

Model Adaptation to Selected Samples. At the test time, TTCL leverages both the main and aux-
iliary tasks to adapt to feature representations of the selected samples. Since these two tasks are
trained without requiring labels, the approach does not pose any risk of test label leakage. Specif-
ically, the model adapts to pseudo-normal and pseudo-abnormal samples separately. The goal of
adapting to pseudo-normal samples is to learn their feature representations and reduce their recon-
struction errors, preventing them from being mistakenly identified as anomalies. Conversely, the
adaptation to pseudo-abnormal samples aims to hinder the model from accurately learning their rep-
resentations, so that they yield high errors during inference and are correctly identified as anomalies.
The loss function of the model adaptation is shown in eq. (1).

Ladapt = σs ·
1

Cs

Cs∑
i=1

(Lm(hs
i ) + λLa(h

s
i ) + γLdiv) , σs =

{
+1, s = normal
−1, s = abnormal

(1)

Embedding Contrastive Optimization. In addition to adapting the model to the feature representa-
tions of the selected samples, TTCL further optimizes their representations in the embedding space.
Specifically, TTCL first maps the selected samples into the embedding space of the training data
using the trained model, and then encourages pseudo-normal samples to move closer to the train-
ing distribution while pushing pseudo-anomalous samples away from it. However, requiring each
high-confidence test sample to be uniformly close to or distant from all training samples is both un-
realistic and inefficient. This is because normal samples exhibit diverse patterns, and a test sample is
unlikely to be close to all modes present in the training data. As a result, it is naturally distant from
some training samples. Moreover, computing distances to all training samples incurs prohibitive
computational costs. Therefore, TTCL adopts a KNN-based contrastive learning strategy that only
utilizes the k nearest neighbors of selected samples to either pull pseudo-normal samples closer
to the training distribution or push pseudo-abnormal samples further away from it. This localized
contrastive approach effectively refines the embedding positions of selected samples, enhancing the
model’s discriminative power while improving optimization efficiency. The contrastive loss function
is defined as eq. (2).

Lcontra = σs ·
1

Cs

Cs∑
i=1

∥hs
i −KNN(hs

i ,O, k)∥2, σs =

{
+1, s = normal
−1, s = abnormal

(2)

where O denotes the embeddings of known normal samples, KNN(x,O, k) denotes finding the
k-nearest embeddings to the embedding representation of sample x from the set of known normal
embeddings O.

Model Update Loss. For pseudo-normal or pseudo-anomalous samples, the model jointly optimizes
the adaptation loss and the contrastive loss during the update process. The overall loss function is
defined as LUpdate = Ladpat + Lcontra, where δ is a hyperparameter to balance two losses.
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Update Iterations. Let the originally trained model Mtrain be denoted as M
(0)
update, and let n de-

note the total number of update rounds. During test time, the model is iteratively refined us-
ing TTCL. In each round, M (n−1)

update is updated using the current pool of known normal samples,

M
(n)
update = TTCL(M

(n−1)
update;LUpdate). Subsequently, newly identified high-confidence normal

samples are added to the pool for the next round, O(n) = O(n−1) + H
(n−1)
normal. This process is

repeated iteratively until the remaining unselected samples are insufficient for further selection. Fi-
nally, the updated model are used to predict the labels ytest of the test samples, as illustrated in
ptest = M

(n)
update(Dtest), ytesti = I(ptesti ≥ Percentile(ptest, α), where ptest denotes the pre-

dicted anomaly probabilities of test samples, ytesti denotes the predicted label of test sample i, I(·)
denotes 1 if the condition · is met, and 0 otherwise, Percentile(ptest, α) represents the value at the
100 ∗ α% percentile in ptest.

4 EXPERIMENTS

4.1 DATA SHIFT CONSTRUCTION AND ANALYSIS

Following prior works (Li et al., 2022; Shenkar & Wolf, 2022; Yin et al., 2024), we first select
15 commonly used tabular datasets from ODDS (Rayana, 2016) and ADBench (Han et al., 2022),
covering a wide range of domains, scales and feature dimensions. These diverse datasets enhance
the generality of our evaluation and strengthens the reliability of the conclusions. Detailed statistics
of datasets are provided in Appendix A.2.

Second, we apply K-Means clustering to all normal samples in each dataset. The majority of sam-
ples from the largest cluster are used as the training set, while the remaining samples from this
cluster, together with the samples from the other clusters and the anomalous samples, form the test
set. In this way, the normal samples in the test set consist partly of data consistent with the training
distribution and partly of data deviating from it. To verify the existence of such shifts, we follow
the distribution shift protocol of AnoShift (Dragoi et al., 2022) and examine the processed datasets
using t-SNE visualization, Jeffreys Divergence (JD) and the Optimal Transport Dataset Distance
(OTDD). JD is computed feature-wise via normalized histograms and sums the forward and reverse
KL divergences, thus reflecting probability differences across features. OTDD, in contrast, is ob-
tained by solving an optimal transport problem in the original feature space, capturing the geometric
discrepancy between datasets. In our experiments, OTDD values are normalized to the range [0, 1].

Figure 3: A comparison of the normal distributions in the training and test sets visualized using
t-SNE.

As shown in Figure 3, the distribution of normal samples in the test set (orange points) exhibits
a clear shift from that in the training set (blue points). The high values of JD and OTDD further
corroborate this observation. Therefore, the constructed distribution shift is indeed substantial and
well grounded. The visualizations of samples, feature distributions, as well as the detailed values of
JD and OTDD for all datasets are provided in Appendix A.3.

4.2 EXPERIMENTAL SETUP

Competing methods. We compare TCAD against 13 prominent baseline methods to demonstrate
its effectiveness. They can broadly be divided into five categories: one-classification-based meth-
ods (OCSVM (Schölkopf et al., 1999), DeepSVDD (Ruff et al., 2018)), neighbor-based/feature-
distribution-based methods (LOF (Breunig et al., 2000), Iforest (Liu et al., 2008), DIF (Xu et al.,
2023a), ECOD (Li et al., 2022), LUNAR (Goodge et al., 2022)), reconstruction-based methods
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(MCM (Yin et al., 2024)), self-supervised learning-based methods (GOAD (Bergman & Hoshen,
2020), NeuTral AD (Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), SLAD (Xu et al., 2023b)), and
representation learning-based method(DRL (Ye et al., 2025)). Detailed descriptions of all methods
are provided in Appendix A.5.

Evaluation Metrics. Following the previous study (Shenkar & Wolf, 2022; Yin et al., 2024; Ye
et al., 2025), we employ Area Under the Precision-Recall Curve (AUC-PR), Area Under the Re-
ceiver Operating Characteristic Curve (AUC-ROC) and F1 score as our evaluation criteria.

Implementation details. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti with
PyTorch (Paszke et al., 2019). During the training phase, the epochs are set to 200, the batch size
is 512, the optimizer is Adam, the weight decay is 1e-5, the scheduler is ExponentialLR, and the
gamma is 0.98. During the test phase, the value k is set to 3 for all data sets. The hyperparameter λ
is set to min(1.0, 1.0/Lm), which enables adaptive adjustment of the weights between the main task
and the auxiliary task across different datasets. The value of γ is set following the configuration used
in MCM (Yin et al., 2024), and δ is set to 1 by default. IForest, LOF, OCSVM, DeepSVDD, ECOD
and LUNAR are implemented by the Pyod library (Zhao et al., 2019). DIF, GOAD, NeuTralAD,
ICL and SLAD are implemented by DeepOD library (Xu et al., 2023a; 2024). MCM is implemented
based on their official open-source code releases. All results of the main experiments and ablation
experiments are calculated by averaging the results from the three independent training runs. The
results of other experiments are obtained by training the model with a single run.

4.3 EMPIRICAL RESULTS AND ANALYSIS

Main Results. We visualize the evaluation results of all methods across all datasets using box plots
, and we additionally provide confidence intervals for the main metrics. The detailed procedure for
computing the confidence intervals is provided in Appendix A.4. Figure 4 summarizes the numer-
ical results of AUC-PR and AUC-ROC obtained from evaluating 14 methods across 15 datasets.
Subfigures (a) and (b) illustrate the distributions of AUC-PR and AUC-ROC values across datasets,
respectively, while subfigures (c) and (d) present the corresponding distributions of rankings for
AUC-PR and AUC-ROC. According to the results in the figure, TCAD achieves the best average
performance across datasets in terms of both AUC-PR and AUC-ROC. Specifically, TCAD outper-
forms the best baseline by 3.15% in AUC-PR, with an average ranking advantage of 1.27 positions,
and surpasses the best baseline by 4.19% in AUC-ROC, with an average ranking advantage of 0.94
positions.
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Figure 4: Comparison of all models’ performance and ranking across different datasets in terms of
AUC-PR and AUC-ROC. The triangles represent the average value over all datasets.
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Figure 5: Comparison of F1 scores. (a) and (b) compare the F1 scores and rankings of all models
across different datasets, where the triangles denote the averages over all datasets. (c) and (d) con-
duct Wilcoxon tests across models and datasets. Blue cells indicate corresponding p-values below
0.05 (significant), while white cells indicate p-values above 0.05 (not significant).
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Figure 5 presents the F1 performance of different methods. Specifically, subfigures (a) and (b) il-
lustrate the distribution of F1 scores across all datasets and the corresponding ranking distributions,
respectively. TCAD achieves an average F1 score that surpasses the second-best model by 6.64%,
and an average ranking advantage of 1.33 positions. Subfigures (c) and (d) employ the Wilcoxon
signed-rank test (Woolson, 2007) (with α = 0.05) to assess the statistical significance of the im-
provements. At the 95% confidence level, the improvements of TCAD over the baseline models
are statistically significant on the majority of datasets. The above results demonstrate the effective-
ness of TCAD in detecting anomalies under distribution shift. Detailed results on all datasets are
available in the Appendix A.6.

Table 1: AUC-ROC comparison between MCM
and TCAD on the Anoshift subsets.

Method/Year 2011 2012 2013 2014 2015
MCM 0.9445 0.8381 0.8341 0.3620 0.2963
TCAD 0.8962 0.9038 0.8692 0.4735 0.3778

Results on the AnoShift Subsets. Beyond the
main experiments, we further investigate distri-
butional shifts induced by temporal evolution
and conduct additional evaluations on subsets
of the AnoShift benchmark. Specifically, due to
computational resource constraints, we use the
2006–2010 valid sets as the training data and the 2011–2015 valid sets as the test data. Since each
valid set follows the same distribution as its corresponding full-year dataset, this setup effectively
simulates temporal distribution shifts on a smaller scale.

Following the AnoShift evaluation protocol, AUC-ROC is employed to evaluate performance of
method. We select MCM with the highest AUC-ROC in baseline models as the compaison model,
and the experimental results are presented in Table 1. MCM only outperforms TCAD on the 2011
test set, which is closest to the training years. As the distribution shift becomes more pronounced
over time, TCAD consistently surpasses MCM on the 2012–2015 test sets. The largest improve-
ment is observed in 2014, where TCAD exceeds MCM by 0.1115. These results demonstrate that
TCAD maintains strong and competitive detection performance under distribution shifts induced by
temporal evolution.

Table 2: True rate of pseudo labels in early itera-
tions (true rate of normal labels-true rate of abnor-
mal labels).

Dataset iter 1 iter 2 iter 3 iter 4
pendigits 1.00-0.07 1.00-0.00 1.00-0.00 1.00-0.00
cardiotocography 0.98-0.59 0.75-0.52 0.96-0.24 0.74-0.67
cardio 1.00-0.88 1.00-0.82 1.00-0.76 0.91-0.88
breastw 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00

Analysis of Pseudo-Label Noise Impact.
In the TTCL module of TCAD, pseudo-
labels are assigned to samples with high-
confidence prediction probabilities. To in-
vestigate whether noisy pseudo-labels continu-
ously impair model performance, we select four
datasets with notably different overall perfor-
mance (i.e., pendigits, cardiotocography, car-
dio, and breastw) and track their label accuracy during early iterations to examine whether errors are
persistently amplified. The statistical results are reported in Table 2, the accuracy of the pseudo la-
bels fluctuates rather than continuously declining. In addition, even on the pendigits dataset, where
the model performs the worst and the true anomaly rate eventually drops to zero, the final detec-
tion performance of TCAD still surpasses that of most baselines. These phenomenons demonstrates
that: (1) Label noise does not cause persistent degradation in model performance. (2) Despite the
presence of noisy labels, the benefits gained from utilizing them outweigh their potential drawbacks.

Table 3: Average detection performance
across 15 datasets under different forget
rates for filtering pseudo-label noise.

Forget rate auc-roc auc-pr pr
0% 0.8408 0.6388 0.5953
10% 0.7710 0.5829 0.5351
20% 0.8201 0.6296 0.5729
30% 0.7774 0.5875 0.5318
40% 0.8290 0.6630 0.6221

Furthermore, we introduce a co-teaching mechanism in
which two lightweight MLPs mutually select low-loss
samples to reduce noise in pseudo-labels. We experiment
with forget rates of 10%, 20%, 30%, and 40%, and report
the results in Table 3. Interestingly, increasing the for-
get rate does not consistently yield better performance,
likely because the additional supervision introduced by
the co-teaching models may itself introduce errors and
misjudge some pseudo-labels. Nevertheless, with a 40%
forget rate, our model achieves the highest average performance across the 15 datasets, suggesting
that effectively reducing pseudo-label noise can further enhance detection performance. Therefore,
developing more stable pseudo-label refinement strategies is an important direction for future work.

Ablation Study. Five distinct model configurations are developed for the ablation experiments,
designated as w/o aux: Remove auxiliary task during both the model training phase and the testing
phase; w/o contra: Remove contrastive optimization during the testing phase; w/o adapt: Model
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updates focus solely on adapting to the features of new data, without considering whether such
adaptation may compromise the knowledge previously learned by the model; w/o TTCL: Remove
entire TTCL module, and TCAD.

Table 4: The average results of the ablation studies
across all datasets.

Metric w/o aux w/o contra w/o adapt w/o TTCL TCAD
AUC-ROC 0.6800 0.6434 0.6590 0.7827 0.8408
AUC-PR 0.5548 0.5091 0.5160 0.5487 0.6388
F1 0.5194 0.4609 0.4738 0.5146 0.5953

As illustrated in Table 4, TCAD achieves
state-of-the-art performance. The results
of its four variants further demonstrate
that: (1) The auxiliary task facilitates the
acquisition of richer knowledge, and col-
laborative dual-task training provides the
model with a solid foundation for reliable
detection capability. (2) Performing contrastive optimization at test time and minimizing the for-
getting of previously learned knowledge are both crucial. Detailed results are provided in the Ap-
pendix A.7.

Parameter Sensitivity Analysis. We conducted a parameter sensitivity analysis with respect to
three key factors: the value of K used in the KNN-based contrastive learning module, the confi-
dence threshold for pseudo-label selection, and the weighting coefficients of the adaptation loss and
contrastive loss. The resulting performance trends are presented in Figure 6. The main findings
from these experiments are summarized as follows: (1) Robustness to the choice of K. The model is
robust with respect to the value of K. Under imbalanced normal–abnormal data settings, both AUC-
PR and F1 score remain stable. (2) Robustness to the selection rate of high-confidence samples.
The model shows stable performance across different selection rates, with the good overall results
obtained when the selection rate is set to 10% or 15%. We believe this is because an overly small
selection rate provides too few samples to effectively guide test-time adaptation, whereas an overly
large selection rate may introduce more incorrectly labeled samples, steering the adaptation process
away from the expected direction. (3) Robustness to different loss weight combinations. The model
remains stable under different weighting schemes applied to the loss terms.
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Figure 6: Average detection performance across 15 datasets under different parameter settings

Computational Cost. We compare the memory and time overhead of MCM, DRL, and TCAD. The
three methods consume similar memory. DRL has the lowest time cost due to efficient representation
decomposition, while TCAD takes slightly more time because of model adjustment at the test phase.
Detailed results are provided in Appendix A.8.

5 CONCLUSION

In this paper, we propose a test-time contrastive learning approach for unsupervised anomaly detec-
tion in tabular data, named TCAD. The approach learns rich information from training samples to
model normal patterns through Collaborative Dual-task Training. Meanwhile, it employs Test-Time
Contrastive Learning to enable the model to adapt to test samples in a designed manner and refine
the embedding distribution. Unlike traditional unsupervised anomaly detection methods, TCAD
improves the model’s ability to identify samples that deviate from learned normal patterns. This is
achieved by dynamically updating the model during the test phase using high-confidence samples
generated by the trained model. Furthermore, our experiments reveal that: (1) Designing effective
model update strategies during the test phase can improve anomaly detection capability. (2) During
test-time adaptation in anomaly detection, it is crucial for the model to retain the valuable knowledge
acquired during training, while simultaneously avoiding the risk of overfitting to anomalous patterns
in the test data. In the future, we aim to explore more effective update strategies during the test phase
and investigate the potential of multi-agent approaches for unsupervised anomaly detection.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed large language models (LLMs) solely for auxiliary pur-
poses, specifically for checking grammar and improving the clarity of language. Importantly, no
LLMs were used in formulating the research motivation, designing the methodology, conducting
the experiments, or interpreting the results. All core scientific contributions of this work are entirely
original and authored by the researchers.

A.2 STATISTICS OF DATASETS

The number of samples, feature dimensions, anomaly contamination rates, and category information
for the 15 datasets are summarized in Table 5.

Table 5: The statistics of datasets.

Dataset Samples Dim Anomaly Category
Arrhythmia 452 274 66 (15%) Healthcare

BreastW 683 9 239 (35%) Healthcare
Cardio 1831 21 176 (9.6%) Healthcare

Cardiotocography 2114 21 466 (22.04%) Healthcare
Glass 214 9 9 (4.2%) Forensic

Ionosphere 351 33 126 (36%) Oryctognosy
Mammography 11183 6 260 (2.32%) Healthcare

Optdigits 5216 64 150 (2.88%) Image
Pendigits 6870 16 156 (2.27%) Image

Pima 768 8 268 (35%) Healthcare
Satellite 6435 36 2036 (32%) Astronautics

Satimage-2 5803 36 71 (1.2%) Astronautics
Thyroid 3772 6 93 (2.5%) Healthcare

Wbc 278 30 21 (5.6%) Healthcare
Wine 129 13 10 (7.75%) Chemistry

A.3 DATA SHIFT ANALYSIS

The visualizations of each dataset’s overall distribution and the distribution of the i-th feature are
presented in Figure 7. The results of Jeffreys Divergence (JD) and the Optimal Transport Dataset
Distance (OTDD) for each dataset are summarized in Table 6.

Table 6: The results of Jeffreys Divergence (JD) and Optimal Transport Dataset Distance (OTDD)
between the distributions of normal samples in the training and test sets across all datasets.

Metrics / Dataset arrhythmia breastw cardio cardiotocography glass
JD 1.39 0.48 1.72 0.46 1.28
OTDD 0.31 0.24 0.29 0.14 0.15
Metrics / Dataset ionosphere mammography optdigits pendigits pima
JD 9.08 2.40 0.19 0.80 1.65
OTDD 0.39 0.09 0.55 0.49 0.16
Metrics / Dataset satellite satimage-2 thyroid wbc wine
JD 3.23 2.83 0.37 4.17 15.43
OTDD 0.01 0.33 0.24 0.25 0.27

A.4 COMPUTATION OF CONFIDENCE INTERVALS FOR THE MAIN METRICS

To provide a robust estimate of the variability in our results across datasets, we compute bootstrap
confidence intervals for the main evaluation metrics. Specifically, for each metric, we perform 1,000
bootstrap resamples over the dataset-level scores. In each iteration, we randomly sample with re-
placement from the scores and compute the mean of the resampled set. The 95% confidence interval
is then obtained by taking the 2.5th and 97.5th percentiles of the bootstrapped mean values. This
procedure ensures that the reported mean performance is accompanied by a statistically meaningful
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Figure 7: The comparison of normal sample distributions between the training and test sets for each
dataset, along with the distribution comparison of the i− th feature.

measure of uncertainty, reflecting the variability across datasets. The detailed results are shown in
Table 7.

Table 7: Confidence Intervals of Main Metrics for Each Method.

Iforest LOF OCSVM DeepSVDD ECOD
auc-roc [0.5847, 0.7246] [0.5937, 0.6754] [0.5433, 0.6641] [0.5490, 0.6554] [0.6055, 0.7252]
auc-pr [0.4561, 0.6489] [0.5237, 0.6524] [0.5289, 0.6632] [0.4153, 0.6242] [0.4152, 0.6204]
f1 [0.2822, 0.5360] [0.2525, 0.4877] [0.2578, 0.4967] [0.2216, 0.4703] [0.3267, 0.5329]

GOAD NeuTraLAD ICL DIF SLAD
auc-roc [0.6342, 0.8030] [0.6010, 0.7583] [0.6351, 0.7982] [0.7096, 0.8774] [0.6661, 0.8171]
auc-pr [0.3420, 0.6320] [0.2711, 0.5722] [0.3415, 0.6304] [0.4317, 0.6971] [0.3352, 0.6624]
f1 [0.3093, 0.5948] [0.2425, 0.5514] [0.3212, 0.6025] [0.4003, 0.6499] [0.2997, 0.6133]

LUNAR MCM DRL TCAD(ours)
auc-roc [0.6038, 0.7408] [0.7277, 0.8664] [0.6255, 0.7874] [0.7685, 0.9111]
auc-pr [0.5487, 0.6790] [0.4138, 0.7196] [0.2834, 0.6004] [0.5050, 0.7717]
f1 [0.2585, 0.5164] [0.3290, 0.6384] [0.2465, 0.5570] [0.4708, 0.7149]

A.5 COMPETING METHODS

The detailed introduction of each method is as follows:

• IForest (Liu et al., 2008) isolates anomalies by recursively partitioning the data using ran-
dom splits. The core idea is that anomalies are easier to isolate due to their distinctiveness,
requiring fewer partitions compared to normal data points, and this isolation process is used
to identify anomalies.

• LOF (Breunig et al., 2000) evaluates the local density of data points by comparing the
density of a point with that of its neighbors. Points with significantly lower density than
their neighbors are considered anomalies, as they deviate from the expected local structure
of the data.
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• OCSVM (Schölkopf et al., 1999) constructs a hyperplane in a high-dimensional space
that maximizes the margin around the normal data. This results in the majority of data
points being mapped within the boundary, while points that deviate significantly from this
boundary are identified as anomalies.

• DeepSVDD (Ruff et al., 2018) learns a deep feature representation of the data while si-
multaneously minimizing the volume of a hypersphere that encloses the normal data. Data
points that lie outside this learned hypersphere are detected as anomalies.

• ECOD (Li et al., 2022) leverages the empirical cumulative distribution function (ECDF)
to detect anomalies. For each feature in the dataset, ECOD computes the ECDF, which
captures the data’s distributional properties in a robust and interpretable manner. Points
that fall in the extreme tails of the distribution are assigned higher anomaly scores.

• GOAD (Bergman & Hoshen, 2020) generalizes the class of transformation functions to
include affine transformation which allows it to generalize to non-image data. By applying
these transformations to the input data, GOAD trains a classifier to distinguish between the
transformed versions. At test time, normal data will exhibit predictable patterns under these
transformations, while abnormal data fails to conform to these patterns, making it easier to
be identified.

• NeuTral AD (Qiu et al., 2021) learns a set of neural transformations, parameterized by
neural networks, which map the input data to various transformed spaces and capture the
intrinsic structure of normal data. During the testing phase, samples that do not follow the
learned patterns are detected as anomalies.

• ICL (Shenkar & Wolf, 2022) employs contrastive loss to learn mappings that maximize the
mutual information between each sample and the part that is masked out and capture the
structure of the samples of the single training class. Test samples are scored by measuring
whether the learned mappings lead to a small contrastive loss using the masked parts of this
sample. Samples with high loss values are regarded as anomalies.

• DIF (Xu et al., 2023a) uses randomly initialized neural networks to create random repre-
sentation ensembles. Through random axis-parallel cuts on these representations, it realizes
nonlinear partitioning in the original space. With CERE for efficient feature mapping and
DEAS combining path length and feature deviation, DIF scores anomalies via isolation tree
ensembles.

• SLAD (Xu et al., 2023b) introduces scale learning for tabular anomaly detection, defining
”scale” as the dimensionality relationship between data sub-vectors and their representa-
tions. It uses a neural network to learn distribution alignment of subspace transformations
via Jensen-Shannon divergence loss, modeling inlier structural regularities. Test instances
are scored by divergence from learned scale distributions, high loss indicates anomalies.

• LUNAR (Goodge et al., 2022) reframes local outlier detection as a GNN message-passing
problem, where samples are nodes connected to k-nearest neighbors. It replaces fixed
aggregation rules with learnable neural aggregation and trains with synthetic negatives,
enabling adaptive, robust anomaly detection.

• MCM (Yin et al., 2024) adapts mask modeling to address the problem of tabular data
anomaly detection. Mask generator and autoencoder are employed to capture intrinsic
correlations between features existing in training tabular data and model the “characteristic
patterns” by such correlations. Samples that deviate from these correlations are predicted
as anomalies.

• DRL (Ye et al., 2025) tackles tabular anomaly detection by mapping data into a constrained
latent space, where each normal sample is represented as a weighted linear combination of
fixed orthogonal basis vectors. It enhances discriminability by increasing the variance of
normal weights and preserves feature correlations via alignment loss.

A.6 FULL COMPARISON RESULTS WITH BASELINE METHODS

The detailed results of the main experiments are presented in Table 8, 9 and 10.
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Table 8: Comparison of AUC-PR(↑)results between baseline methods and TCAD on 15 datasets.

Iforest LOF OCSVM DeepSVDD ECOD GOAD NeuTraLAD ICL DIF SLAD LUNAR MCM DRL TCAD(ours)

arrhythmia 0.6019 0.5676 0.6111 0.6115 0.6244 0.5867 0.5023 0.5407 0.6294 0.5372 0.5856 0.5657 0.5510 0.6212

breastw 0.8536 0.7818 0.7656 0.8256 0.7581 0.9860 0.5662 0.8508 0.9737 0.9569 0.9644 0.9911 0.9302 0.9921

cardio 0.5381 0.5581 0.5835 0.4407 0.6860 0.4606 0.2458 0.3687 0.6176 0.4277 0.4782 0.6849 0.4054 0.6385

cardiotocography 0.5529 0.5562 0.6531 0.5417 0.6120 0.3408 0.3746 0.4113 0.4944 0.3255 0.4604 0.4051 0.3682 0.3906

glass 0.1721 0.3482 0.3472 0.5118 0.1658 0.0994 0.1201 0.2309 0.1013 0.1105 0.5750 0.1099 0.1191 0.1504

ionosphere 0.8094 0.8032 0.8094 0.7772 0.6842 0.6543 0.6337 0.6063 0.8097 0.7038 0.8241 0.7504 0.8282 0.7552

mammography 0.2713 0.4927 0.4582 0.4812 0.4862 0.3293 0.0563 0.1560 0.4507 0.1467 0.4962 0.4781 0.1022 0.5407

optdigits 0.3311 0.5605 0.5290 0.0348 0.0373 0.0640 0.0528 0.0725 0.0647 0.0690 0.5526 0.1103 0.0997 0.4199

pendigits 0.3430 0.5283 0.5162 0.1523 0.4147 0.0445 0.0362 0.0431 0.5583 0.0475 0.5288 0.0430 0.0333 0.0964

pima 0.7448 0.7441 0.7763 0.6826 0.7113 0.5587 0.5373 0.5787 0.5943 0.5902 0.6611 0.5707 0.5347 0.5921

satellite 0.7169 0.7177 0.7173 0.6894 0.6437 0.7595 0.8306 0.7927 0.7173 0.8339 0.6926 0.8199 0.8400 0.8307

satimage-2 0.5006 0.5013 0.5094 0.5129 0.5931 0.6819 0.8071 0.9461 0.9754 0.9588 0.5114 0.9717 0.0925 0.9716

thyroid 0.6202 0.4433 0.4208 0.3091 0.5818 0.1503 0.1919 0.1677 0.2379 0.4751 0.5032 0.2925 0.0629 0.7773

wbc 0.6235 0.5745 0.6175 0.5703 0.5609 0.5047 0.2311 0.5735 0.4594 0.2623 0.6094 0.7268 0.4460 0.8147

wine 0.5627 0.5781 0.5610 0.5641 0.3177 0.9909 0.9667 0.8813 0.8112 0.9573 0.6667 0.9909 0.9430 0.9909

Average PR 0.5494 0.5837 0.5917 0.5136 0.5251 0.4807 0.4101 0.4813 0.5663 0.4934 0.6073 0.5674 0.4237 0.6388

Average Ranking 6.6 6.0 6.0 7.86 7.33 9.26 11.06 9.2 6.4 8.86 5.53 6.6 9.86 4.26

Table 9: Comparison of AUC-ROC(↑)results between baseline methods and TCAD on 15 datasets.

Iforest LOF OCSVM DeepSVDD ECOD GOAD NeuTraLAD ICL DIF SLAD LUNAR MCM DRL TCAD(ours)

arrhythmia 0.7229 0.6797 0.5 0.5022 0.7175 0.7694 0.7127 0.7115 0.8167 0.7227 0.7089 0.7629 0.7345 0.8190

breastw 0.8111 0.6469 0.5973 0.7557 0.5725 0.9814 0.6669 0.8860 0.9640 0.9467 0.9609 0.9936 0.9660 0.9933

cardio 0.5943 0.6497 0.6929 0.6019 0.8388 0.6489 0.5901 0.6479 0.9244 0.77109 0.5633 0.6849 0.6418 0.8199

cardiotocography 0.4837 0.4760 0.5018 0.5480 0.6695 0.4619 0.4829 0.4679 0.7682 0.4554 0.4094 0.6476 0.4843 0.6402

glass 0.4249 0.5437 0.5384 0.6466 0.5236 0.5390 0.6194 0.6147 0.4031 0.6017 0.7287 0.6190 0.6076 0.7021

ionosphere 0.6587 0.6407 0.6587 0.5501 0.5664 0.6288 0.6342 0.6371 0.7559 0.6885 0.7048 0.7885 0.8112 0.7446

mammography 0.4956 0.5918 0.8010 0.5835 0.7321 0.8618 0.6944 0.8014 0.8561 0.7547 0.5898 0.8635 0.7139 0.8970

optdigits 0.6219 0.7765 0.5 0.465 0.4839 0.5949 0.4924 0.645 0.5466 0.6240 0.7386 0.8295 0.7441 0.9460

pendigits 0.6461 0.6945 0.8033 0.5252 0.6298 0.6016 0.5021 0.5763 0.9446 0.5895 0.6666 0.6447 0.4586 0.7313

pima 0.5626 0.5662 0.5 0.4893 0.4893 0.5769 0.5122 0.4813 0.5084 0.5574 0.5579 0.5251 0.6127 0.4798

satellite 0.5634 0.5694 0.5 0.6331 0.6086 0.7155 0.7912 0.7756 0.6738 0.8006 0.5747 0.8065 0.7992 0.8143

satimage-2 0.6724 0.6866 0.5 0.8799 0.9124 0.9640 0.9960 0.9958 0.9973 0.9972 0.5893 0.9986 0.7863 0.9985

thyroid 0.9196 0.5951 0.6239 0.5618 0.8092 0.6534 0.7277 0.6166 0.8838 0.8444 0.6500 0.7696 0.5262 0.9630

wbc 0.8289 0.7866 0.8372 0.7382 0.7694 0.9032 0.7881 0.9234 0.8877 0.8139 0.7995 0.9643 0.8887 0.9723

wine 0.7736 0.6250 0.5 0.5278 0.5875 0.9986 0.9931 0.9889 0.9542 0.9944 0.8611 0.9988 0.9931 0.9986

Average ROC 0.6519 0.6352 0.6036 0.6005 0.6665 0.7223 0.6781 0.7197 0.7955 0.7401 0.6713 0.7989 0.7090 0.8408

Average Ranking 8.86 9.26 9.66 11.0 8.66 7.06 9.2 7.93 5.06 6.6 8.86 3.0 7.53 2.06

Table 10: Comparison of F1(↑)results between baseline methods and TCAD on 15 datasets.

Iforest LOF OCSVM DeepSVDD ECOD GOAD NeuTraLAD ICL DIF SLAD LUNAR MCM DRL TCAD(ours)

arrhythmia 0.5466 0.4842 0.3636 0.3646 0.5691 0.5909 0.5303 0.4697 0.5909 0.5152 0.5325 0.5 0.5 0.5455

breastw 0.8284 0.721 0.6938 0.7888 0.6809 0.9665 0.6360 0.7876 0.9436 0.8852 0.9590 0.9540 0.9205 0.9582

cardio 0.2964 0.3319 0.3628 0.3051 0.6509 0.5170 0.2670 0.4545 0.5909 0.4830 0.2773 0.3239 0.3864 0.6023

cardiotocography 0.4218 0.4203 0.4704 0.4433 0.5435 0.3004 0.3305 0.3004 0.5365 0.2961 0.3374 0.3584 0.3348 0.4099

glass 0.0870 0.1724 0.1695 0.2192 0.1250 0 0 0.2222 0.1111 0 0.2609 0 0 0.1111

ionosphere 0.7654 0.7561 0.7654 0.7143 0.5398 0.5635 0.6190 0.5952 0.6746 0.6270 0.7871 0.6349 0.7143 0.6508

mammography 0.0664 0.0853 0.2836 0.0839 0.1340 0.4154 0.0038 0.2192 0.4692 0.1577 0.0848 0.4923 0.1 0.5407

optdigits 0.1709 0.2158 0.1095 0.0059 0.0081 0 0 0.02 0.04 0 0.1905 0.02 0.0133 0.4733

pendigits 0.1317 0.1181 0.1906 0.0817 0.3574 0 0 0.0256 0.5256 0.0385 0.1089 0.0064 0.0192 0.1154

pima 0.6689 0.6667 0.7118 0.5709 0.5738 0.5746 0.5522 0.5448 0.5821 0.5784 0.4847 0.5149 0.5373 0.5858

satellite 0.6261 0.6286 0.6059 0.6144 0.5171 0.6051 0.7194 0.6685 0.5953 0.7083 0.6102 0.7141 0.7269 0.7210

satimage-2 0.0561 0.0585 0.0369 0.1723 0.4710 0.6620 0.8592 0.9014 0.9577 0.9014 0.0446 0.9296 0.1268 0.9296

thyroid 0.4674 0.0975 0.1084 0.0942 0.5660 0.1398 0.1828 0.1613 0.1935 0.4516 0.1093 0.2903 0.0430 0.6667

wbc 0.3962 0.3725 0.4301 0.3077 0.5306 0.5238 0.2381 0.6667 0.5238 0.1905 0.3590 0.6667 0.5238 0.7143

wine 0.5 0.2703 0.2174 0.2273 0.2727 0.9 0.9 0.9 0.6 0.9 0.5 0.9 0.9 0.9

Average F1 0.4019 0.3599 0.3679 0.3329 0.4359 0.4506 0.3892 0.4624 0.5289 0.4488 0.3764 0.4870 0.3897 0.5953

Average Ranking 6.93 7.8 7.73 9.4 7.0 7.86 10.13 7.46 4.93 8.13 8.0 6.86 8.33 3.6

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.7 RESULTS OF ABLATION STUDY

The detailed results of the ablation study are presented in Table 11.

Table 11: The evaluation results of ablation experiments across the datasets.

Dataset w/o aux w/o contra w/o adapt w/o TTCL TCAD
auc-roc auc-pr f1 auc-roc auc-pr f1 auc-roc auc-pr f1 auc-roc auc-pr f1 auc-roc auc-pr f1

arrhythmia 0.5808 0.5295 0.4394 0.6195 0.5795 0.5152 0.4509 0.4032 0.303 0.7437 0.5612 0.5 0.819 0.6212 0.5455
breastw 0.9833 0.9882 0.9414 0.9856 0.9897 0.9582 0.9841 0.9886 0.9498 0.99 0.9882 0.9498 0.9933 0.9921 0.9582
cardio 0.7744 0.6366 0.5966 0.7283 0.6246 0.5966 0.7309 0.6382 0.5852 0.7106 0.2561 0.2273 0.8199 0.6385 0.6023

cardiotocography 0.3707 0.3575 0.279 0.3122 0.3368 0.2725 0.2981 0.3231 0.2618 0.5941 0.3853 0.3691 0.6402 0.3906 0.4099
glass 0.2726 0.0858 0.1111 0.083 0.0649 0 0.2756 0.0797 0 0.6974 0.1596 0.2222 0.7021 0.1504 0.1111

ionosphere 0.5012 0.5321 0.627 0.7009 0.7124 0.6905 0.4966 0.53 0.6429 0.715 0.7432 0.6349 0.7446 0.7552 0.6508
mammography 0.7249 0.1763 0.2577 0.7954 0.1955 0.2769 0.8856 0.5099 0.5692 0.8658 0.5074 0.5192 0.897 0.5407 0.5462

optdigits 0.2723 0.037 0 0.3683 0.0425 0 0.6349 0.0705 0 0.8171 0.1337 0.0733 0.946 0.4199 0.4733
pendigits 0.9471 0.7146 0.6731 0.7514 0.0814 0 0.8837 0.2974 0.3526 0.4142 0.0378 0.0192 0.7313 0.0964 0.1154

pima 0.4721 0.5484 0.4851 0.478 0.55 0.4813 0.4704 0.5493 0.4851 0.592 0.6311 0.6045 0.5724 0.5921 0.5858
satellite 0.6171 0.7131 0.5319 0.4813 0.7486 0.5648 0.5581 0.6679 0.4641 0.8054 0.8409 0.7279 0.8143 0.8307 0.721

satimage-2 0.9876 0.945 0.9014 0.9855 0.9383 0.9014 0.9934 0.9385 0.8794 0.9983 0.9718 0.9296 0.9985 0.9716 0.9296
thyroid 0.7541 0.3503 0.3333 0.4189 0.0638 0.043 0.2801 0.0349 0 0.864 0.3749 0.3763 0.963 0.7773 0.6667

wbc 0.9448 0.718 0.7143 0.9448 0.718 0.7143 0.9448 0.718 0.7143 0.9356 0.6493 0.6667 0.9723 0.8147 0.7143
wine 0.9983 0.9909 0.9 0.9983 0.9909 0.9 0.9983 0.9909 0.9 0.9986 0.9909 0.9 0.9986 0.9909 0.9

Average value 0.6800 0.5548 0.5194 0.6434 0.5091 0.4609 0.6590 0.5160 0.4738 0.7827 0.5487 0.5146 0.8408 0.6388 0.5953

A.8 COMPARISON RESULTS OF COMPUTATIONAL COST

The detailed results of computational cost comparison are presented in Table 12.

Table 12: The evaluation results of computational cost across the datasets.

Dataset Memory Usage Time Overhead
MCM DRL TCAD MCM DRL TCAD

arrhythmia 1707 2042 2053 15 6 26
breastw 1563 2046 2237 8 4 41
cardio 1739 2046 2211 18 5 44

cardiotocography 1705 2047 2102 16 8 59
glass 1564 2047 1949 9 3 21

ionosphere 1623 2047 2289 11 3 50
mammography 1961 1786 2426 81 22 121

optdigits 1911 1627 2460 48 11 320
pendigits 1927 1711 2762 54 15 360

pima 1562 2039 2336 10 5 60
satellite 1912 1628 2657 48 11 290

satimage-2 1932 1672 2150 58 13 47
thyroid 1888 1564 2510 40 9 160

wbc 1563 2039 2069 10 5 26
wine 1562 2040 2071 10 5 28

Average value 1741 1892 2285 29 8.3 110.2
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