

000 001 002 003 004 005 UNSUPERVISED ANOMALY DETECTION IN TABULAR 006 DATA WITH TEST-TIME CONTRASTIVE LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035 Unsupervised anomaly detection methods typically learn the feature patterns of
036 normal samples during training, subsequently identifying samples that deviate
037 from the learned patterns as anomalies during testing. However, most existing
038 methods assume that the normal patterns in the test set are similar to those in the
039 training set, ignoring the fact that a limited number of training samples may not
040 cover all possible normal patterns. As a result, when the normal patterns in the
041 test set differ from those in the training set, the model may struggle to distin-
042 guish whether these samples are normal or anomalous, leading to incorrect pre-
043 dictions. To address this issue, we propose a novel Test-time Contrastive learning
044 approach for unsupervised Anomaly Detection in tabular data (namely TCAD).
045 Specifically, TCAD consists of two core stages: Collaborative Dual-task Training
046 and Test-Time Contrastive Learning. In training, Collaborative Dual-task Training
047 uses two self-supervised tasks to capture multi-level features of normal samples
048 and model normal patterns. At test time, Test-Time Contrastive Learning assigns
049 pseudo labels to high-confidence samples and updates the model in two ways:
050 First, it facilitates model adaptation to pseudo-normal samples while preventing
051 overfitting to pseudo-abnormal ones. Second, it employs a KNN-based contrastive
052 strategy to align pseudo-normal samples with the training distribution while push-
053 ing pseudo-abnormal samples away. By combining robust normal pattern mod-
054eling with iterative test-time adaptation, TCAD improves anomaly discrimination,
055 especially under distribution shifts between training and test sets. We construct
056 distribution shifts on 15 widely used tabular datasets, and the results show that
057 TCAD achieves state-of-the-art performance, outperforming the best baseline by
058 4.19% in AUC-ROC, 3.15% in AUC-PR, and 6.64% in F1 score.
059
060

1 INTRODUCTION

061 Anomaly detection aims to identify data points that deviate significantly from the majority of in-
062 stances in a dataset (Zha et al., 2020) and plays a crucial role in various fields, such as medical
063 diagnosis (Fernando et al., 2021), network intrusion detection (Ahmad et al., 2021; Qiao & Pang,
064 2023; Qiao et al., 2024b; Niu et al., 2024), financial fraud detection (Al-Hashedi & Magalingam,
065 2021; Qiao et al., 2024a; 2025), and industrial inspection (Liu et al., 2024). Due to the difficulty of
066 obtaining labeled anomaly data in real-world scenarios, unsupervised anomaly detection methods
067 that utilize only normal samples for training have become the mainstream approach.
068
069

070 Existing unsupervised anomaly detection methods can be broadly classified into 4 categories:
071 one-class classification methods (Schölkopf et al., 1999; Ruff et al., 2018), clustering/feature-
072 distribution-based methods (Liu et al., 2022; Ali et al., 2024; Li et al., 2022), reconstruction-based
073 methods (Schlegl et al., 2017; Gong et al., 2019), and self-supervised learning methods (Schlegl
074 et al., 2017; Gong et al., 2019). Although these methods differ in their design strategies, they share
075 a common core idea: learning feature patterns from normal samples during the training phase and
076 identifying test samples that deviate from these learned patterns as anomalies during the testing
077 phase.
078
079

080 However, most existing methods overlook the fact that limited training samples cannot encompass
081 all possible patterns of normal samples. When the representations of normal test samples deviate
082 from the learned representation space, it becomes challenging for the model to distinguish between
083
084

normal and abnormal samples, resulting in many incorrect predictions. As illustrated in Fig. 1, case (a) represents a scenario where the representations of normal samples in the test set are aligned with those in the training set, maintaining a clear separation from the representations of abnormal samples. In contrast, case (b) depicts a scenario where the representations of normal samples in the test set are misaligned with those in the training set. Existing methods typically identify anomalies by detecting samples that deviate from known representation space during testing. Therefore, in case (b), they classify test samples that are misaligned with the representations of normal samples in the training set as anomalies, resulting in many incorrect classifications. Intuitively, allowing a trained model to adapt to the test data could help align the representation spaces of the training and test sets, thereby reducing the likelihood of falsely identifying normal test samples as anomalies. However, this adaptation poses a critical challenge: if the model learns representations of potentially anomalous samples during the adaptation process, it may compromise its ability to distinguish between normal and abnormal instances, ultimately impairing anomaly detection. Therefore, it is crucial to ensure that the model retains its discriminative capability while undergoing adaptive optimization.

In this paper, we propose TCAD, a novel test-time contrastive learning approach for unsupervised anomaly detection in tabular data. TCAD comprises two key stages: (1) Collaborative Dual-task Training, and (2) Test-Time Contrastive Learning. During training, TCAD employs a dual-task learning framework that integrates a main task and an auxiliary task to capture multi-level feature representations of samples. This design facilitates the effective extraction of latent patterns associated with normal samples in the training set. During testing, instead of indiscriminately assigning high anomaly scores to all samples that deviate from known normal patterns, TCAD employs test-time contrastive learning (TTCL) to refine the anomaly detection process. As shown in Fig. 1(c), at test time, the core idea of TTCL is to enable the model to learn multi-level representations of test samples, while optimizing their embeddings such that pseudo-normal samples are pulled closer to the training distribution (blue dashed circle) and pseudo-abnormal samples are pushed away from it (red dashed circle). Specifically, TTCL first assigns pseudo-labels to high-confidence samples predicted by the model. It then employs self-supervised tasks to help the model learn multi-level feature representations of pseudo-normal samples, while avoiding accurate reconstruction of pseudo-abnormal samples. Next, TCAD performs k-nearest neighbor (KNN) contrastive learning in the embedding space to optimize the feature representations of samples. Finally, the optimized model is used to repeat the same process on the remaining unlabeled test samples until all samples are assigned pseudo-labels. Extensive experiments on 15 tabular datasets demonstrate that our method achieves state-of-the-art performance, outperforming the previous best approach by nearly 7% in average F1 score across all datasets.

Our main contributions can be summarized as follows:

- We investigate a practical yet underexplored problem in unsupervised anomaly detection, where the distribution of normal samples in the test set deviates from that in the training set.

- 108 • We propose a novel test-time contrastive learning approach for unsupervised anomaly de-
109 tction in tabular data under the studied setting, which enhances the model’s ability to
110 effectively distinguish test samples that deviate from known normal patterns.
- 111 • Two core stages, Collaborative Dual-task Training and Test-Time Contrastive Learning, are
112 designed to capture multi-level feature representations of samples and enhance the model’s
113 capacity to discriminate between normal and abnormal samples during testing.
- 114 • Extensive experiments on 15 tabular datasets demonstrate that our method outperforms 13
115 unsupervised anomaly detection baseline models. TCAD outperforms the best baseline by
116 4.19% in AUC-ROC, 3.15% in AUC-PR, and 6.64% in F1 score.

118 2 RELATED WORK

121 2.1 UNSUPERVISED ANOMALY DETECTION

123 Unsupervised anomaly detection, which does not rely on anomaly labels during the training phase, is
124 one of the most practical approaches to anomaly detection. Existing studies typically aim to learn the
125 underlying feature patterns of normal samples during the training phase by modeling their feature
126 distributions, densities, compact embeddings, and internal structures. At test time, samples that
127 significantly deviate from these learned normal patterns are classified as anomalies. These methods
128 can be broadly classified into 4 categories: One-class classification-based methods (Schölkopf et al.,
129 1999; Tax & Duin, 2004; Ruff et al., 2018; Goyal et al., 2020; Massoli et al., 2021; Xu et al.,
130 2024) learn a decision boundary that encloses the normal samples, classifying those that fall outside
131 this boundary as anomalies during testing. Clustering/feature-distribution-based methods (Breunig
132 et al., 2000; Zong et al., 2018; Liu et al., 2022; Ali et al., 2024; Li et al., 2022) detect anomalies
133 by estimating the density of data points or evaluating their positions within the feature distribution.
134 Reconstruction-based methods (Schlegl et al., 2017; 2019; Gong et al., 2019; Zavrtanik et al., 2021;
135 Zaheer et al., 2022; Zhang et al., 2023; Guo et al., 2024) learn compact embeddings to model normal
136 feature patterns and classify samples with high reconstruction errors as anomalies. Self-supervised
137 learning-based methods (Bergman & Hoshen, 2020; Qiu et al., 2021; Shenkar & Wolf, 2022; Yin
138 et al., 2024) design auxiliary tasks to uncover latent data structures and patterns; samples that fail
these tasks at test time are flagged as anomalies.

139 Although these methods adopt a variety of model architectures, they all share the assumption that
140 the distribution of normal samples in the test set is similar to that in the training set. As a result, all
141 samples that deviate from the training distribution are detected as anomalies. In contrast, our pro-
142 posed method explicitly addresses the practical challenge where the distribution of normal samples
143 in the test set may differ from that in the training set. Consequently, it achieves improved detection
144 performance on datasets exhibiting distributional shifts.

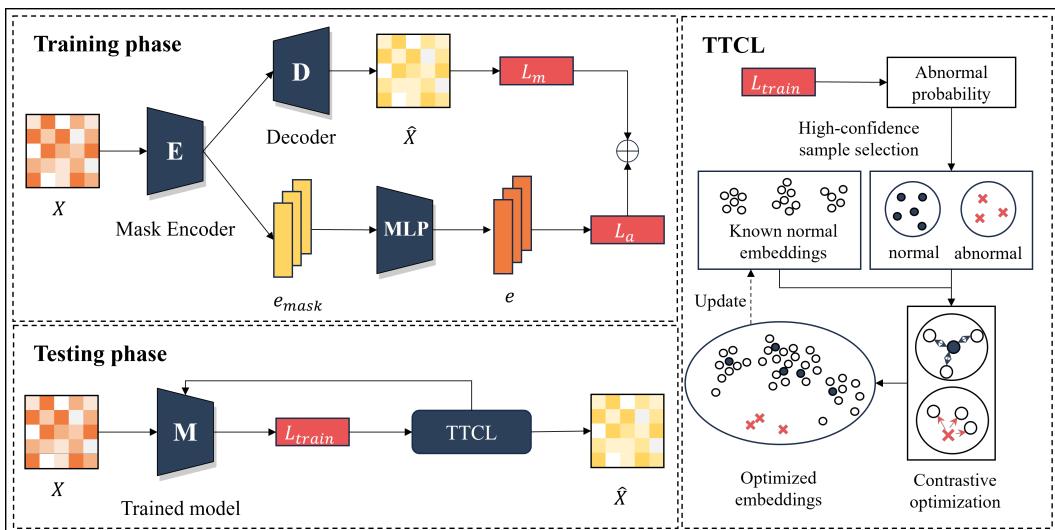
145 2.2 TEST-TIME ADAPTION

147 Test-time training (TTT), a domain adaptation approach, aims to mitigate performance degradation
148 caused by domain shift by enabling models to adapt to test data without labels. It introduces a self-
149 supervised task during training, which is later used to fine-tune the model at test time, improving
150 robustness to distributional changes (Kouw & Loog, 2018; Liu et al., 2021a; Sun et al., 2020).
151 Various self-supervised tasks have been proposed to enhance model performance during the testing
152 phase, including rotation prediction(Feng et al., 2019; Sun et al., 2020), moment matching(Long
153 et al., 2018; Liu et al., 2021b), entropy minimization(Shu et al., 2022), self-training (Zou et al.,
154 2019; Jang et al., 2023), etc. In addition, several approaches have been proposed recently in anomaly
155 detection to address the issue of distribution shift. For example, AnoShift (Dragoi et al., 2022)
156 constructs datasets where shifts naturally emerge over time. Kim et al. (2024) adapt models at test
157 time to potential normal data in time series anomaly detection tasks. OWAD (Han et al., 2023)
158 combines human supervision with unsupervised methods to reduce the labeling cost induced by
159 distribution shift. Cao et al. (2023) and Carvalho et al. (2023) tackle image anomaly detection by
160 learning distribution-invariant representations to mitigate the shift problem.

161 Although TTT has achieved promising results in many tasks, its application to unsupervised anomaly
162 detection tasks remains challenging. The fundamental reason lies in the fact that unsupervised

162 anomaly detection models are trained without access to anomalous samples, while such anomalies
 163 may exist in the test set. If the model inadvertently learns the feature representations of anomalies
 164 during adaptation, it may entirely lose its ability to detect them. To address this issue, our proposed
 165 method explicitly considers the possible presence of anomalies during test-time training. It prevents
 166 the model from accurately modeling abnormal patterns and pushes anomalous samples away from
 167 the learned distribution.

169 3 METHODOLOGY



189 Figure 2: The overview of TCAD. During the training phase, TCAD utilizes two reconstruction
 190 tasks to extract multi-level feature information from the training samples. The main task recon-
 191 structs the input samples to capture low-level features, while the auxiliary task reconstructs their
 192 embeddings to capture high-level features. During the testing phase, TCAD iteratively updates the
 193 trained model using Test-Time Contrastive Learning, which adapts the model to the characteristics
 194 of high-confidence samples while refining their embedding distributions relative to the training sam-
 195 ples.

196 3.1 PROBLEM STATEMENT

197 In this paper, we focus on unsupervised anomaly detection methods in tabular data that do not rely
 198 on labeled anomalies during training. Specifically, these methods are trained solely on datasets
 199 composed of normal samples. Given the training set $\mathcal{D}_{train} = \{\mathbf{x}_i^{train}\}_{i=1}^N$ and test set $\mathcal{D}_{test} =$
 200 $\{\mathbf{x}_i^{test}\}_{i=1}^{N'}$, N and N' represent the number of training set and the test set respectively, α is the con-
 201 tamination rate of the test set \mathcal{D}_{test} . Unsupervised anomaly detection model M is trained on \mathcal{D}_{train}
 202 to learn the feature pattern of the normal samples, then the trained model M_{train} is employed to pre-
 203 dict the anomaly probabilities of test samples $P_{abnormal}$. Samples with high anomaly probabilities
 204 are detected as anomalies \mathcal{A} . The process of model training and label predicting can be formulated
 205 as $M_{train} = M(\mathcal{D}_{train})$, $P_{abnormal} = M_{train}(\mathcal{D}_{test})$, $\mathcal{A} = \mathcal{D}_{test}(Norm(P_{abnormal}) > 1 - \alpha)$,
 206 where $Norm$ is the Min-Max Scaler, which scales the anomaly probability $P_{abnormal}$ to $[0, 1]$.

208 3.2 OVERVIEW OF THE PROPOSED TCAD

209 The key insight of TCAD lies in enabling the model to adapt to normal test samples whose distribu-
 210 tion differs from that of the training set, while mitigating the risk of learning abnormal features that
 211 could degrade anomaly detection performance. To achieve this, TCAD employs two core stages:
 212 Collaborative Dual-task Training and Test-Time Contrastive Learning, which are responsible for
 213 training and test-time adaptation, respectively. As shown in Fig. 2, TCAD captures both low-level
 214 and high-level features of tabular data during the training phase through a main task and an auxiliary
 215 task, effectively learning the normal patterns. During the testing phase, TCAD performs Test-Time

216 Contrastive Learning to refine the trained model. Specifically, TTCL first assigns pseudo labels to
 217 high-confidence outputs of the trained model and then leverages the two training-phase tasks to learn
 218 the feature representations of pseudo-normal samples while preventing the model from accurately
 219 learning pseudo-abnormal patterns. Second, a KNN-based contrastive learning module is designed
 220 to pull pseudo-normal samples closer to the training distribution and push pseudo-abnormal sam-
 221 ples away from it. Through this process, the model gradually improves its ability to distinguish
 222 between normal and abnormal test samples that deviate from the training distribution using the
 223 high-confidence samples selected in each iteration. Finally, the optimized model is repeatedly fine-
 224 tuned on the remaining unlabeled samples using the same procedure until pseudo labels are assigned
 225 to all test samples.

226 3.3 COLLABORATIVE DUAL-TASK TRAINING

228 The model’s ability to capture normal patterns is closely tied to the richness of informative features
 229 extracted from normal samples during training. To strengthen this capability, TCAD employs a
 230 collaborative dual-task learning method that integrates two complementary tasks (main task and
 231 auxiliary task), enabling the model to learn multi-level feature representations of samples effectively.

232 **Model Details.** The backbone of the model is built upon a masked autoencoder. Give the input
 233 $\mathbf{X} \in \mathbb{R}^{B \times d}$ from the training set \mathcal{D}_{train} , B is the batch size, d denotes the dimension of the feature
 234 vector. The input \mathbf{X} is first passed through the masked encoder E , which serves as a shared feature
 235 extractor for both tasks. This mask encoder E consists of two components: a mask generator g_1
 236 and an encoder g_2 , $E = g_1 + g_2$. g_1 produces multiple mask tensors $\mathbf{X}_{mask} = g_1(\mathbf{X})$ of the
 237 same size as \mathbf{X} , and leverage a sigmoid function to scale each value of \mathbf{X}_{mask} between 0 and 1.
 238 Element-wise multiplication is then applied between \mathbf{X}_{mask} and \mathbf{X} , the obtained masked input is
 239 subsequently passed into g_2 to obtain the masked representation $\mathbf{e}_{mask} = E(\mathbf{X}) = g_2(\mathbf{X}_{mask} \odot \mathbf{X})$
 240 in the embedding space. Furthermore, to capture a broader spectrum of information from normal
 241 samples, we ensure sufficient diversity in the masking patterns. This is essential, as using similar
 242 masks may cause the model to learn redundant features, which not only fail to improve anomaly
 243 detection performance but may also degrade it. Inspired by MCM (Yin et al., 2024), the diversity
 244 of masking patterns is promoted by incorporating a dedicated loss function, as defined in $\mathcal{L}_{div} =$
 245 $\sum_{i=1}^T \left[\ln \left(\sum_{j=1}^T \left(\mathbb{I}_{i \neq j} \cdot e^{\frac{\langle \mathbf{x}_{mask}^i, \mathbf{x}_{mask}^j \rangle}{\tau}} \right) \right) \cdot s \right]$, where $\langle \rangle$ denotes the inner product operation,
 246 $\mathbb{I}_{i \neq j}$ is the indicator function, if $i = j$, $\mathbb{I}_{i \neq j} = 0$, otherwise $\mathbb{I}_{i \neq j} = 1$, τ is a temperature parameter,
 247 and s is a scaling factor to adjust the range of the diversity loss, T denotes the number of masks.

248 **Main task: learning low-level features.** In the main task, the masked representation is fed into
 249 the decoder D to reconstruct the original input \mathbf{X} , as shown in $\hat{\mathbf{X}} = D(\mathbf{e}_{mask})$. By minimizing the
 250 reconstruction loss $\mathcal{L}_m = \frac{1}{T} \sum_{i=1}^T \|\hat{\mathbf{X}}_i - \mathbf{X}\|^2$ between the input and its reconstruction, the model
 251 learns low-level feature representations of the tabular data.

252 **Auxiliary task: capturing high-level features.** In the auxiliary task, the masked representation
 253 \mathbf{e}_{mask} is fed into a multi-layer perceptron (MLP) to reconstruct the embedding \mathbf{e} of the unmasked
 254 input. By minimizing the reconstruction loss between the predicted and original embeddings, the
 255 model captures the intrinsic knowledge embedded in the encoded representations, thereby learning
 256 high-level feature representations of the data. To ensure that \mathbf{e} and \mathbf{e}_{mask} have the same size, we
 257 replicate \mathbf{X} T times to match the size of \mathbf{X}_{mask} , and then pass the replicated input through the
 258 encoder g_2 to obtain $\mathbf{e} = g_2(\mathbf{X}^T)$, \mathbf{X}^T represents the input \mathbf{X} that has been replicated T times. The
 259 auxiliary task is trained by minimizing the reconstruction loss $\mathcal{L}_a = \frac{1}{T} \sum_{i=1}^T \|\hat{\mathbf{e}}_i - \mathbf{e}\|^2$ between the
 260 predicted embedding $\hat{\mathbf{e}} = MLP(\mathbf{e}_{mask})$ and the embedding \mathbf{e} .

261 **Model Training Loss.** The overall training loss of the model integrates the reconstruction losses
 262 from the main and auxiliary tasks, as well as the mask diversity loss, and is formally defined as
 263 $\mathcal{L}_{Train} = \mathcal{L}_m + \lambda \mathcal{L}_a + \gamma \mathcal{L}_{div}$, where λ and γ are the weights used to adjust the overall loss
 264 function.

265 3.4 TEST-TIME CONTRASTIVE LEARNING

266 During the testing phase, prior unsupervised anomaly detection methods typically apply the trained
 267 model directly to estimate anomaly scores for test samples, without accounting for the possibility

270 that the distribution of test data may differ from that of the training data. This oversight hampers
 271 the model’s adaptability on certain datasets, thereby limiting its detection accuracy. To address this
 272 issue, we propose a Test-Time Contrastive Learning approach to update the trained model during
 273 the testing phase.

274 **High-Confidence Samples Selection.** Given the test set \mathcal{D}_{test} , we first apply the trained model
 275 to output the losses for all test samples and normalize them into the range $[0, 1]$. Then the
 276 normalized losses of test samples can be regarded as their anomaly probability, $P_{abnormal} =$
 277 $Norm(M_{train}(\mathcal{D}_{test}))$, where M_{train} represents the trained model, $\mathcal{P}_{abnormal}$ denotes the anomaly
 278 probabilities of all test samples, $Norm$ denotes the Min-Max Scaler. Subsequently, TTCL se-
 279 lects the most confident normal and abnormal samples from the test set based on sorted anomaly
 280 scores, referring to them as pseudo-normal and pseudo-abnormal samples. The confidence thresh-
 281 old for sample selection is manually specified. Its default value is 10%, with a predefined nor-
 282 mal-abnormal ratio of 5:1. In addition, similar to prior works (Ruff et al., 2018; Li et al., 2022;
 283 Yin et al., 2024) that assumes access to the true contamination rate, our method can also use the
 284 actual contamination rate as threshold whenever it is available. The selected samples can be denoted
 285 as $\mathcal{H}_{normal} = \{h_i^{normal}\}_{i=1}^{C_{normal}}$, $\mathcal{H}_{abnormal} = \{h_i^{abnormal}\}_{i=1}^{C_{abnormal}}$, where \mathcal{H}_{normal} represents
 286 the set of high-confidence normal samples and $\mathcal{H}_{abnormal}$ represents the set of high-confidence
 287 abnormal samples, C_{normal} and $C_{abnormal}$ denote the number of samples in two sets.

288 **Model Adaptation to Selected Samples.** At the test time, TTCL leverages both the main and aux-
 289 iliary tasks to adapt to feature representations of the selected samples. Since these two tasks are
 290 trained without requiring labels, the approach does not pose any risk of test label leakage. Specif-
 291 ically, the model adapts to pseudo-normal and pseudo-abnormal samples separately. The goal of
 292 adapting to pseudo-normal samples is to learn their feature representations and reduce their recon-
 293 struction errors, preventing them from being mistakenly identified as anomalies. Conversely, the
 294 adaptation to pseudo-abnormal samples aims to hinder the model from accurately learning their rep-
 295 resentations, so that they yield high errors during inference and are correctly identified as anomalies.
 296 The loss function of the model adaptation is shown in eq. (1).

$$297 \mathcal{L}_{adapt} = \sigma_s \cdot \frac{1}{C_s} \sum_{i=1}^{C_s} (\mathcal{L}_m(h_i^s) + \lambda \mathcal{L}_a(h_i^s) + \gamma \mathcal{L}_{div}), \sigma_s = \begin{cases} +1, & s = \text{normal} \\ -1, & s = \text{abnormal} \end{cases} \quad (1)$$

300 **Embedding Contrastive Optimization.** In addition to adapting the model to the feature representa-
 301 tions of the selected samples, TTCL further optimizes their representations in the embedding space.
 302 Specifically, TTCL first maps the selected samples into the embedding space of the training data
 303 using the trained model, and then encourages pseudo-normal samples to move closer to the train-
 304 ing distribution while pushing pseudo-anomalous samples away from it. However, requiring each
 305 high-confidence test sample to be uniformly close to or distant from all training samples is both un-
 306 realistic and inefficient. This is because normal samples exhibit diverse patterns, and a test sample is
 307 unlikely to be close to all modes present in the training data. As a result, it is naturally distant from
 308 some training samples. Moreover, computing distances to all training samples incurs prohibitive
 309 computational costs. Therefore, TTCL adopts a KNN-based contrastive learning strategy that only
 310 utilizes the k nearest neighbors of selected samples to either pull pseudo-normal samples closer
 311 to the training distribution or push pseudo-abnormal samples further away from it. This localized
 312 contrastive approach effectively refines the embedding positions of selected samples, enhancing the
 313 model’s discriminative power while improving optimization efficiency. The contrastive loss function
 314 is defined as eq. (2).

$$315 \mathcal{L}_{contra} = \sigma_s \cdot \frac{1}{C_s} \sum_{i=1}^{C_s} \|h_i^s - KNN(h_i^s, \mathcal{O}, k)\|^2, \sigma_s = \begin{cases} +1, & s = \text{normal} \\ -1, & s = \text{abnormal} \end{cases} \quad (2)$$

316 where \mathcal{O} denotes the embeddings of known normal samples, $KNN(\mathbf{x}, \mathcal{O}, k)$ denotes finding the
 317 k -nearest embeddings to the embedding representation of sample \mathbf{x} from the set of known normal
 318 embeddings \mathcal{O} .

319 **Model Update Loss.** For pseudo-normal or pseudo-anomalous samples, the model jointly optimizes
 320 the adaptation loss and the contrastive loss during the update process. The overall loss function is
 321 defined as $\mathcal{L}_{Update} = \mathcal{L}_{adapt} + \mathcal{L}_{contra}$, where δ is a hyperparameter to balance two losses.

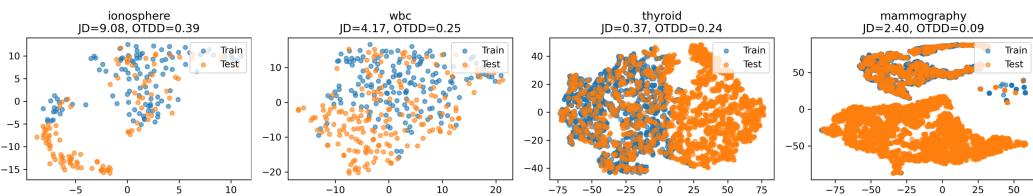
324 **Update Iterations.** Let the originally trained model M_{train} be denoted as $M_{\text{update}}^{(0)}$, and let n denote the total number of update rounds. During test time, the model is iteratively refined using TTCL. In each round, $M_{\text{update}}^{(n-1)}$ is updated using the current pool of known normal samples, $M_{\text{update}}^{(n)} = \text{TTCL}(M_{\text{update}}^{(n-1)}; \mathcal{L}_{\text{Update}})$. Subsequently, newly identified high-confidence normal samples are added to the pool for the next round, $\mathcal{O}^{(n)} = \mathcal{O}^{(n-1)} + \mathcal{H}_{\text{normal}}^{(n-1)}$. This process is repeated iteratively until the remaining unselected samples are insufficient for further selection. Finally, the updated model are used to predict the labels y^{test} of the test samples, as illustrated in $p^{\text{test}} = M_{\text{update}}^{(n)}(\mathcal{D}_{\text{test}})$, $y_i^{\text{test}} = \mathbb{I}(p_i^{\text{test}} \geq \text{Percentile}(p^{\text{test}}, \alpha))$, where p^{test} denotes the predicted anomaly probabilities of test samples, y_i^{test} denotes the predicted label of test sample i , $\mathbb{I}(\cdot)$ denotes 1 if the condition \cdot is met, and 0 otherwise, $\text{Percentile}(p^{\text{test}}, \alpha)$ represents the value at the $100 * \alpha\%$ percentile in p^{test} .

4 EXPERIMENTS

4.1 DATA SHIFT CONSTRUCTION AND ANALYSIS

341 Following prior works (Li et al., 2022; Shenkar & Wolf, 2022; Yin et al., 2024), we first select
 342 15 commonly used tabular datasets from ODDS (Rayana, 2016) and ADBench (Han et al., 2022),
 343 covering a wide range of domains, scales and feature dimensions. These diverse datasets enhance
 344 the generality of our evaluation and strengthens the reliability of the conclusions. Detailed statistics
 345 of datasets are provided in Appendix A.2.

346 Second, we apply K-Means clustering to all normal samples in each dataset. The majority of samples
 347 from the largest cluster are used as the training set, while the remaining samples from this
 348 cluster, together with the samples from the other clusters and the anomalous samples, form the test
 349 set. In this way, the normal samples in the test set consist partly of data consistent with the training
 350 distribution and partly of data deviating from it. To verify the existence of such shifts, we follow
 351 the distribution shift protocol of AnoShift (Dragoi et al., 2022) and examine the processed datasets
 352 using t-SNE visualization, Jeffreys Divergence (JD) and the Optimal Transport Dataset Distance
 353 (OTDD). JD is computed feature-wise via normalized histograms and sums the forward and reverse
 354 KL divergences, thus reflecting probability differences across features. OTDD, in contrast, is ob-
 355 tained by solving an optimal transport problem in the original feature space, capturing the geometric
 356 discrepancy between datasets. In our experiments, OTDD values are normalized to the range [0, 1].



364 Figure 3: A comparison of the normal distributions in the training and test sets visualized using
 365 t-SNE.

366 As shown in Figure 3, the distribution of normal samples in the test set (orange points) exhibits
 367 a clear shift from that in the training set (blue points). The high values of JD and OTDD further
 368 corroborate this observation. Therefore, the constructed distribution shift is indeed substantial and
 369 well grounded. The visualizations of samples, feature distributions, as well as the detailed values of
 370 JD and OTDD for all datasets are provided in Appendix A.3.

4.2 EXPERIMENTAL SETUP

374 **Competing methods.** We compare TCAD against 13 prominent baseline methods to demonstrate
 375 its effectiveness. They can broadly be divided into five categories: one-classification-based meth-
 376 ods (OCSVM (Schölkopf et al., 1999), DeepSVDD (Ruff et al., 2018)), neighbor-based/feature-
 377 distribution-based methods (LOF (Breunig et al., 2000), Iforest (Liu et al., 2008), DIF (Xu et al.,
 378 2023a), ECOD (Li et al., 2022), LUNAR (Goode et al., 2022)), reconstruction-based methods

(MCM (Yin et al., 2024)), self-supervised learning-based methods (GOAD (Bergman & Hoshen, 2020), NeuTral AD (Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), SLAD (Xu et al., 2023b)), and representation learning-based method(DRL (Ye et al., 2025)). Detailed descriptions of all methods are provided in Appendix A.5.

Evaluation Metrics. Following the previous study (Shenkar & Wolf, 2022; Yin et al., 2024; Ye et al., 2025), we employ Area Under the Precision-Recall Curve (AUC-PR), Area Under the Receiver Operating Characteristic Curve (AUC-ROC) and F1 score as our evaluation criteria.

Implementation details. All experiments are conducted on NVIDIA GeForce RTX 2080 Ti with PyTorch (Paszke et al., 2019). During the training phase, the epochs are set to 200, the batch size is 512, the optimizer is Adam, the weight decay is 1e-5, the scheduler is ExponentialLR, and the gamma is 0.98. During the test phase, the value k is set to 3 for all data sets. The hyperparameter λ is set to $\min(1.0, 1.0/\mathcal{L}_m)$, which enables adaptive adjustment of the weights between the main task and the auxiliary task across different datasets. The value of γ is set following the configuration used in MCM (Yin et al., 2024), and δ is set to 1 by default. IForest, LOF, OCSVM, DeepSVDD, ECOD and LUNAR are implemented by the Pyod library (Zhao et al., 2019). DIF, GOAD, NeuTralAD, ICL and SLAD are implemented by DeepOD library (Xu et al., 2023a; 2024). MCM is implemented based on their official open-source code releases. All results of the main experiments and ablation experiments are calculated by averaging the results from the three independent training runs. The results of other experiments are obtained by training the model with a single run.

4.3 EMPIRICAL RESULTS AND ANALYSIS

Main Results. We visualize the evaluation results of all methods across all datasets using box plots, and we additionally provide confidence intervals for the main metrics. The detailed procedure for computing the confidence intervals is provided in Appendix A.4. Figure 4 summarizes the numerical results of AUC-PR and AUC-ROC obtained from evaluating 14 methods across 15 datasets. Subfigures (a) and (b) illustrate the distributions of AUC-PR and AUC-ROC values across datasets, respectively, while subfigures (c) and (d) present the corresponding distributions of rankings for AUC-PR and AUC-ROC. According to the results in the figure, TCAD achieves the best average performance across datasets in terms of both AUC-PR and AUC-ROC. Specifically, TCAD outperforms the best baseline by 3.15% in AUC-PR, with an average ranking advantage of 1.27 positions, and surpasses the best baseline by 4.19% in AUC-ROC, with an average ranking advantage of 0.94 positions.

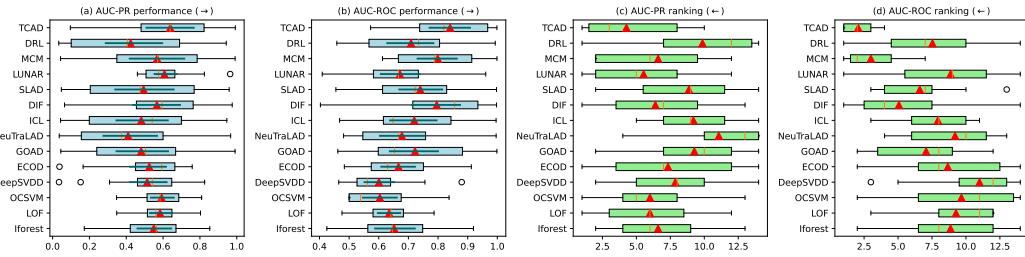


Figure 4: Comparison of all models' performance and ranking across different datasets in terms of AUC-PR and AUC-ROC. The triangles represent the average value over all datasets.

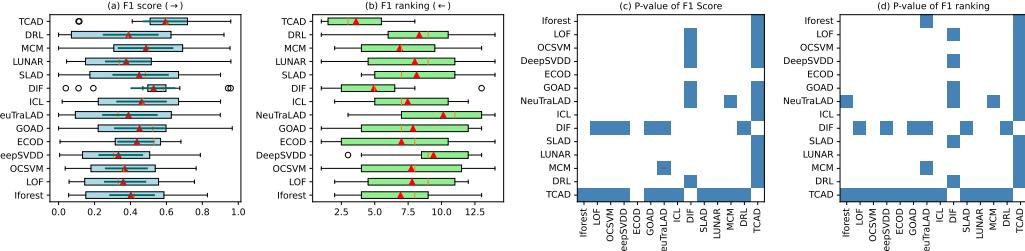


Figure 5: Comparison of F1 scores. (a) and (b) compare the F1 scores and rankings of all models across different datasets, where the triangles denote the averages over all datasets. (c) and (d) conduct Wilcoxon tests across models and datasets. Blue cells indicate corresponding p-values below 0.05 (significant), while white cells indicate p-values above 0.05 (not significant).

432 Figure 5 presents the F1 performance of different methods. Specifically, subfigures (a) and (b) il-
 433 lustrate the distribution of F1 scores across all datasets and the corresponding ranking distributions,
 434 respectively. TCAD achieves an average F1 score that surpasses the second-best model by 6.64%,
 435 and an average ranking advantage of 1.33 positions. Subfigures (c) and (d) employ the Wilcoxon
 436 signed-rank test (Woolson, 2007) (with $\alpha = 0.05$) to assess the statistical significance of the im-
 437 provements. At the 95% confidence level, the improvements of TCAD over the baseline models
 438 are statistically significant on the majority of datasets. The above results demonstrate the effective-
 439 ness of TCAD in detecting anomalies under distribution shift. Detailed results on all datasets are
 440 available in the Appendix A.6.

441 **Results on the AnoShift Subsets.** Beyond the
 442 main experiments, we further investigate distri-
 443 butional shifts induced by temporal evolution
 444 and conduct additional evaluations on subsets
 445 of the AnoShift benchmark. Specifically, due to
 446 computational resource constraints, we use the
 447 2006–2010 valid sets as the training data and the 2011–2015 valid sets as the test data. Since each
 448 valid set follows the same distribution as its corresponding full-year dataset, this setup effectively
 449 simulates temporal distribution shifts on a smaller scale.

450 Following the AnoShift evaluation protocol, AUC-ROC is employed to evaluate performance of
 451 method. We select MCM with the highest AUC-ROC in baseline models as the comparison model,
 452 and the experimental results are presented in Table 1. MCM only outperforms TCAD on the 2011
 453 test set, which is closest to the training years. As the distribution shift becomes more pronounced
 454 over time, TCAD consistently surpasses MCM on the 2012–2015 test sets. The largest improve-
 455 ment is observed in 2014, where TCAD exceeds MCM by 0.1115. These results demonstrate that
 456 TCAD maintains strong and competitive detection performance under distribution shifts induced by
 457 temporal evolution.

458 **Analysis of Pseudo-Label Noise Impact.**
 459 In the TTCL module of TCAD, pseudo-
 460 labels are assigned to samples with high-
 461 confidence prediction probabilities. To in-
 462 vestigate whether noisy pseudo-labels continu-
 463 ously impair model performance, we select four
 464 datasets with notably different overall perfor-
 465 mance (i.e., pendigits, cardiotocography, car-
 466 dio, and breastw) and track their label accuracy during early iterations to examine whether errors are
 467 persistently amplified. The statistical results are reported in Table 2, the accuracy of the pseudo la-
 468 bels fluctuates rather than continuously declining. In addition, even on the pendigits dataset, where
 469 the model performs the worst and the true anomaly rate eventually drops to zero, the final detec-
 470 tion performance of TCAD still surpasses that of most baselines. These phenomena demonstrate
 471 that: (1) Label noise does not cause persistent degradation in model performance. (2) Despite the
 472 presence of noisy labels, the benefits gained from utilizing them outweigh their potential drawbacks.

473 Furthermore, we introduce a co-teaching mechanism in
 474 which two lightweight MLPs mutually select low-loss
 475 samples to reduce noise in pseudo-labels. We experiment
 476 with forget rates of 10%, 20%, 30%, and 40%, and report
 477 the results in Table 3. Interestingly, increasing the for-
 478 get rate does not consistently yield better performance,
 479 likely because the additional supervision introduced by
 480 the co-teaching models may itself introduce errors and
 481 misjudge some pseudo-labels. Nevertheless, with a 40%
 482 forget rate, our model achieves the highest average performance across the 15 datasets, suggesting
 483 that effectively reducing pseudo-label noise can further enhance detection performance. Therefore,
 484 developing more stable pseudo-label refinement strategies is an important direction for future work.

485 **Ablation Study.** Five distinct model configura-
 486 tions are developed for the ablation experiments,
 487 designated as *w/o aux*: Remove auxiliary task during both the model training phase and the testing
 488 phase; *w/o contra*: Remove contrastive optimization during the testing phase; *w/o adapt*: Model

Table 1: AUC-ROC comparison between MCM and TCAD on the Anoshift subsets.

Method/Year	2011	2012	2013	2014	2015
MCM	0.9445	0.8381	0.8341	0.3620	0.2963
TCAD	0.8962	0.9038	0.8692	0.4735	0.3778

Table 2: True rate of pseudo labels in early iterations (true rate of normal labels-true rate of abnormal labels).

Dataset	iter 1	iter 2	iter 3	iter 4
pendigits	1.00-0.07	1.00-0.00	1.00-0.00	1.00-0.00
cardiotocography	0.98-0.59	0.75-0.52	0.96-0.24	0.74-0.67
cardio	1.00-0.88	1.00-0.82	1.00-0.76	0.91-0.88
breastw	1.00-1.00	1.00-1.00	1.00-1.00	1.00-1.00

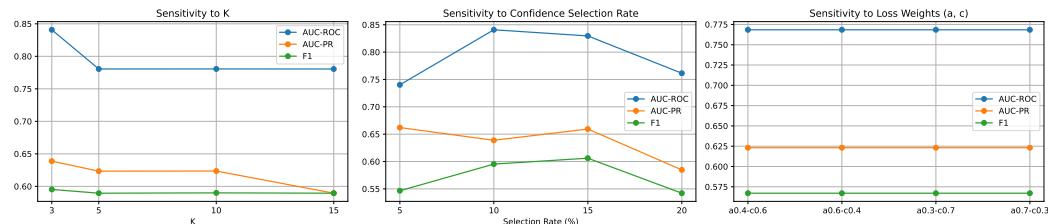
Table 3: Average detection performance across 15 datasets under different forget rates for filtering pseudo-label noise.

Forget rate	auc-roc	auc-pr	pr
0%	0.8408	0.6388	0.5953
10%	0.7710	0.5829	0.5351
20%	0.8201	0.6296	0.5729
30%	0.7774	0.5875	0.5318
40%	0.8290	0.6630	0.6221

486 updates focus solely on adapting to the features of new data, without considering whether such
 487 adaptation may compromise the knowledge previously learned by the model; *w/o TTCL*: Remove
 488 entire TTCL module, and TCAD.

489 As illustrated in Table 4, TCAD achieves
 490 state-of-the-art performance. The results
 491 of its four variants further demonstrate
 492 that: (1) The auxiliary task facilitates the
 493 acquisition of richer knowledge, and col-
 494 laborative dual-task training provides the
 495 model with a solid foundation for reliable
 496 detection capability. (2) Performing contrastive optimization at test time and minimizing the for-
 497 getting of previously learned knowledge are both crucial. Detailed results are provided in the Ap-
 498 pendix A.7.

499 **Parameter Sensitivity Analysis.** We conducted a parameter sensitivity analysis with respect to
 500 three key factors: the value of K used in the KNN-based contrastive learning module, the confi-
 501 dence threshold for pseudo-label selection, and the weighting coefficients of the adaptation loss and
 502 contrastive loss. The resulting performance trends are presented in Figure 6. The main findings
 503 from these experiments are summarized as follows: (1) Robustness to the choice of K . The model is
 504 robust with respect to the value of K . Under imbalanced normal-abnormal data settings, both AUC-
 505 PR and F1 score remain stable. (2) Robustness to the selection rate of high-confidence samples.
 506 The model shows stable performance across different selection rates, with the good overall results
 507 obtained when the selection rate is set to 10% or 15%. We believe this is because an overly small
 508 selection rate provides too few samples to effectively guide test-time adaptation, whereas an overly
 509 large selection rate may introduce more incorrectly labeled samples, steering the adaptation process
 510 away from the expected direction. (3) Robustness to different loss weight combinations. The model
 511 remains stable under different weighting schemes applied to the loss terms.



512 Figure 6: Average detection performance across 15 datasets under different parameter settings

513 **Computational Cost.** We compare the memory and time overhead of MCM, DRL, and TCAD. The
 514 three methods consume similar memory. DRL has the lowest time cost due to efficient representation
 515 decomposition, while TCAD takes slightly more time because of model adjustment at the test phase.
 516 Detailed results are provided in Appendix A.8.

5 CONCLUSION

527 In this paper, we propose a test-time contrastive learning approach for unsupervised anomaly detec-
 528 tion in tabular data, named TCAD. The approach learns rich information from training samples to
 529 model normal patterns through Collaborative Dual-task Training. Meanwhile, it employs Test-Time
 530 Contrastive Learning to enable the model to adapt to test samples in a designed manner and refine
 531 the embedding distribution. Unlike traditional unsupervised anomaly detection methods, TCAD
 532 improves the model’s ability to identify samples that deviate from learned normal patterns. This is
 533 achieved by dynamically updating the model during the test phase using high-confidence samples
 534 generated by the trained model. Furthermore, our experiments reveal that: (1) Designing effective
 535 model update strategies during the test phase can improve anomaly detection capability. (2) During
 536 test-time adaptation in anomaly detection, it is crucial for the model to retain the valuable knowledge
 537 acquired during training, while simultaneously avoiding the risk of overfitting to anomalous patterns
 538 in the test data. In the future, we aim to explore more effective update strategies during the test phase
 539 and investigate the potential of multi-agent approaches for unsupervised anomaly detection.

540 ETHICS STATEMENT

541
542 We affirm that our study has been conducted in full accordance with the ICLR Code of Ethics.
543

544 REPRODUCIBILITY STATEMENT

545
546 We have taken several steps to ensure the reproducibility of our work. The datasets used in our
547 experiments are all publicly available, and the construction and analysis of data shifts are described
548 in detail in Section 4.1. The implementation details, including model configurations and training
549 hyperparameters, are thoroughly documented in Section 4.2. While the source code is not released
550 during the anonymity period, we plan to make it publicly available after this stage to facilitate future
551 research and ensure proper attribution.
552

553 REFERENCES

554
555 Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and Farhan Ahmad.
556 Network intrusion detection system: A systematic study of machine learning and deep learning
557 approaches. *Transactions on Emerging Telecommunications Technologies*, 32(1):e4150, 2021.558
559 Khaled Gubran Al-Hashedi and Pritheega Magalingam. Financial fraud detection applying data
560 mining techniques: A comprehensive review from 2009 to 2019. *Computer Science Review*, 40:
561 100402, 2021.562 Mubashir Ali, Patrizia Scandurra, Fabio Moretti, and Hafiz Husnain Raza Sherazi. Anomaly detec-
563 tion in public street lighting data using unsupervised clustering. *IEEE Transactions on Consumer
564 Electronics*, 2024.565 Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. *arXiv
566 preprint arXiv:2005.02359*, 2020.
567568 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
569 based local outliers. In *Proceedings of the 2000 ACM SIGMOD international conference on
570 Management of data*, pp. 93–104, 2000.571 Tri Cao, Jiawen Zhu, and Guansong Pang. Anomaly detection under distribution shift. In *Proceed-
572 ings of the IEEE/CVF International Conference on Computer Vision*, pp. 6511–6523, 2023.
573574 João Carvalho, Mengtao Zhang, Robin Geyer, Carlos Cotrini, and Joachim M Buhmann. Invariant
575 anomaly detection under distribution shifts: a causal perspective. *Advances in Neural Information
576 Processing Systems*, 36:56310–56337, 2023.577 Marius Dragoi, Elena Burceanu, Emanuela Haller, Andrei Manolache, and Florin Brad. Anoshift: A
578 distribution shift benchmark for unsupervised anomaly detection. *Advances in Neural Information
579 Processing Systems*, 35:32854–32867, 2022.580 Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation learning by rotation fea-
581 ture decoupling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
582 Recognition*, pp. 10364–10374, 2019.
583584 Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes.
585 Deep learning for medical anomaly detection—a survey. *ACM Computing Surveys (CSUR)*, 54(7):
586 1–37, 2021.587 Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh,
588 and Anton van den Hengel. Memorizing normality to detect anomaly: Memory-augmented deep
589 autoencoder for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF international
590 conference on computer vision*, pp. 1705–1714, 2019.
591592 Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. Lunar: Unifying local outlier
593 detection methods via graph neural networks. In *Proceedings of the AAAI Conference on Artificial
Intelligence*, volume 36, pp. 6737–6745, 2022.

594 Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. Drock:
 595 Deep robust one-class classification. In *International conference on machine learning*, pp. 3711–
 596 3721. PMLR, 2020.

597 Jia Guo, Lize Jia, Weihang Zhang, Huiqi Li, et al. Recontrast: Domain-specific anomaly detection
 598 via contrastive reconstruction. *Advances in Neural Information Processing Systems*, 36, 2024.

600 Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han Zhang, Zhihua Wang,
 601 Minghui Jin, Jiahai Yang, et al. Anomaly detection in the open world: Normality shift detection,
 602 explanation, and adaptation. In *NDSS*, 2023.

603 Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
 604 detection benchmark. *Advances in Neural Information Processing Systems*, 35:32142–32159,
 605 2022.

607 Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training with
 608 nearest neighbor information. In *The International Conference on Learning Representations,
 609 ICLR 2023*. The International Conference on Learning Representations (ICLR), 2023.

610 Dongmin Kim, Sunghyun Park, and Jaegul Choo. When model meets new normals: Test-time adap-
 611 tation for unsupervised time-series anomaly detection. In *Proceedings of the AAAI Conference on
 612 Artificial Intelligence*, volume 38, pp. 13113–13121, 2024.

614 Wouter M Kouw and Marco Loog. An introduction to domain adaptation and transfer learning.
 615 *arXiv preprint arXiv:1812.11806*, 2018.

616 Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H Chen. Ecod: Unsu-
 617 pervised outlier detection using empirical cumulative distribution functions. *IEEE Transactions
 618 on Knowledge and Data Engineering*, 35(12):12181–12193, 2022.

619 Boyang Liu, Pang-Ning Tan, and Jiayu Zhou. Unsupervised anomaly detection by robust density
 620 estimation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp.
 621 4101–4108, 2022.

623 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *2008 eighth ieee international
 624 conference on data mining*, pp. 413–422. IEEE, 2008.

625 Jiaqi Liu, Guoyang Xie, Jinbao Wang, Shangnian Li, Chengjie Wang, Feng Zheng, and Yaochu
 626 Jin. Deep industrial image anomaly detection: A survey. *Machine Intelligence Research*, 21(1):
 627 104–135, 2024.

629 Xiaofeng Liu, Xiongchang Liu, Bo Hu, Wenxuan Ji, Fangxu Xing, Jun Lu, Jane You, C-C Jay
 630 Kuo, Georges El Fakhri, and Jonghye Woo. Subtype-aware unsupervised domain adaptation for
 631 medical diagnosis. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
 632 pp. 2189–2197, 2021a.

633 Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
 634 dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? *Advances in Neural
 635 Information Processing Systems*, 34:21808–21820, 2021b.

637 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 638 domain adaptation. *Advances in neural information processing systems*, 31, 2018.

639 Fabio Valerio Massoli, Fabrizio Falchi, Alperen Kantarci, Şeymanur Akti, Hazim Kemal Ekenel,
 640 and Giuseppe Amato. Mocca: Multilayer one-class classification for anomaly detection. *IEEE
 641 transactions on neural networks and learning systems*, 33(6):2313–2323, 2021.

642 Chaoxi Niu, Hezhe Qiao, Changlu Chen, Ling Chen, and Guansong Pang. Zero-shot generalist
 643 graph anomaly detection with unified neighborhood prompts. *arXiv preprint arXiv:2410.14886*,
 644 2024.

646 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 647 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 648 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.

648 Hezhe Qiao and Guansong Pang. Truncated affinity maximization: One-class homophily modeling
 649 for graph anomaly detection. *Advances in Neural Information Processing Systems*, 36:49490–
 650 49512, 2023.

651 Hezhe Qiao, Hanghang Tong, Bo An, Irwin King, Charu Aggarwal, and Guansong Pang. Deep graph
 652 anomaly detection: A survey and new perspectives. *arXiv preprint arXiv:2409.09957*, 2024a.

653 Hezhe Qiao, Qingsong Wen, Xiaoli Li, Ee-Peng Lim, and Guansong Pang. Generative semi-
 654 supervised graph anomaly detection. In *Advances in Neural Information Processing Systems*,
 655 2024b.

656 Hezhe Qiao, Chaoxi Niu, Ling Chen, and Guansong Pang. Anomalygfm: Graph foundation model
 657 for zero/few-shot anomaly detection. *arXiv preprint arXiv:2502.09254*, 2025.

658 Chen Qiu, Timo Pfommer, Marius Kloft, Stephan Mandt, and Maja Rudolph. Neural transformation
 659 learning for deep anomaly detection beyond images. In *International conference on machine
 660 learning*, pp. 8703–8714. PMLR, 2021.

661 Shebuti Rayana. Odds library, 2016. URL <https://odds.cs.stonybrook.edu>.

662 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
 663 Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International
 664 conference on machine learning*, pp. 4393–4402. PMLR, 2018.

665 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
 666 Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
 667 discovery. In *International conference on information processing in medical imaging*, pp. 146–
 668 157. Springer, 2017.

669 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt-
 670 Erfurth. f-anogan: Fast unsupervised anomaly detection with generative adversarial networks.
 671 *Medical image analysis*, 54:30–44, 2019.

672 Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support
 673 vector method for novelty detection. *Advances in neural information processing systems*, 12,
 674 1999.

675 Tom Shenkar and Lior Wolf. Anomaly detection for tabular data with internal contrastive learning.
 676 In *International conference on learning representations*, 2022.

677 Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
 678 Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
 679 *Advances in Neural Information Processing Systems*, 35:14274–14289, 2022.

680 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
 681 ing with self-supervision for generalization under distribution shifts. In *International conference
 682 on machine learning*, pp. 9229–9248. PMLR, 2020.

683 David MJ Tax and Robert PW Duin. Support vector data description. *Machine learning*, 54:45–66,
 684 2004.

685 Robert F Woolson. Wilcoxon signed-rank test. *Wiley encyclopedia of clinical trials*, pp. 1–3, 2007.

686 Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isolation forest for anomaly
 687 detection. *IEEE Transactions on Knowledge and Data Engineering*, 35(12):12591–12604, 2023a.
 688 doi: 10.1109/TKDE.2023.3270293.

689 Hongzuo Xu, Yijie Wang, Juhui Wei, Songlei Jian, Yizhou Li, and Ning Liu. Fascinating supervisory
 690 signals and where to find them: Deep anomaly detection with scale learning. In *International
 691 Conference on Machine Learning*, pp. 38655–38673. PMLR, 2023b.

692 Hongzuo Xu, Yijie Wang, Songlei Jian, Qing Liao, Yongjun Wang, and Guansong Pang. Calibrated
 693 one-class classification for unsupervised time series anomaly detection. *IEEE Transactions on
 694 Knowledge and Data Engineering*, 2024.

702 Hangting Ye, He Zhao, Wei Fan, Mingyuan Zhou, Dan dan Guo, and Yi Chang. Drl: Decomposed
 703 representation learning for tabular anomaly detection. In *The Thirteenth International Conference*
 704 *on Learning Representations*, 2025.

705 Jiaxin Yin, Yuanyuan Qiao, Zitang Zhou, Xiangchao Wang, and Jie Yang. Mcm: Masked cell
 706 modeling for anomaly detection in tabular data. In *The Twelfth International Conference on*
 707 *Learning Representations*, 2024.

709 M Zaigham Zaheer, Arif Mahmood, M Haris Khan, Mattia Segu, Fisher Yu, and Seung-Ik Lee.
 710 Generative cooperative learning for unsupervised video anomaly detection. In *Proceedings of the*
 711 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 14744–14754, 2022.

712 Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem-a discriminatively trained reconstruc-
 713 tion embedding for surface anomaly detection. In *Proceedings of the IEEE/CVF international*
 714 *conference on computer vision*, pp. 8330–8339, 2021.

716 Daochen Zha, Kwei-Herng Lai, Mingyang Wan, and Xia Hu. Meta-aad: Active anomaly detec-
 717 tion with deep reinforcement learning. In *2020 IEEE International Conference on Data Mining*
 718 (*ICDM*), pp. 771–780. IEEE, 2020.

719 Xinyi Zhang, Naiqi Li, Jiawei Li, Tao Dai, Yong Jiang, and Shu-Tao Xia. Unsupervised surface
 720 anomaly detection with diffusion probabilistic model. In *Proceedings of the IEEE/CVF Interna-*
 721 *tional Conference on Computer Vision*, pp. 6782–6791, 2023.

723 Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection.
 724 *Journal of machine learning research*, 20(96):1–7, 2019.

725 Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
 726 Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *Inter-*
 727 *national conference on learning representations*, 2018.

729 Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
 730 self-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 731 5982–5991, 2019.

756 **A APPENDIX**
757758 **A.1 USE OF LARGE LANGUAGE MODELS (LLMs)**
759760 In preparing this manuscript, we employed large language models (LLMs) solely for auxiliary
761 purposes, specifically for checking grammar and improving the clarity of language. Importantly, no
762 LLMs were used in formulating the research motivation, designing the methodology, conducting
763 the experiments, or interpreting the results. All core scientific contributions of this work are entirely
764 original and authored by the researchers.
765766 **A.2 STATISTICS OF DATASETS**
767768 The number of samples, feature dimensions, anomaly contamination rates, and category information
769 for the 15 datasets are summarized in Table 5.
770771 Table 5: The statistics of datasets.
772

Dataset	Samples	Dim	Anomaly	Category
Arrhythmia	452	274	66 (15%)	Healthcare
BreastW	683	9	239 (35%)	Healthcare
Cardio	1831	21	176 (9.6%)	Healthcare
Cardiotocography	2114	21	466 (22.04%)	Healthcare
Glass	214	9	9 (4.2%)	Forensic
Ionosphere	351	33	126 (36%)	Oryctognosy
Mammography	11183	6	260 (2.32%)	Healthcare
Optdigits	5216	64	150 (2.88%)	Image
Pendigits	6870	16	156 (2.27%)	Image
Pima	768	8	268 (35%)	Healthcare
Satellite	6435	36	2036 (32%)	Astronautics
Satimage-2	5803	36	71 (1.2%)	Astronautics
Thyroid	3772	6	93 (2.5%)	Healthcare
Wbc	278	30	21 (5.6%)	Healthcare
Wine	129	13	10 (7.75%)	Chemistry

785
786 **A.3 DATA SHIFT ANALYSIS**
787788 The visualizations of each dataset’s overall distribution and the distribution of the i-th feature are
789 presented in Figure 7. The results of Jeffreys Divergence (JD) and the Optimal Transport Dataset
790 Distance (OTDD) for each dataset are summarized in Table 6.
791792 Table 6: The results of Jeffreys Divergence (JD) and Optimal Transport Dataset Distance (OTDD)
793 between the distributions of normal samples in the training and test sets across all datasets.
794

Metrics / Dataset	arrhythmia	breastw	cardio	cardiotocography	glass
JD	1.39	0.48	1.72	0.46	1.28
OTDD	0.31	0.24	0.29	0.14	0.15
Metrics / Dataset	ionosphere	mammography	optdigits	pendigits	pima
JD	9.08	2.40	0.19	0.80	1.65
OTDD	0.39	0.09	0.55	0.49	0.16
Metrics / Dataset	satellite	satimage-2	thyroid	wbc	wine
JD	3.23	2.83	0.37	4.17	15.43
OTDD	0.01	0.33	0.24	0.25	0.27

802
803 **A.4 COMPUTATION OF CONFIDENCE INTERVALS FOR THE MAIN METRICS**
804805 To provide a robust estimate of the variability in our results across datasets, we compute bootstrap
806 confidence intervals for the main evaluation metrics. Specifically, for each metric, we perform 1,000
807 bootstrap resamples over the dataset-level scores. In each iteration, we randomly sample with re-
808 placement from the scores and compute the mean of the resampled set. The 95% confidence interval
809 is then obtained by taking the 2.5th and 97.5th percentiles of the bootstrapped mean values. This
procedure ensures that the reported mean performance is accompanied by a statistically meaningful

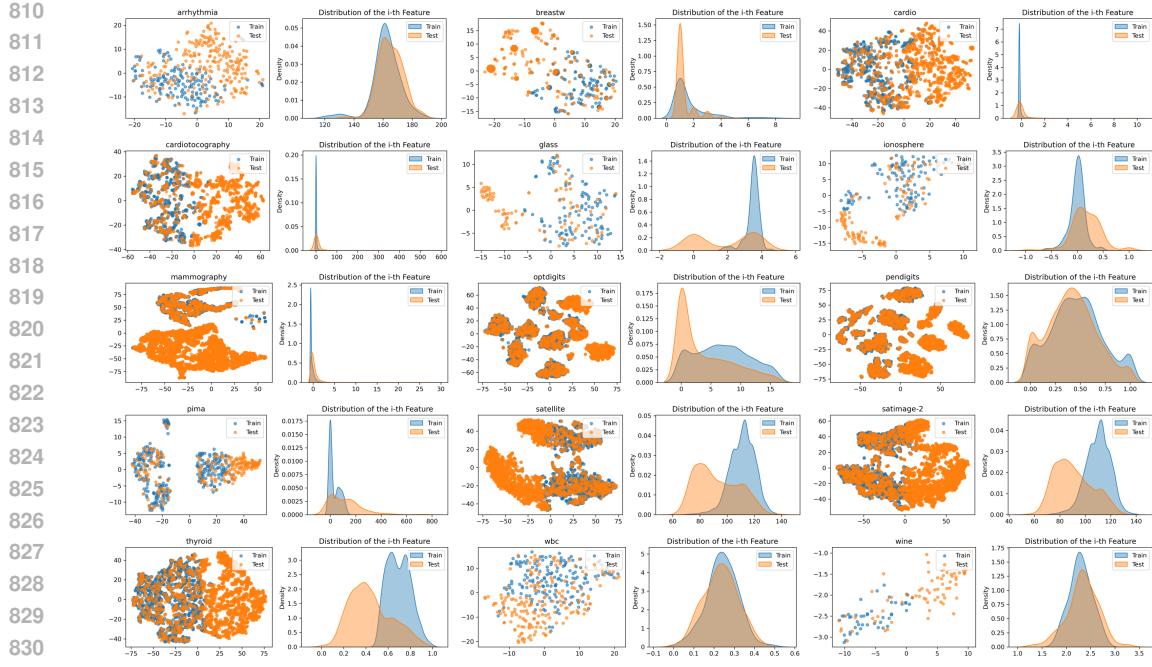


Figure 7: The comparison of normal sample distributions between the training and test sets for each dataset, along with the distribution comparison of the i – th feature.

measure of uncertainty, reflecting the variability across datasets. The detailed results are shown in Table 7.

Table 7: Confidence Intervals of Main Metrics for Each Method.

	Iforest	LOF	OCSVM	DeepSVDD	ECOD
auc-roc	[0.5847, 0.7246]	[0.5937, 0.6754]	[0.5433, 0.6641]	[0.5490, 0.6554]	[0.6055, 0.7252]
auc-pr	[0.4561, 0.6489]	[0.5237, 0.6524]	[0.5289, 0.6632]	[0.4153, 0.6242]	[0.4152, 0.6204]
f1	[0.2822, 0.5360]	[0.2525, 0.4877]	[0.2578, 0.4967]	[0.2216, 0.4703]	[0.3267, 0.5329]
	GOAD	NeuTraLAD	ICL	DIF	SLAD
auc-roc	[0.6342, 0.8030]	[0.6010, 0.7583]	[0.6351, 0.7982]	[0.7096, 0.8774]	[0.6661, 0.8171]
auc-pr	[0.3420, 0.6320]	[0.2711, 0.5722]	[0.3415, 0.6304]	[0.4317, 0.6971]	[0.3352, 0.6624]
f1	[0.3093, 0.5948]	[0.2425, 0.5514]	[0.3212, 0.6025]	[0.4003, 0.6499]	[0.2997, 0.6133]
	LUNAR	MCM	DRL	TCAD(ours)	
auc-roc	[0.6038, 0.7408]	[0.7277, 0.8664]	[0.6255, 0.7874]	[0.7685, 0.9111]	
auc-pr	[0.5487, 0.6790]	[0.4138, 0.7196]	[0.2834, 0.6004]	[0.5050, 0.7717]	
f1	[0.2585, 0.5164]	[0.3290, 0.6384]	[0.2465, 0.5570]	[0.4708, 0.7149]	

A.5 COMPETING METHODS

The detailed introduction of each method is as follows:

- **IForest** (Liu et al., 2008) isolates anomalies by recursively partitioning the data using random splits. The core idea is that anomalies are easier to isolate due to their distinctiveness, requiring fewer partitions compared to normal data points, and this isolation process is used to identify anomalies.
- **LOF** (Breunig et al., 2000) evaluates the local density of data points by comparing the density of a point with that of its neighbors. Points with significantly lower density than their neighbors are considered anomalies, as they deviate from the expected local structure of the data.

- **OCSVM** (Schölkopf et al., 1999) constructs a hyperplane in a high-dimensional space that maximizes the margin around the normal data. This results in the majority of data points being mapped within the boundary, while points that deviate significantly from this boundary are identified as anomalies.
- **DeepSVDD** (Ruff et al., 2018) learns a deep feature representation of the data while simultaneously minimizing the volume of a hypersphere that encloses the normal data. Data points that lie outside this learned hypersphere are detected as anomalies.
- **ECOD** (Li et al., 2022) leverages the empirical cumulative distribution function (ECDF) to detect anomalies. For each feature in the dataset, ECOD computes the ECDF, which captures the data’s distributional properties in a robust and interpretable manner. Points that fall in the extreme tails of the distribution are assigned higher anomaly scores.
- **GOAD** (Bergman & Hoshen, 2020) generalizes the class of transformation functions to include affine transformation which allows it to generalize to non-image data. By applying these transformations to the input data, GOAD trains a classifier to distinguish between the transformed versions. At test time, normal data will exhibit predictable patterns under these transformations, while abnormal data fails to conform to these patterns, making it easier to be identified.
- **NeuTral AD** (Qiu et al., 2021) learns a set of neural transformations, parameterized by neural networks, which map the input data to various transformed spaces and capture the intrinsic structure of normal data. During the testing phase, samples that do not follow the learned patterns are detected as anomalies.
- **ICL** (Shenkar & Wolf, 2022) employs contrastive loss to learn mappings that maximize the mutual information between each sample and the part that is masked out and capture the structure of the samples of the single training class. Test samples are scored by measuring whether the learned mappings lead to a small contrastive loss using the masked parts of this sample. Samples with high loss values are regarded as anomalies.
- **DIF** (Xu et al., 2023a) uses randomly initialized neural networks to create random representation ensembles. Through random axis-parallel cuts on these representations, it realizes nonlinear partitioning in the original space. With CERE for efficient feature mapping and DEAS combining path length and feature deviation, DIF scores anomalies via isolation tree ensembles.
- **SLAD** (Xu et al., 2023b) introduces scale learning for tabular anomaly detection, defining “scale” as the dimensionality relationship between data sub-vectors and their representations. It uses a neural network to learn distribution alignment of subspace transformations via Jensen-Shannon divergence loss, modeling inlier structural regularities. Test instances are scored by divergence from learned scale distributions, high loss indicates anomalies.
- **LUNAR** (Goodge et al., 2022) reframes local outlier detection as a GNN message-passing problem, where samples are nodes connected to k-nearest neighbors. It replaces fixed aggregation rules with learnable neural aggregation and trains with synthetic negatives, enabling adaptive, robust anomaly detection.
- **MCM** (Yin et al., 2024) adapts mask modeling to address the problem of tabular data anomaly detection. Mask generator and autoencoder are employed to capture intrinsic correlations between features existing in training tabular data and model the “characteristic patterns” by such correlations. Samples that deviate from these correlations are predicted as anomalies.
- **DRL** (Ye et al., 2025) tackles tabular anomaly detection by mapping data into a constrained latent space, where each normal sample is represented as a weighted linear combination of fixed orthogonal basis vectors. It enhances discriminability by increasing the variance of normal weights and preserves feature correlations via alignment loss.

A.6 FULL COMPARISON RESULTS WITH BASELINE METHODS

The detailed results of the main experiments are presented in Table 8, 9 and 10.

918
919
920Table 8: Comparison of AUC-PR(\uparrow)results between baseline methods and TCAD on 15 datasets.

	Iforest	LOF	OCSVM	DeepSVDD	ECOD	GOAD	NeuTraLAD	ICL	DIF	SLAD	LUNAR	MCM	DRL	TCAD(ours)
arrhythmia	0.6019	0.5676	0.6111	0.6115	0.6244	0.5867	0.5023	0.5407	0.6294	0.5372	0.5856	0.5657	0.5510	0.6212
breastw	0.8536	0.7818	0.7656	0.8256	0.7581	0.9860	0.5662	0.8508	0.9737	0.9569	0.9644	0.9911	0.9302	0.9921
cardio	0.5381	0.5581	0.5835	0.4407	0.6860	0.4606	0.2458	0.3687	0.6176	0.4277	0.4782	0.6849	0.4054	0.6385
cardiotocography	0.5529	0.5562	0.6531	0.5417	0.6120	0.3408	0.3746	0.4113	0.4944	0.3255	0.4604	0.4051	0.3682	0.3906
glass	0.1721	0.3482	0.3472	0.5118	0.1658	0.0994	0.1201	0.2309	0.1013	0.1105	0.5750	0.1099	0.1191	0.1504
ionosphere	0.8094	0.8032	0.8094	0.7772	0.6842	0.6543	0.6337	0.6063	0.8097	0.7038	0.8241	0.7504	0.8282	0.7552
mammography	0.2713	0.4927	0.4582	0.4812	0.4862	0.3293	0.0563	0.1560	0.4507	0.1467	0.4962	0.4781	0.1022	0.5407
optdigits	0.3311	0.5605	0.5290	0.0348	0.0373	0.0640	0.0528	0.0725	0.0647	0.0690	0.5526	0.1103	0.0997	0.4199
pendigits	0.3430	0.5283	0.5162	0.1523	0.4147	0.0445	0.0362	0.0431	0.5583	0.0475	0.5288	0.0430	0.0333	0.0964
pima	0.7448	0.7441	0.7763	0.6826	0.7113	0.5587	0.5373	0.5787	0.5943	0.5902	0.6611	0.5707	0.5347	0.5921
satellite	0.7169	0.7177	0.7173	0.6894	0.6437	0.7595	0.8306	0.7927	0.7173	0.8339	0.6926	0.8199	0.8400	0.8307
satimage-2	0.5006	0.5013	0.5094	0.5129	0.5931	0.6819	0.8071	0.9461	0.9754	0.9588	0.5114	0.9717	0.0925	0.9716
thyroid	0.6202	0.4433	0.4208	0.3091	0.5818	0.1503	0.1919	0.1677	0.2379	0.4751	0.5032	0.2925	0.0629	0.7773
wbc	0.6235	0.5745	0.6175	0.5703	0.5609	0.5047	0.2311	0.5735	0.4594	0.2623	0.6094	0.7268	0.4460	0.8147
wine	0.5627	0.5781	0.5610	0.5641	0.3177	0.9909	0.9667	0.8813	0.8112	0.9573	0.6667	0.9909	0.9430	0.9909
Average PR	0.5494	0.5837	0.5917	0.5136	0.5251	0.4807	0.4101	0.4813	0.5663	0.4934	0.6073	0.5674	0.4237	0.6388
Average Ranking	6.6	6.0	6.0	7.86	7.33	9.26	11.06	9.2	6.4	8.86	5.53	6.6	9.86	4.26

935
936Table 9: Comparison of AUC-ROC(\uparrow)results between baseline methods and TCAD on 15 datasets.

	Iforest	LOF	OCSVM	DeepSVDD	ECOD	GOAD	NeuTraLAD	ICL	DIF	SLAD	LUNAR	MCM	DRL	TCAD(ours)
arrhythmia	0.7229	0.6797	0.5	0.5022	0.7175	0.7694	0.7127	0.7115	0.8167	0.7227	0.7089	0.7629	0.7345	0.8190
breastw	0.8111	0.6469	0.5973	0.7557	0.5725	0.9814	0.6669	0.8860	0.9640	0.9467	0.9609	0.9936	0.9660	0.9933
cardio	0.5943	0.6497	0.6929	0.6019	0.8388	0.6489	0.5901	0.6479	0.9244	0.77109	0.5633	0.6849	0.6418	0.8199
cardiotocography	0.4837	0.4760	0.5018	0.5480	0.6695	0.4619	0.4829	0.4679	0.7682	0.4554	0.4094	0.6476	0.4843	0.6402
glass	0.4249	0.5437	0.5384	0.6466	0.5236	0.5390	0.6194	0.6147	0.4031	0.6017	0.7287	0.6190	0.6076	0.7021
ionosphere	0.6587	0.6407	0.6587	0.5501	0.5664	0.6288	0.6342	0.6371	0.7559	0.6885	0.7048	0.7885	0.8112	0.7446
mammography	0.4956	0.5918	0.8010	0.5835	0.7321	0.8618	0.6944	0.8014	0.8561	0.7547	0.5898	0.8635	0.7139	0.8970
optdigits	0.6219	0.7765	0.5	0.465	0.4839	0.5949	0.4924	0.645	0.5466	0.6240	0.7386	0.8295	0.7441	0.9460
pendigits	0.6461	0.6945	0.8033	0.5252	0.6298	0.6016	0.5021	0.5763	0.9446	0.5895	0.6666	0.6447	0.4586	0.7313
pima	0.5626	0.5662	0.5	0.4893	0.4893	0.5769	0.5122	0.4813	0.5084	0.5574	0.5579	0.5251	0.6127	0.4798
satellite	0.5634	0.5694	0.5	0.6331	0.6086	0.7155	0.7912	0.7756	0.6738	0.8006	0.5747	0.8065	0.7992	0.8143
satimage-2	0.6724	0.6866	0.5	0.8799	0.9124	0.9640	0.9960	0.9958	0.9973	0.9972	0.5893	0.9986	0.7863	0.9985
thyroid	0.9196	0.5951	0.6239	0.5618	0.8092	0.6534	0.7277	0.6166	0.8838	0.8444	0.6500	0.7696	0.5262	0.9630
wbc	0.8289	0.7866	0.8372	0.7382	0.7694	0.9032	0.7881	0.9234	0.8877	0.8139	0.7995	0.9643	0.8887	0.9723
wine	0.7736	0.6250	0.5	0.5278	0.5875	0.9986	0.9931	0.9889	0.9542	0.9944	0.8611	0.9988	0.9931	0.9986
Average ROC	0.6519	0.6352	0.6036	0.6005	0.6665	0.7223	0.6781	0.7197	0.7955	0.7401	0.6713	0.7989	0.7090	0.8408
Average Ranking	8.86	9.26	9.66	11.0	8.66	7.06	9.2	7.93	5.06	6.6	8.86	3.0	7.53	2.06

953
954
955Table 10: Comparison of F1(\uparrow)results between baseline methods and TCAD on 15 datasets.

	Iforest	LOF	OCSVM	DeepSVDD	ECOD	GOAD	NeuTraLAD	ICL	DIF	SLAD	LUNAR	MCM	DRL	TCAD(ours)
arrhythmia	0.5466	0.4842	0.3636	0.3646	0.5691	0.5909	0.5303	0.4697	0.5909	0.5152	0.5325	0.5	0.5	0.5455
breastw	0.8284	0.721	0.6938	0.7888	0.6809	0.9665	0.6360	0.7876	0.9436	0.8852	0.9590	0.9540	0.9205	0.9582
cardio	0.2964	0.3319	0.3628	0.3051	0.6509	0.5170	0.2670	0.4545	0.5909	0.4830	0.2773	0.3239	0.3864	0.6023
cardiotocography	0.4218	0.4203	0.4704	0.4433	0.5435	0.3004	0.3305	0.3004	0.5365	0.2961	0.3374	0.3584	0.3348	0.4099
glass	0.0870	0.1724	0.1695	0.2192	0.1250	0	0	0.2222	0.1111	0	0.2609	0	0	0.1111
ionosphere	0.7654	0.7561	0.7654	0.7143	0.5398	0.5635	0.6190	0.5952	0.6746	0.6270	0.7871	0.6349	0.7143	0.6508
mammography	0.0664	0.0853	0.2836	0.0839	0.1340	0.4154	0.0038	0.2192	0.4692	0.1577	0.0848	0.4923	0.1	0.5407
optdigits	0.1709	0.2158	0.1095	0.0059	0.0081	0	0	0.02	0.04	0	0.1905	0.02	0.0133	0.4733
pendigits	0.1317	0.1181	0.1906	0.0817	0.3574	0	0	0.0256	0.5256	0.0385	0.1089	0.0064	0.0192	0.1154
pima	0.6689	0.6667	0.7118	0.5709	0.5738	0.5746	0.5522	0.5448	0.5821	0.5784	0.4847	0.5149	0.5373	0.5858
satellite	0.6261	0.6286	0.6059	0.6144	0.5171	0.6051	0.7194	0.6685	0.5953	0.7083	0.6102	0.7141	0.7269	0.7210
satimage-2	0.0561	0.0585	0.0369	0.1723	0.4710	0.6620	0.8592	0.9014	0.9577	0.9014	0.0446	0.9296	0.1268	0.9296
thyroid	0.4674	0.0975	0.1084	0.0942	0.5660	0.1398	0.1828	0.1613	0.1935	0.4516	0.1093	0.2903	0.0430	0.6667
wbc	0.3962	0.3725	0.4301	0.3077	0.5306	0.5238	0.2381	0.6667	0.5238	0.1905	0.3590	0.6667	0.5238	0.7143
wine	0.5	0.2703	0.2174	0.2273	0.2727	0.9	0.9	0.9	0.6	0.9	0.5	0.9	0.9	0.9
Average F1	0.4019	0.3599	0.3679	0.3329	0.4359	0.4506	0.3892	0.4624	0.5289	0.4488	0.3764	0.4870	0.3897	0.5953
Average Ranking	6.93	7.8	7.73	9.4	7.0	7.86	10.13	7.46	4.93	8.13	8.0	6.86	8.33	3.6

971

972 **A.7 RESULTS OF ABLATION STUDY**
973974 The detailed results of the ablation study are presented in Table 11.
975976 Table 11: The evaluation results of ablation experiments across the datasets.
977

Dataset	w/o aux			w/o contra			w/o adapt			w/o TTCL			TCAD		
	auc-roc	auc-pr	f1	auc-roc	auc-pr	f1	auc-roc	auc-pr	f1	auc-roc	auc-pr	f1	auc-roc	auc-pr	f1
arrhythmia	0.5808	0.5295	0.4394	0.6195	0.5795	0.5152	0.4509	0.4032	0.303	0.7437	0.5612	0.5	0.819	0.6212	0.5455
breastw	0.9833	0.9882	0.9414	0.9856	0.9897	0.9582	0.9841	0.9886	0.9498	0.99	0.9882	0.9498	0.9933	0.9921	0.9582
cardio	0.7744	0.6366	0.5966	0.7283	0.6246	0.5966	0.7309	0.6382	0.5852	0.7106	0.2561	0.2273	0.8199	0.6385	0.6023
cardiotocography	0.3707	0.3575	0.279	0.3122	0.3368	0.2725	0.2981	0.3231	0.2618	0.5941	0.3851	0.3691	0.6402	0.3908	0.4099
glass	0.2726	0.0858	0.1111	0.083	0.0649	0	0.2756	0.0797	0	0.6974	0.1590	0.2222	0.7021	0.1504	0.1111
ionosphere	0.5012	0.5321	0.627	0.7009	0.7124	0.6905	0.4966	0.53	0.6429	0.715	0.7432	0.6349	0.7446	0.7552	0.6508
mammography	0.7249	0.1763	0.2577	0.7954	0.1955	0.2769	0.8856	0.5099	0.5692	0.8658	0.5074	0.5192	0.897	0.5407	0.5462
optdigits	0.2723	0.037	0	0.3683	0.0425	0	0.6349	0.0705	0	0.8171	0.1337	0.0733	0.946	0.4199	0.4733
pendigits	0.9471	0.7146	0.6731	0.7514	0.0814	0	0.8837	0.2974	0.3526	0.4142	0.0378	0.0192	0.7313	0.0964	0.1154
pima	0.4721	0.5484	0.4851	0.478	0.55	0.4813	0.4704	0.5493	0.4851	0.592	0.6311	0.6045	0.5724	0.5921	0.5858
satellite	0.6171	0.7131	0.5319	0.4813	0.7486	0.5648	0.5581	0.6679	0.4641	0.8054	0.8409	0.7279	0.8143	0.8307	0.721
satimage-2	0.9876	0.945	0.9014	0.9855	0.9383	0.9014	0.9934	0.9385	0.8794	0.9983	0.9718	0.9296	0.9985	0.9716	0.9296
thyroid	0.7541	0.3503	0.3333	0.4189	0.0638	0.043	0.2801	0.0349	0	0.864	0.3749	0.3763	0.963	0.7773	0.6667
wbc	0.9448	0.718	0.7143	0.9448	0.718	0.7143	0.9448	0.718	0.7143	0.9356	0.6493	0.6667	0.9723	0.8147	0.7143
wine	0.9983	0.9909	0.9	0.9983	0.9909	0.9	0.9983	0.9909	0.9	0.9986	0.9909	0.9	0.9986	0.9909	0.9
Average value	0.6800	0.5548	0.5194	0.6434	0.5091	0.4609	0.6590	0.5160	0.4738	0.7827	0.5487	0.5146	0.8408	0.6388	0.5953

987 **A.8 COMPARISON RESULTS OF COMPUTATIONAL COST**
988989 The detailed results of computational cost comparison are presented in Table 12.
990991 Table 12: The evaluation results of computational cost across the datasets.
992

Dataset	Memory Usage			Time Overhead		
	MCM	DRL	TCAD	MCM	DRL	TCAD
arrhythmia	1707	2042	2053	15	6	26
breastw	1563	2046	2237	8	4	41
cardio	1739	2046	2211	18	5	44
cardiotocography	1705	2047	2102	16	8	59
glass	1564	2047	1949	9	3	21
ionosphere	1623	2047	2289	11	3	50
mammography	1961	1786	2426	81	22	121
optdigits	1911	1627	2460	48	11	320
pendigits	1927	1711	2762	54	15	360
pima	1562	2039	2336	10	5	60
satellite	1912	1628	2657	48	11	290
satimage-2	1932	1672	2150	58	13	47
thyroid	1888	1564	2510	40	9	160
wbc	1563	2039	2069	10	5	26
wine	1562	2040	2071	10	5	28
Average value	1741	1892	2285	29	8.3	110.2

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025