
Under review as a conference paper at ICLR 2024

COMPLEXITY OF FORMAL EXPLAINABILITY FOR
SEQUENTIAL MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

This work contributes to formal explainability in AI (FXAI) for sequential models,
including Recurrent Neural Networks (RNN), Transformers, and automata models
from formal language theory (e.g. finite-state automata). We study two common
notions of explainability in FXAI: (1) abductive explanations (a.k.a. minimum
sufficient reasons), and (2) counterfactual (a.k.a. contrastive) explanations. To
account for various forms of sequential data (e.g. texts, time series, and videos),
our models take a sequence of rational numbers as input. We first observe that
simple RNN and Transformers suffer from NP-hard complexity (or sometimes un-
decidability) for both types of explanations. The works on extraction of automata
from RNN hinge on the assumption that automata are more interpretable than
RNN. Interestingly, it turns out that generating abductive explanations for DFA is
computationally intractable (PSPACE-complete), for features that are represented
by regular languages. On the positive side, we provide a polynomial-time algo-
rithm that compute counterfactual explanations for deterministic finite automata
(DFA). However, DFA are a highly inexpressive model for classifying sequences
of numbers. To address this limitation, we extend our polynomial-time algorithm
to two existing extensions of finite automata: (1) deterministic interval automata,
and (2) deterministic register automata with a fixed number of registers. Automata
learning algorithms already exist for both (1) and (2).

1 INTRODUCTION

Explainability (cf. Gunning et al. (2019); Molnar (2022); Linardatos et al. (2021)) has become an
indispensable topic in machine learning. Various stakeholders (most notably, the EU regulators)
are pushing for explainability for AI systems, particularly those that are used in critical decision
making process (e.g. credit scoring and border control systems). Recent years have witnessed rise
of Formal Explainability in AI (FXAI), e.g., see Arenas et al. (2022); Barceló et al. (2020); Cooper
& Marques-Silva (2023); Huang et al. (2023); Izza et al. (2022); Ignatiev et al. (2022); Shrotri
et al. (2022); Marques-Silva (2021); Arenas et al. (2021); Marques-Silva (2022); Marques-Silva &
Ignatiev (2023). Indeed, the ability to produce an explanation of the outputs of an AI system with
a mathematically provable guarantee is becoming increasingly critical in many scenarios, e.g., in a
legal setting and for safety-critical systems. Distinguishing features of FXAI are, among others, the
use of logic and computational complexity (e.g. see Marques-Silva (2022); Marques-Silva & Ignatiev
(2023) for an excellent survey).

Hitherto, the primary focus of FXAI has been on non-sequential models, i.e., where the length of
the inputs is fixed. Such models include multilayer perceptrons, single-layer perceptrons, decision
trees (or more generally, free binary decision diagrams), and decision lists/sets. Here (e.g. see
Barceló et al. (2020); Izza et al. (2020; 2022); Huang et al. (2021); Ignatiev & Marques-Silva (2021);
Marques-Silva & Ignatiev (2023)) models like decision trees and single-layer perceptrons have been
shown to admit PTIME computational complexity for various explainability queries, in contrast to
models like multilayer perceptrons, where the same queries were shown to be intractable (at least
NP-hard). However, existing works in FXAI do not yet cover sequential models, i.e., where the length
of the inputs can be arbitrary (e.g. texts, time series, videos). Such models include Recurrent Neural
Networks (RNN) Rumelhart et al. (1985), Transformers Vaswani et al. (2017), and models from
formal language theory like finite automata Weiss et al. (2018); Okudono et al. (2020); Wang et al.

1

Under review as a conference paper at ICLR 2024

(2017); Jacobsson (2005); Bollig et al. (2022). This paper initiates the study of FXAI for sequential
models.

Two types of explanations have been singled out in FXAI Marques-Silva (2022); Marques-Silva &
Ignatiev (2023): (1) abductive explanations, and (2) counterfactual (a.k.a. contrastive) explanations.
The latter has a different name in the literature, e.g., Minimum Change Required Barceló et al.
(2020). Both types of explanations fall within the category of local post-hoc explanations (e.g. see
Molnar (2022)), i.e., an explanation for a specific input v to a trained model M . Intuitively, given
features F1, . . . , Fn which are satisfied by v, an abductive explanation asks for a minimal subset
S ⊆ {F1, . . . , Fn} of these features such that M produce the same output as v on all inputs that
satisfy S. As an example, suppose that M was trained to classify mammals, v signifies “humans”,
and F1 indicates “lives on land”. An abductive explanation could drop F1 because there are mammals
that does not satisfy F1 (e.g. whales). On the other hand, a counterfactual explanation asks for an
input w that is “similar” to v (i.e. requires a “minimal” amount of changes) so that the outputs of M
on v and w differ. For example, if v indicates “bat”, then w could indicate “birds”.

We study the problem of generating abductive and counterfactual explanations for sequential models,
including Transformers, RNNs, and various models from automata theory. Since we deal with inputs
of unbounded lengths, to define a “feature” it is crucial to have a finite representation of a set of
sequences. One natural and common finite representation of a set of sequences from formal language
theory is a regular language. Thus, we will use regular languages to represent features, since they
are known to strike a good balance between expressivity and amenability to algorithmic analysis.
For example, in a sentiment analysis of a book review at Amazon, a relevant feature could indicate
whether the string “excellent” or “outstanding” occurs as a substring. Such features can be easily
represented as regular languages. For counterfactual explanations, we furthermore incorporate a
notion of “similarity” by comparing sequences with respect to three distance measures: Hamming
distance, edit distance, and Dynamic Time Warping (DTW). These different measures are used
in different application domains (e.g. information theory van Lint (1998), biological sequences
Compeau (2014), and time series Nielsen (2019)).

We begin by observing that generating abductive and counterfactual explanations for popular se-
quential models (i.e. RNN and Transformers) is either intractable (at least NP-hard) or undecidable.
The proof of these negative results can be achieved by straightforward (but sometimes slightly te-
dious) applications of Turing-completeness of RNN Siegelmann & Sontag (1995) and Transformers
Pérez et al. (2021), or polynomial-time reductions from intractability of producing counterfactual
explanations for multi-layer perceptrons Barceló et al. (2020).

Although abductive and counterfactual explanations are computationally difficult to generate for multi-
layer perceptrons1, the same problems were shown to be solvable in polynomial-time for decision
trees and perceptrons Barceló et al. (2020); Izza et al. (2020); Huang et al. (2021); Izza et al. (2022).
This prompts us to find sequential models that permit poly-time solutions for abductive/counterfactual
explanations. For sequences over a finite alphabet, it has been hinted by the numerous available
works on automata extraction from RNN (e.g. Dong et al. (2020); Weiss et al. (2018); Okudono et al.
(2020); Wang et al. (2017); Jacobsson (2005); Bollig et al. (2022)) that Deterministic Finite Automata
(DFA) might serve as such a model. In particular, in addition to the many desirable closure and
algorithmic properties Sipser (1997) that DFA admit, there are many well-known learning algorithms
for DFA over various learning settings, the prominent ones being Gold’s DFA learner from examples
Gold (1978) and Angluin’s DFA learner L∗ through queries Angluin (1987a;b). Both Gold’s and
Angluin’s algorithms have been subject to numerous further improvements in subsequent decades,
whereby efficient and robust implementations exist (e.g. see the popular automata learning framework
LearnLib Isberner et al. (2015); Steffen et al. (2011)). Among others, Angluin’s L∗ algorithm has
been used by Weiss et al. (2018) in the DFA extraction of RNN.

Interestingly, it is not hard to show that an abductive explanation for DFA with features represented
by regular languages is computationally intractable (more precisely, PSPACE-complete). Our first
main contribution is a polynomial-time algorithm for finding a counterfactual explanation for DFA
with respect to Hamming distance, edit distance, and DTW. Despite this first positive result, when
dealing with numeric data (i.e. sequences of numbers), DFA can admit only finitely many different

1This statement for counterfactual queries was proven in Barceló et al. (2020). For abductive explanations,
the technique for proving hardness for minimum sufficient reasons in Barceló et al. (2020) can be used, but one
reduces from computing a prime implicant of a boolean formula, which is NP-hard.

2

Under review as a conference paper at ICLR 2024

input numbers. This assumption is not valid for applications like time-series analysis, among others.
For this reason, we study two well-known extensions of DFA from formal language theory: (1)
deterministic interval automata D’Antoni & Veanes (2021), and (2) deterministic register automata
Bojanczyk (2019). Extensions of classical learning algorithms for DFA to (1) and (2) have been
active research directions in the past decade, e.g., see Moerman et al. (2017); Howar et al. (2012);
Cassel et al. (2016); Drews & D’Antoni (2017); Argyros & D’Antoni (2018).

An interval automaton is specific type of “symbolic automaton” D’Antoni & Veanes (2021) that
allows an interval as a label of a transition. For example, a transition (p, [7, 10], q) will be interpreted
as follows: go from state p to state q, while consuming any element e ∈ [7, 10] in the input tape.
Expressively, this addresses the limitation of DFA that only finitely many numbers are allowed in the
input, and can capture interesting concept (see Example 2 on stock trading signal). On the other hand,
an interval automaton cannot compare numbers at different positions in the input. For this reason, we
also consider register automata, which extend finite automata by finitely many registers, which can
store numbers in the input sequence into a register, and compare them at a later point. More precisely,
we consider deterministic k-register automata Bojanczyk (2019); Moerman et al. (2017) (i.e. with k
registers), where (in)equality comparisons are permitted. The model of k-register automata strictly
extends interval automata, and is sufficiently powerful for modelling important concepts on time
series (e.g. increasing/decreasing sequence of numbers, and the lowest weekly stock price constantly
increases). See Example 3 for another stock trading signal. Our main result is that interval automata
and deterministic k-register automata permit poly-time solutions for counterfactual explanations,
whenever k is fixed. Our polynomial-time algorithms for generating counterfactuals are especially
interesting owing to the available learning algorithms for interval automata and deterministic k-
register automata, which could pave way for interpretable models over time-series data. The proof of
our positive result goes via a reduction to minimizing the values of “weighted interval automata” and
“weighted deterministic register automata”. Especially in the case of deterministic register automata,
this model was only studied very recently (in a very difficult result Bojanczyk et al. (2021)) with
respect to the problem of language equivalence, where the result cannot be applied to minimization.
Our proof is a non-trivial analysis of the dynamics of such automata in producing minimum values.

Organization: In Section 2, we recall basic definitions and fix notation. Section 3 defines ab-
ductive/counterfactual explanations, and proves non-interpretability results. Positive results are in
Section 4. We conclude in Section 5. Some proofs/details are in Supplementary Materials.

2 PRELIMINARIES

Basic Notation: Let Σ be a set (called the alphabet), where the elements in our sequences range.
In this paper, we consider sequences of rationals, i.e., Σ ⊆ Q. We write Σ∗ to denote the set of finite
sequences, whose elements range over Σ. A language over Σ is simply a subset of Σ∗. We use L to
denote the complement of L, i.e., Σ∗ \ L. The empty sequence is denoted by ε. The length of the
sequence s ∈ Σ∗ is denoted by |s|.

Binary Classifiers for Sequences: We study sequential models as representations of binary clas-
sifiers for Σ∗. Any binary sequence classifier f : Σ∗ → {0, 1} can naturally be identified with the
language Lf = {w ∈ Σ∗ : f(w) = 1}. We interchangably use notation Lf and L(f) in the paper.

Dynamic Time Warping: Next, we discuss a few distance measures over sequences of rational
numbers. The Dynamic Time Warping (DTW) Nielsen (2019) is a similarity measure between two
non-empty sequences of possibly different lengths v = v1, ..., vn and w = w1, ..., wm. In particular,
DTW tries to capture the intuition that the same time series displayed at different speed should be
similar. For example, it is the case that dDTW(v, w) = 0, whenever v = 0 and w = 0, 0, 0, 0. In this
sense, dDTW does not satisfy triangle inequality.

More precisely, the DTW function dDTW : Σ+ × Σ+ → Q depends on a distance function c :
Σ × Σ → Q. We employ natural distance functions for Σ = Q: c(a, b) = |a − b| and the discrete
metric (i.e. c(a, b) = 1 if a ̸= b, and c(a, b) = 0 if a = b). We then define dDTW as:

dDTW(v, w) := min
P

∑
(i,j)∈P

c(vi, wj)

3

Under review as a conference paper at ICLR 2024

where P = ((i0, j0), . . . , (iℓ, jℓ)) is a sequence of matches between v andw satisfying: (1) (i0, j0) =
(1, 1), (2) (iℓ, jℓ) = (n,m), and (3) for all 0 ≤ k < ℓ, (ik+1, jk+1) ∈ {(ik+1, jk), (ik, jk+1), (ik+
1, jk + 1)}. The minimum is taken over all possible sequences, that satisfy these requirements. The
idea is that similar sections of v and w will be matched together by P . One element of v can be
matched to multiple elements of w and vice versa. When talking about time series, this corresponds
to "warping" the time of one series to be more similar to the other.

Hamming distance: Hamming distance is a measure of difference between two sequences v =
v1, ..., vn and w = w1, ..., wn of equal length. It is the number of positions at which corresponding
letters of v and w differ. We can define the Hamming distance dH as:

dH(v, w) := |{i ∈ {1, ..., n} : vi ̸= wi}|
In other words, it is the minimum number of substitutions required to change one sequence to another.

Edit distance: The edit distance between two sequence v and w is the minimum number of
operations required to transform one sequence v to another sequence w by using insertion, deletion
and substitution of a single letter. Formally,

dE(v, w) = min
P

 ∑
(i,j)∈P

c(vi, wj)

+ cinsdel(n+m− 2|P |),

where P = ((i0, j0), . . . , (iℓ, jℓ)) is a monotone sequence of matches, i.e., for any k < k′ we
have ik < ik′ and jk < jk′ . In this definition, every matched pair (i, j) contributes the match-
ing/substitution cost c(vi, wj) and the n+m− 2|P | unmatched symbols from v and w incur some
constant cost cinsdel. For finite alphabets Σ, we will consider the usual choice c(a, a) = 0, c(a, b) = 1
for a ̸= b and cinsdel = 1, unless specified otherwise.

Complexity classes and complexity measures: We assume basic familiarity with computability
and complexity theory (e.g. see Sipser (1997)). In particular, we use standard complexity classes
like NP (the set of problems solvable in nondeterministic polynomial-time), and PSPACE (the set of
problems solvable in deterministic polynomial-space). Moreover, it is the case that NP ⊆ PSPACE,
and that complete problems for these classes are widely believed not to admit polynomial-time
solutions. We will represent a rational number as a/b with a, b ∈ Z. As usual, numbers are almost
always represented in binary. We provide here the following exception to this rule. A counterfactual
query takes a distance upper bound k ∈ N as part of the input so that only w ∈ Σ∗ of distance at most
k is permitted as a counterfactual. We will represent k in unary because one is typically interested in
counterfactuals that lies in the proximity of a given sequence v (i.e. of a small distance away from v).

3 ABDUCTIVE AND COUNTERFACTUAL EXPLANATIONS

We first formalize the notions of abductive and counterfactual explanations sequential models. These
notions were defined for sequential models (e.g. see Marques-Silva & Ignatiev (2023); Barceló et al.
(2020)). We then mention negative results regarding generating such explanations for the popular
sequential models of RNN and Transformers.

Abductive explanations: Given subsets F1, . . . , Fn ⊆ Σ∗, which we call “features”, an ab-
ductive explanation such that M(v) for a model M and v ∈ Σ∗ is a (subset-)minimal subset
S ⊆ {F1, . . . , Fn} such that v satisfy all features (i.e. v ∈

⋂
X∈S X), that M(w) = M(v) for any

sequence w satisfying all features in S (i.e. w ∈
⋂

X∈S). [Note that, by convention,
⋂

X∈S X = Σ∗,
whenever S = ∅.] For a finite alphabet Σ, one can use regular languages over Σ to represent
F1, . . . , Fn.
Example 1. We provide a small example to illustrate the concept of abductive explanations. In a
simple document classification task, a feature could refer to the existence of a certain string (e.g.
“Republicans” or “Democrats” or “Election”). These can be captured using regular languages, e.g.,

L1 = Σ∗(R+r)epublicansΣ∗ L3 = Σ∗(E+e)electionΣ∗

L2 = Σ∗(D+d)emocratsΣ∗ L4 = Σ∗(I+i)minnentΣ∗

4

Under review as a conference paper at ICLR 2024

Suppose that we have trained a DFA A to recognize documents about presidential election in the
states. Suppose that T is a text, whereby T is in L1 ∩L2 ∩L3L4. An abductive explanation could be
L1, L2, L3 since the words “imminent” and “Imminent” turn out not to be important in determining
whether a text concerns US election, according to A.

We remark that using regular languages as features have various advantages. Firstly, they are
sufficiently expressive in capturing concepts in a variety of applications. Secondly, a regular language
representing a specific feature can itself be learned using an automata learning algorithm (e.g. Gold
(1978); Angluin (1987a)). For example, suppose that we have trained a DFA A that classifies whether
an input email is a spam. Features could be: (1) a DFA B that identifies if the email sender asks for
money, and (2) a DFA C identifying if there are dangerous links (a list of known dangerous URLs). It
is likely that B is a very complicated regular language, which is why an automata learning algorithm
that can infer B from examples can come in handy.

Counterfactual explanations: Given a model M , a sequence v, and a number2 k, a counterfactual
explanation for M(v) ∈ {0, 1} is a sequence w such that M(v) ̸= M(w) and that the “distance”
between v and w is at most k. Here, “distance” may be instantiated by Hamming distance, edit
distance, or DTW. We provide examples of counterfactual queries in Section 4.

Negative results: RNN Rumelhart et al. (1985) and Transformers Vaswani et al. (2017) are popular
sequential models in the machine learning literature. RNN and Transformers are extensions of
standard multi-layer perceptrons, so that input sequences of unbounded lengths can be processed by
the neural network. To achieve this, RNN allows edges that feed back to the input neurons, while
Transformers use self-attention mechanisms and positional encoding. Both models are known to be
Turing-complete, as was proven by Siegelmann & Sontag (1995) and by Pérez et al. (2021). Here, it
suffices to use finite alphabets Σ. Using these results, we can prove that generating abductive and
counterfactual explanations is computationally difficult for RNN and Transformers.

Proposition 1. The problem of checking the existence of an abductive explanation for RNN and
Transformers are undecidable. The problem of checking the existence of a counterfactual explanation
with respect to Hamming and Edit distance (resp. DTW) is NP-complete (resp. undecidable).

We relegate the full proof of this proposition to the appendix. Intuitively, to prove the result, one
first observes that abductive and counterfactual explanations can be used to encode universality/non-
emptiness of a language (i.e. whether L = Σ∗ or L ̸= ∅). The undecidability result can then be
proven by using Turing-completeness of RNN and Transformers. To obtain NP-hardness, we use the
result that counterfactual explainability is NP-hard for multi-layer perceptrons Barceló et al. (2020),
which is then inherited by the more general model of RNN and Transformers.

Unfortunately, it is easy to show that abductive explanability is computationally intractable even for
DFA, unless the number of features is fixed. See Appendix B for proof.

Proposition 2. The problem of checking the existence of an abductive explanation for DFA is
PSPACE-hard. When the number of features is fixed, the problem is solvable in polynomial-time.

4 INTERPRETABLE MODELS FOR COUNTERFACTUAL QUERIES

It is possible to show that generating counterfactual explanations for DFA is polynomial-time solvable.
Instead of first proving this result, and proving the more general results for deterministic interval
automata and deterministic register automata (with a fixed number of registers), we directly prove
this polynomial-time solvability for the more general models.

4.1 INTERVAL AUTOMATA

We will define the notion of interval automata. This setting is equivalent to an instantiation of the
framework of automata modulo theories D’Antoni & Veanes (2021) over SMT-Algebra modulo
Real Arithmetic. Intuitively, an interval automaton is just an automaton, where a transition may
take an interval with rational endpoints. More precisely, let Ψ be the set of intervals with rational

2Represented in unary, i.e., as the string 1k

5

Under review as a conference paper at ICLR 2024

end points (or infinity), i.e., [li, ui], [li, ui), [li,∞), (li, ui], (−∞, ui], (li, ui), or (−∞,∞), where
li ≤ ui and li, ui ∈ Q. An interval automaton A = (Σ, Q,∆, q0, F), where Σ = Q, Q is a finite
set of control states, the transition relation ∆ is a finite subset of Q × Ψ ×Q, q0 ∈ Q is an initial
state, and F ⊆ Q is a set of final states. Given a sequence w = a1 · · · an ∈ Q∗, a run of A on w
is a function π : {0, . . . , n} → Q such that π(0) = q0 and, for each i ∈ {0, . . . , n − 1}, we have
(π(i), P, π(i+ 1)) ∈ ∆ and ai+1 ∈ P . This run is said to be accepting if π(n) ∈ F , and we say that
A accepts w if there is an accepting run of A on w. The language L(A) accepted by A is defined to
be the set of strings w ∈ Σ∗ that are accepted by A. We say that A is deterministic if there are no
two distinct transitions (p, P1, q1), (p, P2, q2) ∈ ∆ such that P1 ∩ P2 ̸= ∅. It is known that interval
automata are determinizable D’Antoni & Veanes (2021).

Example 2. A simple example of a language that can be recognized by an interval automaton is a
sequence of numbers in the range of 300 and 400. This can be captured by a single deterministic
interval automaton with state q (both initial and final) with a single transition (q, [300, 400], q). Such
a language could be of interests in modelling that a stock price is in a certain “trading range” (i.e.
with no clear up/down trends). Consider an extension of this language, a trading strategy, where
“buy” is recommended, when the closing prices are in a window between $300 and $400 for the
past four data points, and the last recorded price is between $300 and $303, meaning within 1% of
the window’s lower cut-off. Such a strategy can easily be represented using an interval automaton,
whose language is the set of all sequences that get a “buy” recommendation. Consider the sequence
298, 305, 301, 320, 315, 302, the strategy would recommend “buy”, since the last four values are
between 300 and 400, and the last value is between 300 and 303. A counterfactual explanation for this
sequence on a model representing this strategy, would be the sequence 298, 305, 299, 320, 315, 302,
which would not get a “buy” recommendation, since its third value is now under 300.

Remark. The standard definition of finite automata (e.g. see Sipser (1997)) over finite alphabet can
be obtained from the above definition by allowing intervals of the form [i, i].

Theorem 1. The complexity of a counterfactual query with respect to a deterministic interval
automaton is polynomial-time solvable.

We sketch the result for DTW distance measure d; the proof for the rest is similar and is given
in supplementary materials. Here, we deal with a decision problem, but later we remark how a
counterfactual of a small DTW-distance can be easily extracted from our algorithm. We are given
a function f : Σ∗ → {0, 1} given by the DFA A, an input sequence v ∈ Σ∗, and k ∈ N. We will
show that checking the existence of w ∈ Σ∗ such that d(v, w) ≤ k and f(v) ̸= f(w) can be done in
PTIME. Note first that the value f(v) can be easily computed in PTIME.

Without loss of generality, we assume that f(v) = 1. The case of f(v) = 0 is similar. We first
construct a DFA B := Ā = (Σ, Q,∆, q0, F) for the complement language of L(A). This can
be achieved by first “completing” the transition relation and then swapping final/non-final states.
For example, suppose that the available transitions in A from q are (q, [1, 2], p1) and (q, [4, 5], p2).
Completing here means that we add a “dead-end” state qr and add transitions (qr, (∞,∞), qr) and
(q, P, qr) for each P ∈ {(−∞, 1), (2, 4), (5,∞)}. The computation of B can be done in PTIME.

We now construct a weighted graphG = (V,E, S, T), where V is a set of vertices,E ⊆ V ×Q≥0×V
is a finite set of weighted edges, and S, T ⊆ V are sets of start/target vertices. Furthermore, it is
the case that the minimum weight W ∈ Q≥0 of paths from S to T in G corresponds d(v, w) where
w ∈ L(B), such that d(v, w) is minimized. Let v = a1 · · · an. Here, weight of a path refers to the
sum of the weights of the edges in the path. Polynomial-time upper bound follows since computing
W can be solved using a polynomial-time shortest-path algorithm.

To simplify our presentation, we assume that each transition (p, P, q) ∈ ∆ is associated with a closed
interval P = [r, s]. The case when P is not closed interval (e.g. (1, 7]) can be taken care of easily by
adding a flag in G, so as to indicate whether W is the infimum or can be achieved. See supplementary
materials. Define V = Q × {1, . . . , n}, S = {q0} × {1}, and T = F × {n}. For each transition
(p, P, q) ∈ ∆, we add the following edges:

1. (p, i) to (q, i) with weight infr∈P |r − ai|. This means that we match ai with the current
value in the counterfactual string.

2. (p, i) to (q, j) for every j ∈ {i+ 1, . . . , n} with weight inft∈P

∑j−1
h=i |t− ah|. This means

that we match the current value t in the counterfactual string with ai, . . . , aj−1.

6

Under review as a conference paper at ICLR 2024

The weight in the last item can be computed in polynomial time. For example, we can observe
that this is a linear program optimization with a sum of absolute values as in the objective function:
minimize

∑n−1
i=1 |xi| with xi = t− ai for each i and r ≤ t ≤ s. We may then use a standard trick to

replace each |xi| by x+i + x−i , for new variables x+i and x−i , and replace xi by x+i − x−i . Finally, we
assert that x+i , x

−
i ≥ 0.

Remark. While we calculate these weights, we can also label each edge with the optimal value for r
(for edges created in the first item) or t (for edges created in the second item). When we then execute
a shortest path algorithm, we can have it return the shortest path to us. The sequence of labels we see
when we follow this path, will be the counterfactual explanation.

4.2 EXTENSIONS

Adding registers: We consider the extension of DFA with k registers r1, . . . , rk, resulting in the
model k-DRA of deterministic k-register automata (e.g. Moerman et al. (2017); Cassel et al. (2016)).
We will show that counterfactual queries for such k-DRA can still be answered in PTIME.

A good example of a language recognized by k-DRA (in fact 1-DRA) is the set of non-decreasing
sequences greater than some value a; it can be recognized by remembering the last seen value in the
register and then comparing it with the next value in the input.

To define k-DRA we first define nondeterministic k-register automata (k-RA). More formally, a
k-RA A = (Q,∆, q0, F) consists of a finite set Q of states, the initial state q0 ∈ Q, the set F of
accepting states, and a finite transition relation ∆, with each transition in it of the form (p, φ, ψ, q),
where φ(r̄, curr) is a guard — comparing the values of the registers and the currently read value
in the input — and ψ(r̄, curr) is a set of assignments for updating the registers r̄ = r1, ..., rk.
More precisely, a guard is simply a set of (in)equalities of the form ri ∼ curr or ri ∼ rj , where
∼ ∈ {=,≤,≥, <,>}. In addition, an assignment is of the form ri := c (for a constant c ∈ Q),
ri := rj , or ri := curr. Inside ψ, we only allow at most one assignment ri := ... for each
1 ≤ i ≤ k. We next define the notion of runs and accepting runs. A configuration is a pair (p, µ),
where p ∈ Q and µ : {r1, . . . , rk} → Q. An initial configuration is of the form (q0, 0̄), where 0̄
assigns 0 to each ri. Given a sequence w = a1 · · · an ∈ Q∗, a run on w is a mapping π of each
i ∈ {0, . . . , n} to a configuration π(i) := (qi, µi) such that π(0) is an initial configuration, and
for each l = 0, . . . , n − 1 there exists a transition (ql, φ, ψ, ql+1) ∈ ∆ such that φ(µl(r̄), al+1) is
satisfied and that the following holds true for µl+1 with 1 ≤ i ≤ k:

• µl+1(ri) = µl(ri), when no assignment of the form ri := ... appears in ψ
• µl+1(ri) = µl(rj), when an assignment of the form ri := rj appears in ψ
• µl+1(ri) = c, when an assignment of the form ri := c with c ∈ Q appears in ψ
• µl+1(ri) = al+1, when an assignment of the form ri := curr appears in ψ

We say that the run π is accepting if the last state qn is a final state. The language accepted by A
contains all sequences w ∈ Q∗, on which there is an accepting run of A.

Having defined k-RA, we may now impose determinism by allowing at most one transition for each
value a seen in the input. More precisely, we say that a k-RA A = (Q,∆, q0, F) is deterministic if
it is not the case that there are two different transitions (p, φ1, ψ1, q), (p, φ2, ψ2, q

′) ∈ ∆ such that
φ1(µ(r̄), a) and φ2(µ(r̄), a) are both true for some a ∈ Q, and µ : {r1, . . . , rk} → Q. Checking
whether a k-RA is deterministic can be done in PTIME; in particular, this is a simple instance of a
linear programming, which is PTIME solvable.

As we mentioned above, k-DRA can be used to recognize the language of non-decreasing sequences
in Q+ all of whose elements are greater than some value a.
Example 3. For another example of where k-DRA can be useful, we look again at financial data.
Financial data is often annotated, using relatively straightforward criteria. One such annotation is the
notion of an “uptrend”. We can define a sequence to be an uptrend, if the values of the local maxima
are monotonically increasing and the values of the local minima are monotonically increasing. For this
example, we assume that the data is “smooth enough”, which can be achieved through pre-processing
steps, so that we do not mistakenly consider minor fluctuations as local minima or maxima. A register
automaton with two registers can easily decide if a sequence is an uptrend, two registers are used to

7

Under review as a conference paper at ICLR 2024

save the previous high and the previous low. Let us consider the sequence 1, 5, 3, 5, 7, 9, 6, 8, 10, 12,
which has the local maxima 5, 9 and the local minima 3, 6 (we do not count the first value as a
local minimum or last value as a local maximum). Since both are monotonically increasing, this
sequence represents an uptrend. A counterfactual explanation for this sequence on this model would
be 1, 5, 3, 5, 7, 9, 2, 8, 10, 12, where the six has been changed to a two. Since the new local minima
3, 2 are no longer monotonically increasing, this sequence is not an uptrend.

Figure 1: Graph of an uptrend for example 3, taken from Murphy (1999)

Theorem 2. The complexity of evaluating a counterfactual query with respect to k-DRA is in PTIME
for Hamming distance, edit distance, and DTW assuming a fixed k.

Proof. To proof this we construct a weighted graph, just like in the proof of Theorem 1. We deal with
the decision version of the problem, but a counterfactual of a small distance can be easily computed
from our algorithm just like in the case of Theorem 1. The immediate problem here adapting this idea
is that the number of configurations of a k-DRA is infinite. For this reason, we restrict our search
for a counterfactual to words over the values that appear as constants in the k-DRA and the values
present in the input word. This creates a finite set of configurations whose size is exponential only in
k. Hence, when we fix k, we will solve a shortest path problem on a polynomial-sized graph, just as
in the case for DFA.

We will consider only the case that each guard contains only a set of weak inequalities, i.e., of the
form x ∼ y, where x, y are registers (i.e. of the form ri), constants (i.e. concrete values in Q), or
the current value curr and ∼∈ {≤,≥}. We can handle strict inequality in a similar way as in the
proof of Theorem 7. Let v = a1 · · · an ∈ Q+. Without loss of generality, assume v /∈ L(A). In the
following, we want to find w ∈ Q+ such that w ∈ L(A) and that d(v, w) is minimized. We will
assume that d is the DTW distance measure with c(x, y) = |x− y| (the proof for discrete metric is
the same), to adapt the proof to Hamming and edit distance, the same modifications as for Theorem 1
can be applied. We begin with a lemma, which we will use to restrict the set of configurations.

Lemma 3. Let D be the finite set of constants appearing in A or in v. For each w ∈ Q+ with
w ∈ L(A), there exists u ∈ D+ such that d(v, u) ≤ d(v, w) and u ∈ L(A).

Proof. Let w = b1 · · · bm. Let π be an accepting run of w on A, with (qi, µi) := π(i) for 0 ≤ i ≤ m.
Let (qi, φi, ψi, qi+1) be the transition between π(i) and π(i+ 1) for 0 ≤ i ≤ m− 1.

For each i ∈ {1, . . . ,m}, select l ∈ {1, . . . , n} such that
∑

j∈M c(aj , al) is minimal, where M =

{j|(i, j) is a match when calculating d(v, w)}. We then set ui := al if φi(µi(r̄), al) is satisfied. If
al is too large, we instead set ui to the smallest upper bound on curr in φi for register values of µi,
and if al is too small, we instead set ui to the largest lower bound. This guarantees that π is also an
accepting run of u := u1, ..., um on A, meaning u ∈ L(A). Furthermore, for each match (i, j) in the
matching sequence of d(v, w), we have c(vi, uj) ≤ c(vi, wj), meaning d(v, u) ≤ d(v, w).

This lemma essentially says that it suffices to restrict ourselves to values in the automaton A or the
string v when finding a counterfactual. Firstly, since A starts with 0 in all registers and we have
an assignment for each register in each transition (otherwise, stays the same), it suffices to restrict
each register value to D. As before, we can construct a graph G = (V,E, S, T), but this time the
set V of vertices is Q × {1, . . . , n} × Dk. Here, in each tuple (q, i, j1, . . . , jk) ∈ V the value jl
records which of the values in D is stored in the lth register. We define S = q0 × {1} × {0}k, and
T = F × {n} ×Dk. The edge relation is defined in the same way as in the proof of Theorem 1; For
each (p, φ, ψ, q) ∈ ∆ we add to E the edges:

8

Under review as a conference paper at ICLR 2024

1. (p, i, θ) to (q, i, θ[ψ(θ, curr)]) with weight minz∈D s.t. φ(θ,z) c(z, ai) for every i ∈
{1, . . . , n}, every θ ∈ Dk, and every curr ∈ D, where θ[ψ(θ, curr)] are the values of
the registers after ψ has been applied on the values θ.

2. (p, i, θ) to (q, j, θ[ψ(θ, curr)]) with weight minz∈D s.t. φ(θ,z)

∑j−1
h=i c(z, ah) for every i ∈

{1, . . . , n}, j ∈ {i+ 1, . . . , n}, θ ∈ Dk, and curr ∈ D.

in particular, this can be done because we have a finite setD of values. Note that nowG is polynomial,
except in the number k of registers. As for Theorem 1, we can apply a shortest path algorithm on G,
to get minu∈Q+ d(v, u) as the weight of a shortest path. With this the counterfactual query can be
answered.

Adding nondeterminism: We conclude with an observation that the extension of DFA with
nondeterminism (i.e. NFA) is intractable with respect to counterfactual queries.
Proposition 3. The problem of checking the existence of counterfactuals for NFA with respect to
Hamming and edit distance is NP-hard, while the same problem is PSPACE-hard for DTW.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Summary and Discussion: We have seen that popular sequential models like RNN and Transform-
ers are either difficult to interpret with respect to two types of explanations in FXAI, i.e., abductive
and counterfactual explanations. For sequences over a finite alphabet, it has been hinted by the
numerous available works on automata extraction from RNN (e.g. Dong et al. (2020); Weiss et al.
(2018); Okudono et al. (2020); Wang et al. (2017); Jacobsson (2005); Bollig et al. (2022)) that
Deterministic Finite Automata (DFA) might be more interpretable. Interestingly, we showed that DFA
is intractable (PSPACE-complete) for abductive explanations with respect to features represented
as regular languages. On the positive side, we provide a polynomial-time algorithms for computing
counterfactual explanations for extensions of DFA to infinite alphabets — including deterministic
interval automata and deterministic k-register automata (for fixed k).

Combined with existing automata learning algorithms (e.g. Gold (1978); Angluin (1987a); Moerman
et al. (2017); Drews & D’Antoni (2017); Argyros & D’Antoni (2018)), our polynomial-time algo-
rithms could potentially be used in FXAI as follows: (1) learn an automaton (either from datasets, or
from more complex models like RNN, e.g., see Weiss et al. (2018); Okudono et al. (2020)), (2) use
our PTIME algorithm to generate a counterfactual explanation with respect to a specific input w.

Many theoretical papers on RNN and Transformers (e.g. Siegelmann & Sontag (1995); Pérez et al.
(2021)) assume rational numbers of arbitrary precision, which is also what we assume here. In
practice, it is often the case that rational numbers of a fixed precision (i.e. floating point numbers with
a fixed number of bits) are employed. With a fixed precision, models like RNN and Transformers
have only finite memory, which are then no more powerful than DFA. However, when the number
of bits permitted is allowed as a parameter (i.e. finite but not fixed precision), then the amount of
memory is still exponential in the number of bits. We leave it for future work to study the complexity
of counterfactual queries of such RNN and Transformer models.

Our paper deals with explainability in FXAI. This type of explainability falls within the category of
post-hoc local model-agnostic explanations. This represents only a small subset of the landscape
of XAI Molnar (2022); Gunning et al. (2019); Linardatos et al. (2021); Belle & Papantonis (2021),
where explanations may involve subjective/human elements (e.g. visual explanation).

Future work: We propose three future research directions. Firstly, can we restrict RNN and
Transformers, so as to make the models interpretable? One potential candidate is to permit only
Transformer encoders. In fact, it was shown (e.g. Hahn et al. (2021); Hao et al. (2022); Yao et al.
(2021)) that some regular languages cannot be recognized by Transformers encoders. Secondly, is it
possible to come up with subsets of “regular” features, where polynomial-time solvability can be
recovered for DFA? Thirdly, our result indicates that k-DRA is an interpretable model, for fixed
k. Can we extend the work of Weiss et al. (2018); Okudono et al. (2020) on DFA extraction from
RNN using DFA learning algorithm to the k-DRA model? In particular, how do we exploit learning
algorithms for k-DRA Howar et al. (2012); Cassel et al. (2016); Moerman et al. (2017)?

9

Under review as a conference paper at ICLR 2024

REFERENCES

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75(2):
87–106, 1987a. doi: 10.1016/0890-5401(87)90052-6. URL https://doi.org/10.1016/
0890-5401(87)90052-6.

Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, 1987b. doi: 10.1007/
BF00116828. URL https://doi.org/10.1007/BF00116828.

Marcelo Arenas, Daniel Báez, Pablo Barceló, Jorge Pérez, and Bernardo Subercaseaux. Foun-
dations of symbolic languages for model interpretability. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
11690–11701, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
60cb558c40e4f18479664069d9642d5a-Abstract.html.

Marcelo Arenas, Pablo Barceló, Miguel A. Romero Orth, and Bernardo Suber-
caseaux. On computing probabilistic explanations for decision trees. In NeurIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html.

George Argyros and Loris D’Antoni. The learnability of symbolic automata. In Hana Chockler
and Georg Weissenbacher (eds.), Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part I, volume 10981 of Lecture Notes in Computer Science, pp. 427–445.
Springer, 2018. doi: 10.1007/978-3-319-96145-3_23. URL https://doi.org/10.1007/
978-3-319-96145-3_23.

Pablo Barceló, Mikaël Monet, Jorge Pérez, and Bernardo Subercaseaux. Model interpretability
through the lens of computational complexity. Advances in neural information processing systems,
33:15487–15498, 2020.

Vaishak Belle and Ioannis Papantonis. Principles and practice of explainable machine learning.
Frontiers Big Data, 4:688969, 2021. doi: 10.3389/fdata.2021.688969. URL https://doi.
org/10.3389/fdata.2021.688969.

Mikolaj Bojanczyk. Slightly Infinite Sets. 2019. URL https://www.mimuw.edu.pl/
~bojan/upload/main-10.pdf.

Mikolaj Bojanczyk, Bartek Klin, and Joshua Moerman. Orbit-finite-dimensional vector spaces and
weighted register automata. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, pp. 1–13. IEEE, 2021. doi: 10.1109/LICS52264.
2021.9470634. URL https://doi.org/10.1109/LICS52264.2021.9470634.

Benedikt Bollig, Martin Leucker, and Daniel Neider. A survey of model learning techniques for
recurrent neural networks. In Nils Jansen, Mariëlle Stoelinga, and Petra van den Bos (eds.),
A Journey from Process Algebra via Timed Automata to Model Learning - Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday, volume 13560 of Lecture Notes
in Computer Science, pp. 81–97. Springer, 2022. doi: 10.1007/978-3-031-15629-8_5. URL
https://doi.org/10.1007/978-3-031-15629-8_5.

Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active learning for extended finite
state machines. Formal Aspects Comput., 28(2):233–263, 2016. doi: 10.1007/s00165-016-0355-5.
URL https://doi.org/10.1007/s00165-016-0355-5.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent
neural networks as weighted language recognizers. In Marilyn A. Walker, Heng Ji, and
Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 2261–
2271. Association for Computational Linguistics, 2018. doi: 10.18653/v1/n18-1205. URL
https://doi.org/10.18653/v1/n18-1205.

10

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/BF00116828
https://proceedings.neurips.cc/paper/2021/hash/60cb558c40e4f18479664069d9642d5a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/60cb558c40e4f18479664069d9642d5a-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b8963f6a0a72e686dfa98ac3e7260f73-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.3389/fdata.2021.688969
https://doi.org/10.3389/fdata.2021.688969
https://www.mimuw.edu.pl/~bojan/upload/main-10.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-10.pdf
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1007/978-3-031-15629-8_5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.18653/v1/n18-1205

Under review as a conference paper at ICLR 2024

Phillip Compeau. Bioinformatics Algorithms: An Active Learning Approach. Active Learning
Publishers, 2014.

Martin C. Cooper and João Marques-Silva. Tractability of explaining classifier decisions. Artif.
Intell., 316:103841, 2023. doi: 10.1016/j.artint.2022.103841. URL https://doi.org/10.
1016/j.artint.2022.103841.

Loris D’Antoni and Margus Veanes. Automata modulo theories. Commun. ACM, 64(5):86–95, 2021.
doi: 10.1145/3419404. URL https://doi.org/10.1145/3419404.

Guoliang Dong, Jingyi Wang, Jun Sun, Yang Zhang, Xinyu Wang, Ting Dai, Jin Song Dong, and
Xingen Wang. Towards interpreting recurrent neural networks through probabilistic abstraction.
In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020, pp. 499–510. IEEE, 2020. doi: 10.1145/3324884.
3416592. URL https://doi.org/10.1145/3324884.3416592.

Samuel Drews and Loris D’Antoni. Learning symbolic automata. In Axel Legay and Tiziana Margaria
(eds.), Tools and Algorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, volume 10205
of Lecture Notes in Computer Science, pp. 173–189, 2017. doi: 10.1007/978-3-662-54577-5_10.
URL https://doi.org/10.1007/978-3-662-54577-5_10.

Pawel Gawrychowski, Martin Lange, Narad Rampersad, Jeffrey O. Shallit, and Marek Szykula.
Existential length universality. In Christophe Paul and Markus Bläser (eds.), 37th International
Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Mont-
pellier, France, volume 154 of LIPIcs, pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi: 10.4230/LIPIcs.STACS.2020.16. URL https://doi.org/10.4230/
LIPIcs.STACS.2020.16.

E. Mark Gold. Complexity of automaton identification from given data. Inf. Control., 37(3):302–
320, 1978. doi: 10.1016/S0019-9958(78)90562-4. URL https://doi.org/10.1016/
S0019-9958(78)90562-4.

David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-Zhong Yang.
XAI: Explainable artificial intelligence. Science Robotics, 4(37), 2019. doi: 10.1126/scirobotics.
aay7120. URL https://robotics.sciencemag.org/content/4/37/eaay7120.

Michael Hahn, Dan Jurafsky, and Richard Futrell. Sensitivity as a complexity measure for sequence
classification tasks. CoRR, abs/2104.10343, 2021. URL https://arxiv.org/abs/2104.
10343.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention
transformers: Perspectives from circuit complexity. Trans. Assoc. Comput. Linguistics, 10:800–
810, 2022.

Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canonical register automata.
In Viktor Kuncak and Andrey Rybalchenko (eds.), Verification, Model Checking, and Abstract
Interpretation - 13th International Conference, VMCAI 2012, Philadelphia, PA, USA, January
22-24, 2012. Proceedings, volume 7148 of Lecture Notes in Computer Science, pp. 251–266.
Springer, 2012. doi: 10.1007/978-3-642-27940-9_17. URL https://doi.org/10.1007/
978-3-642-27940-9_17.

Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On efficiently explaining
graph-based classifiers. In Meghyn Bienvenu, Gerhard Lakemeyer, and Esra Erdem (eds.), Proceed-
ings of the 18th International Conference on Principles of Knowledge Representation and Reason-
ing, KR 2021, Online event, November 3-12, 2021, pp. 356–367, 2021. doi: 10.24963/KR.2021/34.
URL https://doi.org/10.24963/kr.2021/34.

Xuanxiang Huang, Martin C. Cooper, António Morgado, Jordi Planes, and João Marques-Silva.
Feature necessity & relevancy in ML classifier explanations. In Sriram Sankaranarayanan and
Natasha Sharygina (eds.), Tools and Algorithms for the Construction and Analysis of Systems -

11

https://doi.org/10.1016/j.artint.2022.103841
https://doi.org/10.1016/j.artint.2022.103841
https://doi.org/10.1145/3419404
https://doi.org/10.1145/3324884.3416592
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.4230/LIPIcs.STACS.2020.16
https://doi.org/10.4230/LIPIcs.STACS.2020.16
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://robotics.sciencemag.org/content/4/37/eaay7120
https://arxiv.org/abs/2104.10343
https://arxiv.org/abs/2104.10343
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.24963/kr.2021/34

Under review as a conference paper at ICLR 2024

29th International Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
I, volume 13993 of Lecture Notes in Computer Science, pp. 167–186. Springer, 2023. doi: 10.1007/
978-3-031-30823-9_9. URL https://doi.org/10.1007/978-3-031-30823-9_9.

Alexey Ignatiev and João Marques-Silva. Sat-based rigorous explanations for decision lists. In Chu-
Min Li and Felip Manyà (eds.), Theory and Applications of Satisfiability Testing - SAT 2021 - 24th
International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings, volume 12831 of Lecture
Notes in Computer Science, pp. 251–269. Springer, 2021. doi: 10.1007/978-3-030-80223-3_18.
URL https://doi.org/10.1007/978-3-030-80223-3_18.

Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, and João Marques-Silva. Using maxsat for efficient
explanations of tree ensembles. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022,
The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pp. 3776–3785. AAAI Press, 2022. URL https://ojs.
aaai.org/index.php/AAAI/article/view/20292.

Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence,
containment, and covering problems for the regular and context-free languages. J. Com-
put. Syst. Sci., 12(2):222–268, 1976. doi: 10.1016/S0022-0000(76)80038-4. URL https:
//doi.org/10.1016/S0022-0000(76)80038-4.

Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learnlib. In Daniel Kroening
and Corina S. Păsăreanu (eds.), Computer Aided Verification, pp. 487–495, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-21690-4.

Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On explaining decision trees. CoRR,
abs/2010.11034, 2020. URL https://arxiv.org/abs/2010.11034.

Yacine Izza, Alexey Ignatiev, and João Marques-Silva. On tackling explanation redundancy in
decision trees. J. Artif. Intell. Res., 75:261–321, 2022. doi: 10.1613/jair.1.13575. URL https:
//doi.org/10.1613/jair.1.13575.

Henrik Jacobsson. Rule extraction from recurrent neural networks: A taxonomy and review. Neural
Comput., 17(6):1223–1263, 2005. doi: 10.1162/0899766053630350. URL https://doi.
org/10.1162/0899766053630350.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable ai: A review
of machine learning interpretability methods. Entropy, 23(1), 2021. ISSN 1099-4300. doi:
10.3390/e23010018. URL https://www.mdpi.com/1099-4300/23/1/18.

João Marques-Silva. Automated reasoning in explainable AI. In Mateu Villaret, Teresa Alsinet, Cèsar
Fernández, and Aïda Valls (eds.), Artificial Intelligence Research and Development - Proceedings
of the 23rd International Conference of the Catalan Association for Artificial Intelligence, CCIA
2021, Virtual Event, 20-22 October, 2021, volume 339 of Frontiers in Artificial Intelligence and
Applications, pp. 4. IOS Press, 2021. doi: 10.3233/FAIA210109. URL https://doi.org/
10.3233/FAIA210109.

João Marques-Silva. Logic-based explainability in machine learning. In Leopoldo E. Bertossi and
Guohui Xiao (eds.), Reasoning Web. Causality, Explanations and Declarative Knowledge - 18th
International Summer School 2022, Berlin, Germany, September 27-30, 2022, Tutorial Lectures,
volume 13759 of Lecture Notes in Computer Science, pp. 24–104. Springer, 2022. doi: 10.1007/
978-3-031-31414-8_2. URL https://doi.org/10.1007/978-3-031-31414-8_2.

Joao Marques-Silva and Alexey Ignatiev. No silver bullet: interpretable ml models must be explained.
Frontiers in Artificial Intelligence, 6, 2023. ISSN 2624-8212. doi: 10.3389/frai.2023.1128212. URL
https://www.frontiersin.org/articles/10.3389/frai.2023.1128212.

Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwelski.
Learning nominal automata. In Giuseppe Castagna and Andrew D. Gordon (eds.), Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pp. 613–625. ACM, 2017. doi: 10.1145/3009837.3009879. URL
https://doi.org/10.1145/3009837.3009879.

12

https://doi.org/10.1007/978-3-031-30823-9_9
https://doi.org/10.1007/978-3-030-80223-3_18
https://ojs.aaai.org/index.php/AAAI/article/view/20292
https://ojs.aaai.org/index.php/AAAI/article/view/20292
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1016/S0022-0000(76)80038-4
https://arxiv.org/abs/2010.11034
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.1162/0899766053630350
https://doi.org/10.1162/0899766053630350
https://www.mdpi.com/1099-4300/23/1/18
https://doi.org/10.3233/FAIA210109
https://doi.org/10.3233/FAIA210109
https://doi.org/10.1007/978-3-031-31414-8_2
https://www.frontiersin.org/articles/10.3389/frai.2023.1128212
https://doi.org/10.1145/3009837.3009879

Under review as a conference paper at ICLR 2024

Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022. URL https://
christophm.github.io/interpretable-ml-book.

John J. Murphy. Technical analysis of the financial markets : a comprehensive guide to trading
methods and applications. New York Inst. of Finance, New York, NY, 1999. ISBN 0735200661.

Aileen Nielsen. Practical Time Series Analysis: Prediction with Statistics and Machine Learning.
O’Reilly, 2019.

Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo. Weighted automata ex-
traction from recurrent neural networks via regression on state spaces. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-
12, 2020, pp. 5306–5314. AAAI Press, 2020. doi: 10.1609/aaai.v34i04.5977. URL https:
//doi.org/10.1609/aaai.v34i04.5977.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing complete. The Journal of
Machine Learning Research, 22(1):3463–3497, 2021.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations
by error propagation, 1985.

Aditya A. Shrotri, Nina Narodytska, Alexey Ignatiev, Kuldeep S. Meel, João Marques-Silva, and
Moshe Y. Vardi. Constraint-driven explanations for black-box ML models. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 8304–
8314. AAAI Press, 2022. URL https://ojs.aaai.org/index.php/AAAI/article/
view/20805.

H.T. Siegelmann and E.D. Sontag. On the computational power of neural nets. Journal of Computer
and System Sciences, 50(1):132–150, 1995. ISSN 0022-0000. doi: https://doi.org/10.1006/
jcss.1995.1013. URL https://www.sciencedirect.com/science/article/pii/
S0022000085710136.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active Automata Learning from
a Practical Perspective, pp. 256–296. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
ISBN 978-3-642-21455-4. doi: 10.1007/978-3-642-21455-4_8. URL https://doi.org/10.
1007/978-3-642-21455-4_8.

Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time: Preliminary
report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd, Michael A.
Harrison, Richard M. Karp, and H. Raymond Strong (eds.), Proceedings of the 5th Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA, pp. 1–9.
ACM, 1973. doi: 10.1145/800125.804029. URL https://doi.org/10.1145/800125.
804029.

J.H. van Lint. Introduction to Coding Theory. Springer, 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Qinglong Wang, Kaixuan Zhang, Alexander G. Ororbia II, Xinyu Xing, Xue Liu, and C. Lee Giles.
An empirical evaluation of recurrent neural network rule extraction. CoRR, abs/1709.10380, 2017.
URL http://arxiv.org/abs/1709.10380.

13

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1609/aaai.v34i04.5977
https://doi.org/10.1609/aaai.v34i04.5977
https://ojs.aaai.org/index.php/AAAI/article/view/20805
https://ojs.aaai.org/index.php/AAAI/article/view/20805
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
http://arxiv.org/abs/1709.10380

Under review as a conference paper at ICLR 2024

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
using queries and counterexamples. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pp. 5244–5253. PMLR, 2018. URL http://proceedings.mlr.press/v80/weiss18a.
html.

Shunyu Yao, Binghui Peng, Christos H. Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In ACL/IJCNLP, pp. 3770–3785, 2021.

APPENDIX

A PROOF SKETCHES FOR PROPOSITION 1

We first recall the formal definition of RNN (see Chen et al. (2018) and (Siegelmann & Sontag,
1995)):
Definition A.1. We define an arbitrary precision RNN binary classifier R with a single recurrent
layer and k feed forward layers as a tuple ⟨Σ, N, h−1,W,W

′, σ,W ′′, b, f, k⟩, in which

• Σ is a finite input alphabet,
• N is a finite set of neurons,
• h−1 ∈ Q|N | is the initial activation vector,
• W ∈ Q|N |×|N | is the transition matrix for the recurrent part,
• W ′ = (W ′

a)a∈Σ$
is a Σ$-indexed family of bias vectors, with W ′

a ∈ Q|N |, where $ is a
fresh delimiter symbol and Σ$:= Σ ∪ {$},

• σ is the activation function of the recurrent part,
• W ′′ =W ′′(1),W ′′(2)...,W ′′(k) is a sequence of weight matrices for the feed forward part,

withW ′′(i) ∈ QDi×Di+1 for some sequence of dimensionsD0, D1, ..., Dk whereD0 = |N |
and Dk = 1,

• b = b(1), b(2), ..., b(k) is a sequence of bias vectors, with bi ∈ QDi ,
• f = f (1), f (2), ..., f (k) is a sequence of activation functions,
• k is the number of feed forward layers .

We define the hidden state vector hs,t ∈ Q|N | after reading the first t− 1 letters of an input sequence
s, with hs,t := σ(W · hs,t−1 +W ′

st) where hs,−1 := h−1.

It suffices to show hardness only for finite alphabets Σ. To this end, we define the classification of a
string s ∈ Σ∗ by the RNN classifier as:

R(s) = f (k)(...f (1)(W ′′(1) · hs,n + b(1))...)

Proof sketch of RNN/Counterfactual Part of Proposition 1. We sketch the proof first only for coun-
terfactual queries with respect to DTW. For a proof by contradiction, we assume that checking the
existence of a counterfactual explanation is decidable for an RNN binary classifier with a single layer
feed forward part.
Let M be an arbitrary Turing machine, that does not halt after 0 or 1 steps on the empty input.
Theorem 2 of Siegelmann & Sontag (1995) (in the notation of Chen et al. (2018)) states, that there
exists an RNN over Σ = {a}, with a designated neuron n, such that hs,t(n) = 1 if M stops after t
steps for the empty input and hs,t(n) = 0 otherwise. From this we can construct an RNN classifier
R = ⟨Σ, N, h−1,W,W

′, σ,W ′′, b, f, k⟩, by taking Σ, N, h−1,W,W
′ and σ from the construction

in that proof and setting k := 1, W ′′ := W (1) := eTn (where en denotes the vector with a 1 in the
n-th coordinate and 0’s elsewhere), b := b(1) := 0, and f := f (1) := id (where id is the identity),
such that there exists a string s ∈ Σ∗ with R(s) = 1, if and only if M halts on the empty input. We
now consider counterfactual queries on R, with respect to DTW. Given k ∈ N, we set v := a ∈ Σ+

meaning R(v) = 0. We are looking for a string w ∈ Σ+ such that R(w) = 1 and DTW (v, w) ≤ k.
We note that on the alphabet Σ = {a} we have DTW (x, y) = 0 for all x, y ∈ Σ+. Therefore,

14

http://proceedings.mlr.press/v80/weiss18a.html
http://proceedings.mlr.press/v80/weiss18a.html

Under review as a conference paper at ICLR 2024

DTW (v, w) = 0 for all possible w ∈ Σ+, meaning that answering this counterfactual query is
equivalent to checking the emptiness of class C = {s ∈ Σ|R(s) = 1}. However, the class C is
non-empty if and only if M halts. Answering the counterfactual query of any RNN, with respect to
DTW, therefore decides the Halting Problem, which is known to be undecidable.

Next we sketch the proof for counterfactual explanations for RNN with respect to Hamming and edit
distance. The full proof can be found in Appendix C. The full proof for Transformers can be found
in Appendix D. The undecidability proof of abductive explanations is essentially the same as the
proof of Proposition 2, except that we use RNN and Transformers to recognize the language {c}, and
then the undecidability of non-emptiness of languages of RNN/Transformers Siegelmann & Sontag
(1995); Pérez et al. (2021).

Hamming distance: NP-hard can be achieved by a reduction from the same problem for multilayer
perceptrons Barceló et al. (2020). This problem is called MinimumChangedRequired (MCR) by the
authors. We prove the NP hardness for Hamming and edit distance by considering an arbitrary MLP
M with k layers, whose weight matrix, bias vector and activation function for each layer i is denoted
by W ′′(i), b(i) and f (i) respectively and with input from {0, 1}d.

Edit distance: We construct an RNN binary classifier RM over Σ = {0, 1}, such that the language
recognized by RM is exactly the language recognized by M . This RM is composed of two parts:
(1) A single layer recurrent network (2) The feedforward network M with k layers. For any input
sequence w = w1, w2, ..., wd, the recurrent network of RM converts the input sequence into a vector
[w1 w2 ... wd]

T using the upper shift matrix. The vector is then processed by M . Since the
counterfactual query with regard to Hamming distance is NP complete for MLPs Barceló et al. (2020),
it must also be NP-hard for RM with regard to Hamming distance. Thus, the complexity of evaluating
counterfactual queries for RNN classifiers with regard to Hamming distance is NP-hard.

The NP-hardness proof for edit distance follows the same idea. We construct an RNN binary
classifier R′

M over Σ′ = {0, 1, $1, $2, ..., $d}. Any input sequence w is modified to w′ :=
$1, w1, $2, w2, ...$d, wd. We construct R′

M such that a word is accepted iff every other symbol
is the appropriate delimiter symbol and, the word without delimiter symbols would be accepted by M .
If v′, w′ ∈ Σ∗ are of this form and have the same length then, dH(v, w) = dE(v

′, w′), because the
shortest sequence of instructions which changes v′ to w′ consists of only substitutions of elements in
Σ with elements in Σ. After construction of R′

M the rest of the proof follows the proof for Hamming
distance. The precise construction of RM and R′

M are in Appendix C.

B PROOF OF PROPOSITION 2

Proof. The proof is by a polynomial-time reduction from the non-emptiness of intersection of DFA
A1, . . . , An, say, over an alphabet Σ = {a, b}. Let c be a new letter not in Σ, and let Γ = {a, b, c}. Let
B be a DFA that recognizes the language {c}, and define a new DFA A′

i that recognizes L(Ai)∪ {c}.
Observe that c ∈ L(B) and c ∈

⋂n
i=1 L(A

′
i). An abductive explanation requires us to argue that

there is a non-empty subset S ⊆ {1, . . . , n} such that L(B) ∩
⋂

i∈S L(A
′
i) = ∅. This is the same

as saying that there is S ⊂ {1, . . . , n} such that
⋂

i∈S L(Ai) = ∅, which amounts to saying that⋂n
i=1 L(Ai) = ∅. This completes the reduction.

For a PTIME upper bound with a fixed number k of features, one can simply enumerate all subsets
S of these features (there are exponentially many in k, but this is a constant), and observe that the
intersection of m ≤ k regular languages (i.e. the features) is polynomial in the size of the regular
languages, but exponential in k (which is a constant).

C RNN

Definition C.1 (Adapted from Barceló et al. (2020)). We define an arbitrary precision multilayer
perceptron (MLP) M over {0, 1}d as a tuple ⟨k,W ′′, b, f⟩ in which,

• k is the total number of layers,
• W ′′ is a sequence of weight matrices W ′′(1), ...,W ′′(k),

15

Under review as a conference paper at ICLR 2024

• b is a sequence of bias vectors b(1), ..., b(k) and,
• f is a sequence of activation functions f (1), ..., f (k) where f (1), ..., f (k−1) are the ReLU

function and f (k) is the step function, applied elementwise, where,

ReLU(x) := max(0, x) and step(x) :=
{
0 if x < 0
1 otherwise

The output of M on w ∈ {0, 1}d is defined as:

M(w) := f (k)(W ′′(k)(̇...f (1)(W ′′(1) · w + b(1))...) + b(k))

C.1 PROOF OF PROPOSITION 1 FOR RNN

Proof. (1)Hamming/(2)edit distance: In NP: For a given input v ∈ Σ∗, RNN classifier R and
k ∈ N, non-deterministically guess w such that R(w) ̸= R(v) and dH(v, w) ≤ k for Hamming or
dE(v, w) ≤ k for edit distance. For edit distance, also guess a sequence of k or fewer instructions
(substitute, insert, delete), such that applying them to v yields w. Because Hamming distance, edit
distance and R(v), R(w) can be verified/computed in polynomial time, the problems of answering
counterfactual queries for RNN with regard to Hamming and edit distance are in NP.

NP-hard: For Hamming distance, we construct an RNN binary classifier RM :=
⟨Σ, N, h−1,W,W

′, σ,W ′′, b, f, k⟩ where,

• Σ := {0, 1},
• N := {1, ..., d},
• h−1 ∈ Qd is the zero vector,
• W ′

0,W
′
1 ∈ Qd, where W ′

0 is the zero vector, W ′
1 := [0 ... 0 1]T ,

• W ∈ Qd×d is the upper shift matrix:

0 1 0 ... 0
0 0 1 ... 0

.

.

.
0 0 0 ... 1
0 0 0 ... 0

• σ is the identity function,
• W ′′, b, f, k are the same as in M .

For w = [w1 w2 ... wd]
T ∈ Σd, we write RM (w) := RM (w1.w2...wd). Because of the choice

of W and W ′, the hidden state vector at time step d is:

hw,d = σ(...σ(W · σ(W · σ(W · h−1 +W ′
w1

) +W ′
w2

) +W ′
w3

)...)

= σ

...σ
W · σ

W · σ

W · [0 0 ... 0]
T
+

0
0
.
.
.
0
w1

+

0
0
.
.
.
0
w2

+

0
0
.
.
.
0
w3

 ...

16

Under review as a conference paper at ICLR 2024

= σ

...σ
W · σ

W ·

0
0
.
.
.
0
w1

+

0
0
.
.
.
0
w2

+

0
0
.
.
.
0
w2

 ...

= σ

...σ
W ·

0
0
.
.
.
w1

w2

+

0
0
.
.
.
0
w3

 ...

= ...

=

w1

w2

.

.

.
wd−1

wd

 = w

which is the input to the first of k feed forward layers in RM .
Since, the k feed forward layers of RM are the same as in M , we have:

RM (w) =M(w) ∀w ∈ Σd

Since answering counterfactual/MCR queries with regard to Hamming distance is NP complete
for MLPs Barceló et al. (2020), the complexity of answering counterfactual queries for RM with
regard to Hamming distance must also be NP hard. Thus, the complexity of evaluating counterfactual
queries for RNN classifiers in general, with regard to Hamming distance is, NP hard.

For edit distance, we construct an RNN binary classifier R′
M :=

⟨Σ′, N, h−1,W,W
′, σ,W ′′

R′
M
, bR′

M
, fR′

M
, kR′

M
⟩ where,

• Σ′ := {0, 1, $1, $2, ..., $d},
• N := {1, ..., d, d+ 1, ..., 2d},
• h−1 ∈ Q2d is the zero vector,

• W ∈ Q2d×2d is the upper shift matrix:

0 1 0 ... 0
0 0 1 ... 0

...
0 0 0 ... 1
0 0 0 ... 0

,

• W ′
0 := [0 0 ... 0 −4]

T ∈ Q2d,

• W ′
1 := [0 0 ... 0 −2]

T ∈ Q2d,

• W ′
$j

:= [0 0 ... 0 j]
T ∈ Q2d ∀j ∈ {1, ..., d},

• σ is the identity function,

17

Under review as a conference paper at ICLR 2024

• W ′′(1)
R′

M
:=

0 1 0 0 ... 0 0
0 0 0 1 ... 0 0

...
0 0 0 0 ... 0 1
1 0 0 0 ... 0 0
0 0 1 0 ... 0 0

...
0 0 0 0 ... 1 0

∈ Q2d×2d,

• W ′′(2)
R′

M
:=

[
0.5I 0
0 I

]
∈ Q2d×2d and I,0 ∈ Qd×d,

• W ′′(3)
R′

M
:=

[
I 0
0 H

]
∈ Q2d×2d where,

H :=

1 −1 0 0 ... 0 0
0 1 −1 0 ... 0 0

...
0 0 0 0 ... 1 −1
0 0 0 0 ... 0 1

 ∈ Qd×d, and I,0 ∈ Qd×d

(H is the Identity Matrix minus the Upper Shift Matrix),

• W ′′(4)
R′

M
:=

[
I 0
0 1

]
∈ Q(d+1)×2d, where I,0 ∈ Qd×d, 0 ∈ Q1×d is the zero row vector

and 1 ∈ Q1×d is the ones row vector

• W ′′(p)
R′

M
:=W ′′(p−4) ∀p ∈ {5, ..., k + 3} (from RM)

• W ′′(k+4)
R′

M
:=

[
W ′′(k) 0

0 −1

]
, where 0 is the zero row vector, 0 is the zero column vector,

−1 ∈ Q (and W ′′(k) is from RM),

• W ′′(k+5)
R′

M
:= [0.5 0.5] ∈ Q1×2,

• b(1)R′
M

∈ Q2d is the zero vector,

• b(2)R′
M

:= [2 | 0]
T ∈ Q2d (the first d elements are 2 and the last d elements are 0)

• b(3)R′
M

:= [0 | 1 1 ... 1 −d]T ∈ Q2d and 0 ∈ Q1×d,

• b(4)R′
M

∈ Q(d+1) is the zero vector,

• b(p)R′
M

:= b(p−4) ∀p ∈ {5, ..., k + 3} (from RM),

• b(k+4)
R′

M
:=

[
b(k) 0

]T
(b(k) is from RM),

• b(k+5)
R′

M
∈ Q is the zero vector,

• f (1)R′
M
, f

(2)
R′

M
: Q2d → Q2d are the identity function,

• f (3)R′
M

:= fabs : Q2d → Q2d (the elementwise absolute value function) where,

fabs(x)i =

{
xi if xi ≥ 0

−xi otherwise
,

• f (4)R′
M
(x)i :=

{
0 if xi = 0

1 otherwise
, for i ∈ {1, .., d+ 1}, with f (4)R′

M
: Q(d+1) → Q(d+1)

• f (p)R′
M

:= f (p−4) ∀p ∈ {5, ..., k + 3},

18

Under review as a conference paper at ICLR 2024

• f (k+4)
R′

M
:= step is the elementwise applied step function, where

step(x)i :=

{
0 if xi < 0

1 otherwise
,

• f (k+5)
R′

M
:= fq : Q → Q where, fq(x) :=

{
1 if x = 1
0 otherwise

• kR′
M

:= k + 5 (with k from RM)

For an arbitrary input w := w1, w2, ..., wd to M , we consider w′ := $1, w1, $2, w2, ...$d, wd

as input to R′
M . R′

M is constructed such that it accepts an input x, iff it has the form
$1, x1, $2, x2, ...$d, xd for some x1, ..., xd and x without delimiter symbols would be accepted
by MLP M . For R′

M the single layer recurrent network layer part is the same as that of RM

while, the feed forward network part has k + 5 layers. Let’s consider the behaviour of R′
M on an

input w′ := $1, w1, $2, w2, ...$d, wd. The single layer recurrent network of R′
M converts the input

sequence w′ into a vector [$1 w1 $2 w2 ... $d wd]
T . The vector is then converted into

[w1 w2 ...wd $1 $2 ... $d]
T using the first two layers of k + 5 feedforward layers. The

next 2 layers check if the last d elements of the vector are the ordered sequence of numbers from 1 to
d. The next k− 1 layers process the first d elements of the vector the same way as the MLP M would
have, without affecting the last element. The penultimate layer i.e. the (k + 4)th layer, processes all
but the last element the same way as the last layer of MLP M would have , and the last 1 element
to produce 1 iff the d delimiter symbols are in proper order, and 0 otherwise. The last layer is the
(k + 5)th layer which produces the final output, it produces 1 only if the delimiters are in the proper
order and M would have accepted the input without delimiters.

If v′ and w′ are of this form where every other symbol is a delimiter and the delimiters are in proper
order, and they have the same length, then dE(v′, w′) = dH(v′, w′). This is because no sequence of
delete, insert and substitute instructions, that ends with the same delimiter structure as it began, can
incur a lower cost than just substituting the non-delimiter elements.

Let us now consider the counterfactual query. Given an arbitrary MLP M with input from {0, 1}d,
we construct the RNN classifier R′

M as above. Consider an arbitrary w = w1, ..., wd ∈ {0, 1}d.
Without limiting generality, we assume w is not accepted by M . (Otherwise, we could add a layer
to M that flips the result before constructing R′

M .) Let w′ = $1, w1, ..., $d, wd. Assume we have a
polynomial time algorithm that answers the counterfactual query for R′

M with input w′ with respect
to edit distance. Assume this algorithm returns v′. We then know that v′ is accepted by R′

M , meaning
v′ = $1, v1, $2, v2, ..., $d, vd for some v1, ..., vd ∈ Σ′ and v := v1, .., vd is accepted by M . We can
further assume that v1, ..., vd ∈ {0, 1} (for vi /∈ {0, 1} we can set vi to 1, after computing f (4)R′

M

the result will be the same). Because v′ and w′ have the same length and both have the proper
delimiters in the right order, we know that dE(v′, w′) = dH(v′, w′). Furthermore, because the
delimiter symbols do not need to be substituted, we have dH(v′, w′) = dH(v, w). This means that v
is a valid answer to the counterfactual query of M with input w with regard to Hamming distance.
Since that problem is NP complete for MLPs Barceló et al. (2020), the complexity of answering
counterfactual queries for RNN classifiers in general, with regard to edit distance, is also NP hard.

D TRANSFORMERS

The following definitions follow "Attention is Turing Complete" Pérez et al. (2021). A seq-to-seq
network is defined as a function N , such that the value N(X, s, r) corresponds to an output sequence
of the form Y = (y1, y2, ..., yr). Furthermore:

Definition D.1. A seq-to-seq language recognizer is a tuple A = (Σ, f,N, s,F), where Σ is a finite
alphabet, f : Σ → Qd is an embedding function, N is a seq-to-seq network, s ∈ Qd is a seed vector,
and F ⊆ Qd is a set of final vectors. We say that A accepts the string w ∈ Σ∗, if there exists an
integer r ∈ N such that N(f(w), s, r) = (y1, . . . , yr) and yr ∈ F. The language accepted by A,
denoted by L(A), is the set of all strings accepted by A.

19

Under review as a conference paper at ICLR 2024

This definition comes with additional constraints:

• The embedding function f : Σ → Qd should be computed by a Turing machine in polyno-
mial time w.r.t. the size of Σ.

• The set F should also be recognizable in polynomial-time; given a vector f , the membership
f ∈ F should be decided by a Turing machine working in polynomial time with respect to
the size (in bits) of f .

We then define a transformer:
Definition D.2. A Transformer T is a tuple
T = ⟨score, ρ, Lenc, Ldec,Θenc,Θdec,Kenc

final, V
enc
final, F ⟩, where

• score : Qd ×Qd → Q is a scoring function with d > 0

• ρ : Qn → Qn is a normalization function with n > 0

• Lenc ∈ N is the number of encoding layers.

• Ldec ∈ N is the number of decoding layers.

• Θenc = θenc1 , ..., θencLenc is a sequence of parameters, with θenci = (Qenc
i ,Kenc

i , V enc
i , Oenc

i),
where Qenc

i ,Kenc
i , V enc

i , Oenc
i are functions from Qd to Qd, for i ∈ {1, ..., Lenc}

• Θdec = θdec1 , ..., θdecLdec is a sequence of parameters, with θdeci = (Qdec
i ,Kdec

i , V dec
i , Odec

i),
where Qdec

i ,Kdec
i , V dec

i , Odec
i are functions from Qd to Qd, for i ∈ {1, ..., Ldec}

• Kenc
final, V

enc
final are final transformation functions of the encoder,

• F is a final transformation function.

In order to define the output of a transformer, we first make some definitions for the different parts of
a transformer.
Attention is defined with:

Att(q,K,V) :=s1v1 + s2v2 + · · ·+ snvn, , where
V =v1, ...,vn and

(s1, . . . , sn) :=ρ(score(q,k1), score(q,k2), . . . , score(q,kn))

The transformer consists of an encoder and a decoder, layer l of the encoder is a function
Enc(X, θencj), that maps a sequence of vectors in Qd, X = x1, ...,xn to a sequence of vectors in
Qd, Z = z1, ...,zn with

zi = Oenc
l (ai) + ai

where ai = Att(Qenc
l (xi),K

enc
l (X), V enc

l (X)) + xi for i ∈ {1, ..., n}.
The Lenc-layer Transformer encoder is defined by the following recursion (with 1 ≤ l ≤ Lenc − 1
and X1 = X the input of the encoder).

X l+1 := Enc(X l;θl)

The result of the Lenc layer encoder is: TEncL(X) := (Kenc
final(X

Lenc

), V enc
final(X

Lenc

)).
For layer l we consider input Y = (y1, ...,yk), an external pair of key-value vectors (Ke,Ve) and
output Dec((Ke,Ve),Y ; θdecl) := Z = (z1, ...,zk), where for i ∈ {1, ..., k}:

pi =Att(Q
dec
l (yi),K

dec
l (Yi), V

dec
l (Yi)) + yi

ai =Att(pi,K
e,Ve) + pi

zi =O
dec
l (ai) + ai

Similar to the encoder we then define the decoder with:

Y l+1 = Dec((Ke,Ve),Y l; θl)

for 1 ≤ l ≤ Ldec − 1 and Y 1 = Y the input.
The result of the entire decoder is: TDecL(Y) := F (yLdec

k)

20

Under review as a conference paper at ICLR 2024

For an input X , a seed vector y0, and a value r ∈ N, we define the result of the entire transformer
Trans(X,y0, r) := Y = (y1, ...,yr) with

yt+1 = TDecL(TEncL(X), (y0,y1, . . . ,yt)), for 0 ≤ t ≤ r − 1.

Let pos : N → Qd be a positional encoding function. Before an input of position i is processed by
the encoder or decoder pos(i) is added.

D.1 PROOF OF PROPOSITION 1 FOR TRANSFORMER

Proof. Hamming(1)/edit distance(2):
In NP: For a given input v ∈ Σ∗, transformer A as a seq-to-seq language recognizer, and k ∈ N,
guess w such that A(w) ̸= A(v) and the distance between d(v, w) ≤ k.
Because Hamming distance can be computed in polynomial time and classification by A can be
computed in polynomial time, we can verify an answer w to the counterfactual query with regards to
Hamming distance in polynomial time.
For edit distance we do the same, except that we also guess a sequence of at most k instructions
(substitute, insert or delete), that when applied to v yield w. Using these instructions, we can easily
verify in polynomial time if d(v, w) ≤ k.

NP hard: Let M be an arbitrary MLP M , that maps a vector from {0, 1}D to {0, 1}. We construct
a seq-to-seq language recognizer (as defined by Pérez et al. (2021)) A = (Σ, f,N, s,F), with
Σ := {0, 1}D, f : Σ → Q1 where f(c) =M(c) ∀c ∈ Σ, N is any transformer with N(0) ̸= N(1),
and F := {N(1)}. By definition, we have: A(w) = M(w), ∀w ∈ {0, 1}D Since answering
counterfactual queries / the MCR problem with regards to Hamming distance is NP complete for
MLPs Barceló et al. (2020), answering counterfactual queries for A with regard to Hamming distance
must also be NP hard. Thus, answering counterfactual queries for Transformers as seq-to-seq
language recognizers in general, with regard to Hamming distance is NP hard.

This proof relies on the encoding function f doing the computation of M . While this is in line with
the definition, we would like to note that the Transformer itself (usually) also includes feed forward
layers and can therefore do computations of at least the same complexity as an MLP.

DTW(3): Given an arbitrary Turing Machine M , we assume, without loss of generality, that it does
not halt after 0 or 1 steps. Let LM ⊆ {a}∗ be empty if M does not halt on the empty input, and {at}
otherwise, where t is the number of steps, M took to halt. Asking "Is LM ̸= ∅ ?" is equivalent to
asking "Does M halt?", which is semi-decidable. Therefore, by the proof of Theorem 6 in "Attention
is Turing Complete" (Pérez et al., 2021), there exists a Transformer T , that recognizes LM . Since that
proof is constructive, we can obtain T . We know that for Σ = {a}, we have DTW (w, v) = 0 for all
w, v ∈ Σ+. Let w := a, a non-empty word over {a}, with w /∈ LM . Answering the counterfactual
query for w on T , is equivalent to checking emptiness of LM . If counterfactual queries are decidable,
then so is non-emptiness of LM , which implies decidability of the halting problem. Since the Halting
Problem is known to be undecidable, checking the existence of a counterfactual explanation for
transformers must also be undecidable.

E MISSING PARTS OF PROOF OF THEOREM 1

Hamming distance The required changes are the construction of the weighted graph G =
(V,E, S, T). The sets V , S, and T of vertices in the proof remain the same. What changes is
the edge relation E. In particular, for each transition (p, P, q) ∈ ∆ with P = [r, s], we add an edge
from (p, i) to (q, i+ 1), whose weight is 0 if a ∈ P , otherwise its weight is 1. The rest of the proof
remains the same.

Edit distance Like for Hamming distance, the required changes here are also just the construction
of the edge relation E. We take a distance d for elements; the proof works, either when d just checks
for equality for elements (i.e. d(a, b) = 0 if a = b; otherwise, d(a, b) = ∞) or for the distance
measure |a− b|. For each transition (p, P, q) ∈ ∆ with P = [r, s], we add the following edges to E:

1. matching: (p, i) to (q, i+1) with weight inft∈P d(t, ai). This can be computed using linear
programming just like for the proof for the case of DTW.

21

Under review as a conference paper at ICLR 2024

2. Skip v’s current element: (p, i) to (p, i+ 1), whose weight is cinsdel.

3. Skip w’s current element: (p, i) to (q, i), whose weight is cinsdel.

The rest of the proof remains the same.

Dealing with open intervals We sketch this only for DTW and the proof is the same for the rest. In
the case when not all intervals are of the form [s, t], our set of vertices is of the form V = X ×{c, o},
where X = Q× {1, . . . , n}. Here, o indicates that the closed part of a non-closed interval has been
“used”. The initial set S of vertices is {q0} × {1} × {c}, indicating that no open intervals have been
used. We will make two queries with the first target set T to be F × {n} × {c} and the second target
set T ′ to be F × {n} × {o}. We will then compare the value of the minimal weight W for T and T ′.
Three cases are under consideration, as follows. If W is met by T , then we compare W ≤ k. If W is
met by T , then we compare W < k. If W is met by both T and T ′, then we compare W ≤ k.

For each (p, P, q) ∈ ∆, we add the following edges:

1. (p, i, c) to (q, i, c) with weight W := infr∈P |r − ai| when W ∈ P .

2. (p, i, ?) to (q, i, o) with weight W := infr∈P |r − ai| when W /∈ P and ? ∈ {c, o}.

3. (p, i, c) to (q, j, c) for every j ∈ {i+ 1, . . . , n} with weight W := inft∈P

∑j−1
h=i |t− ah|,

when W ∈ P .

4. (p, i, ?) to (q, j, c) for every j ∈ {i+ 1, . . . , n} with weight W := inft∈P

∑j−1
h=i |t− ah|,

when W /∈ P and ? ∈ {c, o}.

In particular, for the second and fourth cases (i.e. when W /∈ P), we impose that the final check is a
strict inequality.

F HARDNESS PROOFS FOR NFA

Proposition 4. Evaluating counterfactual queries for NFAs under Hamming distance or Edit distance
is NP-hard.

Proof. We reduce from CNF-Satisfiability in two steps: (1) We show coNP-hardness of linear-length
universality of NFAs, specifically the following problem: given an n-state NFA M over Σ, does M
accept all strings of length n, i.e., is Σn ⊆ L(M)? For related problems, we refer to Gawrychowski
et al. (2020). (2) We then reduce linear-length universality of NFAs to evaluating counterfactual
queries for NFAs under the Hamming distance and edit distance.

For (1), we reduce from CNF-Satisfiability as follows: Given an arbitrary CNF formula ϕ with n
variables and m clauses, we create, using De Morgan’s laws, a DNF formula ϕ′ of the same size such
that ϕ′ is equivalent to the negation of ϕ. We then construct an NFA Mϕ′ over {0, 1} with O(nm)
states that accepts a string w ∈ {0, 1}n if and only if the variable setting xi = wi, i ∈ [n] satisfies
ϕ′. To do so, we create states qj,0, . . . , qj,n for all j ∈ [m], where we unify the states qj,0, j ∈ [m]
to become the starting state q0. For each clause Cj and variable xi, we introduce transition(s) from
qj,i−1 to qj,i as follows: if xi is a literal in Cj , the transition is labelled with 1, if xi is a literal in
Cj it is labelled with 0, and if xi and xi do not occur as literals in Cj , the transition is labelled with
both 0 and 1 (we can assume without loss of generality that xi and xi do not occur both as literals).
All states in this NFA are accepting. Note that the constructed NFA Mϕ′ accepts w ∈ {0, 1}n if and
only if there exists some j such that we can traverse the path from qj,0 to qj,n, which is equivalent to
Cj being satisfied by w. Thus, Mϕ′ accepts all strings in {0, 1}n if and only if ϕ′ is satisfied by all
x ∈ {0, 1}n, which is equivalent to ϕ being unsatisfiable. By adding self-loops to all qj,n, j ∈ [m]
with labels 0 and 1, we observe that the resulting NFA has N = nm+ 1 states and accepts all strings
of length N = nm+1 ≥ n if and only if ϕ is unsatisfiable. Clearly, the reduction runs in polynomial
time, yielding coNP-hardness of linear-length NFA universality.

For (2), the reduction from linear-length universality of NFAs to evaluating counterfactual queries for
NFAs under the Hamming distance is immediate: Given an n-state NFA M over Σ, we first compute
whether v = 0n is rejected by M . If so, we reject the given instance. Otherwise, we evaluate the

22

Under review as a conference paper at ICLR 2024

counterfactual query for M , v = 0n and k = n. Note that there exists some w of Hamming distance
at most n to v that is a counterfactual to x, i.e., rejected by M , if and only if Σn ̸⊆ L(M).

To adapt the argument to the edit distance, we will slightly adapt the given NFA M to a new NFA
M ′: Let us denote the starting state of M as q0. We will add new states q1, . . . , q2n and, for each
1 ≤ i ≤ 2n and σ ∈ Σ, a transition from qi−1 to qi labelled σ. By making each state qi except qn
accepting, this ensures that L(M ′) = L(M) ∪

⋃
0≤i≤2n,i ̸=n Σ

i. We now proceed analogously to
before: If M rejects xv0n, we reject the given linear-length NFA universality instance. Otherwise,
we perform the counterfactual query for M ′, v = 0n and k = n over the edit distance. Note that
there exists some w with edit distance at most n from v that is rejected by M ′ if and only if there
exists some w ∈

⋃2n
i=0 Σ

i that is rejected by M ′. By construction of M ′, the latter is equivalent
to the existence of some w ∈ Σn that is rejected by M . This yields a polynomial-time reduction,
concluding the claim.

Proposition 5. Evaluating counterfactual queries for NFAs under DTW distance is PSPACE-hard. It
is even PSPACE-hard whenever there exists σ, σ′ ∈ Σ such that σ ̸= σ′ and c(σ, σ′) = 0.

Proof. To show this, we define Σ so that there exist σ, σ′ ∈ Σ such that σ ̸= σ′ and c(σ, σ′) = 0.

Classic results show that NFA universality over Σ (given an NFA M over Σ, determine whether
L(M) = {0, 1}∗) is PSPACE-complete already when Σ = {0, 1} III et al. (1976) and coNP-
complete if Σ = {0} Stockmeyer & Meyer (1973). Thus, consider DTW with any distance function
c : Σ × Σ → N such that there exists σ, σ′ ∈ Σ with σ ̸= σ′ and c(σ, σ′) = 0. We reduce from
NFA universality over {0, 1} as follows: Given an NFA M over {0, 1}, we first check if v = σ is
rejected by M . If so, we reject. Otherwise, we perform the counterfactual query on an NFA M ′,
v = σ and k = 0, where M ′ is obtained from M by replacing every 0-label of a transition by σ and
every 1-label by σ′, as well as adding a branch to the NFA that accepts every word containing at least
one symbol different from σ and σ′. Note that the set of strings of DTW distance 0 from σ consists
of (1) all strings in {σ, σ′}∗ as well as (2) possibly additional strings containing at least one symbol
different from σ and σ′. Since strings of category (2) are trivially accepted by M ′, there exists a
string w that has DTW distance 0 from v and is rejected by M ′ if and only if L(M ′) ̸⊇ {σ, σ′}∗
which is equivalent to L(M) ̸⊇ {0, 1}∗. The reduction is computable in polynomial time, concluding
PSPACE-hardness of evaluating counterfactual queries for NFAs under DTW distance.

For the case that no distinct symbolds σ, σ′ with c(σ, σ′) = 0 exists, we still obtain NP-hardness
under the natural assumption that there exists σ ∈ Σ with c(σ, σ) = 0 (typically, any reasonable
distance function for DTW satisfies c(σ, σ) = 0 for all σ ∈ Σ). We adapt the reduction from above
to reduce from NFA universality over {0}: Given an NFA over M , we construct M ′ analogously to
above so that M ′ accepts all strings containing at least one symbol different from σ, as well as any
string σi if and only M accepts 0i. Since we may assume without loss of generality that σ is rejected
by M , the resulting counterfactual query M ′, v = σ, k = 0 is empty if and only if L(M) = {0}∗,
concluding the claim.

23

	Introduction
	Preliminaries
	Abductive and Counterfactual Explanations
	Interpretable models for counterfactual queries
	Interval Automata
	Extensions

	Conclusions, Limitations, and Future Work
	Proof sketches for Proposition 1
	Proof of Proposition 2
	RNN
	Proof of Proposition 1 for RNN

	Transformers
	Proof of Proposition 1 for Transformer

	Missing parts of Proof of Theorem 1
	Hardness proofs for NFA

