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Abstract
The emergence of long-context large language
models (LLMs) offers a promising alternative to
traditional retrieval-augmented generation (RAG)
for processing extensive documents. However, the
computational overhead of long-context inference
presents significant efficiency challenges. While
Speculative Decoding (SD) traditionally acceler-
ates inference using smaller draft models, its effec-
tiveness diminishes substantially in long-context
scenarios due to memory-bound KV cache op-
erations. We introduce Retrieval-Augmented
SPeculatIve Decoding (RAPID), which leverages
RAG for both accelerating and enhancing gener-
ation quality in long-context inference. RAPID
introduces the RAG drafter—a draft LLM oper-
ating on shortened retrieval contexts—to spec-
ulate on the generation of long-context target
LLMs. Our approach enables a new paradigm
where same-scale or even larger LLMs can serve
as RAG drafters while maintaining computational
efficiency. To fully leverage the potentially supe-
rior capabilities from stronger RAG drafters, we
develop an inference-time knowledge transfer that
enriches the target distribution by RAG. Exten-
sive experiments on the LLaMA-3.1 and Qwen2.5
backbones demonstrate that RAPID effectively
integrates the strengths of both RAG and long-
context LLMs, achieving significant performance
improvements (e.g., from 39.33 to 42.83 on In-
finiteBench for LLaMA-3.1-8B) with more than
2× speedups for long-context inference. Our anal-
yses also reveal the robustness of RAPID across
various context lengths and retrieval quality.
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1. Introduction
Large language models (LLMs) have traditionally relied
on retrieval-augmented generation (RAG) to process ex-
tensive documents by selectively retrieving relevant text
segments. While effective, the performance of RAG is in-
herently bounded by the capability of the retriever to extract
pertinent information across diverse queries (Gao et al.,
2023). The recent emergence of long-context LLMs, capa-
ble of directly processing million-word documents (Team
et al., 2024), suggests a promising alternative to complex
RAG pipelines. However, this breakthrough is bottlenecked
by the computational efficiency of long-context inference,
where processing extensive key-value (KV) caches becomes
memory-bound and introduces substantial latency (Pope
et al., 2022).

Speculative Decoding (SD) (Chen et al., 2023; Leviathan
et al., 2023) is a prevalent approach to accelerate LLM in-
ference without compromising generation quality. By lever-
aging a smaller draft model to propose multiple candidates
for single-pass validation by the target model, SD achieves
significant speedup when candidates are accepted. The ben-
efits of SD hinge on two critical factors: the computational
efficiency of the draft model in generating candidates, as
well as its capability to produce high-quality and acceptable
candidates. However, SD will become less effective in long-
context scenarios, as memory-bound KV cache operations
prevent smaller LLMs from maintaining significant speed
benefits over larger models (Pope et al., 2022; Ainslie et al.,
2023b). As depicted in Figure 1, the throughput gains of
LLaMA-3.1-8B over LLaMA-3.1-70B diminish drastically
(23.6 → 9.4) with increasing context lengths from 1K to
128K tokens.

In this work, we introduce Retrieval-Augmented
SPeculatIve Decoding (RAPID), to bridge the gap of SD
for accelerating long-context inference while enhancing
generation quality. RAPID employs a RAG drafter—the
draft LLM operating on shortened context from RAG—to
speculate the generation of long-context LLM following
the SD process. We propose that RAG drafter can serve
as ideal draft model for long-context target LLM, as it
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Figure 1. Performance (accuracy, left axis) and throughput (to-
kens/sec, right axis) of LLaMA-3.1-8B (serving on 1×A800) and
LLaMA-3.1-70B (serving on 8×A800) on LongBench v2 (Long)
across different retrieval context lengths.

demonstrates the potential to approach the capabilities
of long-context LLM (Li et al., 2024b) while offering
superior computational efficiency. As illustrated in Figure 1,
LLaMA-3.1-8B with RAG on 4K∼16K tokens can recover
most performance achieved with full 128K tokens. This
indicates that the RAG drafter is capable of producing
high-quality candidates for long-context target LLM with
high acceptance rate, while eliminating the memory-bound
KV cache operations over long-context to accelerate the
inference process.

In addition, our RAPID opens a new paradigm for SD that
leveraging the same-scale or even larger LLMs as the RAG
drafters to accelerate smaller target LLMs. This paradigm
shift is possible since RAG drafters, operating on shortened
contexts (e.g., 4K), potentially maintain higher efficiency
than target LLMs of the same or even larger scale on long
contexts (e.g., 128K) as evidenced in Figure 1. Therefore,
our RAPID operates on two settings: (1) self-speculation,
where long-context target LLM and RAG drafter are of
the same scale; and (2) upward-speculation, where RAG
drafter involves larger parameter scale than target LLM.
Moreover, in the both settings, the generation quality of
RAG drafter may surpass that of long-context target models
in some scenarios (Li et al., 2024a). However, the native SD,
utilizing target LLM prediction as ground-truth distribution
to perform rejection sampling, may neglect the candidates
of high quality from the stronger RAG drafter. This would
result in unnecessary rejection of valid candidates, thereby
impeding both efficiency and performance gains.

To address this limitation, RAPID implements a retrieval-
augmented target distribution, which incorporates the native
long-context target distribution in SD with an inference-time
knowledge transfer. Specifically, we reversely position the
RAG drafter as teacher and long-context target LLM as the

student, to derive a distilled logits shift towards the RAG
drafter during inference. By incorporating the shift into the
prediction logits of target LLM, we obtain an enriched target
distribution that is more receptive to high-quality speculative
candidates.

Our RAPID can serve as a drop-in decoding method dur-
ing long-context inference. We conduct experiments on
LLaMA-3.1 (8B, 70B) (Dubey et al., 2024) and Qwen2.5
(7B, 72B) (Yang et al., 2024) series on ∞Bench (Zhang
et al.) and LongBench v2 (Bai et al., 2024b). The experimen-
tal results demonstrate that RAPID successfully integrates
the complementary strengths of long-context LLMs and
RAG while maintaining significant inference speedups. In
self-speculation settings, RAPID achieves consistent perfor-
mance improvements (e.g., 42.83 vs 39.33 on InfiniteBench
for LLaMA-3.1-8B) with significant speedup (up to 2.69×)
over the long-context target LLMs. The upward-speculation
setting further boosts performance through effective knowl-
edge transfer from larger RAG drafters (e.g., improving
LLaMA-3.1-8B from 42.83 to 49.98 on InfiniteBench), with
comparable efficiency with the smaller long-context target
LLMs. With moderate retrieval length (≤16K) for RAG
drafter, we found RAPID consistently achieves speedup
when target long-context length beyond 32K. Our analyses
also indicate that RAPID demonstrates robustness to re-
trieval quality and potentially superior generation quality in
real-world multi-turn dialogue tasks. These results validate
RAPID as an effective decoding method for accelerating
long-context inference and, at the same time, enhancing
generation quality through retrieval-augmented speculation.

2. RAPID: Retrieval-Augmented Speculative
Decoding

2.1. Background: Speculative Decoding

Autoregressive generation with a LLM pϕ traditionally re-
quires sequential forward passes, where each token xi is
sampled from the distribution pϕ(xi|x<i). This sequen-
tial nature incurs substantial computational overhead for
LLM parameters loading and KV cache manipulation in
GPU DRAM. SD accelerates this process using a smaller
draft model qψ to generate γ candidate tokens, which are
then validated by the target model pϕ in a single forward
pass through rejection sampling. For each speculative token
x′
i ∼ qψ(xi|x<i), the acceptance criterion is:

r ≤ min

(
1,

pϕ(x
′
i|x<i)

qψ(x′
i|x<i)

)
, (1)

where r ∼ U(0, 1). Upon rejection, a new token is sampled
from the residual distribution:

xi ∼ norm(max(pϕ(xi|x<i)− qψ(xi|x<i), 0)), (2)

where norm is to normalize the distribution by ℓ1 norm.
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This procedure guarantees that the resampled tokens follow
the exact distribution as direct sampling from the target
model pϕ, while potentially achieving significant speedup
when the speculative tokens are accepted.

2.2. Overview

While traditional SD offers significant speedups for
standard-length contexts, its benefits diminish substantially
when handling extensive documents due to memory-bound
KV cache operations. We present RAPID, a method that
reimagines SD for long-context scenarios while enhanc-
ing generation quality. As demonstrated in Alg. 1, RAPID
comprises two critical components:

RAG Drafter. SD becomes inefficient with long contexts
as both draft and target LLMs must process complete con-
text in memory, negating the computational advantages of
smaller drafter. To overcome this challenge, RAPID uti-
lizes a RAG drafter to generate candidates for long-context
LLMs as introduced in §2.3. The RAG drafter operates on
selectively retrieved context segments, enabling significant
speedups while maintaining access to relevant information.

Retrieval-Augmented Target Distribution. The strict ac-
ceptance criterion in SD may reject high-quality candidates,
as it requires strict match to the target LLM distribution for
acceptance. This constraint becomes particularly limiting
when using RAG drafters, which can potentially generate
higher-quality outputs than long-context LLMs in certain
scenarios (Li et al., 2024a). To incorporate the benefits from
RAG drafters, RAPID steers a retrieval-augmented target
distribution (§2.4), which enables knowledge transfer from
RAG drafter to target model during inference. This mecha-
nism allows the target distribution to incorporate valuable
information while maintaining theoretical guarantees of the
original SD.

2.3. RAG Drafter

When processing queries for extensive context C, the target
distribution of naive SD is

p(xi) = pϕ(xi|[C;x<i]). (3)

Even with smaller draft models, the computational bene-
fits diminish substantially due to memory-bound KV cache
operations over the complete context C. To overcome this
limitation, we propose to leverage RAG as the foundation
for our draft model.

Instead of processing the entire context C, our RAG drafter
operates on a compressed context CS. Specifically, CS is
constructed through selective retrieval: text segments from
C are encoded into a dense vector space, where semantic
similarity to the query is measured via cosine similarity,

Algorithm 1 Retrieval-Augmented Speculative Decoding
Require: Target LLM pϕ, RAG drafter qψ, context C, re-

trieval context CS, number of speculative tokens γ, tem-
perature T , transfer strength η

Ensure: Generated sequence x1:n

1: i← 1
2: while i ≤ n do
3: // Generate γ speculative tokens using RAG drafter
4: for k ← 1 to γ do
5: x′

i+k−1∼q(xi+k−1)=qψ(·|[CS;x<i;x
′
i:i+k−1])

6: end for
7: // Validate speculative tokens sequentially
8: for k ← 1 to γ do
9: j ← i+ k − 1

10: // Compute target and draft distributions
11: z(x′

j)← LogitsOf(pϕ(·|[C;x<j ]))
12: p(x′

j)← softmax(z(x′
j)/T )

13: q(x′
j)← qψ(x

′
j |[CS;x<j ])

14: // Compute retrieval-augmented target distribution
15: ẑ(x′

j)← z(x′
j)+ηT (q(x′

j)−p(x′
j)) (Eq. (8))

16: p̂(x′
j)← softmax(ẑ(x′

j)/T )
17: r ∼ U(0, 1)

18: if r ≤ min(1,
p̂(x′

j)

q(x′
j)
) then

19: xj ← x′
j

20: i← j + 1
21: else
22: goto line 26
23: end if
24: end for
25: // Sample from residual if rejected
26: xi ∼ norm(max(p(xi)− p̂(xi), p(xi)− q(xi), 0))
27: i← i+ 1
28: end while
29: return x1:n

enabling efficient identification and extraction of the most
relevant context chunks.

After deriving the compress context CS, the draft distribution
is formally defined as

q(xi) = qψ(xi|[CS;x<i]), (4)

where we maintain strict control over the compression ratio
by enforcing |CS| ≤ |C|/λ with λ ≫ 1. This compressed
context enables our draft model to maintain significant speed
advantages while preserving access to relevant information.

Based on the RAG drafter, the modified speculative decod-
ing process proceeds as follows. For each generation step,
we sample γ speculative tokens from the RAG drafter as
x′
i∼q(xi). These candidates are validated against the target
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model using a modified acceptance criterion:

r ≤ min

(
1,

p(xi)

q(xi)

)
=min

(
1,

pϕ(x
′
i|[C;x<i])

qψ(x′
i|[CS;x<i])

)
(5)

where r ∼ U(0, 1).

The RAG-based drafting mechanism offers two key advan-
tages: (1) significant reduction in memory overhead and
computational cost through compressed context operations
(|CS| ≪ |C|), and (2) potentially enhanced speculation qual-
ity through selective retrieval of relevant information com-
pared to processing diluted full context. Moreover, due to
the remarkable efficiency on shorten context, RAPID even
enables the use of same-scale or larger models as drafters to
accelerate smaller target LLMs.

2.4. Retrieval-Augmented Target Distribution

The capability of LLMs to effectively utilize context often
deteriorates with irrelevant information inclusion. Our em-
pirical analysis in Figure 1 shows that LLMs, by focusing
on retrieved relevant chunks, can sometimes surpass full-
context utilization in generation quality. However, the strict
acceptance criterion of traditional SD may potentially re-
sult in unnecessary rejection for these superior generations
when they deviate from the target distribution, leading to
both quality degradation and computational inefficiency.

To address this limitation, we introduce retrieval-augmented
target distribution, which enables knowledge transfer from
the RAG drafter to the long-context target model during
inference. Formally, the retrieval-augmented target distribu-
tion in RAPID is defined as:

p̂(xi) = softmax(z(xi)/T + η · (q(xi)− p(xi))), (6)

where η is a hyperparameter controlling the strength of
knowledge transfer, z(xi) is the unnormalized logits of tar-
get LLM, namely p(xi) = softmax (z(xi)/T ) and T is the
temperature.

Proposition 2.1. Let p(x) = softmax(z(x)/T ) be a
student model distribution parameterized by logits z(x)
and temperature T , and q(x) be a teacher model distri-
bution. The gradient of the knowledge distillation loss
L = T 2 · KL(q(x)∥p(x)) with respect to z(x) is:

∂L
∂z(x)

= T · (p(x)− q(x))

where KL(·∥·) denotes the Kullback-Leibler divergence.

Proof. See Appx. §A.

The design of retrieval-augmented target distribution
in Eq. (6) implies a knowledge distillation step by posi-
tioning the RAG drafter as the teacher and the target model

as the student, to infuse a proportion of knowledge from
RAG drafter into naive long-context target distribution.

Specifically, for a distillation loss (Hinton et al., 2015)
L between RAG draft distribution q(xi) (teacher) and
long-context target distribution p(xi) (student), according
to Proposition 2.1, we have the distilled logits shift as

∂L
∂z(xi)

= T · (p(xi)− q(xi)). (7)

Now we can derive a “distilled” z(xi) augmented by RAG
drafter through

ẑ(xi) = z(xi)− η
∂L

∂z(xi)

= z(xi) + ηT (q(xi)− p(xi)),

(8)

where η controls the strength of knowledge transfer. There-
fore, the retrieval-augmented target distribution in Eq. (6)
is equivalent to the normalized ẑ(xi), i.e., p̂(xi) =
softmax(ẑ(xi)/T ).

The retrieval-augmented target distribution p̂(xi) enables
flexible knowledge transfer from the RAG drafter while
maintaining verification capability. Since the unnormal-
ized logits z(xi) ∈ R have larger magnitude compared to
the normalized distributions p(xi), q(xi) ∈ [0, 1], the p̂(xi)
preserves the long-context ability of target LLM to verify
candidates effectively. We empirically validate the robust-
ness of this distribution in §4.5.

For inference, we replace p(xi) with p̂(xi) in the accep-
tance criterion (Eq. (5)). Let p(xi) = [wj ]

|V |
j=1 and p̂(xi) =

[ŵj ]
|V |
j=1 denote the probability vectors over vocabulary V .

Following Li et al. (2023), we maintain

ŵk = wk, ∀k ∈ {v ∈ [|V |] : ŵv < 0.1 · max
j∈[|V |]

ŵj}, (9)

to prevent distortion in the tail of the distribution.

When rejection occurs, we sample from an adjusted residual
distribution:

xi ∼ norm(max(p(xi)− p̂(xi), p(xi)− q(xi))). (10)

This sampling strategy maintains theoretical guarantees,
where we prove in Appx. §B that the resulting tokens follow
the same distribution as direct sampling from the original
target model p(xi).

3. Experimental Setup
3.1. Implementation Details

Target and Draft LLMs. RAPID is evaluated across
different model scales using LLaMA-3.1 (8B, 70B) and

4



Title Suppressed Due to Excessive Size

Table 1. Comprehensive evaluation of RAPID against baseline methods across different target-draft model configurations. We report
performance on ∞Bench and LongBench v2, along with prefill time and throughput speedup on LongBench v2 (Long, CoT) subset. LC
and RAG denote evaluating the target model on long and retrieval contexts, respectively. For RAPID, we evaluate both self-speculation
(using same-size RAG drafter) and upward-speculation (using larger RAG drafter) settings. Green/red highlighting indicates better/worse
performance compared to LC baseline. Bold and underline indicate best and second best metric score.

Target Model Method Draft Model ∞Bench LongBench v2 Efficiency

En. QA En. MC En. Sum AVG. Overall Overall (CoT) Prefill Time (s) Speedup

LLaMA-3.1-8B

LC - 34.58 53.28 30.14 39.33 28.0 30.4 25.89 1.00×
RAG - 31.91 62.01 27.27 40.40 29.2 33.4 0.36 3.35×
SD - 32.90 55.90 30.11 39.64 29.4 31.0 26.37 1.63×
MagicDec - 29.83 52.03 30.18 37.35 29.2 30.6 26.05 0.71×
RAPID LLaMA-3.1-8B (RAG) 34.90 63.32 30.27 42.83 32.4 34.2 26.37 2.10×
RAPID LLaMA-3.1-70B (RAG) 40.94 79.04 29.96 49.98 38.8 40.2 28.04 1.14×

LLaMA-3.1-70B

LC - 36.48 68.56 30.18 45.07 31.6 36.2 160.54 1.00×
RAG - 38.66 76.86 27.17 47.56 38.0 39.4 2.81 4.44×
RAPID LLaMA-3.1-70B (RAG) 40.56 81.66 29.64 50.62 40.2 40.2 163.43 2.69×

Qwen2.5-7B

LC - 16.93 66.81 30.62 38.12 30.2 33.2 20.32 1.00×
RAG - 20.28 75.11 25.60 40.33 31.2 33.8 0.34 6.47×
RAPID Qwen2.5-7B (RAG) 19.81 75.98 31.64 42.48 32.0 35.4 21.62 2.65×
RAPID Qwen2.5-72B (RAG) 30.10 83.84 32.21 48.72 35.6 41.2 23.45 0.93×

Qwen2.5-72B

LC - 39.21 81.66 32.45 51.11 40.0 43.9 162.42 1.00×
RAG - 30.72 80.22 28.63 46.52 38.8 39.8 3.09 3.60×
RAPID Qwen2.5-72B (RAG) 40.52 85.59 32.94 53.02 42.9 44.1 164.80 1.98×

Qwen2.5 (7B, 72B) as target LLMs. We implement
two speculation settings: (1) self-speculation, where the
RAG drafter matches the target LLM’s scale, and (2)
upward-speculation, where a larger RAG drafter assists
a smaller target LLM. For smaller models (LLaMA-3.1-8B,
Qwen2.5-7B), we evaluate both settings, while larger mod-
els (LLaMA-3.1-70B, Qwen2.5-72B) use self-speculation
only. The RAG drafter generates γ = 10 tokens per step
for target LLM verification. We search η in Eq. (6) between
{5, 10, 20} for self-speculation and {40, 50} for upward-
speculation, which would be further investigated in §4.5.

RAG Setup. The long context is segmented into 512-
token chunks and embedded using BGE-M3 (Chen et al.,
2024b). We retrieve top-k segments based on cosine similar-
ity with the query embedding, filtering out segments below
a 0.3 similarity threshold. The retrieval context length is
bounded between 4096 tokens and 1/24 of the input length.

3.2. Evaluation Protocol

Baselines. We compare our RAPID with baselines includ-
ing: (1) long-context target LLM (LC), where the target
LLM in RAPID directly generates responses upon long con-
text; (2) RAG, where the target LLM generates responses
upon retrieval context of draft LLM input in RAPID; (3)
naive Speculative Decoding (SD), which involves identi-

cal target and draft LLMs with RAPID but using the naive
long-context target distribution; (4) MagicDec (Chen et al.,
2024a), which utilizes the StreamingLLM (Xiao et al., 2023)
to compress the KV cache of draft model. We set the KV
cache size as 4096 and sink tokens as 4.

Benchmarks. We evaluate our RAPID with baselines on
two benchmarks: (1) ∞Bench. We evaluate our method
with baselines on three realistic tasks in this benchmark:
long-book question answering (En.QA, metric: F1), multi-
choice question-answering (En.MC, metric: accuracy), and
summarization (En.Sum, metric: ROUGE-L-Sum). The
context length in these tasks are beyond 100K. (2) Long-
Bench v2, which involves multi-choice tasks across various
context lengths from 8K to 2M words. We apply middle
truncation following benchmark setup to ensure the context
length within 128K tokens.

Evaluation Setup We conduct efficiency evaluations us-
ing the LongBench v2 (Long, CoT) subset, where each
example involves 120K (tokens) context length after trunca-
tion and 1K maximum generation tokens. Efficiency metrics
include: (1) prefill time and (2) speedup, computed as the
ratio of method decoding throughput to LC throughput, both
averaged across the subset. Additional experimental details
are provided in Appx. §C.
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Figure 2. Relative performance to target LLMs across different target-draft model configurations of LLaMA-3.1 series on LongBench v2
(Overall). RAPID integrates both benefits from target and draft LLMs, hence achieving higher relative success rate (benefits from draft)
without increasing failure rate (benefits from target). Relative success represents correct predictions made by each method but missed by
the target LLM. Relative failure represents correct predictions by the target LLM but missed by each method. “SD Only” and “RAPID
Only” indicate correct (or wrong) predictions made exclusively by SD and RAPID where both target and draft models cannot attain.

4. Results and Analyses
4.1. Main Results

We evaluate RAPID against baselines across different model
scales and benchmarks. The results in Table 1 demonstrate
the effectiveness of RAPID in both improving generation
quality and efficiency for long-context inference.

RAPID integrates benefits from both target LLM and
RAG drafter through self-speculation. In the self-
speculation setting, where RAPID uses same-scale models
for target and draft, consistent improvements are observed
across model families. For LLaMA-3.1-8B, RAPID with
self-speculation achieves superior performance on∞Bench
(42.83 vs 39.33 LC, 40.40 RAG) and LongBench v2 (34.2%
vs 30.4% LC, 33.4% RAG). Similar improvements are seen
for LLaMA-3.1-70B (50.62 vs 45.07 LC, 47.56 RAG on
∞Bench) and Qwen2.5 series. Notably, RAPID effectively
integrates the complementary strengths of LC and RAG ap-
proaches - while RAG shows superior performance on cer-
tain tasks (e.g., En.MC: 79.04% vs 53.28% LC for LLaMA-
3.1-8B), LC demonstrates advantages in others (e.g., En.QA:
34.58% vs 31.91% RAG). RAPID successfully captures
these complementary benefits during inference, consistently
achieving better or comparable performance to the stronger
of its two components. Compared to existing speculative
decoding approaches including naive SD and MagicDec,
RAPID demonstrates superior performance through this
effective integration mechanism.

Larger RAG drafters further boost performance
through effective knowledge transfer. Beyond self-
speculation, RAPID enables a unique upward-speculation
mechanism where larger models serve as RAG drafters
while maintaining efficiency. This setting yields even more
substantial improvements: LLaMA-3.1-8B with 70B RAG

drafter achieves 49.98 on∞Bench and 40.2% overall ac-
curacy on LongBench v2, surpassing not only its self-
speculation results but even the LC performance of LLaMA-
3.1-70B (36.2%). Similar patterns emerge for Qwen2.5-
7B with 72B RAG drafter, where the performance gains
(48.72 vs 42.48 on∞Bench) demonstrate the effectiveness
of RAPID in leveraging and integrating knowledge from
larger models through the retrieval-augmented speculation.

RAPID demonstrates > 2× speedup for long-context
inference. In self-speculation settings, RAPID achieves
significant speedup over LC baseline (2.10× for LLaMA-
3.1-8B, 2.69× for LLaMA-3.1-70B), and significantly sur-
passes naive SD and MagicDec. When employing upward-
speculation with larger drafters, RAPID still maintains com-
parable throughput 1 (1.14× for LLaMA-3.1-8B with 70B
drafter, 0.93× for Qwen2.5-7B with 72B drafter) while sub-
stantially improving generation quality. While pure RAG
shows highest throughput (e.g., 3.35× speedup for LLaMA-
3.1-8B), its performance can be significantly compromised
in certain scenarios (e.g., En.QA accuracy drops from 39.21
to 30.72 for Qwen2.5-72B). In contrast, RAPID effectively
maintains competitive throughput while consistently achiev-
ing superior generation quality across different settings.

4.2. Benefits Integration Analysis

RAPID incorporates benefits from RAG drafter while
maintaining target model capabilities. To analyze how
RAPID integrates the strengths of both RAG drafter and
target LLM, we examine the relative success and failure
of RAG drafter, SD, and RAPID on LongBench v2. As
shown in Figure 2, RAPID successfully handles additional
cases where the target LLM fails by incorporating beneficial

1Note that upward-speculation requires extra GPUs to serve
the RAG drafter like regular SD.
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Figure 3. Impact of context and retrieval lengths on RAPID (self-
sepculation) performance and efficiency based on LLaMA-3.1-
8B. RAPID consistently outperforms naive SD and achieves
speedup beyond 32K context length with moderate retrieval lengths
(≤16K).Top:∆Accuracy indicates the accuracy margins on Long-
Bench v2 (Long, CoT) subset over target LLM. Middle: Ac-
ceptance rate indicating the proportion of accepted draft tokens.
Bottom: Speedup ratio compared to target LLM inference (> 1
indicates acceleration).

knowledge from the RAG drafter. Meanwhile, RAPID main-
tains the capabilities of target LLM, exhibiting significantly
lower failure rates compared to using RAG drafter alone.
This combination of gains from RAG drafter with mini-
mal degradation of target LLM capabilities enables RAPID
to outperform both target and draft models. Furthermore,
the gains from RAG drafter in RAPID substantially exceed
those in naive SD, demonstrating the effectiveness of our
retrieval-augmented target distribution in Eq. (6).

RAPID exhibits capabilities beyond individual tar-
get/draft LLMs. Most notably, we observe an “emergent
phenomenon” where RAPID successfully handles cases
that both the target LLM and RAG drafter fail individually
(shown as “RAPID Only” in Figure 2). Specifically, this
emergent accuracy mass grows more pronounced as RAG
drafters become stronger, from LLaMA-3.1-8B to LLaMA-
3.1-70B. This suggests that RAPID not only combines the
strengths of both models but also enables new capabilities
through their synergistic interaction. The phenomenon be-
comes particularly evident in the upward-speculation setting,

Table 2. Evaluation on multi-turn dialogue generation with ex-
tended chat history for LLaMA-3.1-8B as both target and draft
LLM. Quality scores (1-10) are rated by GPT-4-Turbo-1106 using
LLM-as-a-Judge protocol.

Quality Acceptance Rate (%) Throughput

Target LLM 2.82 - 10.64±0.98

RAG Drafter 3.95 - 40.49±0.47

SD 2.94 56.34±0.13 14.07±3.08

RAPID 4.21 76.94±0.13 18.18±3.23

Table 3. Robustness study of RAPID with different draft influ-
ence parameter η. Results show performance gains (∆Accuracy)
and speedup ratios on LongBench v2 (Long, CoT) subset using
LLaMA-3.1-8B as target LLM, with LLaMA-3.1-8B and LLaMA-
3.1-70B as RAG drafters under unrelated retrieval context.

η
LLaMA-3.1-8B (Draft) LLaMA-3.1-70B (Draft)

∆Accuracy Speedup ∆Accuracy Speedup

0 1.20 1.62× -1.30 0.67×
5 2.80 1.75× 0.40 0.69×
10 1.60 1.77× 1.20 0.72×
20 1.20 1.78× 4.40 0.75×
30 -2.40 2.07× 6.60 0.80×
40 -2.60 2.08× 6.60 0.84×
50 -6.30 2.10× 6.00 0.87×

where the stronger RAG drafter facilitates more sophisti-
cated knowledge transfer during inference.

4.3. Impact of Context and Retrieval Length.

RAPID demonstrates effectiveness across various con-
text configurations. We analyze how RAPID performs
under varying target context lengths and RAG drafter re-
trieval lengths, as shown in Figure 3. The results demon-
strate consistent advantages of RAPID over naive SD across
all configurations. First, RAPID achieves significantly bet-
ter performance gains (2-8% ∆Accuracy) over the long-
context baseline compared to the marginal or negative gains
(-5-2%) of naive SD. This superior performance is accompa-
nied by consistently higher acceptance rates (75-85% versus
60-70%) and better speedup ratios across all context and
retrieval lengths configurations.

RAPID achieves speedup for long-context inference be-
yond 32K. The impact of retrieval length reveals an inter-
esting efficiency-effectiveness trade-off. In terms of compu-
tational efficiency, RAPID achieves acceleration (speedup
> 1.0×) when the target context length exceeds 32K, while
SD requires contexts beyond 64K to demonstrate speedup.
For retrieval length, while longer retrieval contexts generally
lead to higher acceptance rates (up to 85%), the speedup
ratio is not necessarily increasing. Specifically, retrieval
lengths of 4K and 8K achieve nearly identical speedup ra-
tios, indicating minimal overhead in this scope. However,

7
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when retrieval length exceeds 16K, the increased computa-
tional overhead from longer draft contexts becomes apparent
and impacts the overall speedup. These findings suggest that
RAPID achieves remarkable efficiency when accelerating
long-context inference beyond 32K tokens upon moderate
retrieval length within 16K.

4.4. Generation Quality Analysis

RAPID achieves superior generation quality and
throughput in real-world application. To evaluate the ef-
fectiveness of RAPID in practical long-context applications,
we assess its performance on multi-turn dialogue generation.
We construct a challenging evaluation dataset by adapting
MT-Bench-101 (Bai et al., 2024a): for each of the first 100
samples, we preserve their last-turn queries while distribut-
ing their previous conversation context within a longer chat
history comprising additional dialogue turns from another
500 samples in MT-Bench-101. The resulting chat history
is of around 122K tokens length. This setup tests the abil-
ity of models to maintain coherence and relevance while
processing extensive dialogue history.

As shown in Table 2, RAPID demonstrates substantial im-
provements across all metrics. Using GPT-4-Turbo-1106 as
evaluator following LLM-as-a-Judge (Zheng et al., 2023),
RAPID achieves a generation quality score of 4.21, signifi-
cantly outperforming the target LLM (2.82), RAG drafter
(3.95) and naive SD (2.94). This quality improvement comes
with a robust acceptance rate of 76.94% (vs. 56.34% for
SD) and enhanced throughput of 18.18 tokens/second (1.7×
speedup over target LLM), demonstrating practical advan-
tages of RAPID in real-world long-context applications.

4.5. Robustness to Retrieval Quality

RAPID shows robustness to retrieval quality, which is
further enhanced by stronger drafter. To assess the
robustness of RAPID regarding retrieval quality, we con-
duct stress tests by deliberately using unrelated retrieval
context (using the context of first sample from LongBench
v2 for all samples) while varying the knowledge transfer
parameter η in Eq. (6). As shown in Table 3, with self-
speculation (LLaMA-3.1-8B drafter), RAPID maintains per-
formance gains (∆Accuracy > 0) and improved efficiency
(speedup 1.62×-1.78×) when η ≤ 20, even with irrelevant
retrieval context. However, when η > 20, the RAG drafter
may overly impact the target distribution, leading to per-
formance degradation. Moreover, upward-speculation with
LLaMA-3.1-70B as drafter demonstrates even better robust-
ness, maintaining positive performance gains (up to 6.60%)
across all η values despite totally unrelated retrieval context.
This increased resilience suggests that RAPID effectively
leverages the inherent capabilities of stronger RAG drafters,
maintaining reliable performance even under suboptimal

retrieval quality.

5. Related Work
Speculative Decoding Speculative Decoding (Chen et al.,
2023; Leviathan et al., 2023) accelerates LLM inference
by leveraging smaller draft models to propose multiple to-
kens for single-pass validation. REST (He et al., 2024b)
extends the drafting mechanism by retrieving possible con-
tinuation from a built corpus rather than generating with
a draft LLM. Ouroboros (Zhao et al., 2024) proposes pro-
ducing longer and more acceptable candidates from draft
LLM per step based on draft phrases. Inspired by the spec-
ulation mechanism, Speculative RAG (Wang et al., 2024)
proposes a parallel draft-then-verify mechanism to improve
RAG quality. Recent works like TriForce (Sun et al., 2024)
and MagicDec (Chen et al., 2024a) attempt to extend SD
to long-context scenarios through KV cache compression
techniques (Xiao et al., 2023). However, such compression
approaches often result in weakened draft models with lim-
ited speedup in complex applications. In contrast, RAPID
adopts RAG drafters that maintain both high-quality specu-
lation and substantial speedup in various applications.

Long-Context Inference Speedup Research on acceler-
ating long-context inference has primarily focused on two
directions: optimizing KV cache operations through selec-
tive retention (Xiao et al., 2023; Kang et al., 2024; Zhang
et al., 2023) or quantization (Sheng et al., 2023; Liu et al.,
2024b; He et al., 2024a), and exploring prompt compres-
sion methods (Chevalier et al., 2023; Jiang et al., 2023; Pan
et al., 2024). While these approaches improve efficiency,
they often compromise contextual information without qual-
ity guarantees (Zhang et al., 2024). RAPID addresses this
limitation by leveraging SD to maintain generation qual-
ity through explicit verification from long-context LLMs,
providing a more reliable balance between efficiency and
performance.

RAG and Long-Context LLMs Recent studies have re-
vealed complementary strengths between RAG and long-
context LLMs, with substantial prediction overlap despite
different performance characteristics (Li et al., 2024b;a).
While long-context LLMs excel in document-based tasks,
RAG shows advantages in scenarios like dialogue-based
question-answering. Previous attempts to combine these
approaches, such as self-reflection routing (Li et al., 2024b)
and step-by-step RAG enhancement (Yue et al., 2024), rely
heavily on task-specific prompt engineering. RAPID pro-
vides a more principled solution by directly integrating RAG
benefits into the decoding process, enabling dynamic adap-
tation while preserving advantages of both paradigms.

8
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6. Conclusion
In this work, we introduce RAPID, a novel decoding
method that bridges the efficiency gap of speculative de-
coding (SD) in long-context inference while enhancing
generation quality through retrieval-augmented speculation.
The key of RAPID lies in leveraging RAG drafters to en-
able efficient speculation for long-context target LLMs,
along with a retrieval-augmented target distribution that
effectively integrates knowledge from potentially stronger
drafters. Through extensive experiments, we demonstrate
that RAPID successfully achieves both computational ef-
ficiency and improved generation quality across different
model scales and tasks. Specifically, RAPID enables more
than 2× speedup while maintaining performance advantages
in self-speculation settings, and achieves substantial quality
improvements through upward-speculation with stronger
RAG drafters. These results establish RAPID as a prac-
tical solution for accelerating long-context inference with
improved generation quality.
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C. W., Wang, Z., and Chen, B. H2o: Heavy-
hitter oracle for efficient generative inference of
large language models. ArXiv, abs/2306.14048,
2023. URL https://api.semanticscholar.
org/CorpusID:259263947.

Zhao, W., Huang, Y., Han, X., Xu, W., Xiao, C.,
Zhang, X., Fang, Y., Zhang, K., Liu, Z., and Sun,
M. Ouroboros: Generating longer drafts phrase by
phrase for faster speculative decoding. In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 13378–13393, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
742. URL https://aclanthology.org/2024.
emnlp-main.742/.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang, H.,
Gonzalez, J., and Stoica, I. Judging llm-as-a-judge with
mt-bench and chatbot arena. ArXiv, abs/2306.05685,
2023. URL https://api.semanticscholar.
org/CorpusID:259129398.

11

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://api.semanticscholar.org/CorpusID:271097348
https://api.semanticscholar.org/CorpusID:271097348
https://api.semanticscholar.org/CorpusID:273185794
https://api.semanticscholar.org/CorpusID:273185794
https://api.semanticscholar.org/CorpusID:274789429
https://api.semanticscholar.org/CorpusID:274789429
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://aclanthology.org/2024.emnlp-main.742/
https://aclanthology.org/2024.emnlp-main.742/
https://api.semanticscholar.org/CorpusID:259129398
https://api.semanticscholar.org/CorpusID:259129398


Title Suppressed Due to Excessive Size

A. Proof of Theorem 1
We analyze the gradient of the knowledge distillation loss with respect to the target model’s logits. The distillation loss with
temperature T is defined as:

L = T 2 ·KL(q(x)||p(x))

= T 2
∑
j

q(xj) log
q(xj)

p(xj)

(11)

where the target distribution p(x) is parameterized by logits z through softmax:

p(xj) =
exp(zj/T )∑
k exp(zk/T )

(12)

Theorem: The gradient of the distillation loss with respect to logit zi is:

∂L
∂zi

= −T [q(xi)− p(xi)] (13)

Proof: We derive this gradient through the following steps:

1) First, expand the derivative using the chain rule:

∂L
∂zi

= T 2
∑
j

q(xj)
∂

∂zi
[log q(xj)− log p(xj)] (14)

2) Note that q(xj) is independent of zi:

= −T 2
∑
j

q(xj)
∂

∂zi
log p(xj) (15)

3) Expand the log probability:

= −T 2
∑
j

q(xj)
∂

∂zi

[
zj
T
− log

∑
k

exp(zk/T )

]
(16)

4) Apply the derivative using the Kronecker delta δij :

= −T 2
∑
j

q(xj)

[
δij
T
− 1

T
exp(zi/T )∑
k exp(zk/T )

]
(17)

5) Simplify using the definition of p(xi):
= −T

∑
j

q(xj)[δij − p(xi)] (18)

6) The sum over j with δij selects only q(xi):

= −T [q(xi)−
∑
j

q(xj)p(xi)] (19)

7) Since
∑

j q(xj) = 1, we obtain our final result:

= −T [q(xi)− p(xi)] (20)

This gradient shows that the distillation loss pushes the target distribution p(x) towards the draft distribution q(x) with
strength proportional to the temperature T .

12
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B. Correctness of RAPID’s Residual Distribution
We prove that for RAPID’s retrieval-augmented speculative decoding, when rejection occurs, sampling from the distribution

xi ∼ norm(max(p(xi)− p̂(xi), p(xi)− q(xi))) (21)

maintains the target distribution p(xi), where:

p(xi) = pϕ(xi|[C;x<i]) (target distribution) (22)

q(xi) = qψ(xi|[CS;x<i]) (RAG drafter distribution) (23)

p̂(xi) = softmax(ẑ(xi)/T ) (retrieval-augmented target) (24)

Proof: Let x′ be a candidate token. Under RAPID’s rejection sampling scheme:

1) For a token x′ proposed by the draft model, the acceptance criterion is:

r ≤ min(1,
p̂(x′)

q(x′)
) (25)

where r ∼ U(0, 1)

2) This leads to an acceptance probability:

P (accept|x′) = min(q(x′), p̂(x′)) (26)

3) The residual probability mass that needs to be redistributed upon rejection is:

p(x′)−min(q(x′), p̂(x′)) = max(p(x′)− q(x′), p(x′)− p̂(x′)) (27)

4) Let β be the total acceptance probability:

β =
∑
x′

min(q(x′), p̂(x′)) (28)

5) Therefore, upon rejection, we must sample from:

p′(x′) =
p(x′)−min(q(x′), p̂(x′))∑
x′(p(x′)−min(q(x′), p̂(x′)))

=
p(x′)−min(q(x′), p̂(x′))

1− β
(29)

This residual distribution ensures that for any token x′:

P (x = x′) = min(q(x′), p̂(x′)) + (1− β)
p(x′)−min(q(x′), p̂(x′))

1− β
= p(x′) (30)

C. Evaluation Setup
We conduct comprehensive evaluations across different model scales and configurations. We use temperature values of
1.0 and 0.1 for∞Bench and LongBench v2, respectively. For base-scale models (LLaMA-3.1-8B and Qwen2.5-7B), we
evaluate RAPID’s self-speculation capabilities against multiple baselines including naive Speculative Decoding, MagicDec,
Long Context (LC), and RAG implementations, using a single NVIDIA A800 80GB GPU.

For large-scale models (LLaMA-3.1-70B and Qwen2.5-72B), self-speculation experiments are conducted using a distributed
setup with 8×A800 80GB GPUs. In upward-speculation settings, we employ a hybrid configuration where the target models
(LLaMA-3.1-8B/Qwen2.5-7B) operate on a single A800 80GB GPU, while leveraging an additional 7×A800 80GB GPUs
to accommodate the larger RAG drafter.
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D. More Efficiency Analyses
D.1. FLOPs Comparison

We present a detailed comparison of floating-point operations (FLOPs) per generation step (producing γ tokens) in Table 4,
analyzing our RAPID method against baseline approaches. Let T denote the number of parameters in the target model and
L represent the long context length. For the draft model, we define:

• D: Number of parameters

• LR: Retrieval length for draft LLM input

The key parameters for speculative generation include:

• γ: Number of tokens generated by the draft model per step

• βSD: Expected acceptance rate for standard speculative decoding

• βRAPID: Expected acceptance rate for RAPID

Our analysis reveals that while all methods scale linearly with the target model size T , RAPID achieves superior efficiency
through its higher acceptance rate (βRAPID > βSD), which directly reduces the amortized FLOPs per generated token.

Table 4. FLOPs comparison for different methods per step.

Method FLOPs

Long Context 2γTL+ γ2T
RAG Drafter 2γDLR + γ2D

SD 2γDLR+γ2D+2T (L+γ)
βSD

RAPID 2γDLR+γ2D+2T (L+γ)
βRAPID

D.2. Overhead of RAG

Unlike regular RAG pipeline, which builds indexes for a large external corpus (hundreds of millions of documents), we only
index/retrieve the chunks for the input long context (<128K) on-the-fly during inference. Therefore, the RAG component
latency in our method will become marginal compared to the inference latency over long context. Table 5 presents the
average latency (in seconds) for each component of RAPID on LongBench v2 (Long, CoT) using LLaMA-3.1-8B and
LLaMA-3.1-70B in self-speculative mode.

Table 5. Latency of RAPID Components on LongBench v2 (Long, CoT)

Model RAG Pipeline (s) Prefill (s) Generation (s)

LLaMA-3.1-8B-RAPID 1.43 26.37 32.25
LLaMA-3.1-70B-RAPID 1.43 163.43 121.76

E. More Results
E.1. Comparison with TriForce

TriForce was not included in Table 1 since it is not directly compatible with modern LLMs using Grouped Query Attention
(GQA) (Ainslie et al., 2023a). We conducted comparisons on LWM-Text-Chat-128K (Liu et al., 2024a) (based on LLaMA2-
7B (Touvron et al., 2023)), with a retrieval budget of 4096 tokens, a chunk size of 8, and a draft cache budget of 256 for
TriForce. Table 6 shows the performance and speedup of the decoding in LongBench v2 (Long, CoT).
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Table 6. Comparison of RAPID and TriForce on LWM-Text-Chat-128K in LongBench v2 (Long, CoT) task.

Model Accuracy Speedup

LWM-Text-Chat-128K 18.4 1.00
TriForce 18.0 1.27
RAPID 21.6 2.56

While TriForce achieves modest efficiency gains, RAPID delivers superior speedup and performance. TriForce relies on
chunk-wise attention scores for information recall, but high attention scores do not always correlate with semantic relevance,
e.g., initial tokens may act as “attention sinks” despite lacking meaningful content (Xiao et al., 2023). In contrast, our
RAPID drafter prioritizes semantically relevant information, resulting in a higher acceptance rate and greater speedup for
complex tasks.

E.2. Comparison with MInference

We evaluated MInference (Jiang et al., 2024) against our RAPID using LLaMA-3.1-8B on the LongBench v2 (Long, CoT)
task. Table 7 reports the performance, prefill time (in seconds), and decoding speedup relative to the LLaMA-3.1-8B.

Table 7. Comparison of RAPID and MInference on LLaMA-3.1-8B in LongBench v2 (Long, CoT) task.

Model Accuracy Prefill Time (s) Speedup

LLaMA-3.1-8B (Baseline) 30.4 25.89 1.00
MInference 30.9 9.10 0.62
RAPID 34.2 26.37 2.10

MInference significantly reduces prefill time, showcasing its efficiency in the initial processing phase. However, RAPID
outperforms MInference in overall performance and decoding throughput, achieving a higher speedup. We note that sparse
attention, as utilized by MInference, is orthogonal to our approach, suggesting that integrating sparse attention with RAPID
could further enhance efficiency.
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