
Does Continual Learning Equally Forget All Parameters?

Haiyan Zhao 1 Tianyi Zhou 2 Guodong Long 1 Jing Jiang 1 Chengqi Zhang 1

Abstract

Distribution shift (e.g., task or domain shift) in
continual learning (CL) usually results in catas-
trophic forgetting of previously learned knowl-
edge. Although it can be alleviated by repeatedly
replaying buffered data, the every-step replay is
time-consuming. In this paper, we study which
modules in neural networks are more prone to for-
getting by investigating their training dynamics
during CL. Our proposed metrics show that only
a few modules are more task-specific and sensi-
tive to task change, while others can be shared
across tasks as common knowledge. Hence, we
attribute forgetting mainly to the former and find
that finetuning them only on a small buffer at the
end of any CL method can bring non-trivial im-
provement. Due to the small number of finetuned
parameters, such “Forgetting Prioritized Finetun-
ing (FPF)” is efficient in computation. We fur-
ther propose a more efficient and simpler method
that entirely removes the every-step replay and
replaces them by only k-times of FPF periodi-
cally triggered during CL. Surprisingly, this “k-
FPF” performs comparably to FPF and outper-
forms the SOTA CL methods but significantly
reduces their computational overhead and cost.
In experiments on several benchmarks of class-
and domain-incremental CL, FPF consistently im-
proves existing CL methods by a large margin,
and k-FPF further excels in efficiency without de-
grading the accuracy. We also empirically studied
the impact of buffer size, epochs per task, and
finetuning modules on the cost and accuracy of
our methods.

1University of Technology Sydney 2University of Mary-
land. Correspondence to: Haiyan Zhao <Haiyan.Zhao-
2@student.uts.edu.au>, Tianyi Zhou <tianyi@umd.edu>,
Guodong Long, Jing Jiang, Chengqi Zhang <{guodong.long,
jing.jiang, chengqi.zhang}@uts.edu.au>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Empowered by advancing deep learning techniques and neu-
ral networks, machine learning has achieved unprecedented
promising performance on challenging tasks in different
fields, mostly under the i.i.d. offline setting. However, its
reliability and performance degenerate drastically in con-
tinual learning (CL) where the data distribution or task in
training changes over time, as the model quickly adapts to
a new task and overwrites the previously learned weights.
This leads to a severe bias toward more recent tasks and
“catastrophic forgetting” of previously learned knowledge,
which is detrimental to a variety of practical applications.

A widely studied strategy to mitigate forgetting is expe-
rience replay (ER) (Ratcliff, 1990; Robins, 1995) and its
variants (Riemer et al., 2018; Buzzega et al., 2020; Boschini
et al., 2022), which store a few data from previous tasks in
the limited memory and train the model using both the cur-
rent and buffered data. However, they only bring marginal
improvements when the memory is too small to store suf-
ficient data for recovering previously learned knowledge,
which is common due to the complicated distributions of
previous tasks. In contrast, multi-task learning (Caruana,
1997) usually adopts a model architecture composed of a
task-agnostic backbone network and multiple task-specific
adapters on top of it. While the backbone needs to be
pre-trained on large-scale data, the adapters are usually
lightweight and can be achieved using a few data. In CL,
however, we cannot explicitly pre-define and separate the
task-agnostic parts and task-specific parts. Although pre-
vious methods (Schwarz et al., 2018; Zenke et al., 2017)
have studied to restrict the change of parameters critical to
previous tasks, such an extra constraint might degrade the
training performance and discourage task-agnostic modules
from capturing shared knowledge.

In this paper, we study a fundamental but open problem in
CL, i.e., are most parameters task-specific and sensitively
changing with the distribution shift? Or is the catastrophic
forgetting mainly caused by the change in a few task-specific
parameters? It naturally relates to the plasticity-stability
trade-off in biological neural systems (Mermillod et al.,
2013): more task-specific parameters improve the plasticity
but may cause severe forgetting, while the stability can
be improved by increasing parameters shared across tasks.

1

Does Continual Learning Equally Forget All Parameters?

In addition, how many task-specific parameters suffice to
achieve promising performance on new task(s)? Is every-
step replay necessary?

To answer these questions, we investigate the training dy-
namics of model parameters during the course of CL by
measuring their changes over time. For different CL meth-
ods training on different neural networks, we consistently
observe that only a few parameters change more drasti-
cally than others between tasks. The results indicate that
most parameters can be shared across tasks, and we only
need to finetune a few task-specific parameters to retain
the previous tasks’ performance. Since these parameters
only cover a few layers of neural networks, they can be
efficiently and accurately finetuned using a small buffer.

Our empirical studies immediately motivate a simple yet
effective method, “forgetting prioritized finetuning (FPF)”
which finetunes the task-specific parameters using buffered
data at the end of CL methods. Surprisingly, on multiple
datasets, FPF consistently improves several widely-studied
CL methods and substantially outperforms a variety of base-
lines. Moreover, we extend FPF to a more efficient lazy
replay method “k-FPF” that eliminates the cost of every-
step replay by replacing such frequent replay with occa-
sional FPF. k-FPF applies FPF only k times during CL. We
show that a very small k suffices to enable k-FPF to achieve
comparable performance with that of FPF+state-of-the-art
(SOTA) CL methods and meanwhile significantly reduces
the computational cost. In addition, we explore different
groups of parameters to finetune in FPF and k-FPF by rank-
ing their sensitivity to task shift evaluated in the empirical
studies. For FPF, we compare them under different choices
for the buffer size, the number of epochs per task, the CL
method, and the network architecture. FPF can significantly
improve existing CL methods by only finetuning ≤ 1.13%
parameters. For k-FPF, we explore different groups of pa-
rameters, k, and the finetuning steps per FPF. k-FPF can
achieve a promising trade-off between efficiency and perfor-
mance. Our experiments are conducted on a broad range of
benchmarks for class- and domain-incremental CL in prac-
tice, e.g., medical image classification and realistic domain
shift between image styles.

2. Related Work
Continual Learning and Catastrophic Forgetting A line
of methods stores samples of past tasks to combat the for-
getting of previous knowledge. ER (Riemer et al., 2018)
applies reservoir sampling (Vitter, 1985) to maintain a
memory buffer of uniform samples over all previous tasks.
MIR (Aljundi et al., 2019) proposes a new strategy to se-
lect memory samples suffering the largest loss increase
induced by the incoming mini-batch, so those at the for-
getting boundary are selected. RAR (Kumari et al., 2022)

synthesizes adversarial samples to refine the boundary be-
tween tasks and reduces bias towards the current task. DER
and DER++ (Buzzega et al., 2020) apply knowledge dis-
tillation to mitigate forgetting by storing the output logits
for buffered data during CL. iCaRL (Rebuffi et al., 2017)
selects samples closest to the representation mean of each
class and trains a nearest-mean-of-exemplars classifier to
preserve the class information of samples. Our methods are
complementary techniques to these memory-based methods.
It can further improve their performance by finetuning a
small portion of task-specific parameters on buffered data
once (FPF) or occasionally (k-FPF).

Another line of work imposes a regularization on model
parameters or isolates task-specific parameters to retain
previous knowledge. oEWC (Schwarz et al., 2018) con-
strains the update of model parameters important to past
tasks by a quadratic penalty. To select task-specific param-
eters, SI (Zenke et al., 2017) calculates the effect of the
parameter change on the loss while MAS (Aljundi et al.,
2018) calculates the effect of the parameter change on the
model outputs when each new task comes. PackNet (Mallya
& Lazebnik, 2018) and HAT (Serra et al., 2018) iteratively
assign a subset of parameters to consecutive tasks via binary
masks. All these works try to identify critical parameters
for different tasks during CL and restrict the update of these
parameters. But they can also prevent task-agnostic param-
eters from learning shared knowledge across tasks. From
the training dynamics of CL, we identify the parameters
sensitive to distribution shift. FPF and k-FPF finetune these
parameters to mitigate bias without restricting the update of
task-agnostic parameters.

Different modules in neural networks Pham et al. (2022)
and Lesort et al. (2021) only study the effect of different
normalization layers and classifiers on CL in a given setting,
while our method investigates the sensitivity of all param-
eters in different network architectures and scenarios. Wu
et al. (2022) study the forgetting of different blocks in the
pre-trained language models by investigating their represen-
tation ability. We provide a more fine-grained analysis of the
forgetting of each module by their training dynamics. And
we find that parameters of different kinds of modules have
different sensitivities to forgetting. Ramasesh et al. (2020)
show that freezing earlier layers after training the first task
has little impact on the performance of the second task. This
is because their unfrozen part covers the last FC layer and
many BN parameters, which are the most sensitive/critical
according to our empirical study. Zhang et al. (2019) find
that in different architectures, the parameters in the top lay-
ers (close to input) are more critical, and perturbing them
leads to poor performance. Our empirical study is consistent
with their findings in that the earlier convolutional layer is
sensitive to task drift and the induced biases on them lead
to catastrophic forgetting.

2

Does Continual Learning Equally Forget All Parameters?

3. Problem Setup
Notations We consider the CL setting, where the model is
trained on a sequence of tasks indexed by t ∈ {1, 2, . . . , T}.
During each task t, the training samples (x, y) (with label
y) are drawn from an i.i.d. distribution Dt. Given a neural
network fΘ(·) of L layers with parameter Θ = {θℓ}ℓ=1:L,
θℓ = {θℓ,i}i=1:nℓ

denote all parameters in layer-ℓ where
θℓ,i denotes parameter-i. On each task, fΘ(·) is trained
for N epochs. We denote all parameters and the layer-ℓ’s
parameters at the end of the n-th epoch of task t by Θt

n and
θtℓ,n, n ∈ {1, . . . , N}, respectively.

Settings In this paper, we mainly focus on class-
incremental learning (class-IL) and domain-incremental
learning (domain-IL). In class-IL, Dt are drawn from a
subset of classes Ct, and {Ct}Tt=1 for different tasks are as-
sumed to be disjoint. Class-IL is a more challenging setting
in CL (Van de Ven & Tolias, 2019) than task-incremental
learning (task-IL) (Lopez-Paz & Ranzato, 2017). Unlike
task-IL, class-IL cannot access the task label during infer-
ence and has to distinguish among all classes from all tasks.
In domain-IL, tasks to be learned remain the same, but the
domain varies, i.e. the input data distribution Dt changes.
The model is expected to adapt to the new domain without
forgetting the old ones. The goal of the class-IL and domain-
IL is: minΘ L(Θ) ≜

∑T
t=1 E(x,y)∼Dt

[l(y, fΘ(x))], where
l is the objective function.

Datasets We conduct class-IL experiments on Seq-
MNIST, Seq-OrganAMNIST, Seq-PathMNIST, Seq-CIFAR-
10, and Seq-TinyImageNet. Seq-OrganAMNIST and Seq-
PathMnist are generated by splitting OrganAMNIST or
PathMNIST from MedMNIST (Yang et al., 2021), a medical
image classification benchmark. CL on medical images is es-
sential in practice but also challenging since medical images
always come as a stream with new patients and new dis-
eases. Moreover, medical images of different classes might
only have subtle differences that are hard to distinguish.
Both Seq-OrganAMNIST and Seq-PathMnist consist of 4
disjoint classification tasks. The number of classes per task
in Seq-OrganAMNIST and Seq-PathMnist are [3, 3, 3, 2]
and [2, 2, 2, 2], respectively. Seq-MNIST (Seq-CIFAR-10)
are generated by splitting the 10 classes in MNIST (LeCun
et al., 1998) (CIFAR-10 (Krizhevsky et al., 2009)) into five
binary classification tasks. Seq-TinyImageNet partitions the
200 classes of TinyImageNet (Le & Yang, 2015) into 10
disjoint classification tasks with 20 classes per task.

For domain-IL experiments, we use PACS dataset (Li et al.,
2017), which is widely used for domain generalization. It
can present a more realistic domain-shift challenge than
the toy-setting of PermuteMNIST (Kirkpatrick et al., 2017).
Images in PACS come from seven classes and belong to four
domains: Paintings, Photos, Cartoons, and Sketches. In Seq-
PACS for CL, each task only focuses on one domain and

the sequence of tasks is Sketches→ Cartoons→ Paintings
→ Photos (increasing the level of realism over time) (Volpi
et al., 2021). Except for Seq-MNIST, where the number of
training epochs for each task is 1, the number of training
epochs for each task in all other datasets is set as 5, which
is enough for CL.

Models We follow the standard network architectures
adopted in most previous CL works. For Seq-MNIST, fol-
lowing (Riemer et al., 2018), we employ an MLP, i.e., a
fully-connected (FC) network with two hidden layers, each
composed of 100 ReLU units. Following (Li et al., 2020;
Derakhshani et al., 2022), we train ResNet-18 (He et al.,
2016) on other five datasets. In addition, we also extend
our empirical study to other architectures, like, VGG-11 (Si-
monyan & Zisserman, 2014) and ResNet-34 (He et al., 2016)
on different datasets.

4. Forgetting of Different Parameters: An
Empirical study

A fundamental and long-lasting question in CL is how the
distribution shift impacts different model parameters and
why it leads to harmful forgetting. Its answer could unveil
the plasticity-stability trade-off in CL, where some param-
eters are plastic and task-specific and thus have to be fine-
tuned before deploying the model, while the stable ones
can be shared with and generalized to new tasks. Inspired
by (Zhou et al., 2020; 2021), understanding the learning
dynamics of deep neural networks is crucial for optimizing
the training process. We conduct a comprehensive empiri-
cal study that compares the training dynamics of different
parameters in three widely studied neural networks.

4.1. Measuring Forgetting via Training Dynamics

To measure and compare the forgetting effects of different
parameters, we adopt two intuitive metrics to compute the
change of parameters and investigate their dynamics over
CL. The first metric calculates the difference between two
consecutive epochs, e.g., for parameter θℓ, it computes (1)
(1/|θℓ|)∥θtℓ,n− θtℓ,n−1∥1 between epoch-(n−1) and epoch-
n within a task-t and (2) (1/|θℓ|)∥θt+1

ℓ,1 − θtℓ,N∥1 between
the last epoch of task-t and the first epoch of task-(t + 1).
The training dynamics of this metric on different groups of
parameters for different networks are shown in plots (a,c) of
Fig. 1. (Refer to Sec. 4.2 for detailed analysis.) In CL, the
unstable changes of parameters are mainly caused by the
task shift, while the learning within each task usually leads
to smooth changes. Hence, the second metric focuses on the
difference between two consecutive tasks, e.g., the change
of parameters between epoch-n of the two consecutive tasks,
i.e., Cℓ = (1/|θℓ|)∥θt+1

ℓ,n − θtℓ,n∥1. Its results on different
neural networks are displayed in plots (b,d,e) of Fig. 1.

3

Does Continual Learning Equally Forget All Parameters?

0 3 6 9 12 15 18 21 24
Training epochs

10 5

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
FC layer 1
FC layer 2
FC layer 3

(a) VGG(consecutive epochs)

6 9 12 15 18 21 24
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
FC layer 1
FC layer 2
FC layer 3

(b) VGG(consecutive tasks)

0 3 6 9 12 15 18 21 24
Training epochs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(c) ResNet(consecutive epochs)

6 9 12 15 18 21 24
Training epochs

10 6

10 5

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(d) ResNet(consecutive tasks)

2 3 4 5
Training epochs

10 2

Dy
na

m
ics

 o
f p

ar
am

et
er

s

FC layer 1
FC layer 2
FC layer 3

(e) MLP

6 8 10 12 14 16 18
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s
Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(f) Seq-OrganAMNIST

6 9 12 15 18 21 24
Training epochs

10 4

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(g) ER(buffer size= 2000)

6 8 10 12 14 16 18
Training epochs

10 3

10 2

10 1

Dy
na

m
ics

 o
f p

ar
am

et
er

s

Conv Layer 1
Conv Block 1
Conv Block 2
Conv Block 3
Conv Block 4
BN Mean&Var Layers
BN Weight&Bias Layers
FC layer

(h) Seq-PACS

Figure 1. (a-e) The training dynamics of different metrics for different groups of parameters when applying SGD in CL to train three
types of deep neural networks on Seq-CIFAR-10; The training dynamics of other scenarios in ResNet-18: (e) on a non-standard dataset;
(g) using a different CL method with a different buffer size; (h) in the domain-IL setting. Note the y-axis is of logarithmic scale.

(Refer to Sec. 4.2 for detailed analysis.)

4.2. Forgetting of Different Parameters During CL

We first investigate and compare the training dynamics of
different parameters in three types of networks. To gain in-
sights applicable to all CL methods, we exclude any specific
CL techniques but simply apply SGD to train a model on a
sequence of tasks without any countermeasure to forgetting.
Then, we extend the experiment to different CL methods
and datasets to verify whether the observations still hold.
The number of tasks for each dataset and the number of
training epochs for each task can be found in Sec. 3.

Dynamics between Consecutive Epochs Plots (a,c) of
Fig. 1 show the training dynamics of consecutive epochs
for parameters in VGG-11 and ResNet-18 when trained on
Seq-CIFAR-10. We partition all parameters in VGG-11 into
several groups, i.e., the bottom convolutional layer (closest
to the input), convolutional layers in different blocks, and
three FC layers. Besides the groups of VGG-11, ResNet-18
applies batch-normalization (BN), which has two groups
of parameters, i.e., (1) weights and biases and (2) mean
and variance. In the plots, all parameters experience more
changes at the epoch of task switching and quickly converge
after a few epochs in the same task. Hence, the dynamic
patterns of this metric can be used to detect task boundaries.

Dynamics between Consecutive Tasks Plots (b,d,e) of
Fig. 1 show the training dynamics of consecutive tasks for
parameters in VGG-11, ResNet-18, and MLP. We train a
three-layer MLP for Seq-MNIST. Since each task in Seq-
MNIST is trained only 1 epoch, the dynamics of MLP
for consecutive epochs and consecutive tasks are the same.

From the plots of different neural networks, the last FC layer
is more sensitive to task shift than other layers. When BN is
included in the network, BN layers’ mean and variance be-
come the most changed parameters. These observations are
similar to studies in research domains like multi-task learn-
ing and domain adaptation (Long et al., 2015; Chang et al.,
2019) that the last FC layer and BN layers are task-specific
and cannot be shared among tasks. In CL, the last FC layer
is sensitive because tasks in class-IL differ on their predicted
classes, which are the outputs of the last FC layer. It is also
intuitive that BN layers are task-specific since the mean and
variance of BN layers capture the first and second-order mo-
ments of the distribution for the latent representations. The
variance of BN weight and bias is relatively large compared
to other layers. Please refer to Appendix. G for details.

One interesting observation of VGG-11 and ResNet-18 is
that the sensitivity of convolutional layers increases as the
layer gets closer to the input. The reason may be that they
are producing representations for the input images, whose
distribution shift directly impacts the bottom convolutional
layer. The functionality of filters in the top layers is to
integrate patterns learned in the bottom layers to produce
high-level patterns, so filters in the top layers are relatively
stable. In Fig. 9 of the Appendix, we further study the train-
ing dynamics of each filter within a task or cross tasks in
different layers of a network. Firstly, the training dynamics
of each filter in the bottom layer are much larger than that
of the top layer, which is in line with our above observa-
tion. We also find that in the same layer, when tasks shift,
the dynamics of a small number of filters increase signifi-
cantly. These filters should be task-specific and critical to
the learning of the new task.

4

Does Continual Learning Equally Forget All Parameters?

Task 1 Task 2 Task 3 Task N

…
SGD + replay (replay-based method)

Task 1 Task 2 Task 3 Task N

…
SGD + replay + FPF

Task 1 Task 2 Task 3 Task N
…

SGD

replay FPF
Task 1 Task 2 Task 3 Task N

…
SGD + k-FPF

Figure 2. Comparison of SGD, replay-based method, FPF, and k-FPF. SGD trains tasks sequentially without replay. Replay-based
methods train models on buffered and current data simultaneously. FPF finetunes the most sensitive parameters for a few iterations using
buffered data at the end of arbitrary CL methods. k-FPF periodically (regardless of task boundaries) applies FPF for k times during
training.

Dynamics on different scenarios The above empirical
study is limited to SGD without applying any other CL
techniques and only focuses on class-IL. In the follow-
ing, we extend the studies to different CL methods, non-
standard datasets, and domain-IL while fixing the model
to be ResNet-18. Fig. 1 (f) extends the empirical study to
a medical dataset Seq-OrganAMNIST. Compared to Seq-
CIFAR-10, it differs in the number of tasks, dataset size,
image size, and data type. We further replace SGD with ER
using a replay buffer, whose results are reported in Fig. 1 (g).
The ranking order of parameter groups in terms of sensitiv-
ity stays consistent under the change of dataset and replay
strategy.

In domain-IL, as shown in Fig. 1 (h), the training dynamics
of different parameters are in line with our observations
in class-IL: only a small portion of parameters are task-
specific. However, one difference is worth noting. Since
the output classes stay the same across tasks and only the
input domain changes, the last FC layer which is the most
sensitive in class-IL, becomes equally or less sensitive than
the bottom convolutional layer. Hence, the plasticity and
stability of parameters are impacted by how close they are
to the changed data distributions.

Inspiration from Empirical Studies. Above studies shed
light on the improvements of CL methods. (1) We compare
the sensitivity of different parameters in three types of deep
neural networks and observe that only a small portion of
them are much more sensitive than others. This implies that
only finetuning these task-specific (or plastic) parameters
may suffice to retain the previous tasks. (2) The dynamics
between consecutive epochs show that all layers experience
more changes when tasks shift, which can be used to detect
task boundaries during CL. Knowing task boundaries is a
critical prerequisite for lots of CL methods. The proposed
metric makes the CL problem much easier, makes these
methods more general and can contribute to better CL meth-

ods. (3) According to Fig. 9, in convolutional layers, only a
small part of task-specific filters leads to a great change of
dynamics when tasks shift. The regularization or isolation
of these filters can improve the performance of CL.

5. Forgetting Prioritized Finetuning Methods
The above empirical study of the training dynamics on pa-
rameters immediately motivates a simple but novel method
for CL, i.e., “forgetting prioritized finetuning (FPF)”, which
can be applied to any existing replay-based CL method. In
the more efficient k-FPF, we further remove the every-step
replay and any other CL techniques but simply apply k-
times of FPF in SGD training. In Fig. 2, we provide an
illustration that compares SGD, replay-based methods, and
our proposed methods. At last, we propose a metric to
automatically identify sensitive parameters in each neural
network. See Appendix. A for the detailed procedure of
FPF and k-FPF.

FPF to improve CL performance. FPF applies lightweight
finetuning to the most task-specific parameters using the
buffered data after the training of arbitrary CL methods.
Hence, it is complementary to any existing CL methods as
a correction step to remove their biases in the task-specific
parameters by finetuning them on unbiased buffered data.
Thereby, it can improve the performance of any existing CL
methods without causing notably extra computation.

k-FPF to improve CL efficiency and performance. FPF is
a simple technique that brings non-trivial improvement, but
it is applied after the training of an existing CL method.
Unfortunately, many SOTA CL methods require time-
consuming replay in every step, which at least doubles the
total computation. Since only a few parameters are sensitive
during the task shift, can we develop a replay-efficient CL
that replaces every-step replay with occasional FPF? We

5

Does Continual Learning Equally Forget All Parameters?

propose k-FPF that applies FPF k times during CL as shown
in Fig. 2. Without the costly experience replay, k-FPF can
still achieve comparable performance as FPF+SOTA CL
methods but only requires nearly half of their computation.
We can apply k-FPF with any replay-free method, e.g., SGD,
which is usually used as a lower bound for CL methods. We
still maintain a small buffer by reservoir sampling, but it
is only for FPF, so SGD never accesses it. We lazily apply
FPF on the buffer after every τ SGD step (in total k times
over kτ SGD steps) without knowing the task boundaries.

k-FPF-CE+SGD We propose two variants of k-FPF, i.e., k-
FPF-CE+SGD and k-FPF-KD+SGD. k-FPF-CE+SGD uses
the cross-entropy loss to update the sensitive parameters
during each FPF. In this paper, k-FPF-CE refers to k-FPF-
CE+SGD if not specified. The objective of FPF in k-FPF-
CE is: minΘ⋆ L(Θ⋆) ≜ E(x,y)∼B [lCE(y, fΘ(x))] where
Θ⋆ denotes selected groups of task-specific parameters, B
refers to the buffered data and lCE is the cross-entropy loss.

k-FPF-KD+SGD to further improve performance In-
spired by DER (Buzzega et al., 2020), we further propose
k-FPF-KD that introduces knowledge distillation (KD) (Hin-
ton et al., 2015) to the objective in k-FPF-CE. In this pa-
per, k-FPF-KD refers to k-FPF-KD+SGD if not specified.
Same as DER, the pre-softmax responses (i.e. logits) for
buffered data at training time are stored in the buffer as
well. During FPF, the current model is trained to match the
buffered logits to retain the knowledge of previous models.
The objective of FPF in k-FPF-KD is: minΘ⋆ L(Θ⋆) ≜
E(x,y)∼B [lCE(y, fΘ(x))] + λE(x,z)∼B [lMSE(z, hΘ(x))]
where z is the logits of buffered sample x, lMSE refers
to the mean-squared loss, hΘ(x) computes the pre-softmax
logits and λ is a hyper-parameter balancing the two terms.
Compared to the computation of k-FPF-CE, the additional
computation of k-FPF-KD is negligible.

Selection of sensitive parameters for FPF and k-FPF
A key challenge in FPF and k-FPF is to select the task-
specific parameters for finetuning. Examples of the training
dynamics for different layers of various networks are shown
in plots (b,d,e) of Fig. 1, and their ranking does not change
over epochs. So we propose to select sensitive parameters
for different neural networks according to their training
dynamics in the early epochs. Specifically, for each neural
network, its layers are partitioned into G groups as shown
in Fig. 1, we calculate the sensitive score Sg for each group
of layers in the neural network by

Sg =
(1/|g|)

∑
ℓ∈g Cℓ∑G

g=1(1/|g|)
∑

ℓ∈g Cℓ

∗G (1)

where Cℓ is the training dynamics mentioned in Sec. 4.1.
We calculate the ratio of sensitivity for group g over all the
G groups in the network. Since each network consists of
a different number of parameter groups, we multiply G to

rescale the sensitivity score.

In the experiments later, under different scenarios and on
various benchmarks, we evaluate the performance of FPF
and k-FPF when selecting different subsets of task-specific
parameters. In a nutshell, finetuning parameters of higher
sensitivity achieve more improvement, which is in line
with our findings in empirical studies. FPF outperforms
all baselines when parameter groups whose Sg > 1 are
regarded as sensitive parameters and account for only
1.13%, 0.32% and 0.15% of the number of all parameters in
MLP, VGG-11, and ResNet-18. For k-FPF, finetuning more
parameters, i.e., the earlier convolutional layers, achieves
the best performance. This is the price of removing replay,
which halves the computational cost. We set the threshold
of sensitivity score to 0.3 so that k-FPF achieves SOTA
performance and only 12.40%, 1.69%, and 24.91% of
parameters in MLP, VGG-11, and ResNet-18 are regarded
as sensitive parameters.

6. Experiments
In this section, to compare FPF and k-FPF with SOTA CL
methods, we conduct our experiments mainly on ResNet-18.
We apply FPF and k-FPF to multiple benchmark datasets
and compare them with SOTA CL baselines in terms of
test accuracy and efficiency. Besides, we also compare
the performance of finetuning different parameters in
FPF and k-FPF and show that finetuning a small portion
of task-specific parameters suffices to improve CL. FPF
improves SOTA CL methods by a large margin under
all these scenarios, while k-FPF achieves comparable
performance with FPF but is more efficient. Please refer
to the Appendix for more results and analysis.

Implementation Details. We follow the settings
in (Buzzega et al., 2020) to train various SOTA CL meth-
ods on different datasets, except training each task for only
5 epochs, which is more practical than 50 or 100 epochs
in (Buzzega et al., 2020) for the streaming setting of CL.
Since the epochs are reduced, we re-tune the learning rate
and hyper-parameters for different scenarios by performing
a grid search on a validation set of 10% samples drawn from
the original training set. For both FPF and k-FPF, we use the
same optimizer, i.e., SGD with the cosine-annealing learn-
ing rate schedule, and finetune the selected parameters with
a batchsize of 32 for all scenarios. The finetuning steps for
FPF and k-FPF are 300 and 100, respectively. We perform
a grid search on the validation set to tune the learning rate
and other hyper-parameters. Please refer to Appendix. N for
the hyper-parameters we explored.

Baseline methods. We apply FPF to several SOTA memory-
based CL methods: ER, iCaRL, A-GEM (Chaudhry et al.,
2018), FDR (Benjamin et al., 2018), DER, and DER++. Be-

6

Does Continual Learning Equally Forget All Parameters?

Table 1. Test accuracy (%) of baselines, FPF, and k-FPF. “-” indicates that the algorithm is not applicable to the setting. k-FPF-KD applies
an additional knowledge distillation loss to the objective of k-FPF-CE. Bold and Bold gray mark the best and second best accuracy.

BUFFER METHODS
CLASS-IL DOMAIN-IL

SEQ-ORGANAMNIST SEQ-PATHMNIST SEQ-CIFAR-10 SEQ-TINY-IMAGENET SEQ-PACS

JOINT 91.92±0.46 82.47±2.99 81.05±1.67 41.57±0.55 70.85±8.90
SGD 24.19±0.15 23.65±0.07 19.34±0.06 7.10±0.14 31.43±6.39
OEWC (SCHWARZ ET AL., 2018) 22.71±0.67 22.36±1.18 18.48±0.71 6.58±0.12 35.96±4.59

200

GDUMB (PRABHU ET AL., 2020) 61.78±2.21 46.31±5.64 30.36±2.65 2.43±0.31 34.16±3.45
k-FPF-CE 75.21±2.03 72.88±3.22 57.97±1.53 13.76±0.72 60.70 ±2.81
k-FPF-KD 80.32±1.16 74.68±4.72 58.50±1.03 14.74±0.94 63.15±1.19

ER (RIEMER ET AL., 2018) 71.69±1.71 51.66±5.86 45.71±1.44 8.15±0.25 51.53±5.10
FPF+ER 76.92±2.26 67.34±2.68 57.68±0.76 13.08±0.65 65.16±1.97
AGEM (CHAUDHRY ET AL., 2018) 24.16±0.17 27.93±4.24 19.29±0.04 7.22±0.15 40.54±3.43
FPF+AGEM 72.22±2.45 66.88±3.05 55.33±2.19 12.27±0.49 57.33±0.76

ICARL (REBUFFI ET AL., 2017) 79.61±0.56 54.35±0.94 59.60±1.06 12.13±0.20 -
FPF+ICARL 80.28±0.58 71.20±2.19 63.36±0.91 16.99±0.37 -

FDR (BENJAMIN ET AL., 2018) 68.29±3.27 44.27±3.20 41.77±4.24 8.81±0.19 45.91±3.54
FPF+FDR 76.10±0.87 70.06±2.78 51.91±2.77 11.52±0.72 57.17±1.31

DER (BUZZEGA ET AL., 2020) 73.28±1.33 54.45±5.92 47.04±3.03 9.89±0.58 46.93±4.94
FPF+DER 79.63±1.21 67.29±3.75 56.67±2.19 12.65±0.60 61.49±1.37

DER++ (BUZZEGA ET AL., 2020) 78.22±2.05 62.00±3.79 59.13±0.81 12.12±0.69 55.75±2.02
FPF+DER++ 80.99±0.91 68.78±2.99 61.69±0.97 13.72±0.40 65.28±1.02

500

GDUMB (PRABHU ET AL., 2020) 73.29±1.82 63.55±5.62 42.18±2.05 3.67±0.25 43.29±2.53
k-FPF-CE 81.28±0.71 76.72±1.94 64.35±0.87 19.57±0.37 65.90±0.72
k-FPF-KD 85.16±0.67 79.20±3.89 66.43±0.50 20.56±0.32 66.42±2.21
ER (RIEMER ET AL., 2018) 80.45±0.99 57.54±3.05 57.64±4.27 10.09±0.34 52.72±4.01
FPF+ER 84.07±1.26 69.83±2.87 65.47±2.64 18.61±0.70 64.27±1.91

AGEM (CHAUDHRY ET AL., 2018) 24.00±0.18 27.33±3.93 19.47±0.03 7.14±0.10 35.29±4.94
FPF+AGEM 78.98±1.80 73.32±3.73 57.84±1.98 16.16±0.30 62.40±1.89

ICARL (REBUFFI ET AL., 2017) 82.95±0.47 57.67±1.13 62.26±1.09 14.81±0.37 -
FPF+ICARL 83.88±0.69 73.56±3.00 67.75±0.67 16.69±0.29 -

FDR (BENJAMIN ET AL., 2018) 76.62±1.81 40.08±4.13 43.52±1.74 11.33±0.33 48.50±4.67
FPF+FDR 82.32±0.91 73.64±3.85 63.09±0.81 17.10±0.35 65.39±1.83

DER (BUZZEGA ET AL., 2020) 82.52±0.52 66.71±3.40 55.98±3.35 11.54±0.70 47.63±3.85
FPF+DER 85.18±0.39 74.13±3.12 67.52±0.83 17.34±0.53 65.69±1.66

DER++ (BUZZEGA ET AL., 2020) 84.25±0.47 71.09±2.60 67.06±0.31 17.14±0.66 57.77±2.54
FPF+DER++ 85.40±0.26 77.37±1.32 69.08±0.92 20.17±0.35 66.89±1.32

sides, we also compare our methods with GDUMB (Prabhu
et al., 2020) and oEWC. We take JOINT as the upper bound
for CL, which trains all tasks jointly, and SGD as the lower
bound, which trains tasks sequentially without any coun-
termeasure to forgetting. For FPF, k-FPF, and all memory-
based methods, the performance with buffer sizes 200 and
500 is reported. All results reported in Tab. 1 are averaged
over five trials with different random seeds.

6.1. Main Results

FPF considerably improves the performance of all
memory-based CL methods and achieves SOTA perfor-
mance over all scenarios in class-IL and domain-IL in Tab. 1.
For methods with catastrophic forgetting, like AGEM, the
accuracy of FPF increases exponentially. The surge in per-
formance illustrates that FPF can eliminate bias by finetun-
ing task-specific parameters to adapt to all seen tasks.

k-FPF-CE replaces the costly every-step replay with

efficient occasional FPF. In Tab. 1, the performance of
k-FPF-CE on Seq-PathMNIST, Seq-Tiny-ImageNet, and
Seq-PACS is better than the best CL methods, and its perfor-
mance on Seq-OrganAMNIST and Seq-CIFAR-10 is also
better than most CL methods, which implies that finetuning
the task-specific parameters on a small number of buffer
during SGD can help retain the previous knowledge and
mitigate forgetting, every-step replay is not necessary. In
Fig. 3, the number of training FLOPs and the accuracy of
different methods are reported. Compared to the training
FLOPs of several CL methods, the computation cost of FPF
and k-FPF-CE is almost negligible. The overall training
FLOPs of k-FPF-CE are still much less than SOTA CL
methods while its performance is better, which shows the
efficiency of k-FPF-CE.

k-FPF-KD further improves the performance of k-FPF-
CE to be comparable to FPF. k-FPF-CE proposes the
efficiency of CL methods, but its performance is a bit worse
than that of FPF. One of the most differences between k-

7

Does Continual Learning Equally Forget All Parameters?

ER AGEMICARL FDR DERDER++ SGD
CL Methods

0.0

0.5

1.0

1.5

2.0

FL
OP

s
1e15

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

(a) Seq-PathMNIST

ER AGEMICARL FDR DERDER++ SGD
CL Methods

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e16

0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

(b) Seq-Tiny-ImageNet

ER AGEM FDR DER DER++ SGD
CL Methods

0

2

4

6

8

FL
OP

s

1e15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)
Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(c) Seq-PACS

Figure 3. Comparison of FLOPs and accuracy between FPF, k-FPF and SOTA methods. FPF improves all CL methods by a large
margin without notably extra computation. k-FPF consumes much less computation but achieves comparable performance as
FPF. A large and clear version can be found in Appendix. M.

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of ER
FLOPs of FPF+ER

Accuracy of ER
Accuracy of FPF+ER

Number of trainable parameters during finetune

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of SGD
FLOPs of k-FPF-CE

Accuracy of k-FPF-CE
Number of trainable parameters during finetune

Figure 4. Comparison of FLOPs, number of finetuned parame-
ters, and accuracy for FPF (Top) and k-FPF (Bottom) finetuning
different combinations of parameters. All FLOPs are normalized
together to (0,1], as well as the number of finetuning parame-
ters. “Basis” in x-label refers to “BN+FC+CONV1”. Red stars
highlight the best accuracy and show both FPF and k-FPF only
require to finetune a small portion of task-specific parameters.
k-FPF halves FPF’s FLOPs. A clear version can be found in
Appendix. M.

FPF and FPF is the experience replay during the training
of CL. Inspired by DER, we propose k-FPF-KD, which
uses knowledge distillation to match the outputs of previous
models on buffered data, hence retaining the knowledge of
previous tasks. The results of k-FPF-KD in Tab. 1 show that
it is comparable to FPF in most scenarios. Fig. 3 shows that
the FLOPs of k-FPF-KD are similar to k-FPF-CE but much
less than other CL methods and FPF, and in some cases, it
outperforms FPF. k-FPF-KD achieves SOTA performance
on both efficiency and accuracy.

6.2. Comparison of finetuning different parameters in
FPF and k-FPF

FPF and k-FPF get the best performance when only a
small portion of task-specific parameters are finetuned.
In Fig. 4, the accuracy, training FLOPs, and the number of
trainable parameters during finetuning of applying FPF or

k-FPF to different task-specific parameters in ResNet-18
on Seq-PathMNIST are compared. Overall different scenar-
ios, k-FPF only needs about half FLOPs of FPF with better
performance (indicated by Red Stars). When finetuning on
different task-specific parameters, FPF performs the best
when BN+FC layers are finetuned, which is only 0.127%
of all parameters (indicated by Orange Stars). This is con-
sistent with our observations in empirical studies where BN
and FC layers are the most sensitive parameters to distribu-
tion shift. And the results show that only finetuning a small
portion of task-specific parameters can mitigate catastrophic
forgetting and generalize the model.

The phenomenon for k-FPF is a little different. (1) In the
bottom plot of Fig. 4, when FC layer is not selected for
finetuning in k-FPF, the performance is much worse. This is
because, in class-IL, the output classes change across tasks,
so the FC layer is trained to only output the classes for the
current task (Hou et al., 2019). In contrast, when applying
k-FPF to domain-IL on Seq-PACS, where the output classes
keep the same for different tasks, Fig. 8 in Appendix. K
shows that finetuning FC layer performs similarly as fine-
tuning other parameters. Hence, the last FC layer is more
sensitive in class-IL than in Domain-IL. This is also shown
in Fig. 1 (d,h). (2) As the red star indicates, k-FPF needs to
finetune a little more parameters (Block3 of convolutional
layers, 18.91% of all parameters) to achieve a comparable
accuracy with FPF. Without experience replay during SGD,
the model has a larger bias on the current task, and thus
more task-specific parameters are needed to be finetuned.
This also indicates that such bias of task-specific parame-
ters is the main reason for catastrophic forgetting. When
Block4 (75.22% of all parameters) is finetuned, since it is
the most stable group of parameters in our empirical study,
the performance of k-FPF degrades.

6.3. Analysis of FPF and k-FPF in Different Scenarios

Different training FLOPs for k-FPF In Fig. 5 (a), we
study the trade-off between the training FLOPs and the ac-

8

Does Continual Learning Equally Forget All Parameters?

(a) FLOPs-Accuracy in k-FPF (b) Effect of different buffer sizes and training epochs during CL for FPF

Figure 5. (a) Trade-off between FLOPs and accuracy for k-FPF with different k and τ (the SGD steps between two consecutive FPF).
By increasing the finetuning steps per FPF, the accuracy quickly saturates. The best trade-off is highlighted at the top-left corner when
k = 9(τ = 1500). (b) Comparison between ER and FPF+ER finetuning different parameters with different buffer sizes and the number
of epochs per task. In all scenarios, FPF can significantly improve the performance of ER by only finetuning BN+FC.

curacy of k-FPF on Seq-PathMNIST by changing k and
the number of finetuning steps. τ in the legend refers to
the interval of two consecutive FPF. Fixing k, k-FPF satu-
rates quickly as the finetuning steps increase. This implies
that k-FPF is efficient on FLOPs to achieve the best per-
formance. For experiments with small k, e.g. k=2, though
the computation required is very low, performance cannot
be further improved. This implies that FPF needs to be
applied on buffered samples more frequently to mitigate
forgetting. When k is large, e.g., k=41 or 121, the accu-
racy slightly improves with the price of much more required
computation. As the red star in the plot indicates, apply-
ing FPF for every 1500 training step can achieve the best
computation-accuracy trade-off.

Different buffer sizes and training epochs for FPF The
buffer size and the training epochs per task are usually cru-
cial in replay-based CL methods. In Fig. 5 (b), when the
buffer size or the number of epochs increases, the perfor-
mance of ER improves as well. However, increasing the
buffer size brings more benefits. When the buffer size or
epochs grow too large, the performance of ER seems to
saturate and increases slowly. For all scenarios, finetuning
BN+FC layers is highly effective in alleviating the current
task’s bias and promoting performance, which is consistent
with our observations from the empirical studies.

7. Conclusion
We study a fundamental problem in CL, i.e., which parts of
a neural network are task-specific and more prone to catas-
trophic forgetting. Extensive empirical studies in diverse
settings consistently show that only a small portion of pa-
rameters is task-specific and sensitive. This discovery leads
to a simple yet effective “forgetting prioritized finetuning
(FPF)” that only finetunes a subset of these parameters on
the buffered data before model deployment. FPF is com-

plementary to existing CL methods and can consistently
improve their performance. We further replace the costly
every-step replay with k-times of occasional FPF during
CL to improve efficiency. Such k-FPF achieves comparable
performance as FPF+SOTA CL while consuming nearly
half of its computation. In future work, we will study how
to further reduce the memory size required by FPF.

References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M.,

and Tuytelaars, T. Memory aware synapses: Learning
what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 139–154,
2018.

Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Lin, M.,
Charlin, L., and Tuytelaars, T. Online continual learn-
ing with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742, 2019.

Arani, E., Sarfraz, F., and Zonooz, B. Learning fast, learn-
ing slow: A general continual learning method based on
complementary learning system. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uxxFrDwrE7Y.

Benjamin, A. S., Rolnick, D., and Kording, K. Measur-
ing and regularizing networks in function space. arXiv
preprint arXiv:1805.08289, 2018.

Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A., and
Calderara, S. Class-incremental continual learning into
the extended der-verse. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual

9

https://openreview.net/forum?id=uxxFrDwrE7Y
https://openreview.net/forum?id=uxxFrDwrE7Y

Does Continual Learning Equally Forget All Parameters?

learning: a strong, simple baseline. arXiv preprint
arXiv:2004.07211, 2020.

Caruana, R. Multitask learning. Machine learning, 28(1):
41–75, 1997.

Chang, W.-G., You, T., Seo, S., Kwak, S., and Han, B.
Domain-specific batch normalization for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition,
pp. 7354–7362, 2019.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018.

Derakhshani, M. M., Najdenkoska, I., van Sonsbeek, T.,
Zhen, X., Mahapatra, D., Worring, M., and Snoek, C. G.
Lifelonger: A benchmark for continual disease classifica-
tion. arXiv preprint arXiv:2204.05737, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. Learn-
ing a unified classifier incrementally via rebalancing. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 831–839, 2019.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kumari, L., Wang, S., Zhou, T., and Bilmes, J. A. Retro-
spective adversarial replay for continual learning. Ad-
vances in Neural Information Processing Systems, 35:
28530–28544, 2022.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lesort, T., George, T., and Rish, I. Continual learning
in deep networks: an analysis of the last layer. arXiv
preprint arXiv:2106.01834, 2021.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In Proceedings
of the IEEE international conference on computer vision,
pp. 5542–5550, 2017.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. Sequential
learning for domain generalization. In European Confer-
ence on Computer Vision, pp. 603–619. Springer, 2020.

Long, M., Cao, Y., Wang, J., and Jordan, M. Learning
transferable features with deep adaptation networks. In
International conference on machine learning, pp. 97–
105. PMLR, 2015.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30:6467–6476, 2017.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Proceedings
of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 7765–7773, 2018.

Mermillod, M., Bugaiska, A., and Bonin, P. The stability-
plasticity dilemma: Investigating the continuum from
catastrophic forgetting to age-limited learning effects.
Frontiers in psychology, 4:504, 2013.

Pham, Q., Liu, C., and Hoi, S. Dualnet: Continual learning,
fast and slow. Advances in Neural Information Processing
Systems, 34:16131–16144, 2021.

Pham, Q., Liu, C., and HOI, S. Continual normalization:
Rethinking batch normalization for online continual learn-
ing. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=vwLLQ-HwqhZ.

Prabhu, A., Torr, P. H., and Dokania, P. K. Gdumb: A
simple approach that questions our progress in continual
learning. In European conference on computer vision, pp.
524–540. Springer, 2020.

Ramasesh, V. V., Dyer, E., and Raghu, M. Anatomy of
catastrophic forgetting: Hidden representations and task
semantics. arXiv preprint arXiv:2007.07400, 2020.

Ratcliff, R. Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions.
Psychological review, 97(2):285, 1990.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y.,
and Tesauro, G. Learning to learn without forgetting by

10

https://openreview.net/forum?id=vwLLQ-HwqhZ
https://openreview.net/forum?id=vwLLQ-HwqhZ

Does Continual Learning Equally Forget All Parameters?

maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell,
R. Progress & compress: A scalable framework for con-
tinual learning. In International Conference on Machine
Learning, pp. 4528–4537. PMLR, 2018.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning,
pp. 4548–4557. PMLR, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):
37–57, 1985.

Volpi, R., Larlus, D., and Rogez, G. Continual adaptation
of visual representations via domain randomization and
meta-learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
4443–4453, 2021.

Wu, T., Caccia, M., Li, Z., Li, Y.-F., Qi, G., and Haf-
fari, G. Pretrained language model in continual learn-
ing: A comparative study. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=figzpGMrdD.

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister,
H., and Ni, B. Medmnist v2: A large-scale lightweight
benchmark for 2d and 3d biomedical image classification.
arXiv preprint arXiv:2110.14795, 2021.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, pp. 3987–3995. PMLR, 2017.

Zhang, C., Bengio, S., and Singer, Y. Are all layers created
equal? arXiv preprint arXiv:1902.01996, 2019.

Zhou, T., Wang, S., and Bilmes, J. Curriculum learning by
dynamic instance hardness. Advances in Neural Informa-
tion Processing Systems, 33:8602–8613, 2020.

Zhou, T., Wang, S., and Bilmes, J. Curriculum learn-
ing by optimizing learning dynamics. In Banerjee, A.
and Fukumizu, K. (eds.), Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 433–441. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/
v130/zhou21a.html.

11

https://openreview.net/forum?id=figzpGMrdD
https://openreview.net/forum?id=figzpGMrdD
https://proceedings.mlr.press/v130/zhou21a.html
https://proceedings.mlr.press/v130/zhou21a.html

Does Continual Learning Equally Forget All Parameters?

A. Detailed procedure of FPF and k-FPF
The detailed algorithm of FPF, k-FPF and reservoir sampling are shown in Alg. 1, Alg. 2 and Alg. 3. For FPF, if the existing
CL method belongs to replay-based methods, the buffer will be reserved according to this method. Otherwise, FPF will
reserve the buffer by reservoir sampling. For both FPF and k-FPF, the data of each task may be trained for more than one
epoch.

Algorithm 1 FPF
Input : Dataset D, an existing CL method M , early epochs iteration I , number of finetuning iterations K
Output :A well-trained CL model
Initialize :Buffer B ← ∅, training iterations i = 0

1 for (x, y) ∈ D do
2 Run a batch of CL method M ;
3 i← i+ 1;
4 if i = I then
5 Identify sensitive groups of parameters {g} by Eq. 1.
6 end
7 B ← reservoir(B, (x, y)).
8 end
9 Finetune the sensitive groups of parameters {g} for K iterations on B.

Algorithm 2 k-FPF
Input : Dataset D, CL method SGD, early epochs iteration I , interval of FPF τ , number of finetuning iterations K
Output :A well-trained CL model
Initialize :Buffer B ← ∅, training iterations i = 0

1 for (x, y) ∈ D do
2 Run a batch of SGD on (x, y);
3 i← i+ 1;
4 if i = I then
5 Identify sensitive groups of parameters {g} by Eq. 1.
6 end
7 if i%τ = 0 then
8 Finetune the sensitive groups of parameters {g} for K iterations on B.
9 end

10 B ← reservoir(B, (x, y)).
11 end
12 Finetune the sensitive groups of parameters {g} for K iterations on B.

Algorithm 3 RESERVOIR SAMPLING

Input :Buffer B, number of seen examples S, example x, label y
Output :An updated buffer B

1 if |B| > S then
2 B[S]← (x,y)
3 else
4 k = randomInteger(min = 0, max = S));
5 if k < |B| then
6 B[k]← (x,y)
7 end
8 end

12

Does Continual Learning Equally Forget All Parameters?

B. Forgetting and Task-IL accuracy
We show the forgetting and accuracy for training Seq-PathMNIST and Seq-PACS on ResNet-18 in Tab. 2 and Tab. 3. The
results show that FPF also works well in Task-IL. The results of forgetting show that FPF is more stable than other CL
methods and finetuning on buffered data can bring extra improvement.

Table 2. The results of forgetting and accuracy for training Seq-PathMNIST on ResNet-18

Methods Class-IL Acc Class-IL Forgetting Task-IL Acc Task-IL Forgetting

k-FPF-CE 76.72±1.94 7.79±4.75 97.34±0.13 0.23±0.62
k-FPF-KD 79.20±3.89 12.43±3.25 97.57±0.28 -0.49±0.57
ER 57.54±3.05 44.75±5.91 95.36±0.81 0.88±1.69
FPF+ER 69.83±2.87 16.84±2.36 96.84±0.16 -0.36±0.62
AGEM 27.33±3.93 92.87±4.22 96.33±1.47 -0.31±1.54
FPF+AGEM 73.32±3.73 20.79±2.69 96.85±0.99 0.60±1.26
iCaRL 57.67±1.13 41.90±3.19 75.15±2.11 28.62±2.73
FPF+iCaRL 73.56±3.00 10.24±4.69 97.2±0.29 -0.58±0.71
FDR 40.08±4.13 71.98±9.11 95.22±0.33 2.57±0.86
FPF+FDR 73.64±3.85 19.13±2.05 95.81±0.90 1.73±0.74
DER 66.71±3.40 36.67±4.64 95.61±0.69 1.96±0.81
FPF+DER 74.13±3.12 19.91±3.67 96.4±0.69 0.74±0.49
DER++ 71.09±2.60 29.14±4.41 97.15±0.63 0.22±0.69
FPF+DER++ 77.37±1.32 15.17±2.38 97.31±0.72 0.5±0.41

Table 3. The results of forgetting and accuracy for training Seq-PACS on ResNet-18

Methods Domain-IL Acc Domain-IL Forgetting

k-FPF-CE 65.90±0.72 -13.83±2.74
k-FPF-KD 66.42±2.21 -12.80±3.52
ER 52.72±4.01 3.23±3.27
FPF+ER 64.27±1.91 -7.69±5.90
AGEM 35.29±4.94 20.9±6.55
FPF+AGEM 62.40±1.89 -12.08±2.94
FDR 48.50±4.67 19.17±6.90
FPF+FDR 65.39±1.83 -1.42±2.68
DER 47.63±3.85 9.23±3.88
FPF+DER 65.69±1.66 -12.22±3.16
DER++ 57.77±2.54 7.78±5.84
FPF+DER++ 66.89±1.32 -0.87±2.83

13

Does Continual Learning Equally Forget All Parameters?

C. Comparison between FPF and the method finetuning all parameters
In Tab. 4, we compare FPF with FPF-ALL (which finetunes all parameters) when applied to different CL methods for two
types of CL, i.e., class-IL and domain-IL. The results show that FPF consistently achieves comparable or slightly higher
accuracy than FPF-ALL by spending significantly fewer FLOPs. This demonstrates the advantage of FPF on efficiency.

Table 4. Comparison of accuracy and FLOPs between FPF and FPF-ALL(finetuning all parameters).

Methods Seq-PathMNIST Seq-PACS
Accuracy FLOPs(B) Accuracy FLOPs(B)

k-FPF-CE 76.72±1.94 21.35 65.90±0.72 148.25
k-FPF-ALL-CE 75.74±2.91 43.95 64.48±2.23 174.60
FPF+ER 69.83±2.87 4.68 64.27±1.91 24.39
FPF-ALL+ER 70.64±4.00 8.79 63.81±2.33 34.92
FPF+AGEM 73.32±3.73 7.07 62.40±1.89 18.47
FPF-ALL+AGEM 74.80±3.12 8.79 62.65±1.65 34.92
FPF+iCaRL 73.56±3.00 4.27 - -
FPF-ALL+iCaRL 72.77±4.12 8.79 - -
FPF+FDR 73.64±3.85 2.94 65.39±1.83 11.70
FPF-ALL+FDR 74.24±1.48 8.79 64.88±2.28 34.92
FPF+DER 74.13±3.12 2.96 65.69±1.66 18.47
FPF-ALL+DER 74.54±3.19 8.79 66.22±0.87 34.92
FPF+DER++ 77.37±1.32 4.68 66.89±1.32 24.39
FPF-ALL+DER++ 77.16±1.45 8.79 65.19±1.33 34.92

D. Performance of various methods during the training of CL
In Tab. 5 and Tab. 6, the average test accuracy of previous tasks at the end of each task during the training of CL on
Seq-PathMNIST and Seq-PACS is reported. The results show that during training, k-FPF can always achieve the best
performance among various CL methods. Whenever the training stops, k-FPF can always achieve a model performing well
on previous tasks.

Table 5. The average accuracy of previous tasks at the end of each task during the training of CL on Seq-PathMNIST.

Methods Task 1 Task 2 Task 3 Task 4

k-FPF-CE 99.95±0.04 95.41±1.98 81.92±2.26 76.72±1.94
ER 98.62±1.59 83.06±3.12 74.60±3.18 57.54±3.05
AGEM 99.71±0.19 46.58±3.13 36.12±3.17 27.33±3.93
iCaRL 99.98±0.02 86.86±5.47 66.62±5.64 57.67±1.13
FDR 99.97±0.06 48.06±0.82 55.75±6.55 40.08±4.13
DER 99.98±0.02 91.92±3.42 76.50±5.77 66.71±3.40
DER++ 99.95±0.06 94.06±6.14 80.35±3.32 71.09±2.60

Table 6. The average accuracy of previous tasks at the end of each task during the training of CL on Seq-PACS.

Methods Task 1 Task 2 Task 3 Task 4

k-FPF-CE 70.94±2.02 73.75±2.68 62.37±0.49 65.90±0.72
ER 56.64±9.04 54.34±9.44 46.79±8.48 52.72±4.01
AGEM 47.34±7.35 38.02±5.82 32.70±7.13 35.29±4.94
FDR 58.59±4.36 54.00±4.01 46.38±4.80 48.50±4.67
DER 48.49±9.40 45.28±8.88 34.48±7.81 47.63±3.85
DER++ 55.33±7.45 64.43±6.50 50.19±7.30 57.77±2.54

14

Does Continual Learning Equally Forget All Parameters?

E. Evaluation of FPF and k-FPF on the larger dataset and backbone
We extend our experiments to include training Seq-Tiny-ImageNet on ResNet-34 with a buffer size of 500. We analyze
the training dynamics of each module in ResNet-34 as for Seq-Tiny-ImageNet in Fig. 6. Our results indicate that similar
to ResNet-18, the batch norm and FC layers in ResNet-34 are much more sensitive than other layers. We also observe a
gradual decrease in dynamics from the bottom convolutional layers to the top layers.

In Tab. 7, we show the results of training Seq-Tiny-ImageNet on ResNet-34. We can find that k-FPF still outperforms other
methods and FPF can also boost the performance of existing CL methods by fine-tuning a few sensitive parameters. The
results show that our proposed method works well when applied to larger datasets and backbones.

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Traing Epochs

10 3

10 2

10 1

100

Ch
an

ge
 o

f p
ar

am
et

er
s

Weight&bias of BN layers
Mean&var of BN layers
Last FC layer
Bottom Conv layer
Block1 Conv layers
Block2 Conv layers
Block3 Conv layers
Block4 Conv layers

Figure 6. The training dynamics for different groups of parameters when applying ER in CL to train Seq-Tiny-ImageNet in ResNet-34.
Note the y-axis is of logarithmic scale.

Table 7. The results of training Seq-Tiny-ImageNet on ResNet-34.

Methods Class-IL Acc

k-FPF-CE 19.71±0.65
k-FPF-KD 21.08±0.73
ER 10.85±1.12
FPF+ER 15.70±0.72
AGEM 6.67±0.24
FPF+AGEM 16.69±0.47
FDR 13.88±1.03
FPF+FDR 16.50±0.25
DER 10.46±0.38
FPF+DER 16.35±0.36
DER++ 16.33±1.26
FPF+DER++ 18.87±0.39

15

Does Continual Learning Equally Forget All Parameters?

F. Compare FPF with methods introducing additional backbones
We conduct the experiments of DualNet (Pham et al., 2021) and CLS-ER (Arani et al., 2022) by training Seq-CIFAR-10 on
ResNet-18 with a buffer size of 500, the results are shown in Tab. 8. During the training of CL, both DualNet and CLS-ER
introduce additional backbones to retain previous knowledge, so they perform better than other replay-based methods. Our
method k-FPF-KD performs a little better than DualNet and CLS-ER. As a complement, our FPF can still greatly improve
the performance of these two methods.

Table 8. The results of training Seq-CIFAR-10 on ResNet-18 using DualNet and CLS-ER.

Methods Class-IL Acc

k-FPF-CE 64.35±0.87
k-FPF-KD 66.43±0.50
CLS-ER 66.10±0.73
FPF+CLS-ER 70.42±1.22
DualNet 65.47±0.89
FPF+DualNet 68.92±0.35

G. Detailed dynamics of BN weights and bias in different groups
In Fig. 7, the training dynamics of BN weights and biases in different groups are reported. This provides a fine-grained
explanation of the phenomenon in Fig. 1 (d): the bottom BN layer is much more sensitive and task-specific than other BN
layers. Consistent with convolutional layers, the deep BN layers are less sensitive to task drift than the shallower ones.

In a neural network, lower layers are closer to the input. Since the distribution of the inputs changes, the parameters of lower
convolutional layers change sensitively to adapt to the distribution shift. The weights and biases of BN, which are the scale
and shift of the featuremap, will change along with the convolutional parameters to adjust the distribution of the output
featuremap. In the deeper layers, the functionality of each filter is relatively stable, so the distribution of the featuremap
need not change drastically.

6 9 12 15 18 21 24
Training epochs

10 4

10 3

Dy
na

m
ics

 o
f p

ar
am

et
er

s

BN Layer 1
BN Weight&Bias Block 1
BN Weight&Bias Block 2
Bn Weight&Bias Block 3
Bn Weight&Bias Block 4

Figure 7. The training dynamics of different groups of BN weights and biases in ResNet-18.

H. Results of other neural networks
In Tab. 9, the results of various CL benchmarks and FPF on MLP and VGG-11 are reported. Similar to the results in Tab.1,
by finetuning the most sensitive parameters in MLP and VGG-11, FPF can further improve the performance of all SOTA CL

16

Does Continual Learning Equally Forget All Parameters?

methods and achieve the best performance. k-FPF-CE also achieves comparable performance as FPF + SOTA methods. Our
methods can be generalized to various neural networks.

Table 9. Classification results for CL benchmarks and FPF on MLP and VGG-11. Bold and underline indicate the best and second-best
algorithms in each setting.

BUFFER METHODS
CLASS-IL

SEQ-MNIST(MLP) SEQ-CIFAR10(VGG-11)

JOINT 95.58±0.33 69.50±0.73
SGD 19.64±0.07 18.71±0.33
OEWC 20.69±1.34 18.46±0.23

500

GDUMB 90.60±0.37 41.65±0.78
k-FPF-CE 90.63±0.57 55.45±1.16
ER 86.73±1.03 46.27±1.18
FPF+ER 91.15±0.16 53.48±1.08
AGEM 51.03±4.94 19.40±1.09
FPF+AGEM 89.26±0.52 29.84±1.37
ICARL 58.12±1.94 45.63±1.94
FTF+ICARL 80.83±0.49 48.03±0.65
FDR 83.79±4.15 45.56±2.23
FPF+FDR 89.67±0.37 55.59±1.56
DER 91.17±0.94 51.12±2.47
FPF+DER 91.25±0.89 57,46±1.15
DER++ 91.18±0.74 47.60±3.23
FTF+DER++ 91.22±0.67 54.69±0.73

I. Comparison between k-FPF, DER and DER++ with a large number of epochs for each task.
We compare the accuracy and FLOPs of our methods with the original results in (Buzzega et al., 2020) when allowing a
large number of epochs on the same data for each task. The results are shown in Tab. 10. R-MNIST is a domain-IL dataset
applied in (Buzzega et al., 2020). In both class-IL and domain-IL, k-FPF-CE is comparable to DER++ and k-FPF-KD is
better than DER++ on the accuracy but spends much less FLOPs. These results demonstrate that our methods can outperform
SOTA methods in various scenarios.

Table 10. Comparison of accuracy and FLOPs of k-FPF with the original results in (Buzzega et al., 2020) which has a large number of
training epochs for each task.

Methods Seq-CIFAR-10 Accuracy Seq-CIFAR-10 FLOPs (B) R-MNIST Accuracy R-MNIST FLOPs (B)

k-FPF-CE 71.93±0.58 9208.85 91.15±0.29 0.64
k-FPF-KD 74.32±0.32 9208.85 93.61±0.45 0.64
DER 70.51±1.67 16726.26 92.24±1.12 1.29
DER++ 72.70±1.36 25089.39 92.77±1.05 1.93

J. Comparison with related works (Ramasesh et al., 2020)
Paper “Anatomy of catastrophic forgetting: Hidden representations and task sementics” shows that freezing bottom layers
had little impact on the performance of the second task. (i) Their setting is different: our study and most CL methods focus
on the performance of ALL tasks. And it is unfair in terms of parameter amount to compare the freezing effects of multiple
layers/blocks (e.g., block 1-3) vs. one layer/block. (ii) Their result is partially consistent with ours since their unfrozen part
covers the last layer and many BN parameters, which are the most sensitive/critical part to finetune in our paper. (iii) The
rest difference is due to our finer-grained study on parameters and on > 2 tasks, but this paper only studies two tasks and
focuses on the second. Tab. 11 shows the class-IL accuracy at the end of each task if freezing different single ResNet blocks
(bottom to top: block-1 to block-4). At the end of task 2, our observation is the same as this paper and freezing bottom
blocks showed little reduction of accuracy. However, at the end of tasks 3-5, their performance drops, and freezing block-1
drops the most.

We also evaluate the importance of finetuning the first convolutional layer. We compare finetuning Basis (BN+FC+CONV1)

17

Does Continual Learning Equally Forget All Parameters?

with BN+FC (without CONV1) and the results are reported in Tab. 12. It shows that removing CONV1 significantly reduces
the accuracy and thus indicates the importance of finetuning CONV1.

Table 11. Class-IL accuracy of ER at the end of each task on Seq-CIFAR-10

Task-1 Task-2 Task-3 Task-4 Task-5

No Freeze 97.52± 0.23 80.53± 0.80 63.96± 0.51 58.05± 1.91 57.03± 2.29
Freeze conv-1 97.52± 0.23 79.62± 2.75 63.28± 2.13 56.11± 0.61 55.58± 1.31
Freeze block-1 97.52± 0.23 78.88± 3.01 60.07± 0.61 55.49± 0.22 52.75± 1.90
Freeze block-2 97.52± 0.23 78.93± 3.34 63.78± 2.32 56.23± 0.82 56.55± 3.17
Freeze block-3 97.52± 0.23 80.37± 2.35 64.31± 2.23 57.21± 0.40 56.52± 0.76
Freeze block-4 97.52± 0.23 80.68± 1.53 64.89± 1.00 53.78± 3.37 54.01± 2.07

Table 12. The results of removing CONV1 from sensitive parameters.

Parameters FPF+ER k-FPF

Basis+Block1 71.53±2.34 68.10±1.93
BN+FC+Block1 68.99±4.67 67.80±3.19
Basis+Block2 72.98±2.62 69.57±0.90
BN+FC+Block2 68.12±2.51 69.60±1.40
Basis+Block3 73.64±3.85 76.72±1.94
BN+FC+Block3 70.33±4.85 75.46±2.75
Basis+Block4 73.88±2.42 68.12±2.40
BN+FC+Block4 73.72±4.73 68.35±1.56
Basis+Block1-2 73.28±2.42 73.33±1.34
BN+FC+Block1-2 69.25±2.52 71.46±1.88
Basis+Block1-3 72.11±1.55 76.22±2.75
BN+FC+Block1-3 71.22±1.49 74.18±1.84

18

Does Continual Learning Equally Forget All Parameters?

K. Performance of finetuning different parameters for FPF and k-FPF on domain-IL dataset
In Figure 8, the performance of finetuning different parameters for FPF and k-FPF on domain-IL dataset Seq-PACS are
reported.

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
FLOPs of ER
FLOPs of FPF+ER

Accuracy of ER
Accuracy of FPF+ER

Number of trainable parameters during finetune

BN FC
CONV1

BN+FC

BN+CONV1

FC+CONV1 Basis

Basis+
Block1

Basis+
Block2

Basis+
Block3

Basis+
Block4

Basis+
Block1~2

Basis+
Block1~3

FPF Finetuned Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

FLOPs of SGD
FLOPs of k-FPF-CE

Accuracy of k-FPF-CE
Number of trainable parameters during finetune

Figure 8. Comparison of FLOPs, number of finetuned parameters, and accuracy for FPF(Top) and k-FPF(Bottom) finetuning different
combinations of parameters. All FLOPs are normalized together to (0,1], as well as the number of finetuning parameters. “Basis” in the
x-label refers to “BN+FC+CONV1”. Red stars highlight the best accuracy and show both FPF and k-FPF only require finetuning a small
portion of task-specific parameters. k-FPF halves FPF’s FLOPs. Different from the results of k-FPF in class-IL, in Seq-PACS, since
the output classes for different tasks are always the same, the last FC layer will not have a large bias on particular classes. Only
finetuning BN or CONV1 layers for k-FPF can get comparable performance with ER. Similar to class-IL, since experience replay is
not allowed during the training of CL method SGD, a few more parameters are required to be finetuned by k-FPF to get comparable
performance with FPF (about 24.92% of all parameters).

19

Does Continual Learning Equally Forget All Parameters?

L. Distribution of filters’ dynamics in different layers of neural networks

Bottom convolutional layer

Middle convolutional layer

Top convolutional layer
Figure 9. Comparison between the distribution of filters’ training dynamics within a task and that cross tasks in different convolutional
layers of VGG-11. When tasks shift, for all layers, only a small part of the filters in each layer experience more changes.

20

Does Continual Learning Equally Forget All Parameters?

M. A more clear version of Fig. 3 and Fig.4
In Fig.10 and Fig.11, to make Fig.3 and Fig.4 more concise and easy to understand, we draw the bar plots of different parts
separately.

ER AGEM ICARL FDR DER DER++ SGD
CL Methods

0.0

0.5

1.0

1.5

2.0

FL
OP

s

1e15

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM ICARL FDR DER DER++ SGD0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(a) Seq-PathMNIST

ER AGEM ICARL FDR DER DER++ SGD
CL Methods

0.0

0.2

0.4

0.6

0.8

1.0

FL
OP

s

1e16

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM ICARL FDR DER DER++ SGD0.00

0.05

0.10

0.15

0.20
Ac

cu
ra

cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(b) Seq-Tiny-ImageNet

ER AGEM FDR DER DER++ SGD
CL Methods

0

2

4

6

8

FL
OP

s

1e15

FLOPs of CL Methods
FLOPs of FPF(Ours)+CL Methods
FLOPs of k-FPF-CE(Ours)
FLOPs of k-FPF-KD(Ours)

ER AGEM FDR DER DER++ SGD0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy of CL Methods
Accuracy of FPF(Ours)+CL Methods
Accuracy of k-FPF-CE(Ours)
Accuracy of k-FPF-KD(Ours)

(c) Seq-PACS

Figure 10. Comparison of FLOPs and accuracy between FPF, k-FPF and SOTA CL methods. FPF improves all CL methods by a large
margin without notably extra computation. k-FPF consumes much less computation but achieves comparable performance as
FPF.

21

Does Continual Learning Equally Forget All Parameters?

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Accuracy of ER Accuracy of FPF+ER

5.0

5.1

5.2

5.3

5.4

5.5

5.6

FL
OP

s

1e15

FLOPs of ER FLOPs of FPF+ER

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0
1
2
3
4
5
6
7
8

Nu
m

be
r o

f P
ar

am
et

er
s

1e6

Number of trainable parameters during finetune of FPF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Accuracy of k-FPF-CE

2.0

2.2

2.4

2.6

2.8

3.0

3.2
1e15

FLOPs of SGD FLOPs of k-FPF-CE

BN FCCONV1BN+FC
BN+CONV1

FC+CONV1 Basis
Basis+Block1

Basis+Block2
Basis+Block3

Basis+Block4
Basis+Block1~2

Basis+Block1~3

FPF Finetuned Parameters

0
1
2
3
4
5
6
7
8

1e6

Number of trainable parameters during finetune of k-FPF

Figure 11. Comparison of FLOPs, number of finetuned parameters, and accuracy for FPF(Top) and k-FPF(Bottom) finetuning different
combinations of parameters. All FLOPs are normalized together to (0,1], as well as the number of finetuning parameters. “Basis” in the
x-label refers to “BN+FC+CONV1”. Red stars highlight the best accuracy and show both FPF and k-FPF only require to finetune a
small portion of task-specific parameters. k-FPF halves FPF’s FLOPs.

22

Does Continual Learning Equally Forget All Parameters?

N. Hyper-parameter Search Space
In the following, we provide a list of all the hyper-parameter combinations that were considered for FPF and k-FPF.

Table 13. The hyper-parameter search space for FPF on different datasets. For all experiments of FPF, we use the same number of batch
size 32 and finetuning steps 300. The hyper-parameter spaces of finetuning different parameters in the models generated by different CL
methods are always the same for a given dataset. ft-lr refers to the learning rate during finetuning of FPF.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [1, 0.3, 0.1, 0.03, 0.01]
Seq-PathMNIST lr [1, 0.75, 0.3, 0.05, 0.03]
Seq-CIFAR-10 lr [1, 0.3, 0.1, 0.03, 0.01]

Seq-Tiny-ImageNet lr [1, 0.5, 0.3, 0.075, 0.05]
Seq-PACS lr [1, 0.5, 0.3, 0.05, 0.03, 0.005, 0.003]

Table 14. The hyper-parameter search space for k-FPF-SGD on different datasets. For all experiments of k-FPF-SGD, we use the same
number of batch size 32 and finetuning steps 100. The hyper-parameter spaces of finetuning different parameters are always the same for
a given dataset. lr refers to the learning rate during training of CL method SGD. ft-lr refers to the learning rate during finetuning.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [0.2, 0.15, 0.1, 0.075]
ft-lr [0.5, 0.2, 0.15, 0.1]

Seq-PathMNIST lr [0.05, 0.03, 0.01]
lr [0.1, 0.075, 0.05, 0.03, 0.01]

Seq-CIFAR-10 lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.01]

Seq-Tiny-ImageNet lr [0.075, 0.05, 0.03]
ft-lr [0.1, 0.075, 0.05]

Seq-PACS lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.0075]

23

Does Continual Learning Equally Forget All Parameters?

Table 15. The hyper-parameter search space for k-FPF-KD on different datasets. For all experiments of k-FPF-KD, we use the same
number of batch size 32 and finetuning steps 100. The hyper-parameter spaces of finetuning different parameters are always the same for
a given dataset. lr refers to the learning rate during training of CL method SGD. ft-lr refers to the learning rate during finetuning. λ is the
hyper-parameter to balance the two losses.

Dataset Hyper-parameter Values

Seq-OrganAMNIST lr [0.2, 0.15, 0.1, 0.075]
ft-lr [0.5, 0.2, 0.15, 0.1]
λ [1, 0.5, 0.2, 0.1]

Seq-PathMNIST lr [0.05, 0.03, 0.01]
lr [0.1, 0.075, 0.05, 0.03, 0.01]
λ [1, 0.5, 0.2, 0.1]

Seq-CIFAR-10 lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.01]
λ [0.5, 0.2, 0.1]

Seq-Tiny-ImageNet lr [0.075, 0.05, 0.03]]
ft-lr [0.1, 0.075, 0.05]
λ [1, 0.5, 0.2]

Seq-PACS lr [0.05, 0.03, 0.01]
ft-lr [0.075, 0.05, 0.03, 0.0075]
λ [1, 0.5 0.2 0.1]

24

