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ABSTRACT

This paper presents a novel tensor-based representation, namely hi-
erarchical multiway K-clustered tensor approximation, for mul-
tidimensional visual datasets. The proposed method extends a
previous tensor model [20] into a hierarchical representation that
can significantly reduce offline computational cost as well as pro-
vide similar approximation quality and rendering performance at
the same time. We also apply the proposed method to approxi-
mate spatially-varying bidirectional reflectance distribution func-
tions, time-varying light fields, and time-varying volume data to
show its effectiveness and potential for data-driven rendering. Ex-
perimental results demonstrate that under similar performance to
previous work, the proposed method can reduce offline approxima-
tion time by even an order of magnitude.

Index Terms: Realtime rendering, multidimensional data analy-
sis, hierarchical model, multiway clustering, sparse representation.

1 INTRODUCTION

Data-driven rendering is a popular type of state-of-the-art image
synthesis methods, which relies on measured or precomputed vi-
sual information to synthesize photorealistic 3D images. With the
increases in the demand on high-quality 3D images in graphics ap-
plications, it usually needs to employ large-scale visual datasets for
rendering. In recent years, a lot of related papers have addressed
this problem by approximating visual datasets such that the results
can be reconstructed for realtime image synthesis. Most of them
have focused on how to make a good tradeoff among fast render-
ing rates, high approximation quality, and compact storage require-
ments for approximated data.

Nevertheless, simultaneously achieving low offline approxima-
tion time is still a major challenge that only a few papers have
deeply studied. Previous sophisticated data-driven rendering algo-
rithms may need hundreds of hours in order to approximate just one
dataset with a high-performance workstation. For example, multi-
way K-clustered tensor approximation (MK-CTA) [20] takes more
than 10 hours for a time-varying light field dataset with a size of 12
GB. If one would like to significantly increase rendering rates of the
time-varying light field, MK-CTA may even spend a few weeks on
the offline approximation process from our experience. The time-
consuming offline process thus becomes a great obstacle to the use
of advanced data-driven models in practical applications.

In this paper, we present a novel tensor-based method, namely
hierarchical multiway K-clustered tensor approximation (HMK-
CTA), for accelerating offline approximations of large-scale visual
datasets, along with a good compromise of the above-mentioned
three desired goals. The proposed algorithm particularly extends
MK-CTA to not only hierarchically cluster an input tensor into
disjoint smaller ones that can be progressively approximated with
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more efficiency, but also faithfully capture multiscale visual fea-
tures within the tensor for runtime reconstruction and realtime ren-
dering.

In brief, this paper makes the following contributions:
• Introduce a novel hierarchical tensor representation, namely

HMK-CTA, to progressively preserve visual features among
datasets at different scales.

• HMK-CTA can significantly reduce offline approximation
time by even an order of magnitude.

• Apply HMK-CTA to approximate common large-scale visual
datasets, such that an appropriate tradeoff among offline com-
putational cost, runtime rendering performance, approxima-
tion errors, and storage requirements can be easily achieved.

2 RELATED WORK

2.1 Data-Driven Rendering
Rendering photorealistic 3D images from visual datasets has caught
a lot of attention in recent years. This data-driven idea may
date back to texture mapping and has been widespread nowadays
in many graphics applications. Modern visual datasets for ren-
dering have various forms, including precomputed lighting data
[11, 25, 27], (multispectral) bidirectional texture functions [4, 13],
time-varying and/or spatially-varying bidirectional reflectance dis-
tribution functions [5, 7, 16, 28], (time-varying) light fields [9, 29],
and more complex lighting models [19, 32], just to name a few. It
is also expected to see more different forms of visual datasets in the
future.

Although the data-driven idea is simple and intuitive, the large
amount of visual datasets usually prevents compact storage re-
quirements, high-quality 3D images, and fast rendering rates at the
same time. Over the past decades, this issue has stimulated the
development of many sophisticated algorithms for visual data ap-
proximations, for example, parametric models [6, 21, 31], spheri-
cal/zonal harmonics [2, 27], wavelets [15, 25], tensor representa-
tions [1, 20, 23], neural networks [8, 10], and many more.

Besides the above-mentioned three desired goals, we introduce
a novel tensor-based algorithm in this paper to additionally pro-
vide practical offline computational cost. The proposed method is
also employed to approximate common large-scale visual datasets,
demonstrating its potential and effectiveness.

2.2 Tensor Representations
In data-driven rendering, tensor representations (also called mul-
tilinear models or multiway analysis) [14] are usually regarded
among the most effective methods for modeling high-dimensional
visual datasets. They organize a set of high-dimensional data as
a multidimensional array, namely a tensor, to preserve its intrin-
sic structure and separately extract visually prominent components
along each specified dimension/mode of the tensor. As a pio-
neering work, Vasilescu and Terzopoulos [24] applied a subopti-
mal algorithm based on higher-order singular value decomposi-
tion (HOSVD) [3] to approximate bidirectional texture functions
for efficient runtime rendering. Wang et al. [26] then introduced
an out-of-core framework for HOSVD to address large-scale visual
datasets that cannot fit into main memory.
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Figure 1: An example of HOSVD for a third-order tensor. The input
tensor is decomposed into a third-order core tensor and three basis
matrices that are associated with each mode of the input tensor.

Based on these two papers, many sophisticated tensor represen-
tations for data-driven rendering have been proposed over the last
two decades. Clustered tensor approximation [22] successfully in-
tegrated HOSVD with clustering to partition a tensor along one
specified dimension into disjoint smaller tensors, each of which can
be more efficiently approximated by HOSVD. K-clustered tensor
approximation [23] then extended this idea with sparse representa-
tion to additionally allow non-disjoint (or overlapped) cluster ten-
sors [23]. Recently, MK-CTA [20] further employed multiway soft
clustering to split a tensor along more than one dimensions, thus
overcoming the major drawback of K-clustered tensor approxima-
tion.

Perhaps the most relevant research work to this paper is hier-
archical tensor approximation [30]. It transformed a tensor into a
hierarchy of smaller tensors and relied on HOSVD to extract multi-
scale visual features from tensors at different levels of the hierarchy.
Nevertheless, it employed uniform recursive binary partition at each
level to construct the hierarchy. By contrast, we take a different
path to develop a novel hierarchical tensor representation based on
MK-CTA, instead of just HOSVD. Our method thus allows a more
flexible hierarchical framework by adaptively partitioning tensors
at each level using multiway clustering. Through the merit of MK-
CTA, this also leads to more efficient data approximations and run-
time rendering performance.

Although there are other tensor representations for data-driven
rendering, a comprehensive survey is beyond the scope of this pa-
per. Interested readers may refer to sparse tensor decomposition
[12], tensor train decomposition [1], and references therein, or even
related papers in visualization [17, 18].

3 BACKGROUND

3.1 HOSVD

HOSVD [3] decomposes an N -th-order tensor A into a core tensor
Z (also N -th-order) and a set of basis matrices U1, U2, ..., and
UN . Each basis matrix is associated to a distinct mode of A and
can be regarded as a basis for the subspace of that mode. The origi-
nal tensor A thus can be reconstructed by combining the subspaces
of different modes by using mode-1, mode-2, ..., and mode-N prod-
ucts as

A ≈ Z ×1 U1 ×2 U2 · · · ×N UN , (1)

where the symbol ×n represents the mode-n product between a
tensor and a matrix. HOSVD relies on reducing the rank of each
mode in the core tensor, while also reducing the rank of each basis
matrix at the same time, to derive a locally optimal approximation
of A. The smaller the core tensor is, the higher approximation
error the decomposed result will have. Fig. 1 shows an example of
employing HOSVD to decompose a third-order tensor.
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Figure 2: An example of MK-CTA for a third-order tensor. The input
tensor is clustered along modes 1 and 2 into six smaller third-order
tensors, each of which is further approximated using HOSVD.

3.2 MK-CTA
MK-CTA [20] integrates HOSVD with multiway clustering to par-
tition an N -th-order tensor A along more than one modes into
smaller tensors and with sparse representation to assign each ele-
ment in A into more than one (but only a few) clusters along each
mode. In this way, the smaller tensor within a cluster is expected to
contain more coherent elements, such that each cluster tensor can
be approximated using HOSVD with more efficiency.

Specifically, A can be approximated by the summation of each
the reconstructed tensor of each cluster as

A ≈
∑
c

Zc ×1 U1,c ×2 U2,c · · · ×N UN,c, (2)

where Zc, U1,c, U2,c, ..., and UN,c represent the extracted core
tensor and basis matrices after employing HOSVD to the tensor of
a cluster c. Note that the basis matrices of each cluster are sparse,
such that the overall effect is the same as approximating a single
tensor element from the decomposed results of just a few clusters,
but not most or all. The merit of sparse representation particularly
allows better approximation quality with low storage overhead and
simultaneously prevents runtime reconstruction cost from increas-
ing significantly. Fig. 2 shows an example of applying MK-CTA to
decompose a third-order tensor.

4 HMK-CTA ALGORITHM

4.1 Overview
Our approach was inspired by the following insights:

• The offline computational cost of MK-CTA significantly in-
creases with larger numbers of clusters. Namely, reducing
numbers of clusters can effectively speed up the offline pro-
cess.

• A hierarchical tensor representation allows users to accurately
capture important visual features among datasets at various
scales and progressively show approximation results at run-
time.

• Although the approximation quality of MK-CTA is consider-
ably influenced by reducing numbers of clusters, a hierarchi-
cal representation still can further classify datasets at lower
levels to compensate the impact.

Figure 3 illustrates an example of adopting HMK-CTA to ap-
proximate a third-order tensor. At the highest level 1, the input
tensor is first approximated using MK-CTA. The residual tensor is
then computed by subtracting the reconstruction of the approxima-
tion result from the input tensor, and further subdivided into smaller
tensors according to the clustering result of MK-CTA. The subdi-
vided residual tensors are passed to the next lower level 2 and re-
spectively approximated using MK-CTA again. This process can
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Figure 3: An example of HMK-CTA for a third-order tensor. At the
highest level 1, the input tensor is approximated using MK-CTA to
obtain the residual tensor, and subdivided into a few (for example,
six) smaller tensors for approximations based on MK-CTA at the next
lower level 2. The residuals of subdivided tensors can be further
clustered and approximated at subsequent lower levels until a user-
specified termination criteria is reached.

be repeated at subsequent lower levels until a user-specified termi-
nation criteria is reached, such as the maximum number of levels or
the desired approximation error.

Based on the proposed HMK-CTA algorithm, we can choose to
subdivide residual tensors at higher levels into less numbers of clus-
ters along each mode to significantly reduce the offline computa-
tional cost of MK-CTA. Although this will increase approximation
errors and only capture global (or large-scale) features at higher lev-
els, local (or small-scale) features can be further extracted at lower
levels. From our experience, the resulting HMK-CTA algorithm
is a good compromise, since it can significantly reduce the offline
computational cost, while still achieving similar runtime rendering
performance, approximation errors, and storage requirements when
compared with MK-CTA.

Although the framework of HMK-CTA is not complex and easy
to understand, there are some implementation issues that need to
be discussed in detail. In Section 4.2, we will describe how to
subdivide a residual tensor for efficient approximations at the next
lower level. Moreover, some parameter selection guidelines for
good compromises will be suggested in Section 4.3.

4.2 Residual Tensor Subdivision
Previous hierarchical tensor representations [30, 17, 18] employ
uniform blocks to organize/subdivide the input tensor for multi-
scale analysis at different levels. Unlike them, we instead apply
an adaptive subdivision scheme that relies on the clustering result
of MK-CTA at the current level to determine the elements of sub-
divided tensors at the next lower level. This scheme is similar to
ordinary divisive hierarchical clustering. It not only results in sub-
divided tensors with various sizes, but also may not maintain the
spatial structure of tensor elements at the current level, namely pos-
sibly classifying adjacent tensor elements into different subdivided
tensors. This characteristic particularly allows our algorithm to ex-
ploit more data coherence, other than the spatial one, among tensor
elements.

Formally, consider a residual tensor A(l) at a level l, whose
mode ranks are respectively I

(l)
1 , I(l)2 , ..., and I

(l)
N . HMK-CTA is

going to subdivide it into smaller tensors for further approximation
at the next lower level l + 1. By applying MK-CTA, A(l) is clas-
sified into C

(l)
1 , C(l)

2 , ..., and C
(l)
N clusters along each mode, while

each tensor element in A(l) is assigned into K
(l)
1 , K(l)

2 , ..., and
K

(l)
N different clusters respectively along each mode (also called

the numbers of mixture clusters). Moreover, MK-CTA approxi-
mates tensor elements in each cluster by using HOSVD with re-
duced ranks R(l)

1 , R(l)
2 , ..., and R

(l)
N . Intuitively, we may subdivide

A(l) by directly following the clustering result of MK-CTA. Nev-
ertheless, if K(l)

1 , K(l)
2 , ..., or K(l)

N is larger than 1, which is a quite
common case, there are more than one subdivided tensors associ-
ated with a single tensor element a(l) in A(l). If we also follow
the clustering results of MK-CTA at subsequent lower levels, the
number of subdivided tensors associated with a(l) may grow expo-
nentially. This will substantially increase offline approximation and
runtime reconstruction cost, especially when runtime performance
is a major concern in realtime applications.

In order to solve this issue, we propose the most significant sub-
division scheme to associate a single tensor element with only one
subdivided tensor at each level. By referring to the clustering result
of MK-CTA for A(l), we subdivide A(l) such that the sum of the
reconstruction error of each subdivided tensor is the lowest, while
each tensor element in A(l) is assigned to only one subdivided ten-
sor. As illustrated in Fig. 4, for example, elements in the blue rect-
angle are assigned into cluster subsets 2 (clusters [2 1], [2 2], and
[2 3]) and 3 (clusters [3 1], [3 2], and [3 3]) by MK-CTA along the
first mode, but our most significant scheme only associates all the
elements with the cluster subset 2 for subdivided tensors. A similar
subdivision choice along the second mode leads to associating ele-
ments in the red rectangle with the cluster subset 1 (clusters [1 1], [2
1], and [3 1]). Then, the overall reconstruction error of subdivided
tensors is the lowest among all possible cases.

Our most significant scheme particularly assumes that when
there are more coherent elements within each subdivided tensor
(thus the lower overall reconstruction error), the residuals of ele-
ments within a subdivided tensor also tend to be similar to each
other. If MK-CTA fails to exploit all available coherence among
tensor elements at the current level (thus missing small-scale fea-
tures), subdivided tensors at the next lower level are still likely to
contain coherent elements for further approximations.

We also tried other subdivision schemes, including the least sig-
nificant and uniform (Fig. 4). Similar to the most significant, the
least significant scheme is also based on the clustering result of
MK-CTA, but it leads to the highest overall reconstruction error of
subdivided tensors. On the other hand, the uniform scheme parti-
tions A(l) into disjoint blocks with the same size and fixed mem-
bership1. Among the three schemes, the most significant one out-
performs the other two in terms of the final reconstruction error
of HMK-CTA, while the uniform scheme is the worst. A detailed
comparison will be shown in Section 5.1.

4.3 Parameter Selection Guidelines
There are various parameters of HMK-CTA, including the number
of levels (L) as well as the reduced ranks (R(l)

n ), the numbers of
clusters (C(l)

n ), and the numbers of mixture clusters (K(l)
n ) at each

level. It is non-trivial to determine all parameters for a specific goal,

1The mode-n rank of a subdivided tensor is
⌈
I
(l)
n /C

(l)
n

⌉
. Never-

theless, if I
(l)
n is not a multiple of C

(l)
n , the mode-n ranks of the last

mod(I
(l)
n , C

(l)
n ) subdivided tensors are instead

⌈
I
(l)
n /C

(l)
n

⌉
− 1, where

mod(a, b) denotes a modulo b.
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Figure 4: Comparison of different subdivision schemes for a second-order tensor (also known as a matrix). In each subfigure, a square
represents a single tensor element with a number inside as its identity. The blue rectangle contains elements in a mode-1 subtensor (or a row for
a matrix), while the red one encloses elements in a mode-2 subtensor (or a column). (a) The input tensor is classified into total 3×3 overlapped
clusters based on MK-CTA. Each element is assigned into two clusters respectively along each mode, and MK-CTA restricts that elements in
a mode-1/mode-2 subtensor should be classified into the same two mode-1/mode-2 cluster subsets. (b)-(c) Based on the clustering result of
MK-CTA, the most/least significant scheme subdivides the tensor such that the sum of the reconstruction error of each subdivided tensor is the
lowest/highest. (d) Irrelevant to the clustering result of MK-CTA, the traditional uniform scheme partitions the tensor into disjoint blocks with the
same size and fixed membership.

for example, fast rendering rates and/or high-quality approxima-
tions. This subsection especially presents some parameter selection
guidelines based on our experience.

The runtime rendering performance is mostly dominated by
the number of levels, reduced ranks, and numbers of mix-
ture clusters. The rendering time is roughly in proportional to∑L

l=1

∏N
n=1 R

(l)
n K

(l)
n , but only slightly increases with larger num-

bers of clusters.
On the other hand, increasing the number of levels, reduced

ranks, or numbers of clusters often significantly improves approxi-
mation quality. For different parameter configurations, similar val-
ues of

∑L
l=1

∏N
n=1 R

(l)
n C

(l)
n generally result in similar errors. Al-

though numbers of mixture clusters also have an impact on quality,
there are no noticeable differences when their values are larger than
3.

The offline approximation time is often reduced by decreasing
the number of levels, numbers of clusters, and/or numbers of mix-
ture clusters, especially the last two. Nevertheless, increasing re-
duced ranks only slightly raises the offline computational cost.

In summary, an appropriate number of levels is between 2 and
4 from our experience. At each level, employing MK-CTA by set-
ting numbers of mixture clusters to 2 is often suggested, as it pro-
vides a good tradeoff among approximation quality, rendering per-
formance, and offline approximation cost. Moreover, if rendering
performance is the most important concern, reduced ranks should
be kept as small as possible. Nevertheless, numbers of clusters
should be also increased in order to retain approximation quality.

5 EXPERIMENTS

This section compares HMK-CTA with MK-CTA and demon-
strates the experimental results of spatially-varying bidirectional
reflectance distribution functions (SVBRDFs), time-varying
light fields (TVLFs), and time-varying volume data (TVVD),
which are common types of large-scale multidimensional vi-
sual datasets in computer graphics and visualization. The
utilized SVBRDFs, TVLFs, and TVVD were respectively
collected from the project webpage of inverse shade trees [7]
(http://ist.cs.princeton.edu/), the synthetic light field archive [29]
(http://web.media.mit.edu/∼gordonw/SyntheticLightFields/),
and the time-varying volume data repository
(http://www.cs.ucdavis.edu/ ∼ma/ITR/tvdr.html).

For MK-CTA, we employed optimal search for sparse cluster-
ing. As for HMK-CTA, we adopted the most significant subdivision
scheme unless specified. Raw and approximated data were stored as
32-bit and 16-bit floating-point numbers, respectively. Approxima-
tion quality was evaluated by the signal-to-noise ratio (SNR). Of-
fline approximation and runtime rendering timings were measured
on a workstation with an AMD Ryzen Threadripper 2950X CPU,
an NVIDIA TITAN RTX graphics card, and 128 GB main memory.

5.1 SVBRDFs

Experiment Settings. A SVBRDF describes the reflectance
distributions of different points on a surface. It is often represented
as a 6D function of an illumination direction ωl, a view direction
ωv , and a surface point p (or a texel) with 2D spatial coordinates
(x, y). When an incident light ray hits p in ωl and is reflected in
ωv , a SVBRDF returns the ratio of reflected radiance to irradiance.
Since a SVBRDF is a multidimensional dataset, tensor representa-
tions are suitable to approximate it for efficient runtime rendering.
In our experiments, a SVBRDF was resampled and organized as a
fourth-order tensor A ∈ RIωl

×Iωv×Ix×Iy for approximations us-
ing MK-CTA and HMK-CTA.

Results. Table 1 compares the statistics of SVBRDF approxi-
mation results for the MK-CTA baseline and HMK-CTA. Note that
the MK-CTA baseline can be regarded as a special case of HMK-
CTA, with only one hierarchical level. As for HMK-CTA, there are
three hierarchical levels, where the input tensor (at the first level) is
approximated using HOSVD (without sparse clustering and subdi-
vision), and residual tensors at the second and third levels are ap-
proximated using MK-CTA. We especially choose the numbers of
clusters at the second and third levels to match the numbers of clus-
ters for the MK-CTA baseline. For example, C(2)

x · C(3)
x of HMK-

CTA is equal to C
(1)
x of the MK-CTA baseline. Therefore, the ap-

proximation quality of MK-CTA and HMK-CTA is expected to be
similar.

When compared to the MK-CTA baseline, HMK-CTA can sig-
nificantly reduce offline approximation time by more than 80% (or
even more than 90%). The amount of approximated data is smaller,
and rendering rates are also higher. Although the approximation
quality (in terms of the SNR) of HMK-CTA may be decreased, the

http://ist.cs.princeton.edu/
http://web.media.mit.edu/~gordonw/SyntheticLightFields/
http://www.cs.ucdavis.edu/~ma/ITR/tvdr.html


Table 1: Statistics of SVBRDF approximations.

SVBRDF Dove Season Greetings Wallpaper1 Wallpaper2

Iωl
×Iωv ×Ix×Iy 58×58×510×470 58×58×500×523 58×58×375×480 58×58×310×390

Raw data (GB) 9.01 9.83 6.77 4.55

Approximate method MK-CTA HMK-CTA MK-CTA HMK-CTA MK-CTA HMK-CTA MK-CTA HMK-CTA

R(1)
ωl

×R(1)
ωv

×R(1)
x ×R(1)

y 3×3×5×5 6×6×10×10 3×3×4×6 6×6×8×12 2×1×2×2 4×2×4×4 3×3×5×6 6×6×10×12

C(1)
ωl

×C(1)
ωv

×C(1)
x ×C(1)

y 12×9×16×16 - 16×12×16×16 - 12×16×16×16 - 12×9×16×16 -

K(1)
ωl

×K(1)
ωv

×K(1)
x ×K(1)

y 3×3×3×3 - 3×3×3×3 - 3×3×3×3 - 3×3×3×3 -

R(2)
ωl

×R(2)
ωv

×R(2)
x ×R(2)

y - 3×3×5×5 - 3×3×4×6 - 2×1×2×2 - 3×3×5×6

C(2)
ωl

×C(2)
ωv

×C(2)
x ×C(2)

y - 4×3×4×4 - 4×4×4×4 - 4×4×4×4 - 4×3×4×4

K(2)
ωl

×K(2)
ωv

×K(2)
x ×K(2)

y - 2×2×2×2 - 2×2×2×2 - 2×2×2×2 - 2×2×2×2

R(3)
ωl

×R(3)
ωv

×R(3)
x ×R(3)

y - 3×3×5×5 - 3×3×4×6 - 2×1×2×2 - 3×3×5×6

C(3)
ωl

×C(3)
ωv

×C(3)
x ×C(3)

y - 3×3×4×4 - 4×3×4×4 - 3×4×4×4 - 3×3×4×4

K(3)
ωl

×K(3)
ωv

×K(3)
x ×K(3)

y - 2×2×2×2 - 2×2×2×2 - 2×2×2×2 - 2×2×2×2

Approximated data (MB) 70.26 51.97 123.82 90.89 39.99 26.34 62.64 47.5

SNR (dB) 25.31 24.99 26.67 29.52 18.75 18.7 28.71 28.16

Approximation time (hr.) 363.62 65.78 663.92 99.67 617.62 84.28 416.35 20.03

Rendering rate (FPS) 1.52 4.56 1.97 4.31 33.41 97.25 2.75 7.42

Dove Raw data MK-CTA HMK-CTA Season Greetings Raw data MK-CTA HMK-CTA

Wallpaper1 Raw data MK-CTA HMK-CTA Wallpaper2 Raw data MK-CTA HMK-CTA

Figure 5: Reconstructed images of SVBRDF approximations. Please refer to Table 1 for statistics and parameter configurations.

difference from MK-CTA is often small. Note that for the SVBRDF
”Season Greetings”, its approximation quality is remarkably in-
creased from 26.67 dB to 29.52 dB by using HMK-CTA. We found
that when the numbers of clusters are larger, it is more difficult to
find a good (locally) optimal solution to MK-CTA, even though in-
creasing the numbers of mixture clusters can alleviate this issue.

Fig. 5 further demonstrates the visual quality of reconstructed
SVBRDF images for the MK-CTA baseline and HMK-CTA. From
enlarged images, differences between the two methods are often not
perceptible. Nevertheless, for the SVBRDF ”Season Greetings”,
there are visible artifacts around sharp features in the reconstructed
images of MK-CTA. For example, noise and ringing effects can be
apparently observed at boundaries of some English letters. The im-
ages of MK-CTA are also slightly more blurry than those of HMK-
CTA.

Table 2 reveals the statistics of approximation results for the
SVBRDF ”Wood Tape” based on different configurations of MK-

CTA and HMK-CTA. For a more comprehensive comparison, we
change all the numbers of mixture clusters for MK-CTA from 3 to
2. As a result, approximation time is substantially reduced (but still
very long), quality is slightly decreased, and rendering performance
significantly improves.

As for HMK-CTA, there are three configurations (WH1, WH2,
and WH3) with only two levels. Among them, by increasing the
numbers of clusters, approximation quality and time are moder-
ately increased, while rendering rates are just slightly reduced. On
the other hand, by comparing WH4 to WH2, there is an additional
hierarchical level for WH4, namely the first level, where HOSVD
is applied to the input SVBRDF such that the approximation time
and rendering rates of WH2 and WH4 are very similar. Neverthe-
less, the approximation quality of WH4 is slightly decreased. From
WH4 and WH7, the effects of increasing reduced ranks can be ob-
served. Approximation quality is improved, while the rendering
rate is reduced. The decrease in approximation time can be ignored,



Table 2: Statistics of SVBRDF approximations (”Wood Tape”).

SVBRDF Wood Tape

Iωl
×Iωv ×Ix×Iy 58×58×400×380

Raw data (GB) 5.71

Configuration WM1 WM2 WH1 WH2 WH3 WH4 WH5 WH6 WH7

Approximation method MK-CTA MK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA

Subdivision scheme - - Most Most Most Most Least Uniform Most

R(1)
ωl

×R(1)
ωv

×R(1)
x ×R(1)

y 2×2×3×3 2×2×3×3 2×2×3×3 2×2×3×3 2×2×3×3 4×4×6×6 4×4×6×6 4×4×6×6 4×4×8×8

C(1)
ωl

×C(1)
ωv

×C(1)
x ×C(1)

y 12×9×16×16 12×9×16×16 3×3×3×3 4×3×4×4 4×3×4×4 - - - -

K(1)
ωl

×K(1)
ωv

×K(1)
x ×K(1)

y 2×2×2×2 3×3×3×3 2×2×2×2 2×2×2×2 2×2×2×2 - - - -

R(2)
ωl

×R(2)
ωv

×R(2)
x ×R(2)

y - - 2×2×3×3 2×2×3×3 2×2×3×3 2×2×3×3 2×2×3×3 2×2×3×3 2×2×4×4

C(2)
ωl

×C(2)
ωv

×C(2)
x ×C(2)

y - - 3×3×3×3 3×3×4×4 4×3×4×4 4×3×4×4 4×3×4×4 4×3×4×4 4×3×4×4

K(2)
ωl

×K(2)
ωv

×K(2)
x ×K(2)

y - - 2×2×2×2 2×2×2×2 2×2×2×2 2×2×2×2 2×2×2×2 2×2×2×2 2×2×2×2

R(3)
ωl

×R(3)
ωv

×R(3)
x ×R(3)

y - - - - - 2×2×3×3 2×2×3×3 2×2×3×3 2×2×4×4

C(3)
ωl

×C(3)
ωv

×C(3)
x ×C(3)

y - - - - - 3×3×4×4 3×3×4×4 3×3×4×4 3×3×4×4

K(3)
ωl

×K(3)
ωv

×K(3)
x ×K(3)

y - - - - - 2×2×2×2 2×2×2×2 2×2×2×2 2×2×2×2

Approximated data (MB) 21.74 31.66 8.56 22.3 28.53 22.31 22.31 22.31 29.09

SNR (dB) 27.6 28.31 24.77 27.62 28.07 27.04 26.04 25.46 27.89

Approximation time (hr.) 73.52 518.25 14.37 22.4 21.93 23.2 21.8 16.48 20.7

Rendering rate (FPS) 72.06 14.92 38.14 37.65 37.16 36.82 36.53 36.72 22.34

Wood Tape Raw data
MK-CTA MK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA HMK-CTA
(WM1) (WM2) (WH1) (WH2) (WH3) (WH4) (WH5) (WH6) (WH7)

Figure 6: Reconstructed images of SVBRDF approximations (”Wood Tape”). Please refer to Table 2 for statistics and parameter configurations.

since it is mostly due to less iterations until convergence.
Finally, WH4, WH5, and WH6 compare the three subdivision

schemes, including the most/least significant and uniform ones.
The most significant scheme outperforms others in terms of approx-
imation quality. Although the approximation time of the uniform
scheme is the shortest, its quality is the worst. Note that there are
almost no differences in the rendering rates, which is not surpris-
ing, since runtime performance is mostly related to the number of
levels, reduced ranks, and numbers of mixture clusters.

Fig. 6 shows the visual quality of reconstructed SVBRDF images
for different configurations of MK-CTA and HMK-CTA in Table
2. In general, the visual quality of each configuration is consistent
with its own SNR. Note that the visual quality of configurations
WH1, WH5, and WH6 may be among the worst. Specifically, there
are ringing effects at sharp boundaries in the reconstructed images
of WH1. Moreover, blocky artifacts can be also observed in the
images of WH5 and WH6 (the least significant and uniform subdi-
vision schemes).

Discussions. Overall, HMK-CTA provides a good tradeoff
among reasonable offline approximation cost, low reconstruction
errors, high visual quality, fast rendering rates, and small amounts
of approximated data. When compared with MK-CTA, HMK-CTA
can especially reduce the offline approximation time by even an
order of magnitude, without sacrificing storage space and notice-

Level 1 (7.31 dB) Level 2 (16.26 dB) Level 3 (27.04 dB)

Figure 7: Reconstructed images of SVBRDF approximations at dif-
ferent levels for the configuration WH4 (Table 2). The approximation
quality at each level (in terms of the SNR) is also shown in parenthe-
ses.

able approximation/visual quality. Note that the amount of approx-
imated data for HMK-CTA is sometimes smaller than that for MK-
CTA (Tables 1 and 2), but the approximation quality of both meth-
ods is quite similar to each other. This implies that HMK-CTA may
be more effective in exploiting coherence among the input multidi-
mensional data.

Moreover, the hierarchical structure of HMK-CTA also supports
progressive reconstruction/rendering at runtime. Fig. 7 demon-



t]

Raw data MK-CTA HMK-CTA Raw data MK-CTA HMK-CTA Raw data MK-CTA HMK-CTA
Time/Frame index: 1 Time/Frame index: 41 Time/Frame index: 81

Figure 8: Reconstructed images of TVLF approximations. Please refer to Table 3 for statistics and parameter configurations.

Table 3: Statistics of TVLF approximations.

TVLF Animated Bunnies

Iωv ×Ix×Iy×It 81×840×525×89

Raw data (GB) 11.84

Approximation method MK-CTA HMK-CTA

R(1)
ωv

×R(1)
x ×R(1)

y ×R
(1)
t 1×2×2×89 2×4×4×89

C(1)
ωv

×C(1)
x ×C(1)

y ×C
(1)
t 36×90×60×1 -

K(1)
ωv

×K(1)
x ×K(1)

y ×K
(1)
t 3×3×3×1 -

R(2)
ωv

×R(2)
x ×R(2)

y ×R
(2)
t - 1×2×2×89

C(2)
ωv

×C(2)
x ×C(2)

y ×C
(2)
t - 6×10×10×1

K(2)
ωv

×K(2)
x ×K(2)

y ×K
(2)
t - 2×2×2×1

R(3)
ωv

×R(3)
x ×R(3)

y ×R
(3)
t - 1×2×2×89

C(3)
ωv

×C(3)
x ×C(3)

y ×C
(3)
t - 6×9×6×1

K(3)
ωv

×K(3)
x ×K(3)

y ×K
(3)
t - 2×2×2×1

Approximated data (MB) 174.74 161.65

SNR (dB) 26.76 25.93

Approximation time (hr.) 530.2 24.47

Rendering rate (FPS) 324.42 470.83

strates the reconstructed images of the SVBRDF ”Wood Tape” at
different levels. Higher-frequency and smaller-scale visual fea-
tures/details can be observed in the reconstructed images at lower
levels. Although due to parameter configurations, the approxima-
tion quality at the first level is not very good both visually and in
terms of the SNR, the quality at the second level improves to an ac-
ceptable level. In order to increase approximation quality, one can
always apply different parameter configurations at the first level,
such that the employed method will be changed from HOSVD to
MK-CTA. Nevertheless, runtime rendering rates may be slightly
reduced.

5.2 Time-Varying Light Fields
Experiment Settings. A TVLF describes temporal radiance

distributions at different positions on a image/plane. It is often rep-
resented as a 5D function of a view direction ωv , an image pixel p
with 2D spatial coordinates (x, y), and a time/frame index t. When

viewing a 3D scene in ωv from p at frame t, the output value of a
TVLF is the received radiance at p. In our experiments, a TVLF
was organized as a fourth-order tensor A ∈ RIωv×Ix×Iy×It for
approximations using MK-CTA and HMK-CTA. For both methods,
we follow the suggestion in [20] not to decompose the time mode
due to low temporal coherence.

Results. Table 3 lists the statistics of TVLF approximations
for the MK-CTA baseline and HMK-CTA. We also determine pa-
rameters of both algorithms such that their approximation quality is
similar. From Table 3, the approximation time of HMK-CTA is sub-
stantially lower than that of MK-CTA, even less than 5%. Note that
the rendering performance of HMK-CTA is obviously better. Al-
though determining parameters of HMK-CTA is more complicated,
it also simultaneously provides more flexibility for fine-tuning ren-
dering rates. Moreover, the differences in approximation quality
and the amount of approximated data between both methods are
not significant. This indicates that HMK-CTA can achieve a better
compromise, especially for reducing offline computational cost.

The reconstructed TVLF images of both algorithms are shown
in Fig. 8. Even from enlarged images, it is still difficult to iden-
tify which algorithm can lead to visually more pleasant results. In
general, there are some blocky artifacts in the reconstructed images
of HMK-CTA, while the results of MK-CTA are more blurry and
exhibit more ringing effects at boundaries of bunnies. Please refer
to the supplemental video for the animated result of HMK-CTA.

5.3 Time-Varying Volume Data
Experiment Settings. A TVVD set describes a dynamic field

with respect to different positions in a 3D space. In this paper, since
we only consider scalar fields, it can be regarded as a 4D function
of a voxel v with 3D spatial coordinates (x, y, z) and a time/frame
index t. For v at frame t, a TVVD set returns a scalar value that
represents a certain (physical) quantity, for example, vorticity, den-
sity, or energy. In our experiments, a TVVD set was organized as
a fourth-order tensor A ∈ RIx×Iy×Iz×It for approximations using
MK-CTA and HMK-CTA. Note that we also did not decompose the
time mode due to low temporal coherence.

Results. The statistics of TVVD approximations for the MK-
CTA baseline and HMK-CTA are shown in Table 4. Under similar
approximation quality, the amount of approximated data and ren-
dering rates of both algorithms are also close to each other. Never-



Raw data MK-CTA HMK-CTA Raw data MK-CTA HMK-CTA Raw data MK-CTA HMK-CTA
Time/Frame index: 38 Time/Frame index: 80 Time/Frame index: 122

Figure 9: Visualization results of TVVD approximations. Please refer to Table 4 for statistics and parameter configurations.

Table 4: Statistics of TVVD approximations.

TVVD Turbulent Jet

Ix×Iy×Iz×It 258×258×208×150

Raw data (GB) 7.74

Approximation method MK-CTA HMK-CTA

R(1)
x ×R(1)

y ×R(1)
z ×R

(1)
t 1×1×1×150 2×2×2×150

C(1)
x ×C(1)

y ×C(1)
z ×C

(1)
t 36×36×64×1 -

K(1)
x ×K(1)

y ×K(1)
z ×K

(1)
t 3×3×3×1 -

R(2)
x ×R(2)

y ×R(2)
z ×R

(2)
t - 1×1×1×150

C(2)
x ×C(2)

y ×C(2)
z ×C

(2)
t - 6×6×8×1

K(2)
x ×K(2)

y ×K(2)
z ×K

(2)
t - 2×2×2×1

R(3)
x ×R(3)

y ×R(3)
z ×R

(3)
t - 1×1×1×150

C(3)
x ×C(3)

y ×C(3)
z ×C

(3)
t - 6×6×8×1

K(3)
x ×K(3)

y ×K(3)
z ×K

(3)
t - 2×2×2×1

Approximated data (MB) 23.56 23.53

SNR (dB) 17.73 17.52

Approximation time (hr.) 106.95 14.12

Rendering rate (FPS) 340.32 364.28

theless, HMK-CTA can reduce more than 85% of the approxima-
tion time of MK-CTA. As for visual quality, the enlarged images in
Fig. 9 reveal that there are no significant differences in the visualiza-
tion results of both algorithms. Although some high-frequency and
sharp visual features are not faithfully captured by both algorithms,
one can always adjust parameters, such as increasing numbers of
clusters, in order to reduce approximation errors. Please also refer
to the accompanying video for the animated visualization result of
HMK-CTA.

6 CONCLUSIONS

This paper introduces a novel hierarchical multilinear model,
namely HMK-CTA, to achieve efficient, progressive, compact, and
high-quality approximations for large-scale multidimensional vi-
sual datasets. When compared to MK-CTA, HMK-CTA can sig-
nificantly reduce offline approximation time by even an order of

magnitude, while retaining similar approximation quality, render-
ing rates, and storage requirements. Its hierarchical structure par-
ticularly contributes to capturing multiscale visual features among
datasets.

In the future, we would like to develop an automatic method
for determining various parameters of HMK-CTA based on a few
specified constraints, for example, a desired rendering rate and/or
SNR. We are also interested in accelerating the offline approxima-
tion process of HMK-CTA by utilizing graphics processing units or
parallel/cloud computing techniques.
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