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Abstract

Language Models are powerful generative tools capable of learning intricate pat-
terns from vast amounts of unstructured data. Nevertheless, in domains that
demand precision, such as science and engineering, the primary objective is to
obtain an exact and accurate answer. Precision takes precedence in these contexts.
In specialized tasks like chemical compound generation, the emphasis is on output
accuracy rather than response diversity. Traditional self-refinement methods are
ineffective for such domain-specific input/output pairs, unlike general language
tasks. In this study, we introduce invalid2valid, a powerful and general post-
processing mechanism that can significantly enhance precision in language models
for input/output tasks spanning different domains and specialized applications.

1 Introduction
In recent years large language models (LLMs [6, 25, 3]) have emerged as a transformative technology,
exhibiting exceptional performance across a broad spectrum of tasks, providing a step towards a
generalist generative model. Following such success, LLMs have started to be used in science and
engineering, with the aim to accelerate and augment scientific discovery [17, 33].
LLMs excel in many scenarios, but for fields where precision is important, like chemistry, genomics,
and engineering design, they pose challenges in controllability, deployment, and factual accuracy [3].
LLM sampling introduces errors, from inaccuracies to inconsistencies [19], potentially undermining
their reliability in critical situations, potentially undermining their utility and reliability in high-
stakes scenarios. Fine-tuning [20, 1], prompting [34] and in-context learning [3], self-refining
mechanisms [36, 10, 27] aim to mitigate these limitations by implementing various strategies to
improve and control the model’s output. These mechanisms are essential for real-time applications
where manual correction is infeasible. However, it is difficult to control for precision at the character
or symbol level. If input/output mappings are from different domains, i.e. text to molecule [4, 7] or
gene to molecule then self-reflection and self-critiques cannot be easily used. Prompting works only
for large models. So there is a need for general methods that can be used with relatively small and
specialized models to improve the precision of their predictions.
We propose invalid2valid, a method designed to enhance the precision of language models in
situations where input and output domains differ. Our method employs a three-phase pipeline: a (i)
Generative Phase, where we fine-tune a language model using a small dataset containing input/output
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Figure 1: Distribution of wrong characters (i.e. SMILES symbols) on the test set for small molecule prediction
given a gene cluster using a specialized fine-tuned model (green density) and using the same model plus
invalid2valid refinement (blue density). Invalid2Valid greatly reduces the number of errors, changing the
distribution and adding a large amount of mass toward a small number of mistakes. This result shows that our
refinement mechanism is effective at improving generation precision for specialized domains.

pairs; a (ii) Sampling Phase, where, after fine-tuning, we freeze the model and generate multiple
predictions for a given input; a (iii) Constraining Phase, where we fine-tune a second model using the
collected mappings. The underlying idea is rooted in the fact that LLMs excel as reasoning engines
and generative models but often struggle with precision and control. However, when LLMs make
errors, these errors are often minor, affecting only a small portion of the output. Consequently, it
becomes possible to establish a secondary, lightweight mapping to rectify these errors made during
the generative phase. The objective of this secondary mapping is to correct and enhance the precision
of the predicted output, encouraging the initial model’s output to align with the correct target using a
constraining mapping.
Contribution. Our contributions are the following: (i) We propose invalid2valid, a two-phase
pipeline to improve language model precision. (ii) Our method is domain and model-agnostic and
can be applied to any input/output pairs. (iii) We provide experimental validation on challenging
constrained generative problems involving, text, genes, and molecules.

2 Background
Domain-specialized Language Models. General Language Models [32, 6, 3] have been widely
successful for a large variety of tasks. However, for specialized domains, like chemistry, genomics,
engineering design, and protein design, it is still valuable to build smaller, highly specialized
generative models that are fast to sample, easy to deploy and iterate, and less prone to inaccurate
output thanks to explicit supervision for a task or domain. In the life sciences, specialized language
models have been developed for protein design [16], protein folding [9], protein generation [13]
molecular generation [7, 4] and property prediction [2, 26], biology [14] and medicine [31].
Refinement Techniques for Language Models. Improving the output of LLMs is an active area of
research. Finetuning techniques are used to achieve alignment to human preferences [20, 29] and
reduce harm [1]. Refinement is leveraged to improve the quality and correctness of sampling: learn-
able prompting [12], Chain-of-thoughts prompting [34], self-refinement [15] and self-critique [27]
aim to improve the effectiveness of LLMs for tasks involving accuracy. Overall, LLMs can be
self-corrected using three main techniques: pre-processing, in-model-processing, and post-processing.
Pre-processing involves manipulating input data to reduce ambiguity. In-model-processing integrates
correction techniques into the model architecture itself. Post-processing applies corrections to the
model’s output. For more self-correction strategies see [21]. Leveraging invalid samples to improve
generative models’ precision has also been explored in [8] in the field of engineering design.
Gene Clusters and Metabolite Molecules. Biosynthetic gene clusters (BGCs [37, 5]) are defined
as a group of genes that are located in close genomic proximity to each other and are involved
in a specific metabolic pathway. These clusters consist of genes that work together to produce
secondary metabolite molecules. Secondary metabolite molecules (SMM [37, 5]) perform various
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tasks for bacteria with functional domains, including antifungal, cytotoxic, and antibiotics. The
MIBiG Database [30], is a well-established database for BGCs and SMMs, which at the moment
has information on more than 2500 BGCs. Pfam [28] is a comprehensive database for protein
domain families and is frequently used for identifying conserved domains within proteins coded by
BGCs [18]. It is possible to represent the genes in a BGC as the Pfam domains present in the gene
cluster. Utilizing Pfam representation for a BGC significantly reduces the memory size required,
compared to using raw genes and gene products.

3 Method
The upper part of Fig. 2) illustrates a conventional method of using Pfam annotations of the genes
in BGC as input to a generative LLM to predict the resulting SMM. The lower part introduces an
additional step, called invalid2valid, where the model uses the predictions from the conventional
approach as new input data for a generative LLM. Keeping the same train-test splits as for the
conventional method to avoid clear biases. This extra mapping step allows the second LLM to focus
on refining the predictions made by the first model, thereby improving the accuracy and reliability of
the resulting SMM estimations. Specifically, the focus of the second LLM varies from task to task.
In the case illustrated in Fig. 2, the second LLM focuses on enhancing chemical structure validity.
Generally, by leveraging the initial predictions as a starting point, the invalid2valid approach
aims to rectify any inaccuracies or inconsistencies, leading to enhanced performance. Our strategy for

[CCC)C(=O)N1CO)N(CC=C((=C=CC=C12

CCC(C)C(=O)C(=O)NCCC1=CNC2=CC=CC=C12

  gene1:  ATGAGATCTACACCT....
gene2: TTCGGAAGCAGCTT....

 gene3: ATGAGAT TTCGGAA.....

[CCC)C(=O)N1CO)N(CC=C((=C=CC=C12

Generative Module

Constraining Module

Figure 2: Pipeline Inference. On the upper part of the image, the raw gene sequences or gene representations
(Pfam, ESM) from the BGC are used as input for a generic LLM. The target sequences are the corresponding
SMMs for each BGC. After fine-tuning, the LLM will output some combination of symbols resembling a
molecule, but without respecting the domain constraints and being invalid. We then leverage a second language
model (bottom), performing invalid2valid to fix the mistakes of the first model. Doing so we greatly improve
the precision of the generated output without reducing the diversity and generative capacities of the first model.

fine-tuning tasks involves a self-correction/refining post-hoc approach that is easy to understand and
follow. This approach includes two LLMs, namely model A and model B, connected in a sequence.
The output of model A is used as the input for model B, which then maps the prediction from model A
to the final target y. Both models A and B have the same mapping target, y. This sequential mapping
M can be described as:

MB : (MA : x → y) → y, (1)

where x is the original input feature vector; fθ as the function representing the mapping from x to y
in model A. fϕ as the function representing the mapping from fθ(x) to y in model B. The objective
functions to minimize the losses for each model would be:

LA = CE(fθ(x),y), LB = CE(fϕ(fθ̄(x)),y). (2)

Both LA and LB are optimized during training to make fθ(x) and fϕ(fθ̄(x)) to minimize cross-
entropy (CE) wrt to y. Notice that the objectives are minimized sequentially, i.e. we train A, freeze θ,
and then train B. In practice is, model A trained until the loss function plateaus; first, the outputs of
model A saved and used to create a dataset for model B. The test and train splits are conserved to
avoid biases in the learning. The practical approach is illustrated in Fig 2.
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4 Experiments
Setup. We investigate three NLP tasks related to natural products, each framed as a string-to-string
problem: predicting an SMM’s molecular class (SMM2Class), its molecular activity (SMM2Activity),
and generating an SMM from a BGC (BGC2SMM). In particular, SMM2Class is a standard classifi-
cation task (with 8 unique classes) and can be solved with standard methods. SMM2Activity is, in
principle, a classification task as well; however, the number of classes grows exponentially with the
number of activities, making such a task difficult to model as a classification. Finally, BGC2SMM
is the most complex and interesting task, where given some representation for a BGC, we want to
generate the corresponding small molecule connected with the cluster.
Flan T5 [25] and Text+Chem T5 [4] serve as the baseline models for comparison with
invalid2valid (denoted as w/ i2v) approach. For details on evaluation metrics see Appendix C.
The datasets used in this project pertain to the field of natural products and are sourced or derived
from the MIBiG DB. Details on the general structure of these datasets can be found in the appendix
in Table 9, while a summary is provided in Table 8.
Results. Qualitative results for predicting bio-synthetic classes from SMILES-formatted molecules
are in Table 5. A language model maps molecules to classes, and a second model refines these
predictions. The table shows baseline errors like misclassifying Saccharide as Polycharide. The
invalid2valid approach corrects these, proving its utility in standard classification.

Table 1: Accuracy as measured by ROUGE-1 F1 score
on the test set at different epochs for the main tasks.

Epochs SMM → Activity BGC → SMM

Flan T5 Text+Chem T5 w/ i2v Flan T5 Text+Chem T5 w/ i2v

1 0.04 0.44 0.85 0.53 0.68 0.77
2 0.37 0.44 0.92 0.58 0.67 0.81
10 0.41 0.43 0.94 0.61 0.68 0.89

Table 1 presents a comprehensive overview of
the accuracy, measured by the ROUGE-1 F1
score, achieved at different epochs for two main
tasks: SMM to Activity prediction and BGC
to SMM prediction. Three distinct models are
evaluated for each task: Flan T5, Text+Chem
T5, and w/ i2v. Notably, the invalid2valid
model consistently outperforms the other mod-
els in both tasks at all epochs, demonstrating
remarkable accuracy improvements with minimal finetuning. For the SMM to Activity task, the
ROUGE-1 F1 score of the i2v model increases from 0.85 at epoch 1 to 0.94 at epoch 10. Similarly,
for the BGC to SMM task, the i2v model achieves a score of 0.77 at epoch 1, which significantly
rises to 0.89 at epoch 10. These findings highlight the effectiveness of incorporating the invalid2valid
refinement in enhancing the accuracy of the models for both tasks.
BGC to SMM. Table 2 offers a comprehensive comparison of various encoding strategies and
their impact on key metrics. Specifically, it assesses the performance of baselines encoding for

Table 2: Metrics for the task BGC2SMM. We compare baselines encoding for the gene cluster (gene product -
DESCRIBE), encoding with the Pfam approach without and with the invalid to valid refinement. We see how
adding the invalid to valid refinement greatly improves all the metrics. CER: Character Error Rate.

Epochs Baseline w/ Pfam w/ Pfam w/ invalid2valid

ROUGE-1 F1 ↑ CER ↓ BLEU ↑ ROUGE-1 F1 ↑ CER ↓ BLEU ↑ ROUGE-1 F1 ↑ CER ↓ BLEU ↑
1 0.57 0.42 0.31 0.620 0.35 0.37 0.77 0.17 0.67
5 0.65 0.33 0.43 0.65 0.30 0.45 0.87 0.08 0.81

15 0.67 0.30 0.45 0.67 0.30 0.48 0.90 0.05 0.87

the gene cluster, encoding with the Pfam approach both without and with the inclusion of the
invalid2valid refinement. The metrics evaluated include ROUGE-1 F1 score, Character Error
Rate (CER), and the BLEU score leveraging the references proposed in [24]. Notably, the introduction
of the invalid2valid refinement yields substantial improvements across all metrics, underscoring
its effectiveness in enhancing the encoding process. As we progress through different epochs,
we observe a consistent trend of improvement, with the most significant gains occurring when
invalid2valid is integrated. These findings highlight the invaluable role of invalid2valid in
elevating the performance of encoding approaches, ultimately contributing to the overall success of
the BGC2SMM task.
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5 Conclusion
While Language Models have showcased their generative prowess, their adaptability to specialized
tasks often falls short when accuracy is the primary goal. In tasks like chemical compound generation,
precision takes precedence over response diversity, necessitating tailored approaches. To address
this challenge, we have introduced invalid2valid, a versatile post-processing mechanism that
demonstrates its efficacy across a range of domains and specialized applications. This mechanism
represents a significant step forward in enhancing the precision of Language Models in input/output
tasks. By bridging the gap between the adaptability of Language Models and the precision require-
ments of specialized tasks, invalid2valid opens up new possibilities for the seamless integration
of language models into critical domains.
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A Additional Experiments
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Figure 3: The figure compares the performance of using Pfam (Green lines) and ’invalid2valid’ (Blue lines) in
the task of predicting SMMs. Dotted lines represent training data, and solid lines represent testing data. Four
evaluation metrics are shown: Accuracy (exact matching), Rouge F1, Char error rate, and rate of valid molecules.
A noticeable performance improvement across all four metrics is evident when using the ’invalid2valid’ model
as opposed to relying solely on Pfam annotations.
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Figure 4: The figure displays a performance comparison between using SMILES (Green lines) and ’invalid2valid’
(Blue lines) for predicting the molecular activity of SMMs. Dotted lines represent the training data, while solid
lines represent testing data. The evaluation is based on two metrics: Accuracy (exact matching) and Rouge F1.
A significant performance improvement is observed when applying the ’invalid2valid’ approach.
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B Qualitative Results

Table 3: Qualitative examples of the task of predicting SMM given BGC for baselines and w/ and w/o
Invalid2Valid.

Method SMILES Chem. struct.
Baseline CCC(C)C(=O)N1=O)N((=CCNC2=C=CC=C12
w/ Pfam [CCC)C(=O)N1CO)N(CC=C((=C=CC=C12
w/ Pfam w/ I2V (ours) CCC(C)C(=O)C(=O)NCCC1=CNC2=CC=CC=C12
Target CCC(C)C(=O)C(=O)NCCC1=CNC2=CC=CC=C12

Baseline C[C==CC)1ccccccccc(cccccO2cnH](cO-])C)CC((C(C)C)
w/ Pfam [C==C/C)1C2ccccccc2cccccO2cCH]([O-])C)CC(C()C)
w/ Pfam w/ I2V (ours) C/C(=CCO)1cccc2cccc(cccccc13[C+]2[O-])O)/Cc=C(C)C
Target C/C(=CCOc1cccc2c1nc1cccc(c1[n+]2[O-])O)/CCC=C(C)C

Baseline CCC1C@HH]1C)[C@H]1C(=O)[C=CC==CC=CC=C1)CC@@](C)CC@H](C)C(C=CC=CC==)=O
w/ Pfam CC(C@HH]1C)[C@H]1O(=O)[C=CC==C=CC=C1)CC@H](O)[C@H](O)[(C=CC=CC==)=O
w/ Pfam w/ I2V (ours) CC[C@@H](C)[C@H](OC(=O)/=CC1=CC=CC=C1)[C@H](C)[C@H](O)C=CC=C/C=N)=O
Target CC[C@@H](C)[C@H](OC(=O)C=CC1=CC=CC=C1)[C@H](C)[C@H](O)CC=CC=C/C(N)=O

Table 4: Qualitative examples from the test set of the task of predicting molecular activities given SMM.
Label Input to baseline Baseline predictions w/ I2V (ours)

antibacterial;antifungal;inhibitor CCC(C)CC(C)C(=O)C1=C ... antibacterial;antifungal;cytohibitor antibacterial;antifungal;inhibitor
siderophore CCC(C)C1=CN=C(C(=O) ... siderophore siderophore
antibacterial;signalling NC(CC1=CNC2=C1C=CC=C2)C ... antibacterial;signalling antibacterial;signalling
surfactant CC(C)CCCCCC(=O)N[C@H] ... antifactant surfactant

Table 5: Qualitative examples from the test set of the task of predicting molecular classes given SMM.
Label Inputs to baseline Baseline predictions w/ I2V (ours)
Saccharide OC[C@H]1O[C@@H](N2C=NC3=C2NC=NC[C@H]3O)[C@H](O)[C@@H]1O Polycharide Saccharide
Polyketide CO/[N+]([O-])=C/C(=O)N/C=C/C(=O)O Nketide Polyketide
Polyketide CC(=O)N[C@@H](CC1=CC=CC=C1)C2=CC(=CC(=O)O2)OC Riketide Polyketide
RiPP CCC1CCCCC(=O)C2=C(O1)C=C(C=C2CC(=O)OCC)O OtherPP RiPP
NRP COC1=CC(/C=N/O)=NC(=C1)C1=NC=CC=C1 PolyRP NRP

Table 6: Qualitative examples of the task of predicting SMM given BGC for baselines and w/ and w/o
Invalid2Valid.

Method SMILES Chem. struct.
Input to baseline nonribosomal peptide synthetase, BudA_nonribosomal peptide synthetase, ...
Baseline CCC(C)C(=O)N1=O)N((=CCNC2=C=CC=C12
Input to Pfam PF05222.17_PF01262.23_PF12769.9_PF022 ...
w/ Pfam [CCC)C(=O)N1CO)N(CC=C((=C=CC=C12
w/ Pfam w/ I2V (ours) CCC(C)C(=O)C(=O)NCCC1=CNC2=CC=CC=C12
Target CCC(C)C(=O)C(=O)NCCC1=CNC2=CC=CC=C12

Input to baseline bacteriophage integrase_hypothetical protein_putative thioesterase_putative ...
Baseline CCC(CCCCCCCCCCCC=)C@HH](CC(N)=O)C(N[=O)CO
Input to Pfam PF13356.8_PF00589.24_PF08020.13_PF00975.22_PF00144.26 ...
w/ Pfam CCC1CCCCCCCCCCCCC)C@HH](O)=)NO)=(O)=O)=O)
w/ Pfam w/ I2V (ours) CCCCCCCCCCCC((N[C@@H](C=O)=O)CC(N)=O)=O
Target CCCCCCCCCCCCCC(N[C@@H](C(O)=O)CC(N)=O)=O

Input to baseline PilN domain-containing protein ...
Baseline C[C@H]1[C@@]([[C@H2[(=C(([C@@H](C)=O)O[C@H](CC@@H]([[C@@]([(=C@@](C2)[[C@@H](C)O)OC)C)O)O)O)OO
Input to Pfam PF11288.10_PF07015.13_PF05128.14_PF05128.14_PF01145.27 ...
w/ Pfam [C@H]1[C@H]([)C@H2C)=O)(CC@HH](O)=O)O[C@H](CC@HH]([[C@H]([[=C@H](O2)C)C@HH](C)O)OC)C)O)C)OC)OC)OC)
w/ Pfam w/ I2V (ours) C[C@H]1[C@H](O[C@](CC1=C)([C@@H](C(=O)N[C@H]([C@@H]2C[C@H](C([C@H](O2)C[C@@H](CO)OC)(C)C)O)OC)O)OC)C
Target C[C@H]1[C@H](O[C@](CC1=C)([C@@H](C(=O)N[C@H]([C@@H]2C[C@H](C([C@H](O2)C[C@@H](CO)OC)(C)C)O)OC)O)OC)C

C Evaluation metrics and software
For the evaluation matrices was, the following used: For accuracy was Scikit-learn used [23]. For char error
rate, Rouge and sacreBleu were PyTorch torchmetrics used [22]. For chemical structure validity, was rdkit used
[11] PyTorch was used to build models in [22]. Pre-trained models was downloaded from HuggingFace [35].

C.1 Metrics
Accuracy. Refers to exact matching.
Char Error Rate. Refers to the percentage of characters that were predicted incorrectly. A lower value signifies
better performance, with a CharErrorRate of 0 indicating flawless predictions.
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ROUGE-1. Refers to the overlap of unigrams between the predicted molecule and target molecule. We compute
the F1 score of such metric to balance precision and recall.
sacreBLEU. Computes the BLEU score by averaging the accuracy of phrases of different lengths in the machine
translation, adjusting for over-counting and sentence length. It ensures consistent scoring by using fixed settings
and standardized reference data [24].
Chem.MolFromSmiles. Checks the validity of a molecule represented in SMILES notation. This function
attempts to create a molecular object based on the input SMILES string. Common SMILES symbols are
illustrated in table 7

C.2 SMILES

Table 7: Most common SMILES symbols and meanings

Symbol Description
C / c Carbon atom / aromatic carbon atom
O / o Oxygen atom / aromatic oxygen atom
N / n Nitrogen atom / aromatic nitrogen atom

() Encloses branches
= Double bond
# Triple bond
\/ Single or double bond (cis or trans)
@ Chirality (clockwise)

@@ Chirality (anticlockwise)
[ ] Atomic properties (charge, isotopic mass, etc.)

D Datasets

Table 8: Summary of Datasets. In the row corresponding to the Pfam dataset, the numbers in parentheses
indicate the subset used for training and evaluation.

Dataset Train Set Test Set Input Target

SMILES-biosyn 1964 492 SMM Class
SMILES-activity 713 179 SMM Function

Pfam 1191 (845) 298 (211) BGC SMM
invalid2valid 2535 633 SMM SMM

Table 9: The general structure of all the datasets

Symbol Description
<Task: > The task or problem to be solved.

<Input_text> Input text for the task.
<target_string> The target string or expected output.

E How to train invalid2valid

F Hyper-parameters
For all the tasks was, the same hyper-parameters used; Learning rate: 7e-4, batch size: 6, and weight decay:
0.05.
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Figure 5: The figure distinguishes the invalid2valid method, represented by red squares, from a standard machine
learning approach, shown in white squares. ’Invalid2valid’ augments the standard machine learning approach
with two steps. 1): saving post-convergence predictions for both train and test sets and then using these to form
new train and test sets while keeping original target labels intact. 2): Fine-tuning/training a new LLM on the
new train set and assessing its performance on a (semi-)original test set.

Table 10: Relevant Hyperparameters for baselines and ’Invalid2Valid

SMM2Class SMM2Activity Pfam invalid2valid

Batch size 6 6 6 6
Architecture T5 T5 T5 T5
Iterations/epochs 18 18 18 18
Learning rate 7e−4 7e−4 7e−4 7e−4

Optimizer AdamW AdamW AdamW AdamW
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