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Abstract
Dot-product attention mechanism plays a crucial
role in modern deep architectures (e.g., Trans-
former) for sequence modeling, however, naïve
exact computation of this model incurs quadratic
time and memory complexities in sequence length,
hindering the training of long-sequence models.
Critical bottlenecks are due to the computation
of partition functions in the denominator of soft-
max function as well as the multiplication of
the softmax matrix with the matrix of values.
Our key observation is that the former can be
reduced to a variant of the kernel density estima-
tion (KDE) problem, and an efficient KDE solver
can be further utilized to accelerate the latter via
subsampling-based fast matrix products. Our pro-
posed KDEformer can approximate the attention
in sub-quadratic time with provable spectral norm
bounds, while all prior results merely provide
entry-wise error bounds. Empirically, we verify
that KDEformer outperforms other attention ap-
proximations in terms of accuracy, memory, and
runtime on various pre-trained models. On Big-
GAN image generation, we achieve better genera-
tive scores than the exact computation with over
4× speedup. For ImageNet classification with
T2T-ViT, KDEformer shows over 18× speedup
while the accuracy drop is less than 0.5%.

1. Introduction
Transformers (Vaswani et al., 2017) have been successfully
applied to a wide variety of learning tasks in areas such
as natural language processing (Devlin et al., 2018; Yang
et al., 2019; Brown et al., 2020; Raffel et al., 2020), com-
puter vision (Carion et al., 2020; Dosovitskiy et al., 2021),
and time series forecasting (Zhou et al., 2021). Although
popular, these models face serious scalability limitations
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because naïve exact computation of their attention layers
incurs quadratic (in sequence length) runtime and memory
complexities. This can inhibit the training of large-scale
long-sequence models.

Several algorithms have been proposed to improve Trans-
formers’ efficiency via approximating the softmax matrices
in their attention layers with either sparse matrices (Ki-
taev et al., 2020; Daras et al., 2020; Roy et al., 2021; Sun
et al., 2021) or low-rank matrices (Choromanski et al., 2021;
Katharopoulos et al., 2020), or a combination of both (Chen
et al., 2021b; Zaheer et al., 2020; Chen et al., 2021a; Dass
et al., 2022). However, all prior advances solely focused on
point-wise approximating the entries of the softmax matrix
and fail to provide rigorous approximation guarantees on
the final output of the attention mechanism. In this work,
we design algorithms to approximate the output matrix of
attention layers with provable spectral norm guarantees.

1.1. Problem Formulation and Setting.

Let n be the number of tokens in the input sequence and d
be the dimension of latent representations. The dot-product
attention (Vaswani et al., 2017) is a mapping which takes
inputs Q,K,V ∈ Rn×d (interpreted as queries, keys, and
values of a dictionary) and outputs the following matrix:

Att(Q,K,V) := D−1AV

A := exp
(
QK⊤/

√
d
)
, D := diag(A1n),

where exp(·) is applied in an element-wise manner, 1n is
the ones vector in Rn, and diag(·) maps its input vector to a
diagonal matrix. We refer to A ∈ Rn×n as the attention ma-
trix and to D−1A as the softmax matrix. Exact computation
of the attention matrix A takes Θ(n2d) operations and stor-
ing it requires Θ(n2) memory. Thus, naïve computation of
Att(Q,K,V) requires Ω(n2d) runtime and Ω(n2) memory.
Our aim is to approximate the output matrix Att(Q,K,V)
efficiently while preserving its spectral structure.

Our approach is based on reducing the number of columns
of matrix A using importance sampling. We also devise
an efficient estimator for the diagonal scaling matrix D,
which bypasses exact and explicit computation of matrix A.
Formally, for any given ε > 0 and any Q,K,V ∈ Rn×d, we
want to quickly find a sampling matrix Π ∈ Rm×n with a

1



KDEformer: Accelerating Transformers via Kernel Density Estimation

small number m = n1−Ω(1) of rows along with a diagonal
matrix D̃ ∈ Rn×n, such that the following bound on the
operator norm of the error is satisfied:
∥∥∥Att(Q,K,V)− D̃−1AΠ⊤ ·ΠV

∥∥∥
op
≤ ε · ∥V∥op . (1)

Note that D−1A is a row-stochastic (transition) matrix, so
its operator norm is

∥∥D−1A
∥∥
op

= 1, thus the r.h.s. in
Eq. (1) is in fact equal to ε ·

∥∥D−1A
∥∥
op
∥V∥op.

Given a sampling matrix Π with m rows, we can compute
the matrix product AΠ⊤ · ΠV in O(nmd) total runtime
and O(nm) memory because we only need to compute
the m sampled columns of A. Therefore, our main goal
is to generate a sampling matrix Π with a small number
of samples along with a diagonal matrix D̃ which satisfy
Eq. (1) using a sub-quadratic runtime in n.

All prior approximate attention methods have solely fo-
cused on finding an approximate attention matrix Ã such
that

∥∥∥A− Ã
∥∥∥
F

is small, even though A is not the ultimate
output of attention and the output depends on V in addition
to A. In contrast, we propose the first efficient algorithm for
approximating the output matrix Att(Q,K,V) with spectral
bounds as per Eq. (1) (see Section 3.3).

1.2. Our Techniques and Results

We leverage the line of work on efficient Kernel Density
Estimation (KDE) (Schölkopf et al., 2002; Joshi et al.,
2011; Charikar & Siminelakis, 2017; Backurs et al., 2018;
2019; Siminelakis et al., 2019). In the KDE problem,
we are given a dataset X = {x1, x2, . . . xn} and a ker-
nel function k(·, ·) and aim to compute the kernel density
µX(q) = 1

n

∑n
i=1 k(q, xi) for an arbitrary query point q.

The goal of existing methods in the literature is to estimate
this value to (1 + ε) relative error in time O

(
ε−2d/µ̃τ

)
for

some τ > 0, where µ̃ is a lower bound on µX(q). Particu-
larly, the best-known algorithm for the Gaussian kernel, due
to Charikar et al. (2020), achieves τ = 0.173 + o(1).

We show that finding the sampling matrix Π and diagonal
scaling D̃ which satisfy Eq. (1) can be reduced to a general-
ization of the KDE problem. First note that the ith diagonal
entry of the scaling matrix D is Di,i =

∑n
j=1 exp

(
⟨qi,kj⟩√

d

)
,

which is indeed the kernel density corresponding to expo-
nential kernel function k(x, y) = exp(⟨x, y⟩) and dataset
1

d1/4 ·K at query point 1
d1/4 · qi. Thus, if we had an efficient

KDE procedure for estimating the exponential kernel den-
sity up to a multiplicative (1± ε) factor, we could compute
a scaling D̃ that satisfies the spectral guarantee of Eq. (1).

Additionally, to design an efficient sampling matrix Π that
satisfies Eq. (1) with small number of rows, the sampling
probabilities need to be proportional to the column norms
of the softmax matrix D−1A (Zouzias, 2013). One can

see that the squared norm of the ith column of D−1A is∑
j∈[n] D

−2
j,j exp

(
2√
d
⟨qj , ki⟩

)
, which is a weighted expo-

nential kernel density with weights
{
D−2

i,i

}
i∈[n]

and dataset
√
2

d1/4 ·Q at query point
√
2

d1/4 · ki. Therefore, if we could esti-
mate this weighted exponential kernel density up to some
constant multiplicative factor, we could generate a sampling
matrix Π with small number of samples that satisfies Eq. (1).

Thus, having a generalized KDE procedure for efficiently
evaluating the weighted exponential kernel density, enables
us to approximate Att(Q,K,V) as per Eq. (1). While there
is no prior solution for this problem, we show how to trans-
late it to the Gaussian KDE problem, which has witnessed
significant recent progress, by applying appropriate trans-
formations on K and Q (see Algorithm 2 and Theorem 3.4).

Our Theoretical Results. We give an algorithm that out-
puts a diagonal D̃ ∈ Rn×n and a sampling matrix Π ∈
Rm×n with m = O

(
ε−2 log n · srank(D−1A)

)
samples

which satisfy the spectral bound of Eq. (1) with high prob-
ability in n, where srank(D−1A) denotes the stable rank
of the softmax matrix. Our method reduces the memory of
attention layers to mn = O

(
ε−2n log n · srank(D−1A)

)
.

Furthermore, if the Gaussian KDE is supported by an algo-
rithm with runtime O

(
ε−2d/µ̃τ

)
for relative error 1 + ε,

and density lower bound µ̃, then our algorithm’s runtime is
bounded by O

(
ε−2d · n1+τ

)
for any datasets of queries

Q and keys K with diameter maxi,j∈[n] ∥ki − qj∥22 =

o
(√

d · log n
)

, which is strongly sub-quadratic in n. The
current best value for τ is τ = 0.173+o(1) due to (Charikar
et al., 2020) and any future progress on Gaussian density
evaluation immediately improves our method’s runtime.

This result applies to a wide range of practical scenarios
where the dimension d is not too large. To see why, note
that entries of K,Q are typically constant, thus, the diam-
eter is maxi,j∈[n] ∥ki − qj∥22 = O(d). Therefore, for any

dimension d = o(log2 n), e.g., d ≈ log2 n
log logn , our method

needs only O
(
m+ ε−2d · n1+τ

)
operations, which is sig-

nificantly faster than exact computation of Att(Q,K,V).

Our Practical Results. Our necessary number m of sam-
ples depends on the stable rank of the softmax matrix. To
reduce m, we employ Locality Sensitive Hashing (LSH) to
extract the heavy elements of D−1A and then show that,
in practice, the residual has a significantly smaller stable
rank than the original matrix (see Section 3.4). With this
heuristic improvement, we verify that our proposed algo-
rithm outperforms popular attention approximations. In
particular, it can save memory space up to 19.06× when
the sequence length n is 16,394. We apply our method to
image generation with BigGAN (Brock et al., 2019) and
observe that our images, shown in Fig. 1, look more natural
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Figure 1. Image generations by the pre-trained BigGAN using ex-
act and approximate attention without fine-tuning.

than others and our generative score is even better than the
exact attention. Furthermore, for ImageNet classification
with Vision Transformer (Yuan et al., 2021), KDEformer
shows 18× speedup and 82.08% accuracy which is only
0.5% lower than the exact attention (see Section 4.3). Fi-
nally, we demonstrate our method on end-to-end training
under the Long Range Arena benchmark (Tay et al., 2021)
and observe up to 8× speedup on wall-clock time than the
exact attention (see Section 4.4).

1.3. Prior Work

Several popular methods try to approximate the heavy en-
tries of the attention matrix A by restricting the attention
to local neighbors of queries using Locality Sensitive Hash-
ing (LSH) (Kitaev et al., 2020; Chen et al., 2020; Sun
et al., 2021) or k-means clustering (Daras et al., 2020; Roy
et al., 2021). Such approaches, however, only provide er-
ror bounds on the attention matrix, e.g., guarantees of the
form ∥A − Ã∥F < εn, and cannot provide any provable
guarantees for the final output matrix Att(Q,K,V). Re-
markably, at the core of our algorithm, there are invocations
of the Gaussian KDE primitive from Charikar et al. (2020),
which heavily employs LSH to estimate kernel densities.
In contrast to previous works, our algorithm uses LSH in a
more subtle way, that is for estimating the right sampling
probabilities in order to generate Π and also to approximate
the scaling D. This difference of approach allows us to
approximate Att(Q,K,V) with spectral norm guarantees.

Another recent line of work is based on approximating the at-
tention matrix A via random feature maps of the Gaussian or
exponential kernels (Choromanski et al., 2021; Katharopou-
los et al., 2020). Chen et al. (2021b) has recently shown
that using a combination of both LSH-based and random
features based methods works better at approximating the
attention matrix A. See (Tay et al., 2022) for a survey.

2. Preliminaries and Notations
For any matrix A, we let ai be its ith row vector and its
stable rank is defined as srank(A) :=

∥A∥2
F

∥A∥2
op

which is

always upper bounded by the algebraic rank. We denote
e1, e2, . . . en by the standard basis vectors in Rn and 1n and
0n by the all-ones and all-zeros vectors in Rn. For vectors
x, y their direct sum is denoted by x⊕ y := [x⊤, y⊤]⊤.

Gaussian KDE. Our main algorithm is tightly related to
the Gaussian KDE, where one is given a dataset X ∈ Rn×d

and wants to build a data-structure (DS) such that given this
DS one can estimate the following kernel density value up
to (1 + ε) relative error for any query point q ∈ Rd:

µX(q) :=
1

n

∑

i∈[n]

exp(−∥q − xi∥22 /2). (2)

The naïve method without any DS requires Θ(nd) time and
memory complexities. The aim is to minimize the memory
needed to store the DS and the query time, ultimately being
sublinear in n. The pre-processing time which is needed to
construct the DS is also desired to be small. There have been
significant advances on this problem and the current best
result was proposed by Charikar et al. (2020) as follows:

Theorem 2.1 (Fast Gaussian KDE, Theorem 2 in (Charikar
et al., 2020)). Let τ = 0.173 + o(1). For any dataset
X ∈ Rn×d and any ε, µ̃ ∈ (0, 1), there exist:

1. Procedure PREPROCESSKDE(X, ε, µ̃) constructs a
data-structure named DSkde in time O

(
ε−2dn/µ̃τ

)
.

2. Given DSkde, any query q ∈ Rd, and µX(q) defined as
in Eq. (2), procedure QUERYKDE(DSkde, q) approx-
imates the quantity µX(q) · 1{µ̃≤µX(q)} up to (1 + ε)

relative error in time O(ε−2d (µ̃+ µX(q))
−τ

).

The density lower bound µ̃ required by Theorem 2.1 is un-
known to us in advance and we learn this quantity adaptively
in Algorithm 2. We show in Section 3.3 that for datasets
with bounded diameter µ̃ = n−1−o(1).

3. Efficient Attention with Spectral Bounds
In this section, we design KDEformer which can efficiently
compute a sampling matrix Π and a diagonal scaling D̃
satisfying Eq. (1). We start by showing that this can be done
very efficiently given access to a primitive for estimating the
row-norms of the attention matrix A as well as the column-
norms of the softmax matrix D−1A. Next, in Section 3.2,
we present a reduction from norm estimators for A and
D−1A to the Gaussian KDE problem which has an efficient
solution. Finally, we prove our main result in Section 3.3
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3.1. High-level Architecture of the Algorithm

Here, we assume that we have access to an oracle, which can
estimate the weighted linear combination of n exponential
kernels at arbitrary query points, and given this oracle, we
design an algorithm that can output Π and D̃ which satisfy
Eq. (1). In other words, we translate and reduce the problem
of spectrally approximating Att(Q,K,V) to a weighted
KDE problem corresponding to the exponential dot-product
kernel. The precise interface and desired properties of this
oracle are presented in the following definition,

Definition 3.1 (Weighted Exponential KDE). Let X,Y ∈
Rn×d be arbitrary datasets and let v ∈ Rn

+ be an arbitrary
vector with positive coordinates. For any ε > 0, primitive
WEXPKDE(X,Y, v, ε) outputs a non-negative vector α ∈
Rn

+ such that:

αj ∈ (1± ε) ·
∑

i∈[n]

vi exp(⟨xi, yj⟩) ∀j ∈ [n]. (3)

Now we show how to generate Π and D̃ that satisfy Eq. (1),
given access to WEXPKDE as per Definition 3.1.

Estimating D = diag
(
exp

(
QK⊤/

√
d
)
1n

)
. One can

easily see that the jth diagonal entry of D equals:

Dj,j =
∑

i∈[n]

exp
(
⟨ki, qj⟩/

√
d
)
∀j ∈ [n]. (4)

Therefore, if we let α = WEXPKDE
(

K
d1/4 ,

Q
d1/4 ,1n,

ε
3

)

and define D̃ = diag(α), then by Definition 3.1 and using
the fact that entries of D are positive, we have (1−ε/3)D ⪯
D̃ ⪯ (1 + ε/3)D where ⪯ is the Loewner order. So, using
the fact that

∥∥D−1A
∥∥
op

= 1,

∥∥∥Att(Q,K,V)− D̃−1AV
∥∥∥
op
≤ ε

2
· ∥V∥op . (5)

Hence, we can estimate D to sufficient precision by invoking
WEXPKDE

(
K

d1/4 ,
Q

d1/4 ,1n,
ε
3

)
.

Generating the Sampling Matrix Π. Given a diagonal
matrix D̃ which satisfies Eq. (5), by triangle inequality, in
order to satisfy the spectral bound of Eq. (1), it suffices to
find a sampling matrix for which the following holds,

∥∥∥D̃−1AΠ⊤ ·ΠV − D̃−1AV
∥∥∥
op
≤ ε

2
· ∥V∥op (6)

So, our goal is to design a sampling matrix Π ∈ Rm×n

with a small number m of rows that satisfies Eq. (6).
This problem is in fact well studied in the randomized
numerical linear algebra literature and is known as the

Algorithm 1 KDEformer

1: input: matrices Q,K,V ∈ Rn×d, integer m, and ε > 0
2: γ ← ∥V∥−2

op via power method

3: α← WEXPKDE
(

K
d1/4 ,

Q
d1/4 ,1n,

ε
3

)
in Definition 3.1

4: β ← WEXPKDE
(√

2·Q
d1/4 ,

√
2·K

d1/4 , u, 1/3
)

,

where ui ← 1/α2
i for every i ∈ [n]

5: pi ← βi + γ · ∥vi∥22 for every i ∈ [n] then
normalize pℓ ← pℓ∑

j∈[n] pj
for every ℓ ∈ [n]

6: generate i.i.d. samples ℓ1, ℓ2, . . . ℓm ∈ [n] from distri-
bution {pℓ}ℓ∈[n]

7: let rth row of Π be 1√
m·pℓr

· e⊤ℓr for every r ∈ [m]

8: return D̃ = diag(α) and Π

Approximate Matrix Multiplication (AMM) with respect
to the spectral norm. It is known how to achieve the
above guarantee using a sampling matrix with m =
O
(
ε−2 log n · (srank(D−1A) + srank(V))

)
i.i.d. rows.

More formally, we have the following result which is a slight
modification of Theorem 2.1 from (Zouzias, 2013) and is
proved in Appendix B.1.
Lemma 3.2 (AMM). For any matrices X ∈ Rn×q,Y ∈
Rn×d and any probability distribution {pi}i∈[n] satisfy-

ing pi ≥ 1
4 ·

∥xi∥2
2+γ·∥yi∥2

2

∥X∥2
F+γ·∥Y∥2

F

for all i ∈ [n] and γ =

∥X∥2op / ∥Y∥
2
op, a sampling matrix Π ∈ Rm×n constructed

by first generating m i.i.d. samples ℓ1, . . . ℓm ∈ [n] accord-
ing to {pℓ}ℓ∈[n] and then letting the rth row of Π be 1√

m·pℓr
·

e⊤ℓr , if m = Ω
(
ε−2 log n · (srank(X) + srank(Y))

)
for

some ε > 0, the following holds,

Pr
[∥∥X⊤Π⊤ΠY −X⊤Y

∥∥
op

> ε ∥X∥op ∥Y∥op
]
≤ 1

poly(n)
.

So, by invoking Lemma 3.2 with X⊤ = D̃−1A and
Y = V and error parameter ε/2, we can find a random
sampling matrix Π which satisfies Eq. (6) with high prob-
ability in n, as long as the number of samples is at least
m = Ω

(
ε−2 log n(srank(D̃−1A) + srank(V))

)
. The

only catch is that, to apply Lemma 3.2, we need to compute
the distribution {pi}i∈[n] as per this lemma. In other words,
we need to compute the row norms of V as well as the col-
umn norms of D̃−1A. All row norms of V can be computed
in O(nd) time. However, naively computing the column
norms of D̃−1A would require Θ(n2d) operations. Fortu-
nately, the column norms of D̃−1A can be approximated via
the primitive WEXPKDE from Definition 3.1.

The procedure for computing D̃ and sampler Π is presented
in Algorithm 1. We state the correctness of Algorithm 1 in
the following theorem and prove it in Appendix B.2.
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Theorem 3.3 (Correctness of Algorithm 1). For any matri-
ces Q,K,V ∈ Rn×d, any ε > 0, and number of samples
m = Ω

(
ε−2 log n · (srank(D−1A) + srank(V))

)
, given

access to a primitive WEXPKDE as per Definition 3.1,
Algorithm 1 outputs a diagonal matrix D̃ ∈ Rn×n and a
sampling matrix Π ∈ Rm×n which satisfy Eq. (1) with
probability at least 1− 1

poly(n) .

So, to spectrally approximate Att(Q,K,V), it is enough to
run Algorithm 1. This algorithm relies on the existence of
primitive WEXPKDE as per Definition 3.1, therefore, we
focus on efficient implementation of WEXPKDE.

3.2. Weighted Exponential KDE

Here, we devise an efficient algorithm that satisfies the
desired properties of WEXPKDE as per Definition 3.1. We
show that this procedure is tightly related to and can be
translated to an instance of the Gaussian KDE. First note
that if all data-points in dataset X were on a sphere, i.e.,
∥xi∥2 = r for all i ∈ [n] and some r > 0, then the weighted
exponential kernel density corresponding to the weights
v = 1

n · 1n would be equal to e(∥q∥
2
2+r2)/2 · µX(q), where

µX(q) is defined as in Eq. (2).

Our proposed WEXPKDE primitive employs a fast Gaus-
sian KDE method as per Theorem 2.1. The weighted expo-
nential kernel density for a query point q and weight vector
v ∈ Rn

+ can be written as,

∑

i∈[n]

vie
⟨xi,q⟩ = e

∥q∥22
2

∑

i∈[n]

vie
∥xi∥2

2
2 · e−

∥xi−q∥2
2

2 . (7)

Let us define wi :=

√
2 log

∑
j∈[n] vj exp(∥xj∥2

2/2)

vi·exp(∥xi∥2
2/2)

for every

i ∈ [n] and define the augmented dataset X′ ∈ Rn×(d+1) as
x′
i := xi ⊕ [wi] for every i ∈ [n]. Also let the augmented

query point be q′ := q ⊕ [0]. Then, the r.h.s. in Eq. (7) can
be written as

e
∥q∥22

2

∑

i∈[n]

vie
∥xi∥2

2
2 · exp

(
−∥x

′
i − q′∥22
2

+
w2

i

2

)

= n · e
∥q∥22

2

∑

j∈[n]

vje
∥xj∥2

2
2 · µX′(q′). (8)

Therefore, the weighted exponential kernel density can be
obtained from the Gaussian kernel density corresponding
to the augmented dataset X′ and augmented query q′, i.e.,
µX′(q′). The augmented dataset can be constructed very
efficiently in time O(nd), so given a fast Gaussian KDE
as per Theorem 2.1, Eq. (8) shows us an efficient way to
implement the WEXPKDE procedure. Our proposed proce-
dure is presented in Algorithm 2. Note that, fast Gaussian
KDE requires a lower bound µ̃ on the kernel density value

Algorithm 2 Weighted Exponential KDE (WEXPKDE)

1: input: matrices X,Y ∈ Rn×d, vector v ∈ Rn
+, error

parameter ε > 0, and τ > 0
2: µ← 1/n and S ← [n] and α← 0n

3: N ←∑
j∈[n] vje

∥xj∥2
2

2

4: wi ←
√
2 log N

vi·exp(∥xi∥2
2/2)

for every i ∈ [n]

5: X′ ← [X;w] ∈ Rn×(d+1), Y′ ← [Y;0n] ∈ Rn×(d+1)

6: while µ−τ ≤ ε2 · |S| do
7: DSkde ← PREPROCESSKDE(X′, ε, µ)

8: αi ← n · N · e
∥yi∥2

2
2 · QUERYKDE(DSkde, y′i) for

every i ∈ S
9: µ← µ/2 and S ← {i ∈ [n] : αi = 0}

10: end while
11: αj ←

∑
i∈[n] vi · exp(⟨xi, yj⟩) for every j ∈ S

12: return α

µX′(q′), and we show how to adaptively learn µ̃ in Algo-
rithm 2 using the fact that if QUERYKDE(DSkde, q′) outputs
zero we can infer that our lower bound was too high. We
analyze Algorithm 2 in the following theorem.

Theorem 3.4 (Analysis of Algorithm 2). For every ma-
trices X,Y ∈ Rn×d, any non-negative vector v ∈ Rn

+,
and any ε ∈ (0, 1), and given a fast Gaussian KDE as
per Theorem 2.1, Algorithm 2 outputs a vector α ∈ Rn

which satisfies the desired conditions of Definition 3.1
(i.e., Eq. (3)). Furthermore, this procedure’s runtime is
O (nd · CX,Y,v,ε,τ ), where

CX,Y,v,ε,τ := (9)

min
µ>0

1

ε2µτ
+

∣∣∣∣∣∣∣




i ∈ [n] :

∑n
j=1 vje

⟨xj ,yi⟩

∑n
j=1 vje

∥xj∥2
2
+∥yi∥2

2
2

< nµ





∣∣∣∣∣∣∣

Proof. First, we prove the correctness. Let us index the
iterations of the algorithm’s while loop by t = 0, 1, 2, . . .
and let µt, αt, and St denote the value of µ, the vector α, and
set S at tth iteration. We have |St| ≤ n and µt =

1
n·2t for

every t, thus, the algorithm must terminate in T = O(log n)
iterations. Also, by Theorem 2.1, the set St+1 computed
in line 9 equals St+1 = {i ∈ [n] : µX′(y′i) < µt}, because
the fast Gaussian KDE procedure outputs zero if and only if
µX′(y′i) < µt.

Next, we show by induction that at every iteration t, αt(i)

is within (1 ± ε) factor of nNe
∥yi∥2

2
2 · µX′(y′i) for all i ∈

[n] \ St. Base of induction is trivial because S0 = [n]. For
proving the inductive step, note that in lines 7-8 αt+1(i)
is updated for every i ∈ St by invoking the fast Gaussian
KDE procedure and αt+1(i) = αt(i) for i ∈ [n] \ St. Thus,
by the inductive hypothesis and Theorem 2.1 as well as

5
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definition of St+1 in line 9, αt+1(i) is within (1± ε) factor

of nNe
∥yi∥2

2
2 ·µX′(y′i) for all i ∈ [n]\St+1, which completes

the inductive proof. Using the definition of N in line 3 and
definition of X′,Y′ in line 5 along with Eq. (8), the invariant
that we proved implies that for every t = 0, 1, . . . T , αt(i)
is within (1± ε) factor of

∑
j∈[n] vj · exp(⟨xj , yi⟩) for all

i ∈ [n] \ St. After exiting the while loop, α(i) is updated at
all i ∈ ST+1 in line 2 as α(i) =

∑
j∈[n] vj · exp(⟨xj , yi⟩),

and α(i) = αT (i) for every i ∈ [n] \ ST . This proves that
the output vector α satisfies Eq. (3), which completes the
correctness proof.

Runtime Analysis. The runtime has three components;

1) Time to run PREPROCESSKDE in line 7. The total time
of running this primitive in all iterations t = 0, 1, . . . T is
O
(∑T

t=0
d·n
ε2 µ−τ

t

)
, by Theorem 2.1. Since µt =

1
n·2t , this

runtime is bounded by O
(
d·n
ε2 µ−τ

T

)
.

2) Time to run QUERYKDE in line 8. By Theorem 2.1,
the total time to run this procedure in all iterations is
O
(

d
ε2 ·

∑T
t=0

∑
i∈St

(µt + µX′(y′i))
−τ
)

. Because |St| ≤
n, this runtime complexity is completely dominated by (1).

3) Time to exactly compute the weighted exponential densi-
ties of the points with very small µX′(y′i) value in line 10.
This runtime is bounded by O(nd · |ST+1|).
Now we combine these bounds. Using the assumption that
the algorithm terminated at iteration t = T , the while loop
condition at iteration T + 1 must fail. Therefore, |ST+1| <
µ−τ
T+1/ε

2 < 2µ−τ
T /ε2. This shows that the first component

of the runtime must dominate the third component. So the
total time is bounded by O

(
d·n
ε2 µ−τ

T

)
.

Recall that the while loop terminates at iteration T mean-
ing that ε−2µ−τ

t ≤ |St| for every t = 0, 1, . . . T and
ε−2µ−τ

T+1 > |ST+1|. So, T is the largest integer that sat-
isfies ε−2µ−τ

T ≤ |ST |. Also recall that St = {i ∈ [n] :
µX′(y′i) < µt−1} and µt =

1
n·2t . Thus, the runtime of the

procedure can be expressed as,

O(nd) ·min
µ>0

ε−2µ−τ + |{i ∈ [n] : µX′(y′i) < µ}| .

The definition of X′,Y′ in line 5 along with Eq. (8) gives
the claimed runtime bound in Eq. (9).

To get a better understanding of the runtime bound in Theo-
rem 3.4, suppose that datasets X,Y are such that cardinality

of set



i ∈ [n] :

∑
j∈[n] vj exp(⟨xj ,yi⟩)∑

j∈[n] vj exp

(
∥xj∥2

2
+∥yi∥2

2
2

) ≤ n−o(1)



 is

upper bounded by O
(
ε−2 · nτ

)
. For such datasets, the run-

time of Theorem 3.4 is bounded by O
(
ε−2d · n1+τ+o(1)

)
,

which is strongly sub-quadratic in n.

3.3. Main Result

Now we are in a position to prove our main result, i.e.,
an efficient algorithm that can approximate the attention
mechanism with spectral guarantees as per Eq. (1).

Theorem 3.5 (Approximate Attention with Spectral Norm
Bound). For any matrices Q,K,V ∈ Rn×d, any ε >
0, and given a fast Gaussian KDE as per Theorem 2.1,
there exists an algorithm that outputs a diagonal ma-
trix D̃ ∈ Rn×n and a sampling matrix Π ∈ Rm×n

with m = O
(
ε−2 log n · (srank(D−1A) + srank(V))

)

samples which satisfy Eq. (1) with probability at
least 1 − 1

poly(n) . The runtime of this algorithm

is O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ

))
,

where vj =
(∑

ℓ∈[n] exp
(

1√
d
⟨qj , kℓ⟩

))−2

for j ∈ [n] and
C K

d1/4
, Q

d1/4
,1n,ε,τ

, C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ
are defined as in Eq. (9).

We prove this theorem in Appendix B.3. The runtime bound
in Theorem 3.5 can be simplified for datasets Q,K with
bounded diameter as follows,

Corollary 3.6 (Simplified Runtime for Bounded Di-
ameter Datasets). For any datasets Q,K with diame-
ter maxi,j∈[n] ∥ki − qj∥22 = γ

√
d log n for some γ >

0, the runtime of Theorem 3.5 is upper bounded
by O

(
m+ nd ·

(
nτ(1+γ) + ε−2nτ(1+γ/2)

))
, which is

strongly sub-quadratic in n. In particular, if γ = o(1),
the runtime is bounded by O

(
m+ ε−2d · n1+τ+o(1)

)
.

We prove Corollary 3.6 in Appendix B.4. The current best
value for τ is τ = 0.173+o(1) due to Charikar et al. (2020),
thus, for any datasets of queries Q and keys K with diam-
eter maxi,j∈[n] ∥ki − qj∥22 = o(

√
d log n), our algorithm’s

runtime is O
(
m+ ε−2d · n1.173+o(1)

)
.

3.4. Practical Improvements by Exploiting Sparsity

Our method relies on a sampling-based AMM (Lemma 3.2)
and the number of samples m is proportional to
srank(D−1A) by Theorem 3.5. Here, we propose a practi-
cal technique for reducing the stable rank of D−1A by find-
ing and subtracting off its “heavy” elements. Specifically,
recall that srank(D−1A) =

∥D−1A∥2
F

∥D−1A∥2
op

and the softmax

matrix D−1A is dominated by its largest elements which
correspond to the nearest pairs of queries qi and keys kj .
Therefore, subtracting off the heavy elements of D−1A re-
duces

∥∥D−1A
∥∥2
F

which in turn can reduce srank(D−1A).

Similar to Reformer (Kitaev et al., 2020), we employ a
Locality Sensitive Hashing (LSH) scheme to find domi-
nant entries of the attention matrix A. Specifically, let
H : Rd → [B] be an LSH function with B buckets such that
the collision probability Pr[H(qi) = H(kj)] is “roughly”

6
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Figure 2. Singular values distribution and stable rank of the soft-
max matrix D−1A versus those of the residual D−1Ares. The
stable rank of the residual matrix is significantly smaller.

proportional to ⟨qi, kj⟩. Given such LSH function, we de-
fine the sparse approximation to A as well as the residual
attention matrix as:

∀i, j ∈ [n] : [Aspar]i,j := e
⟨qi,kj⟩√

d · 1{H(qi)=H(kj)}

Ares := A−Aspar. (10)

Intuitively, the stable rank of D−1Ares is expected to be
smaller than that of D−1A because the former has a con-
siderably smaller Frobenius norm. We verify this intuition
by plotting the singular values distributions of the softmax
matrix D−1A and the residual D−1Ares for two real-world
instances in Fig. 2. Fig. 2(a) corresponds to when keys and
queries are the first n = 2,048 vectors from GloVe word
embedding dataset (Pennington et al., 2014). In Fig. 2(b),
we focused on the first attention layer in Tokens-to-token
Vision Transformer (T2T-ViT) (Yuan et al., 2021) and an
arbitrary batch of images from ImageNet dataset. In both
instances, the singular values of the residual D−1Ares decay
faster than that of D−1A while the largest singular value
(spectral norm) of both matrices are equal to one. Thus,
as shown in Fig. 2, subtracting off the sparse component
D−1Aspar reduces the stable rank significantly.

Building upon this observation, we propose a new version
of Algorithm 1 with improved practical performance. We
start by using Eq. (10) to write:

Att(Q,K,V) = D−1AsparV+D−1AresV. (11)

Given D, the first term above can be computed in time
O(d · nnz(Aspar)), where nnz(·) denotes the number of
nonzero entries of a matrix. By choosing an appropriate
LSH we can ensure that nnz(Aspar) is almost linear in n.

The second term in Eq. (11) can be approximated via AMM,
similar to what was done in Algorithm 1, however, we need
to be able to estimate the column norms of D−1Ares. Fortu-
nately, by Eq. (10), we have

∥∥D−1Aj
res

∥∥2
2
=
∥∥D−1Aj

∥∥2
2
−∥∥D−1Aj

sparse

∥∥2
2
, where Aj

res,A
j ,Aj

sparse denote the jth

columns of Ares,A,Aspar, respectively. Since we can esti-
mate the column norms of D−1A efficiently using WEXP-
KDE and all column norms of D−1Aspar can be computed

D−1A

⇒

D−1Aspar

+

D−1AresΠ
⊤
res

Figure 3. The softmax matrix D−1A decomposes into its sparse
approximation D−1Aspar, which captures large entries (coded
with darker colors), and the residual D−1Ares, where black cells
represent entries captured by D−1Aspar. Blank colors in the matrix
on the right side represent columns of D−1Ares not sampled by
AMM sampling matrix Πres and the union of colored and blank
columns together represent the whole residual matrix D−1Ares.

Algorithm 3 Practical Improvement of KDEformer

1: input: matrices Q,K,V ∈ Rn×d, integer m, ε > 0,
and LSH functionH : Rd → [B]

2: compute α, β, γ as per lines 2-4 of Algorithm 1

3: pj ← βj −
∑n

i=1 α
−2
j e

2⟨qi,kj⟩√
d 1{H(qi)=H(kj)} +

γ ∥vj∥22 for every j ∈ [n] then normalize pℓ ←
pℓ∑

j∈[n] pj
for every ℓ ∈ [n]

4: generate the sampling matrix Πres as per lines 6-7 of Al-
gorithm 1 using distribution {pj}j∈[n] computed above

5: return D̃ = diag(α) and Πres

in total nnz(Aspar) time, the AMM sampling matrix for
residual Πres can be generated quickly.

Putting everything together, we first choose an appropriate
LSH function H and compute the sparse approximation
to the attention matrix as per Eq. (10). We show how to
design a GPU-friendly LSH whose collision probability
Pr[H(qi) = H(kj)] is roughly proportional to ⟨qi, kj⟩ in
Appendix A. Next, we compute a spectral proxy D̃ for D,
as was done efficiently in Algorithm 1. Finally, we perform
AMM on matrices D̃−1Ares and V via a sampling matrix
Πres. The resulting estimator is:

Ãtt = D̃−1AsparV+ D̃−1AresΠ
⊤
res ·ΠresV.

We illustrate this procedure in Fig. 3 and present the pseu-
docode for computing D̃ and Πres in Algorithm 3. By an
analysis similar to Corollary 3.6, we find that the runtime of
Algorithm 3 is O(m+ ε−2dn1+τ+o(1) + nnz(Aspar)) with
some m = O

(
ε−2 log n · srank(D−1Ares)

)
.

4. Experiments
4.1. Single Self-attention Layer Approximation

We first benchmark our algorithm on approximating a sin-
gle self-attention layer, i.e., Att(Q,K,V). We randomly
select a pair of matrices Q,V ∈ Rn×d from the GloVe word

7
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Figure 4. Performance evaluations of various self-attention approximations on approximating under the GloVe word embeddings.

embeddings (Pennington et al., 2014) with sequence length
n = 8,192 and dimension d = 100 and set K = Q. We
compare our KDEformer to other attention approximations
including Reformer (Kitaev et al., 2020), Performer (Choro-
manski et al., 2021), and ScatterBrain (Chen et al., 2021b).
We compute the relative error with respect to the opera-

tor norm, i.e., ∥Att(Q,K,V)−Ãtt∥op

∥Att(Q,K,V)∥op
where Ãtt ∈ Rn×d is

an approximate attention. Additionally, we measure the
peak memory usage, FLOP count, and CPU-clock time of
approximation methods while varying hyperparameters of
algorithms that affect runtime and memory.

In Fig. 4, we observe that our proposed algorithm achieves
the lowest error with minimal FLOP count and memory
usage. In particular, our approximation error can be about
9% with 3.06× memory reduction and 5.11× FLOPS re-
duction. In addition, we plot CPU-clock time for various
choices of hyperparameters that determine peak memory
usage. Specifically, if the approximation method requires
at most nk memory usage for computing Ãtt, we refer to k
as the feature dimension. Having equal feature dimensions,
our algorithm and Performer are the fastest methods, but
Performer has significantly larger errors than the others. We
fix the feature dimension k = 128 and measure the peak
memory usage while the sequence length n is changing from
256 and 16,384. For n = 16,384, our method can save up to
19.62× memory space compared to the exact computation.

4.2. Image generation with pre-trained BigGAN

We next apply the above-mentioned attention approxima-
tions to the pre-trained BigGAN model (Brock et al., 2019)
to generate synthetic images. The model contains a sin-
gle attention layer where the corresponding inputs have
different dimensions: Q ∈ R4,096×64,K ∈ R1,024×64 and
V ∈ R1,024×256. Following the experiments in (Chen et al.,
2021b), we use the pre-trained BigGAN on ImageNet at
512 × 512 resolution and replace the attention layer with
its approximations. Note that we do not perform training or
fine-tuning at all. We generate 5,000 fake images and com-
pute the Frechet Inception Distance (FID) with ImageNet
validation set as ground truth and Inception Scores (IS) (Sal-
imans et al., 2016). Lower FID and higher IS values imply
better generation quality. We also measure the number of

Table 1. Results on image generation using BigGAN with the exact
attention and its approximations. Bold values indicate the best
within the standard deviation.

Method FID (↓) IS (↑) GFLOPS

Exact 32.17 58.38 ± 4.23 10.738 −
Reformer 72.39 19.04 ± 2.32 10.872 (0.99×)
Performer 33.39 37.32 ± 2.91 1.682 (6.38×)
ScatterBrain 38.55 36.43 ± 3.34 2.891 (3.71×)
KDEformer 31.41 58.16 ± 4.04 2.596 (4.14×)

Table 2. Results on ImageNet classification using T2T-ViT with
the exact attention and its approximations.

Method Top-1 Accuracy (%) GFLOPS

Exact 82.55 161.10 −
Reformer 81.44 11.71 (13.75 ×)
Performer 80.50 5.06 (31.87 ×)
ScatterBrain 81.95 7.18 (22.43 ×)
KDEformer 82.08 8.80 (18.30 ×)

FLOPS in the attention layer. We set the hyperparameters
(i.e., feature dimensions) so that all approximation methods
have the same peak memory usage. The results are reported
in Table 1. Interestingly, our algorithm shows a lower FID
value than the exact attention with 4.14× fewer FLOPs.
Although Performer is the fastest algorithm, its generated
images look unnatural while our attention can generate more
realistic images. A number of generated images by various
methods can be found in Appendix C.1.

4.3. ImageNet classification with Vision Transformer

Next, we evaluate the attention approximations in the con-
text of image classification with pre-trained Tokens-to-
Token Vision Transformer (T2T-ViT) (Yuan et al., 2021).
The model consists of Tokens-to-Token (T2T) module and
the Vision Transformer (ViT) backbone. The T2T module
consists of 2 attention layers with sequence lengths 3136
and 784, respectively, and the ViT module consists of 24
attention layers all of which have token lengths 197 (in ad-
dition, the embedding dimension of attention layers in the
ViT is 512, larger than the sequence length). Hence, the two
attention layers in T2T module dominate the overall compu-
tational and memory complexities because their sequence
lengths are significantly larger. So, we exactly compute the
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Table 3. Results on end-to-end training on 5 Long Range Arena (LRA) benchmark datasets.

ListOps Text Image Retrieval Pathfinder Average

Exact 33.32 60.22 37.41 81.07 70.25 56.45
Reformer 36.74 61.39 43.59 78.15 66.25 57.22
Performer 37.75 58.81 35.74 80.39 62.84 55.11
KDEformer 36.64 62.00 45.45 73.52 68.13 57.15

(a) Test accuracy (%)

ListOps Text Image Retrieval Pathfinder Average

Exact 6.53 16.71 9.41 8.72 4.70 9.21
Reformer 1.59 3.18 6.36 2.94 3.18 3.45
Performer 1.07 2.13 4.28 2.15 2.14 2.35
KDEformer 1.02 2.03 4.08 2.38 1.87 2.28

(b) Peak memory (GB)

ListOps Text Image Retrieval Pathfinder Average

Exact 0.133 0.479 0.276 0.478 0.141 0.301
Reformer 0.041 0.081 0.155 0.092 0.082 0.090
Performer 0.036 0.067 0.127 0.074 0.068 0.074
KDEformer 0.034 0.058 0.110 0.073 0.063 0.068

(c) Wall-clock time (sec) per batch

pre-trained model with 24 layers in ViT backbone and only
apply the approximation methods to the 2 attention layers in
the T2T module as a drop-in replacement. The dimensions
of Q,K,V are all the same, n = 3,136, d = 64 in the first
layer and n = 784, d = 64 in the second layer.

We compute top-1 accuracy on the ImageNet validation
dataset and measure FLOPS in the first attention layer,
which requires the most resources. The results are shown
in Table 2. Observe that our method is the best among all
approximate methods with 82.08% test accuracy. In partic-
ular, it leads to less than 1% performance drop compared to
the exact computation but the required operations are 18.3×
fewer. Such performance gains would increase when token
sequence lengths are larger.

4.4. End-to-end Training with Long Range Arena
Benckmark

Finally, to demonstrate the power of our method in reducing
the training time of transformer models, we run end-to-end
training on the Long Range Arena benchmark (Tay et al.,
2021), which contains 5 classification datasets, i.e., ListOps,
Text, Image, Retrieval and Pathfinder. The maximum se-
quence lengths of these datasets are 2,048, 4,096, 1,024,
4,096 and 1,024, respectively. We follow the same settings
from (Chen et al., 2021c); model is a 2-layer transformer
with 64 embedding dimension, 128 hidden dimension, 2 at-
tention heads, and mean pooling is used for the classification
task. Learning rate is set to 10−4 for Text, ListOps, Image
and 2× 10−4 for the rest. All models are trained for 50,000

steps. Similar to Section 4.1, we choose hyperparameters of
all methods having equal feature dimensions to 128.

In Table 3, we provide results on (a) test accuracy, (b) peak
memory and (c) wall-clock time per batch of single training
step (including forward and backward propagations). As a
result, we observe that the proposed KDEformer achieves
the second-best test accuracy in average followed by Re-
former, but it requires much less memory as well as faster
wall-clock time than other competitors. For example, KDE-
former with Text dataset runs about 8× faster than the exact
attention.

5. Conclusion
We propose a fast attention approximation based on recent
advances in KDE solvers. The proposed algorithm can
run in strongly sub-quadratic time in sequence length and
provide an error bound under the spectral norm. It shows
promising performances under various practical applications
involving long-sequence attention. We believe this can have
a significant impact on other practical problems as well.
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A. Practical Angular LSH with Fixed Bucket Sizes
The practical version of our algorithm that we presented in Section 3.4 requires a locality sensitive hashingH : Rd → [B]
for identifying the dominant entries of the attention matrix A, which correspond to pairs of keys and queries whose “angular
distances” are small. In this section, we develop a simple yet effective and practical LSH function whose collision probability
is related to the angular distance between hashed points.

While the lsh allows computing a very sparse approximation to the attention matrix, uneven bucket sizes hinder batching of
the computations across lsh buckets. In fact, if we parallelize the computation across buckets, the largest bucket determines
the runtime (Kitaev et al., 2020). Our proposed lsh function has equal-sized buckets, thus, it aligns with modern hardware’s
block-memory access and can be efficiently parallelized by batching across buckets.

We start by defining a simple LSH function whose collision probability is roughly proportional to the angle between the
hashed points.

Definition A.1 (Angular LSH). For positive integers d, r, let w1, w2, . . . wr be i.i.d. random samples from the tropical
Gaussian distribution N (0, Id). We define the rank-r angular LSH h : Rd → {0, 1}r as follows:

h(x) :=
(
1{w⊤

1 x},1{w⊤
2 x}, . . .1{w⊤

r x}

)
for any x ∈ Rd.

Note that the buckets are labeled by r-bit binary numbers and if r ≤ d then almost surely the total number of buckets is 2r.

It is easy to calculate the collision probability of the angular lsh defined in Definition A.1.

Claim 1. For positive integers r, d let h(·) be an instance of rank-r angular LSH as per Definition A.1. For any x, y ∈ Rd

the collision probability of h(x) and h(y) is:

Pr[h(x) = h(y)] =

(
1− θx,y

π

)r

,

where θx,y = cos−1
(

x⊤y
∥x∥·∥y∥

)
denotes the angle between x and y.

Therefore, the points with small angular distances are likely to be hashed to the same buckets while points with large angular
distances are unlikely to be hashed to the same buckets.

So, if we hash keys kj and queries qi using the angular lsh given in Definition A.1 then the entries of the attention matrix A
which correspond to colliding pairs of keys and queries will likely have very large values. As we mentioned earlier, the main
efficiency bottleneck in this lsh-based approach for computing the dominant entries of the attention matrix is the unevenness
of hash bucket sizes. If we try to compute the sparse approximation to A, as defined in Eq. (10), using the lsh function
from Definition A.1 by parallelizing the computation across buckets, the runtime will be dominated by the time to compute
entries in the largest bucket.

One solution for increasing efficiency, which was proposed in (Kitaev et al., 2020), is to truncate the lsh buckets and force
them to contain equal number of keys and queries. However, truncation can degrade the quality of approximation drastically
because there will be spillover from one bucket to another, and some points can be forced into far-away buckets. The reason
for this spillover effect is the fact that consecutive buckets in a hash table do not necessarily represent areas of the Rd space
which are geometrically close to each other.

We show that in fact, it is possible to sort the buckets of the angular lsh from Definition A.1 such that the order of buckets
reflects their geometrical position, thus, consecutive buckets actually represent neighboring partitions of Rd. It turns out that
the geometric distance between two buckets of this lsh function translates into the Hamming distance between their binary
labels.

To be precise, for any binary numbers b1, b2 ∈ {0, 1}r let dH(b1, b2) ∈ [r+1] represent the Hamming distance between the
two, i.e., the number of bits where b1 and b2 differ. Now note that the lsh buckets in Definition A.1 are labeled with r-bit
binary numbers. Each bit in the binary representations of buckets corresponds to a partitioning of the Rd into two sides of a
random hyperplane whose normal vector is sampled from a tropical Gaussian. Therefore, if we have two buckets b1 and
b2 with hamming distance dH(b1, b2) = 1 then these buckets are positioned on the same sides of all random hyperplanes
except for one, thus, they represent neighboring regions in Rd and the hyperplanes corresponding to the differing bit of b1
and b2 is the boundary between two regions.
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Figure 5. Rank-2 Angular LSH in action (in dimension d = 2). The space partitions corresponding to buckets with unit Hamming distance
are neighbors in Rd. In Fig. 5(b) we hash an example dataset and we get uneven buckets. Fig. 5(c) show that if we order the dataset
according to the Hamming distance of their buckets and then truncate the buckets we get new equal-sized buckets with minimal spillover
effect.

We show this fact in Fig. 5(a), which illustrates the space partitions corresponding to the buckets of a rank-2 angular lsh
in dimension d = 2. It is clearly visible that the bucket labels of neighboring partitions have unit Hamming distance. In
Fig. 5(b) we hash an example dataset using this LSH function and as can be seen, the buckets have uneven sizes. Because of
the relationship between the Hamming distance of bucket labels and the distance between space partitions, if we order the
dataset according to the Hamming ordering of their buckets and then truncate them we get new buckets with even sizes and
minimal spillover effect. In particular, in Fig. 5(c) we order the dataset such that the points from buckets 00, 01, 11, 10 come
in this specific order and then we bin the data points by partitioning the ordered dataset into equal-sized parts. The resulting
bins show no spillover effect.

In the following lemma we show how to order r-bit binary numbers {0, 1}r such that all consecutive numbers have unit
Hamming distance:

Lemma A.2 (Ordering of binary numbers according to their Hamming distance). For any positive integer r it is possible to
order the set of binary numbers {0, 1}r as a sequence b1, b2, . . . b2r such that for any j ∈ [2r − 1]:

dH(bj , bj+1) = 1.

Proof. The proof is by induction. For r = 1 the base of induction follows trivially. Now suppose that we have the sequence
of (r − 1)-bit numbers b′1, b

′
2, . . . b

′
2r−1 such that dH(b′j , b

′
j+1) = 1 for any j ∈ [2r−1 − 1]. Then the sequence of r-bit

numbers will be as follows:

bj :=

{
(b′j , 0) if j ≤ 2r−1

(b′2r+1−j , 1) if j > 2r−1
for j ∈ [2r].

One can verify that this sequence satisfies the desired property and the proof is complete.

Therefore, we can use the angular LSH together with the ordering of binary numbers from Lemma A.2 to construct an
effective hash function with equal-sized buckets.

Definition A.3 (Equal-sized LSH with Minimal Spillover). Suppose that we want to hash a dataset x1, x2, . . . xn ∈ Rd.

1. Hash these points using a rank-r Angular LSH h(·) as per Definition A.1.

2. Then, using Lemma A.2, produce an ordering of r-bit binary numbers such that consecutive numbers have unit
Hamming distance; let b1, b2, . . . b2r be such ordering.

3. Next, define a permutation P ∈ Sym(n) which orders the dataset according to the Hamming ordering of their buckets.
More specifically, P satisfies:

P(i) < P(j) iff h(xi) ≤∗ h(xj), where the inequality ≤∗ acts with respect to the ordering b1, b2, . . . b2r .
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Figure 6. An example of how Aspar can be computed efficiently. (Left) keys and queries are hashed using the angular lsh function. buckets
are represented by shades of violet. (Middle) keys and queries are permuted such that their buckets are sorted according to the Hamming
distance ordering. Large entries of the permuted attention matrix AP are concentrated around the diagonal blocks, so we compute the
diagonal blocks. (Right) the block diagonal approximation to AP is reverse permuted to obtain Aspar.

4. Permute x1, x2, . . . xn according to P and then partition the sequence into equal-sized chunks. These chunks are the
buckets.

Now we explain how we can use the lsh procedure given in Definition A.3 to compute Aspar as per Eq. (10) through an
example shown in Fig. 6. We first hash keys kj and queries qi via the angular lsh. We represent the buckets of this hashing
via different shades of violet in Fig. 6. Clearly, the bucket sizes are uneven. Then we permute keys and queries via P which
orders the points such that their buckets are sorted according to the ordering b1, b2, b3, b4 obtained from Lemma A.2. Then
we truncate the sorted points which is in fact equivalent to selecting blocks along the diagonal of the permuted attention
matrix. The selected diagonal blocks in Fig. 6 illustrate this. Finally, we can reverse the permutation on the rows and
columns of the block diagonal attention which gives us the final Aspar.

B. Omitted Proofs
B.1. Proof of Lemma 3.2: Approximate Matrix Multiplication via Sampling

In this section, we analyze the random sampling method for approximately computing the product of two rectangular
matrices, presented in Lemma 3.2. The proof of this lemma is based on the following version of the matrix Bernstein
inequality.
Lemma B.1 (Matrix Approximation by Random Sampling, Corollary 6.2.1 from (Tropp, 2015)). Let B be a fixed q × d
matrix. Construct a q × d random matrix R that satisfies

E[R] = B, and ∥R∥op ≤ L.

Compute the per-sample second moment:

m2(R) = max{∥E[R∗R]∥op , ∥E[RR∗]∥op}.
Form the matrix sampling estimator

Rm =
1

m

m∑

i=1

Ri where each Ri is an independent copy of R.

Then for every t > 0, the estimator satisfies

Pr
[∥∥Rm − B

∥∥
op
≥ t
]
≤ (q + d) · exp

( −mt2/2

m2(R) + 2Lt/3

)
.
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Now we prove Lemma 3.2 by invoking the above matrix Bernstein inequality.

Lemma 3.2 (Approximate Matrix Multiplication (AMM)). For any matrices X ∈ Rn×q,Y ∈ Rn×d and any probability
distribution {pi}i∈[n] which satisfies pi ≥ 1

4 ·
∥xi∥2

2+γ·∥yi∥2
2

∥X∥2
F+γ·∥Y∥2

F

for all i ∈ [n] and γ = ∥X∥2op / ∥Y∥
2
op, a sampling matrix

Π ∈ Rm×n constructed by first generating m i.i.d. samples ℓ1, ℓ2, . . . ℓm ∈ [n] according to {pℓ}ℓ∈[n] and then letting the
rth row of Π be 1√

m·pℓr
· e⊤ℓr , if m = Ω

(
ε−2 log n · (srank(X) + srank(Y))

)
for some ε > 0, the following holds,

Pr
[∥∥X⊤Π⊤ΠY −X⊤Y

∥∥
op

> ε ∥X∥op ∥Y∥op
]
≤ 1

poly(n)
.

Proof. First we let B := X⊤Y. Then we let the random matrix R have the following distribution

Pr

[
R =

x⊤
i · yi
pi

]
= pi for i ∈ [n]

where xi and yi are ith row vector in X and Y, respectively. With this definition we have,

E[R] =
∑

i∈[n]

x⊤
i · yi
pi

· pi =
∑

i∈[n]

x⊤
i · yi = X⊤Y = B.

Furthermore, we can bound the operator norm of R as follows,

∥R∥op ≤ max
i∈[n]

∥∥x⊤
i · yi

∥∥
op

pi

= max
i∈[n]

∥xi∥2 ∥yi∥2
pi

≤ 4 ·max
i∈[n]

∥xi∥2 ∥yi∥2 ·
(
∥X∥2F + γ · ∥Y∥2F

)

∥xi∥22 + γ · ∥yi∥22
≤ 2 ·max

i∈[n]

1√
γ
· ∥X∥2F +

√
γ · ∥Y∥2F

= 2 ∥X∥op · ∥Y∥op · (srank(X) + srank(Y)) ≡ L,

where the third line above follows from the precondition of Lemma 3.2 about the distribution {pi}i∈[n] and the fourth line
follows from AM-GM inequality. The last line follows from the definition of γ and definition of stable rank. Next, we will
compute the per-sample second moment as follows,

E[R∗R] =
∑

i∈[n]

∥xi∥22 ·
y⊤i · yi
p2i

· pi =
∑

i∈[n]

∥xi∥22 ·
y⊤i · yi
pi

⪯ 4 ·
(
∥X∥2F + γ · ∥Y∥2F

)
·
∑

i∈[n]

∥xi∥22
∥xi∥22 + γ · ∥yi∥22

· y⊤i yi

⪯ 4 ·
(
∥X∥2F + γ · ∥Y∥2F

)
·
∑

i∈[n]

y⊤i yi = 4 ·
(
∥X∥2F + γ · ∥Y∥2F

)
·Y⊤Y.

Similarly,
E[RR∗] ⪯ 4 ·

(
∥X∥2F /γ + ∥Y∥2F

)
·X⊤X.

In summary,

m2(R) = max{∥E[R∗R]∥op , ∥E[RR∗]∥op}

≤ 4 ·max
{(
∥X∥2F + γ · ∥Y∥2F

)
·
∥∥Y⊤Y

∥∥
op

,
(
∥X∥2F /γ + ∥Y∥2F

)
·
∥∥XX⊤∥∥

op

}

= 4 · ∥X∥2op ∥Y∥
2
op · (srank(X) + srank(Y)) .
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Finally, we note that, from the way the sampling matrix was constructed we have X⊤Π⊤ΠY = 1
m

∑
r∈[m]

xℓr ·yℓr

pir
= Rm.

Thus, by invoking Lemma B.1 we find that for t = ε · ∥X∥op ∥Y∥op we have,

Pr
[∥∥Rm − B

∥∥
op
≥ ε · ∥X∥op ∥Y∥op

]
≤ (q + d) · exp

( −mt2/2

m2(R) + 2Lt/3

)
≤ 1

poly(n)
.

This completes the proof of Lemma 3.2.

B.2. Proof of Theorem 3.3

Theorem 3.3 (Correctness of Algorithm 1). For any matrices Q,K,V ∈ Rn×d, any ε > 0, and number of samples m =
Ω
(
ε−2 log n · (srank(D−1A) + srank(V))

)
, given access to a primitive WEXPKDE as per Definition 3.1, Algorithm 1

outputs a diagonal matrix D̃ ∈ Rn×n and a sampling matrix Π ∈ Rm×n which satisfy Eq. (1) with probability at least
1− 1

poly(n) .

Proof. First, note that all entries of D−1A are positive and the sum of entries of each row of this matrix equals 1, so by the
Gershgorin circle theorem

∥∥D−1A
∥∥
op
≤ 1. On the other hand, D−1A · 1n = 1n, so we have

∥∥D−1A
∥∥
op

= 1. We will use
this fact in the rest of the proof.

Now note that Algorithm 1 computes α = WEXPKDE
(

K
d1/4 ,

Q
d1/4 ,1n,

ε
3

)
in line 3 and lets D̃ = diag(α). Thus, as we

showed earlier, by Definition 3.1 and using the fact that entries of D are positive, we have (1− ε/3)D ⪯ D̃ ⪯ (1 + ε/3)D.
So, using this inequality along with the fact that

∥∥D−1A
∥∥
op

= 1, the diagonal matrix D̃ satisfies Eq. (5).

Next, let us consider the vector β = WEXPKDE
(√

2·Q
d1/4 ,

√
2·K

d1/4 , u, 1/3
)

computed in line 4. For ease of notation, let

X⊤ := D̃−1A. By Definition 3.1 and using the definition of ui = 1/α2
i in line 3, we have,

βj ∈ (1± 1/3) ·
∑

i∈[n]

ui · exp
(

2√
d
⟨qi, kj⟩

)
= (1± 1/3) · ∥xj∥22 for any j ∈ [n].

Also, note that γ which is computed in line 2 of the algorithm is equal to γ =
∥D−1A∥2

op

∥V∥2
op

. Because (1 − ε/3)D ⪯ D̃ ⪯

(1 + ε/3)D, we have γ ∈ (1± ε/3)−1 · γ̃, where γ̃ :=
∥∥∥D̃−1A

∥∥∥
2

op
/ ∥V∥2op. Therefore, the distribution {pi}i∈[n] computed

in line 5 satisfies,

pℓ =
βℓ + γ · ∥vℓ∥22∑

j∈[n] βj + γ · ∥V∥2F
≥ 1

4
· ∥xℓ∥22 + γ̃ · ∥vℓ∥22
∥X∥2F + γ̃ · ∥V∥2F

.

Furthermore, note that srank(D̃−1A) ≤ 2 · srank(D−1A). Therefore, we can invoke the AMM result from Lemma 3.2
with matrices X⊤ = D̃−1A and Y = V and use the precondition of Theorem 3.3 about the number of samples
m = Ω

(
ε−2 log n · (srank(D−1A) + srank(V))

)
= Ω

(
ε−2 log n · (srank(D̃−1A) + srank(V))

)
to conclude that

the sampling matrix Π computed in lines 6-7 satisfies the following with high probability in n:
∥∥∥D̃−1AΠ⊤ ·ΠV − D̃−1AV

∥∥∥
op
≤ ε

4

∥∥∥D̃−1A
∥∥∥
op
∥V∥op ≤

ε

2

∥∥D−1A
∥∥
op
∥V∥op =

ε

2
∥V∥op ,

where the second inequality above follows from the fact that
∥∥∥D̃−1A

∥∥∥
op
≤ 2 ·

∥∥D−1A
∥∥
op

. The above inequality shows

that Eq. (6) holds with high probability in n. Thus the theorem follows from combining Eq. (5) and Eq. (6) using triangle
inequality.

B.3. Proof of Theorem 3.5

Theorem 3.5 (Approximate Attention with Spectral Norm Bound). For any matrices Q,K,V ∈ Rn×d, any ε > 0, and
given a fast Gaussian KDE as per Theorem 2.1, there exists an algorithm that outputs a diagonal matrix D̃ ∈ Rn×n and a

16



KDEformer: Accelerating Transformers via Kernel Density Estimation

sampling matrix Π ∈ Rm×n with m = O
(
ε−2 log n · (srank(D−1A) + srank(V))

)
samples which satisfy Eq. (1) with

probability at least 1− 1
poly(n) . The runtime of this algorithm is O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ

))
,

where vj =
(∑

ℓ∈[n] exp
(

1√
d
⟨qj , kℓ⟩

))−2

for j ∈ [n] and C K

d1/4
, Q

d1/4
,1n,ε,τ

, C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ
are defined as in Eq. (9).

Proof. It suffices to run Algorithm 1 with some m = O
(
ε−2 log n(srank(D−1A) + srank(V))

)
samples and invoke

Algorithm 2 for the calls to WEXPKDE made in lines 3-4. By Theorem 3.3 and Theorem 3.4 along with union bound, the
outputs Π and D̃ of this procedure satisfy the desired condition of Eq. (1) with probability ≥ 1− 1

poly(n) .

Runtime Analysis. By Theorem 3.4, the time to compute D̃ through invoking WEXPKDE (i.e., Algorithm 2) in line 3 of

Algorithm 1 is O
(
nd · C K

d1/4
, Q

d1/4
,1n,ε,τ

)
. Furthermore, time to run WEXPKDE in line 4 is O

(
nd · C√

2·Q
d1/4

,
√

2·K
d1/4

,u,1,τ

)
,

where u is the vector computed in lines 3-4 of Algorithm 1. On the other hand, by Theorem 3.4, vector u satisfies
1
2vj ≤ uj ≤ 3

2vj for all j ∈ [n] with probability at least 1− 1
poly(n) , where v is the vector defined in the theorem statement.

Thus, using the definition of C√
2·Q

d1/4
,
√

2·K
d1/4

,u,1,τ
in Eq. (9) we can show that the aforementioned runtime is bounded by

O

(
nd · C√

2·Q
d1/4

,
√

2·K
d1/4

,v,1,τ

)
.

Finally, the time to generate m samples in line 6 of Algorithm 1 is O(m + n), using the sampling method developed
by Hagerup et al. (1993). The total runtime is obtained by summing up these terms.

B.4. Proof of Corollary 3.6

Corollary 3.6 (Simplified Runtime for Bounded Diameter Datasets). For any datasets Q,K with diameter
maxi,j∈[n] ∥ki − qj∥22 = γ

√
d log n for some γ > 0, the runtime of Theorem 3.5 is upper bounded by

O
(
m+ nd ·

(
nτ(1+γ) + ε−2nτ(1+γ/2)

))
, which is strongly sub-quadratic in n. In particular, if γ = o(1), the runtime is

bounded by O
(
m+ ε−2d · n1+τ+o(1)

)
.

Proof. First recall that the diameter of the datasets Q,K is maxi,j∈[n] ∥ki − qj∥22 = γ
√
d log n for some γ > 0. For any

i, j ∈ [n], using the fact that ∥ki − qj∥22 ≤ γ
√
d log n, we have,

exp

(
1√
d
⟨kj , qi⟩

)
= exp

( −1
2
√
d
∥kj − qi∥22

)
· exp

(
∥kj∥2 + ∥qi∥2

2
√
d

)

≥ n−γ/2 · exp
(
∥kj∥2 + ∥qi∥2

2
√
d

)
.

Therefore, summing the above inequality over all j ∈ [n] gives,

∑

j∈[n]

exp

(
1√
d
⟨kj , qi⟩

)
≥ n−γ/2 ·

∑

j∈[n]

exp

(
∥kj∥2 + ∥qi∥2

2
√
d

)
.

The above inequality holds for every i ∈ [n]. This inequality implies that the following set is empty for any µ ≤ n−1−γ/2,



i ∈ [n] :

∑
j∈[n] exp

(
1√
d
⟨kj , qi⟩

)

∑
j∈[n] exp

(
∥kj∥2+∥qi∥2

2
√
d

) < n · µ



 = ∅.
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Thus, C K

d1/4
, Q

d1/4
,1n,ε,τ

defined as per Eq. (9) is bounded as follows,

C K

d1/4
, Q

d1/4
,1n,ε,τ

= min
µ>0

ε−2µ−τ +

∣∣∣∣∣∣



i ∈ [n] :

∑
j∈[n] exp

(
1√
d
⟨kj , qi⟩

)

∑
j∈[n] exp

(
∥kj∥2+∥qi∥2

2
√
d

) < nµ





∣∣∣∣∣∣

≤ ε−2 · nτ(1+γ/2).

Similarly, because vj > 0 for every j ∈ [n], we can show that, for any i ∈ [n],

∑

j∈[n]

vj exp

(
2√
d
⟨qj , ki⟩

)
≥ n−γ ·

∑

j∈[n]

vj exp

(
∥qj∥2 + ∥ki∥2√

d

)
.

As a result, the following set is empty for any µ ≤ n−1−γ ,


i ∈ [n] :

∑
j∈[n] vj · exp

(
2√
d
⟨qj , ki⟩

)

∑
j∈[n] vj exp

(
∥qj∥2+∥ki∥2

√
d

) < n · µ



 = ∅.

So, C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ
defined as per Eq. (9) is bounded as follows,

C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ
= min

µ>0
µ−τ +

∣∣∣∣∣∣



i ∈ [n] :

∑
j∈[n] vj · exp

(
2√
d
⟨qj , ki⟩

)

∑
j∈[n] vj exp

(
∥qj∥2+∥ki∥2

√
d

) < n · µ





∣∣∣∣∣∣

≤ nτ(1+γ).

Therefore, the total runtime of Theorem 3.5 is bounded by

O

(
m+ nd ·

(
C K

d1/4
, Q

d1/4
,1n,ε,τ

+ C√
2·Q

d1/4
,
√

2·K
d1/4

,v,1,τ

))
= O

(
m+ nd ·

(
nτ(1+γ) + nτ(1+γ/2)/ε2

))
,

which completes the proof.

C. Additional Experiments
C.1. BigGAN Image Generations

Images in Fig. 7 are randomly subset from 2, 000 generations from BigGAN (Yuan et al., 2021)1 with the exact attention com-
putation and its various approximations including KDEformer (our), Performer (Choromanski et al., 2021), Reformer (Kitaev
et al., 2020) and ScatterBrain (Chen et al., 2021b). One can observe that our KDEformer generates more natural and realistic
images than other methods by a large margin, and in many cases it is even better than the exact computation. This means
that it has much less running time and memory, but it has produced a higher quality and more realistic image in the end.
Also, note that the hyperparameters of our approach were not fine-tuned.

1https://github.com/huggingface/pytorch-pretrained-BigGAN
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Figure 7. Images generations from the pre-trained BigGAN with the exact attention (top) and drop-in replacement with its approximations
including our KDEformer (second row), Performer (third row), Reformer (fourth row) and ScatterBrain (bottom).
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