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Abstract

As large language models (LLMs) evolve, their001
ability to deliver personalized and context-002
aware responses offers transformative poten-003
tial for improving user experiences. Exist-004
ing personalization approaches, however, of-005
ten rely solely on user history to augment006
the prompt, limiting their effectiveness in gen-007
erating tailored outputs, especially in cold-008
start scenarios with sparse data. To address009
these limitations, we propose Personalized010
Graph-based Retrieval-Augmented Generation011
(PGraphRAG), a framework that leverages user-012
centric knowledge graphs to enrich personal-013
ization. By directly integrating structured user014
knowledge into the retrieval process and aug-015
menting prompts with user-relevant context,016
PGraphRAG enhances contextual understand-017
ing and output quality. We also introduce018
the Personalized Graph-based Benchmark for019
Text Generation, designed to evaluate personal-020
ized text generation tasks in real-world settings021
where user history is sparse or unavailable. Ex-022
perimental results show that PGraphRAG sig-023
nificantly outperforms state-of-the-art person-024
alization methods across diverse tasks, achiev-025
ing an average relative gain of 14.8% ROUGE-026
1 on the long-text generation tasks and 4.6%027
ROUGE-1 on the short-text generation tasks,028
demonstrating the unique advantages of graph-029
based retrieval for personalization.030

1 Introduction031

The recent development of large language mod-032

els (LLMs) has unlocked numerous applications033

in natural language processing (NLP), including034

advanced conversational agents, automated con-035

tent creation, and code generation. For instance,036

models like GPT-4 (OpenAI, 2024) have been em-037

ployed to power virtual assistants capable of an-038

swering complex queries, summarizing lengthy039

documents, and engaging in human-like conver-040

sations. These advancements highlight the trans-041

formative potential of LLMs to automate and en-042
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Figure 1: Overview of the proposed personalized
graph-based retrieval-augmented generation framework,
PGraphRAG. We first construct user-centric graphs
from user history and interactions. Then, the result-
ing structured data is utilized for retrieval. The retrieved
information is provided to the language models for con-
text in generating text tailored to user i.

hance tasks across various domains (Brown et al., 043

2020). As LLMs continue to evolve, their ability 044

to deliver highly personalized and context-aware 045

responses opens new possibilities for transforming 046

user experiences (Salemi et al., 2024b). Personal- 047

ization enables these models to adapt outputs to in- 048

dividual preferences, contexts, and goals, fostering 049

richer and more meaningful interactions (Huang 050

et al., 2022). For example, personalized text gener- 051

ation allows AI systems to provide responses that 052

are more relevant, contextually appropriate, and 053

aligned with the style and preferences of individual 054

users (Zhang et al., 2024). 055

Personalization. The concept of personalization is 056

well-established in AI and has been extensively ex- 057

plored across various fields, including information 058

retrieval, human-computer interaction (HCI), and 059

recommender systems. In information retrieval, 060

personalization techniques are employed to tailor 061

search results based on user profiles and past in- 062

teractions, enhancing the relevance of retrieved 063

documents (Xue et al., 2009). HCI research has 064

focused on creating adaptive user interfaces and 065

interactions that cater to individual needs, improv- 066

ing usability and accessibility (Fowler et al., 2015). 067
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Recommender systems utilize personalization to068

suggest products, services, or content that match069

user interests, driving engagement in applications070

ranging from e-commerce to entertainment (Nau-071

mov et al., 2019; Lyu et al., 2024a). Despite the072

widespread acknowledgment of the importance of073

personalization in these domains, the development074

and evaluation of large language models (LLMs)075

for generating personalized responses remain rela-076

tively understudied.077

One of the key challenges in advancing personal-078

ized LLMs is the lack of suitable benchmarks that079

adequately capture personalization tasks. Popu-080

lar natural language processing (NLP) benchmarks081

(e.g., (Wang et al., 2019b), (Wang et al., 2019a),082

(Gehrmann et al., 2021)) primarily focus on gen-083

eral language understanding and generation capa-084

bilities, with limited emphasis on personalization085

aspects. As a result, researchers and practition-086

ers lack standardized datasets and evaluation met-087

rics to develop and assess models designed for088

personalized text generation. Recently, some ef-089

forts have been made towards personalized LLM090

benchmarks. The LaMP benchmark offers a com-091

prehensive evaluation framework focusing on per-092

sonalized text classification and generation includ-093

ing email subject generation, news headline gen-094

eration, paper title generation, product rating and095

movie tagging (Salemi et al., 2024b). LongLaMP096

extended this scope with four tasks emphasizing097

long text generation, such as email completion and098

paper abstract generation (Kumar et al., 2024). Un-099

fortunately, these recently developed personalized100

LLM benchmarks rely exclusively on user history101

to model personalization.102

Cold Start Users. While user history is undoubt-103

edly valuable for capturing a user’s preferences and104

behaviors, this approach has significant limitations.105

In scenarios where user data is sparse or entirely106

unavailable — such as with new users in cold-start107

situations — models that depend solely on user108

history fail to generate personalized outputs effec-109

tively. This dependency restricts the applicabil-110

ity of such benchmarks in evaluating personalized111

LLMs for real-world use cases, where the avail-112

ability and quality of user history can vary greatly.113

For example, Figure 2 shows the user profile distri-114

bution for Amazon user-product reviews (Ni and115

McAuley, 2018) where 99.99% of users have only116

one or two reviews in their profile. Interestingly,117

other personalized LLM benchmarks such as LaMP118

and LongLaMP limited their datasets to users with 119

sufficient profile size. 120
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Figure 2: The user profile distribution for Amazon user-
product dataset which highlights how most users have a
small profile size with few reviews. The red vertical line
marks the minimum profile size in other benchmarks
(e.g., LaMP, LongLaMP).

PGraphRAG. To address these challenges, we 121

propose Personalized Graph-based Retrieval- 122

Augmented Generation (PGraphRAG), a novel 123

framework that leverages user-centric knowledge 124

represented as structured graphs to enhance per- 125

sonalized text generation. By incorporating user- 126

centric knowledge graphs directly into the retrieval 127

process and augmenting the generation context or 128

prompt with structured user-specific information, 129

PGraphRAG provides a richer and more compre- 130

hensive understanding of the user’s context, pref- 131

erences, and relationships (see Figure 1 for an 132

overview of the framework). This approach tran- 133

scends the limitations of relying solely on user 134

history by integrating diverse and structured user 135

knowledge, enabling the model to generate more 136

accurate and personalized responses even when 137

user history is sparse or unavailable. The use of 138

structured graphs allows PGraphRAG to represent 139

complex user information, such as interests and 140

past interactions, in a structured and interconnected 141

manner. By augmenting the prompt with this struc- 142

tured knowledge during the generation process, 143

PGraphRAG facilitates more effective retrieval and 144

integration of relevant user-centric information, sig- 145

nificantly enhancing the model’s ability to produce 146

contextually appropriate and personalized outputs. 147

In cold-start scenarios, where traditional models 148

fail due to the lack of user history, PGraphRAG 149

leverages available structured knowledge to deliver 150

meaningful personalization. 151

Benchmark. To evaluate our approach, we intro- 152

duce the Personalized Graph-based Benchmark for 153

Text Generation, a novel evaluation benchmark de- 154

signed to fine-tune and assess LLMs on twelve 155

personalized text generation tasks including long 156
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and short text generation, as well as classification.157

This benchmark addresses the limitations of exist-158

ing personalized LLM benchmarks by providing159

datasets that specifically target personalization ca-160

pabilities in real-world settings where user history161

is sparse. In addition, the benchmark enables a162

more comprehensive assessment of a model’s abil-163

ity to personalize outputs based on structured user164

information. Our contributions can be summarized165

as follows:166

1. Benchmark. We propose a Personalized167

Graph-based Benchmark for with 12 distinct168

tasks. To support further research, we make it169

available 1.170

2. Problem. Current approaches to personalized171

text generation struggle with cold-start users,172

who have only minimal history data. To ad-173

dress this problem, we propose PGraphRAG174

by augmenting the context with structured175

user-specific information.176

3. Effectiveness. We demonstrate the state-of-177

the-art performance of PGraphRAG across178

the new benchmark in producing personalized179

outputs using user-centric knowledge graphs.180

2 Personalized Graph-based Benchmark181

for LLMs182

Here, we discuss the proposed Personalized Graph-183

Based Benchmark to evaluate LLMs in their abil-184

ity to produce personalized text generations for185

twelve personalized tasks including long text gen-186

eration, short text generation, and ordinal classifica-187

tion. The benchmark datasets were collected from188

several real-world datasets from various domains.189

LLMs typically take an input x and predict the190

most likely sequence of tokens y that follows x. As191

such, each data entry in the benchmark consists of:192

(1) an input sequence x that serves as the input to193

LLMs, (2) a target output sequence y that the LLM194

is expected to generate, and (3) a user-centric bi-195

partite graph. Given an input sample (x, y) for any196

user i, the goal is to generate a personalized output197

ŷ that matches the target output y conditioning on198

the user profile Pi.199

We represent the user-centric graph as a bipar-200

tite knowledge graph G = (U, V,E), such that201

U denotes user nodes, V denotes item nodes, and202

E denotes the interaction edges among users and203

items. For example, an edge (i, j) ∈ E may repre-204

1https://anonymous.4open.science/r/
PGraphRAG-186B/

sent a review written by user i for item j, including 205

all details such as the review text, title, and rating. 206

In this benchmark, we define the user profile Pi as 207

the set of reviews written by user i, and the set of 208

reviews for item j written by other users k where 209

k ̸= i. We provide a summary of all task statistics 210

and their associated graphs in Table 1 and Table 2 211

respectively. Due to space limitations, details of 212

dataset splits are in the appendix section. 213

2.1 Task Definitions 214

Task 1: User Product Review Generation. Per- 215

sonalized review text generation has progressed 216

from incorporating user-specific context to utiliz- 217

ing LLMs for generating fluent and contextually 218

relevant reviews and titles (Ni and McAuley, 2018). 219

This task aims to generate a target product review 220

itext given the target user’s product review title ititle 221

and a set of additional reviews Pi from their profile. 222

We use the Amazon Reviews 2023 dataset (Hou 223

et al., 2024) to construct data splits and bipartite 224

graphs across multiple product categories. 225

Task 2: Hotel Experience Generation. Hotel 226

reviews often contain detailed narratives reflecting 227

users’ personal experiences, making personaliza- 228

tion crucial for capturing individual preferences 229

and accommodations (Kanouchi et al., 2020). This 230

task focuses on generating a personalized hotel ex- 231

perience story itext based on the target user’s hotel 232

review summary ititle and a set of additional re- 233

views Pi. The Hotel Reviews dataset, a subset of 234

Datafiniti’s Business Database (Datafiniti, 2017), is 235

used to construct data splits and a user-hotel graph. 236

Task 3: Stylized Feedback Generation. User 237

writing style, influenced by grammar, punctuation, 238

and spelling, reflects individual preferences and is 239

shaped by geographic and cultural factors, making 240

it critical for personalized text generation (Alhafni 241

et al., 2024). This task involves generating target 242

feedback itext based on the target user’s feedback 243

title ititle and a set of additional feedback Pi from 244

their profile. We use the Grammar and Online 245

Product dataset, a subset of the Datafiniti Business 246

dataset (Datafiniti, 2018), which highlights writing 247

quality across multiple platforms. 248

Task 4: Multi-lingual Review Generation. 249

Personalization in multilingual review generation 250

presents unique challenges due to variations in lin- 251

guistic structures, cultural nuances, and stylistic 252

conventions (Cortes et al., 2024). In this task, we 253
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Task Type Avg. Input Length Avg. Output Length Avg. Profile Size # Classes

User-Product Review Generation Long Text Generation 3.754± 2.71 47.90± 19.28 1.05± 0.31 -
Hotel Experiences Generation Long Text Generation 4.29± 2.57 76.26± 22.39 1.14± 0.61 -
Stylized Feedback Generation Long Text Generation 3.35± 2.02 51.80± 20.07 1.09± 0.47 -
Multilingual Product Review Generation Long Text Generation 2.9± 2.40 34.52± 12.55 1.08± 0.33 -

User-Product Review Title Generation Short Text Generation 30.34± 37.95 7.02± 1.14 1.05± 0.31 -
Hotel Experiences Summary Generation Short Text Generation 90.40± 99.17 7.64± 0.92 1.14± 0.61 -
Stylized Feedback Title Generation Short Text Generation 37.42± 38.17 7.16± 1.11 1.09± 0.47 -
Multilingual Product Review Title Generation Short Text Generation 22.17± 20.15 7.15± 1.09 1.08± 0.33 -

User-Product Review Ratings Ordinal Classification 34.10± 38.66 - 1.05± 0.31 5
Hotel Experiences Ratings Ordinal Classification 94.69± 99.62 - 1.14± 0.61 5
Stylized Feedback Ratings Ordinal Classification 40.77± 38.69 - 1.09± 0.47 5
Multilingual Product Ratings Ordinal Classification 25.15± 20.75 - 1.08± 0.33 5

Table 1: Data statistics for PGraphRAG Benchmark across the four datasets. The table reports the average input
length and average output length in words (done for the test set on GPT-4o-mini on BM25 back on all methods).
The average profile size for each task is the number of reviews a user has.

Dataset Users Items Edges/Reviews Average Degree

User-Product Review Graph 184,771 51,376 198,668 1.68
Hotel Experiences Graph 15,587 2,975 19,698 2.12
Stylized Feedback Graph 58,087 600 71,041 2.42
Multilingual Product Review Graph 112,993 55,930 131,075 1.55

Table 2: Graph statistics for the datasets used in the personalized tasks. The table provides the number of users,
items, edges (reviews), and the average degree for each dataset: User-Product Graph, Multilingual Product Graph,
Stylized Feedback Graph, and Hotel Experiences Graph.

generate target product reviews itext in Brazilian254

Portuguese based on the target user’s review title255

ititle and additional reviews Pi in their profile. The256

B2W-Reviews dataset (Real et al., 2019), collected257

from Brazil’s largest e-commerce platform, is used258

to create data splits.259

Task 5: User Product Review Title Generation.260

Short text generation for personalized review ti-261

tles is particularly challenging due to the need for262

summarization, sentiment dissemination, and cap-263

turing user behavior styles. This task generates a264

target review title ititle using the target user’s review265

text itext and additional reviews Pi from their pro-266

file, without relying on parametric user information267

(Xu et al., 2023). We construct the dataset from the268

Amazon Reviews dataset (Hou et al., 2024).269

Task 6: Hotel Experience Summary Generation.270

Consolidating hotel information to help guests271

make informed decisions and personalize their ex-272

perience is crucial (Kamath et al., 2024). This task273

focuses on generating the target user’s hotel ex-274

perience summary ititle using their experience text275

itext and additional experiences Pi. We leverage276

the Datafiniti Business Database on Hotel Reviews277

(Datafiniti, 2017).278

Task 7: Stylized Feedback Title Generation. 279

Opinion datasets often lack review titles and rely 280

on comparing reviews with desirable feedback 281

to generate Stylized Opinion Summarization (Iso 282

et al., 2024). This task benchmarks stylized feed- 283

back across domains such as music, groceries, and 284

household items. The goal is to generate the target 285

user’s feedback title ititle based on their feedback 286

text itext and additional feedback Pi. The dataset 287

is constructed from the Datafiniti Products dataset 288

(Datafiniti, 2018). 289

Task 8: Multi-lingual Review Title Generation. 290

Brazilian Portuguese presents unique challenges 291

in simplifying review text (Scalercio et al., 2024), 292

particularly in a multilingual approach to gener- 293

ating review titles. This short task generates the 294

target user’s product review title ititle using their re- 295

view text itext and additional user reviews Pi. The 296

dataset is created from the B2W-Reviews dataset 297

(Real et al., 2019). 298

Task 9: User Product Review Ratings. Recent 299

advancements in sentiment analysis have utilized 300

graph structures to enhance sentiment prediction 301

(Zhang et al., 2023; Kertkeidkachorn and Shirai, 302

2023). This task focuses on predicting ratings 303

within an ordinal classification framework, assign- 304
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ing values from 1 to 5. To generate a user-product305

review rating irating, we use the target user’s prod-306

uct review itext, the corresponding title ititle, and307

additional reviews Pi as context. The dataset is con-308

structed from the Amazon Reviews dataset (Hou309

et al., 2024).310

Task 10: Hotel Experience Ratings. Guest re-311

views often address multiple aspects of hotel expe-312

riences, which are typically framed as multi-label313

classification problems (Fehle et al., 2023). This314

task adapts this aspect to evaluating personalized315

bias lodging scores. We define a user’s hotel expe-316

rience rating irating based on their hotel experience317

story itext and the summary ititle, with additional318

context from Pi. The dataset is derived from the319

Hotel Reviews dataset (Datafiniti, 2017).320

Task 11: Stylized Feedback Ratings. Exploring321

sentiment across different domains highlights vari-322

ations in writing quality and the factors influencing323

sentiment (Yu et al., 2021). This task investigates324

domain-specific variations by assigning a numeri-325

cal feedback rating irating to a target stylized user326

review. The input includes the stylized review text327

itext and title ititle. The dataset is constructed from328

the Datafiniti Product Database on Grammar and329

Online Product Reviews (Datafiniti, 2018).330

Task 12: Multi-lingual Product Ratings. Senti-331

ment analysis has proven effective at the sentence332

level when applied in Portuguese (de Araujo et al.,333

2024). However, this task extends beyond simple334

sentences to explore variability in Brazilian product335

reviews by generating a Portuguese user-product336

rating irating for a targeted review by considering337

both the review text itext and the review title ititle338

as context. We construct the dataset from B2W-339

Reviews (Real et al., 2019).340

3 PGraphRAG Framework341

In this section, we present PGraphRAG, our pro-342

posed approach for personalizing large language343

models (LLMs). PGraphRAG enhances person-344

alization by prompting a shared model with user-345

specific context, effectively integrating structured346

user-specific knowledge to enable tailored and347

context-aware text generation. As discussed in Sec-348

tion 2, PGraphRAG leverages a rich user-centric349

bipartite graph G that enables our approach to a350

broader context beyond the user history. Specifi-351

cally, for any user i, we define the user profile Pi352

as the set of previous texts written by user i (i.e.,353

{(i, j) ∈ E}), and the set of texts written by other 354

users k for the same items connected to user i (i.e., 355

{(k, j) ∈ E | (i, j) ∈ E}). As such, the user 356

profile Pi is defined as follows, 357

Pi = {(i, j) ∈ E} ∪ {(k, j) ∈ E | (i, j) ∈ E}
(1)

358

359
∀j ∈ V, k ∈ U, k ̸= i 360

Considering the context length limitations of cer- 361

tain LLMs and the computational costs of process- 362

ing contexts, we utilize retrieval augmentation to 363

extract only the most relevant information from the 364

user profile with respect to the input query. This 365

retrieved information is then used to condition the 366

model’s predictions for the current unseen test case. 367

Given an input sample (x, y) for user i, we fol- 368

low a few steps to generate ŷ, which includes a 369

query function, a graph-based retrieval model, and 370

a prompt construction function seen in Figure 1. 371

1. Query Function (ϕq): The query function 372

transforms the input x into a query for retriev- 373

ing from the user profile. 374

2. Graph-Based Retrieval (R): The retrieval 375

function R(q,G, k) takes as input the query 376

q, the bipartite graph G, and a threshold k. 377

First, the retrieval function leverages the graph 378

G to construct the user profile Pi. Then, it 379

retrieves the k-most relevant entries from the 380

user profile. 381

3. Prompt Construction (ϕp): The prompt con- 382

struction assembles a personalized prompt for 383

user i by combining the input x with the re- 384

trieved entries. 385

We define the constructed input using R as x̃: 386

x̃ = ϕp(x,R(ϕq(x), G, k)) (2) 387

Then, we use (x̃, y) to train or evaluate LLMs. 388

4 Experiments 389

Setup. The LLaMA-3.1-8B-Instruct model (Tou- 390

vron et al., 2023) is implemented using the Hug- 391

gingface transformers library using default 392

settings and configured to produce outputs with 393

a maximum length of 512 tokens. Thes experi- 394

ments are conducted on an NVIDIA A100 GPU 395

with 80GB of memory. We access GPT-4o-mini 396

model(OpenAI, 2024) via the Azure OpenAI Ser- 397

vice (Services, 2023), using the AzureOpenAI 398

class with the temperature set to 0.4. 399

5



4.1 Data Construction and Splitting400

To construct our user–item graph, we model users401

and products as nodes, with edges representing402

user reviews of products. Each user must have at403

least one reviewed product that is also reviewed404

by another user (i.e., forming a shared connection)405

to be selected as a gold-label edge. If the ran-406

domly selected review from a user does not meet407

this neighbor criterion, we instead select another408

review from the user’s profile. Users who have no409

neighbor-compatible reviews remain in the dataset410

but are excluded from selection, as our random411

draw occurs at the edge level rather than across the412

user’s full node profile. This filtering step ensures413

the resulting user–item graph remains connected,414

facilitating comparative tasks (e.g., multiple review-415

ers for the same product) and cold-start scenarios,416

where even users with few reviews maintain shared417

item nodes with others.418

After identifying each user’s valid “neighbor-419

linked” review(s), we split users into training, de-420

velopment, and test sets in a way that preserves421

these neighbor relationships:422

1. Global Neighbor Preservation: Products423

with multiple reviewers are assigned in424

batches so that at least one other user in the425

same split has reviewed the same product.426

2. Local Neighbor Preservation: Once a user427

with a particular product is placed in a split,428

subsequent users who reviewed that product429

are assigned to the same split to maintain con-430

nectivity.431

Finally, we stratify each split by user review pro-432

file size to reflect the original distribution from the433

original dataset while retaining local and global434

neighbor structures. Controlling the neighbor435

preservation and stratification of user profile size,436

product review distribution (amount of reviews per437

product) is maintained. This comprehensive pro-438

cess ensures that each split is representative of real-439

world user review patterns and that all three graph440

properties are reflective of the original. The graph441

statistics are seen in Table 2. Data statistics are442

shown in Table 1 and data split size in Table 8.443

Graph Construction. We construct a bipartite444

user-item graph from the selected user profiles in445

our validation and test splits. Each user node con-446

nects to item nodes representing products they have447

reviewed, with edges denoting individual reviews.448

This structure underpins two retrieval modes: (1)449

LaMP, which only searches edges corresponding to 450

the user’s own reviews, and (2) PGraphRAG Neigh- 451

bors, which further incorporates reviews from 452

neighboring user nodes via the graph. Traversing 453

the node will return a list, where both modes create 454

the context for PGraphRAG. 455

Ranking and Retrieval. The query differs by 456

task category: Long Text Generation (review title), 457

Short Text Generation(review text), Ordinal Clas- 458

sification(review title + text). We employ BM25 459

(Robertson and Zaragoza, 2009) and Contriever 460

(Lei et al., 2023) that retrieve the top k = 5 re- 461

views from each the user’s own edges (LaMP) and 462

their nearest neighbors in the graph. By ranking, 463

it retrieves only the most relevant context with the 464

k limit, where the minority of products is above 465

the limit as shown in 7 and 2. These constraints 466

users or products with a lot of reviews to be simi- 467

lar to those of cold-start users. The initial corpus 468

was tokenized using NLTK’s word_tokenize 469

before being passed to the retrievers. They use nor- 470

mal settings without additional hyperparameters 471

where the contriever applies mean pooling to token 472

embeddings. 473

LLM Prompt Generation. Once the top-k re- 474

views are identified, we incorporate them into a 475

template-based prompt passed to a large language 476

model (LLM). As illustrated in Figure ??, the 477

prompt includes both the user’s query (e.g., a re- 478

quest for a long-form review, a short title, or a 479

rating) and the list of reviews. Then, the LLM re- 480

turns the predicted task given the set of instructions 481

as shown in Figure 3. 482

Baseline Methods. We compare our method 483

against several non-personalized and personalized 484

approaches. (1) No-Retrieval serves as a non- 485

personalized baseline where the prompt is con- 486

structed without any retrieval augmentation. The 487

LLM generates the target text solely based on 488

the query. (2) Random-Retrieval serves as a non- 489

personalized baseline where the prompt is con- 490

structed with augmentation using a random item 491

from all user profiles. (3) LaMP (Salemi et al., 492

2024b) is a personalized baseline where the prompt 493

is constructed with augmentation with user-specific 494

input or context, such as previous reviews written 495

by the user. 496

Evaluation. For evaluation, we assess each 497

method by providing task-specific inputs and mea- 498

suring performance based on the generated outputs. 499

6



For long and short text generation tasks, we utilize500

the ROUGE-1, ROUGE-L (Lin, 2004), and ME-501

TEOR (Banerjee and Lavie, 2005) metrics. For502

rating prediction tasks, we evaluate performance503

using MAE and RMSE as metrics.504

4.2 Baseline Comparison505

Together, these three tasks illustrate how review506

formulation—whether expanding a short title, gen-507

erating concise text, or assigning numerical rat-508

ings—directly impacts how user information is dis-509

seminated throughout the model. For more descrip-510

tive tasks, user knowledge graphs provide richer511

context that can elevate the generation quality. Con-512

versely, when prompts are minimal or scores are513

discrete, retrieving and integrating user data may514

offer limited gains if the prompt lacks the necessary515

hooks or if domain-specific biases dominate.516

Long Text Generation. Table 3 & 16 shows517

PGraphRAG consistently outperforms the base-518

line methods in order of no-retrieval, random re-519

trieval, and LaMP across all metrics. PGraphRAG520

showed the greatest improvement in Hotel Ex-521

perience Generation over the LaMP baseline in522

both models, with gains in ROUGE-1 (+32.1%),523

ROUGE-L (+21.7%), and METEOR (+25.7%) in524

LLaMA-3.1-8B-Instruct . This shows the benefits525

gained by incorporating a broader context from526

user-centric graphs. Due to the greater length of527

the reference and predicted text, there are more528

opportunities for predicted review body to overlap529

with the gold label, resulting in higher scores.530

Short Text Generation. Table 4 & 17 ,531

PGraphRAG outperforms the baselines in most532

cases, where User Product Review Title Generation533

PGraphRAG achieves small, consistent improve-534

ments in ROUGE-1 (+5.6%), ROUGE-L (+5.9%),535

and METEOR (+6.8%) over LaMP in LLaMA-536

3.1-8B-Instruct . Since the short-generation tasks537

inherently provide fewer words to match against538

the reference, the ROUGE and METEOR scores539

tend to be lower for these tasks. Minor lexical dif-540

ferences can lead to significant score reductions,541

and there are fewer opportunities to align with ref-542

erence labels.543

544

Ordinal Classification. In Tables 6, and 18,545

PGraphRAG out performs 1 of 4 tasks in LLaMa546

and 2 of 4 in GPT with nonsignificant improve-547

ments of MAE (+1.75%) and RMSE (+1.12%) for548

Multi-lingual Product Ratings across both configu- 549

rations compared to LaMP, with improvements of 550

MAE (+2.16%) and RMSE (+3.17%) respectively. 551

We speculate that the granularity of the domain is 552

important as similar reviews in Hotel Experience 553

and the Multilingual of digital/electronic items pro- 554

vide less variability for the model to reason the 555

product quality to the user’s expectations. 556

557

4.3 Ablation Study 558

We conduct ablation studies to evaluate the 559

impact of different retrieval configurations on 560

PGraphRAG’s performance. These experiments 561

examine variations in retrieval depth, retrieval do- 562

main, and retriever model. Results and further 563

analysis are provided in Appendix C & D. 564

5 Conclusion 565

In this paper, we introduce PGraphRAG, a frame- 566

work that enhances personalized text generation 567

by integrating user-centric knowledge graphs into 568

retrieval-augmented generation. Unlike tradi- 569

tional approaches that rely solely on user history, 570

PGraphRAG incorporates structured user knowl- 571

edge, enabling more context-aware and adaptive re- 572

sponses. Our experiments demonstrate that graph- 573

based retrieval significantly improves personaliza- 574

tion, outperforming state-of-the-art methods across 575

multiple personalized text generation tasks. 576

Beyond immediate performance improvements, 577

our work opens new directions for personalization 578

at scale. We highlight how LLMs can scale per- 579

sonalization to a broader audience by generalizing 580

across similar users. This introduces new opportu- 581

nities for extending user information dynamically, 582

allowing models to infer and adapt to user prefer- 583

ences even in cold-start scenarios. 584

By guiding LLMs in discerning which contex- 585

tual information is most relevant, our personaliza- 586

tion strategy not only refines the model’s reasoning 587

but also lays the groundwork for more advanced 588

user assistance—helping individuals navigate items 589

or interests with increased clarity. Moreover, the 590

use of a structured knowledge base offers a strong 591

foundation for agentic systems, particularly in sce- 592

narios where user data are sparse. Combining 593

retrieval-augmented generation with user knowl- 594

edge graphs enables better adaptive personalization 595

for LLMs, enhancing informed inferences across 596

diverse social and user-centric platforms. 597
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Long Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval

LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.178 0.173 0.172 0.124
ROUGE-L 0.129 0.129 0.123 0.094
METEOR 0.151 0.138 0.154 0.099

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.199 0.231 0.216
ROUGE-L 0.157 0.129 0.145 0.132
METEOR 0.191 0.152 0.153 0.152

Task 3: Stylized Feedback Generation
ROUGE-1 0.217 0.186 0.190 0.184
ROUGE-L 0.158 0.134 0.131 0.108
METEOR 0.178 0.177 0.167 0.122

Task 4: Multilingual Product Review Generation
ROUGE-1 0.188 0.176 0.174 0.146
ROUGE-L 0.147 0.141 0.136 0.116
METEOR 0.145 0.125 0.131 0.109

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.189 0.171 0.169 0.159
ROUGE-L 0.130 0.117 0.116 0.114
METEOR 0.196 0.176 0.177 0.153

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.221 0.223 0.234
ROUGE-L 0.152 0.135 0.135 0.139
METEOR 0.206 0.164 0.166 0.181

Task 3: Stylized Feedback Generation
ROUGE-1 0.211 0.185 0.187 0.177
ROUGE-L 0.140 0.123 0.123 0.121
METEOR 0.202 0.183 0.189 0.165

Task 4: Multilingual Product Review Generation
ROUGE-1 0.194 0.168 0.170 0.175
ROUGE-L 0.144 0.125 0.128 0.133
METEOR 0.171 0.154 0.152 0.149

Table 3: Zero-shot performance on the test set for the Long Text Generation tasks using LLaMA-3.1-8B-Instruct and
GPT-4o-mini. The best retriever was selected based on validation performance.

Short Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval

LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.131 0.124 0.121 0.103
ROUGE-L 0.125 0.118 0.115 0.098
METEOR 0.125 0.117 0.112 0.096

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.127 0.126 0.122 0.118
ROUGE-L 0.118 0.117 0.114 0.110
METEOR 0.102 0.106 0.101 0.093

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.149 0.140 0.136 0.133
ROUGE-L 0.142 0.134 0.131 0.123
METEOR 0.142 0.136 0.129 0.121

Task 8: Multi-lingual Review Title Generation
ROUGE-1 0.124 0.121 0.125 0.120
ROUGE-L 0.116 0.122 0.117 0.110
METEOR 0.108 0.094 0.092 0.103

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.115 0.108 0.113 0.102
ROUGE-L 0.112 0.105 0.110 0.099
METEOR 0.099 0.091 0.093 0.085

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.116 0.108 0.114 0.112
ROUGE-L 0.111 0.104 0.109 0.107
METEOR 0.081 0.075 0.079 0.076

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.122 0.113 0.114 0.115
ROUGE-L 0.118 0.109 0.110 0.111
METEOR 0.104 0.096 0.097 0.093

Task 8: Multi-lingual Review Title Generation
ROUGE-1 0.111 0.115 0.118 0.108
ROUGE-L 0.105 0.107 0.110 0.102
METEOR 0.083 0.088 0.089 0.078

Table 4: Zero-shot performance on the on the test set for the Short Text Generation tasks using LLaMA-3.1-8B-
Instruct and GPT-4o-mini. The best retriever was selected based on validation performance.
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6 Limitations598

The proposed approach presents several opportuni-599

ties for future enhancement. One significant chal-600

lenge is the development of more sophisticated601

strategies to train models effectively using user-602

specific inputs. While personalization is a core603

aspect of the approach, striking the right balance604

between capturing individual user preferences and605

ensuring broader model generalization remains a606

complex task. Another area for extension lies in607

its application to recommender systems. Future608

efforts will focus on exploring methods to dynam-609

ically adapt to evolving user preferences and ad-610

dress challenges such as cold-start scenarios and611

context-aware recommendations. Additionally, we612

aim to design more robust and scalable training613

frameworks for personalized models, broadening614

their applicability and improving the effectiveness615

and adaptability of recommender systems.616
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A Additional Tables 1010

Table 5 shows the relative percent gain of 1011

PGraphRAG compared to LaMP with improve- 1012

ments in Task 1–7 except Task 8 in Multi-lingual 1013

Review Title Generation. We speculate the cultural 1014

differences in how users review item titles make 1015

a difference with a large proportion titling "Muito 1016

bom," translated as "Very good" in English. The 1017

model will tend to generate a more detailed an- 1018

swer as opposed to the social norm descriptor title. 1019

In long text generation for GPT, score improve- 1020

ment is approximately 15% for ROUGE-1, 13% for 1021

ROUGE-L, and 15% for METEOR, while LLaMa 1022

achieves approximately 15% for ROUGE-1, 11% 1023

for ROUGE-L, and 13% for METEOR. For short 1024

text generation, GPT shows improvements of ap- 1025

proximately 5% for ROUGE-1, 5% for ROUGE-L, 1026

and 5% for METEOR. LLaMa achieves approxi- 1027

mately 4% for ROUGE-1, 2% for ROUGE-L, and 1028

6% for METEOR. 1029

B Prompt and Output Example 1030

The output example (shown below) compares the 1031

PGraphRAG output with the LaMP output against 1032

the gold label, for Task 2 (Hotel Experience Gen- 1033

eration). The gold label’s title is passed to the 1034

prompt alongside retrieved context to generate the 1035

review bodies. When the information is sparse, the 1036

LaMP method is too reliant on the user’s other re- 1037

views, generating reviews with wrong context, but 1038

the PGraphRAG method is able to capture specific 1039

information about the target from neighboring user 1040
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Model Metric Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

GPT-4o-mini
ROUGE-1 10.53 18.96 14.05 15.48 6.48 7.41 7.96 -3.48
ROUGE-L 11.11 12.59 13.82 15.20 6.67 6.73 8.26 -1.87
METEOR 11.36 25.61 10.38 11.04 8.79 8.00 8.33 -5.68

LLaMA-3.1-8B-Instruct
ROUGE-1 2.89 32.16 16.67 6.82 5.65 0.79 6.43 2.48
ROUGE-L 0.00 21.71 17.91 4.26 5.93 0.85 5.97 -4.92
METEOR 9.42 25.66 0.56 16.00 6.84 -3.77 4.41 14.89

Table 5: Relative percent gains of PGraphRAG over state-of-art LaMP for GPT-4o-mini and LLaMA-3.1-8B-Instruct
across Tasks 1 - 8

Ordinal Classfication Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings
MAE ↓ 0.3400 0.3132 0.3212 0.3272
RMSE ↓ 0.7668 0.7230 0.7313 0.7616

Task 10: Hotel Experience Ratings
MAE ↓ 0.3688 0.3492 0.3340 0.3804
RMSE ↓ 0.6771 0.6527 0.6372 0.6971

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3476 0.3268 0.3256 0.3704
RMSE ↓ 0.7247 0.6803 0.6806 0.7849

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4928 0.5016 0.5084 0.5096
RMSE ↓ 0.8367 0.8462 0.8628 0.8542

GPT-4o-mini

Task 9: User Product Review Ratings
MAE ↓ 0.3832 0.3480 0.3448 0.4188
RMSE ↓ 0.7392 0.7065 0.7065 0.8082

Task 10: Hotel Experience Ratings
MAE ↓ 0.3284 0.3336 0.3336 0.3524
RMSE ↓ 0.6083 0.6197 0.6197 0.6384

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3476 0.3448 0.3416 0.4080
RMSE ↓ 0.6738 0.6669 0.6711 0.7370

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4348 0.4444 0.4564 0.4700
RMSE ↓ 0.7367 0.7608 0.7718 0.8112

Table 6: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-4o-mini and LLaMA-3.1-8B.

reviews. Figure 3 shows the prompt construction1041

for the input and Table 7 shows the review density1042

per product, where sparsity is balanced from the1043

original graph for both product and user nodes.1044

Gold Review

Title: Amazing stay!
Review: Had a great stay, our room was very clean
and very peaceful. It is in the heart of DT Seattle. We
took the train to the hotel and it was pretty easy. We
enjoyed walking all over downtown Seattle—no need
to rent a car. Major shopping and amazing restaurants
right around the corner! We will stay here again!

1045

LaMP

Title: Amazing stay!
Review: I recently had an amazing stay at the Newark
Garden Hotel. Despite the circumstances that brought
my family together, the hotel provided a comforting
and welcoming environment. The rooms were immac-
ulate, and the staff went above and beyond to ensure
we felt at home. The hot breakfast each morning was
a delightful touch that made our mornings brighter. I
highly recommend this hotel for anyone looking for a
pleasant and accommodating stay!

1046
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PGraphRAG

Title: Amazing stay!
Review: I had an amazing stay at the Grand Hyatt
Seattle! From the moment I checked in, the staff
was incredibly welcoming and attentive. The room
was spacious, clean, and beautifully appointed, with
a stunning view of the city. The bathroom was a
highlight, featuring a luxurious soaking tub and a
large walk-in shower. The location was perfect, just a
short walk to Pike Place Market and other attractions.
I also enjoyed the fantastic amenities, including the
well-equipped gym and the delicious food options
available at the hotel. Overall, it was a wonderful
experience, and I can’t wait to return!

1047

Reviews (n) Exact Count (Pct.) Cumulative Count (Pct.)

1 25,530 (49.69%) 25,530 (49.69%)
2 9,488 (18.47%) 35,018 (68.16%)
3 4,784 ( 9.31%) 39,802 (77.47%)
4 2,639 ( 5.14%) 42,441 (82.61%)
5 1,836 ( 3.57%) 44,277 (86.18%)

Table 7: Distribution of the number of reviews for prod-
ucts in the Amazon Review Dataset for Task 1, 5, and 9.
The majority of products have five or fewer reviews.

Dataset Train Size Validation Size Test Size

User-Product Review 20,000 2,500 2,500
Multilingual Product Review 20,000 2,500 2,500
Stylized Feedback 20,000 2,500 2,500
Hotel Experiences 9,000 2,500 2,500

Table 8: Dataset split sizes for training, validation, and
testing across four datasets: User-Product Review, Mul-
tilingual Product Review, Stylized Feedback, and Hotel
Experiences.

C Ablation Study Details1048

C.1 PGraphRAG Ablation Details1049

To investigate the impact of incorporating user1050

and/or neighboring-user data in the retrieved con-1051

text, we conduct an ablation study comparing three1052

variants of PGraphRAG:1053

• PGraphRAG: The full method, where1054

retrieved-context consists of both the target1055

user’s other reviews and reviews from neigh-1056

boring users.1057

• PGraphRAG-N: Retrieval is limited to re-1058

views from neighboring-users. The target1059

user’s other reviews are excluded from the1060

retrieved context.1061

• PGraphRAG-U: Retrieval is limited to re-1062

views from the target user, disregarding re-1063

views from neighboring users.1064

Table 9 presents the ablation study using the 1065

GPT-4o-mini and LLaMA-3.1-8B models for the 1066

long-text generation task on Task 1 - 4. Across 1067

all datasets, both PGraphRAG and PGraphRAG-N 1068

retrieval methods consistently outperform LaMP, 1069

contrasting the impact of retrieving neighboring- 1070

user context with that of retrieving target-user his- 1071

tory as context. PGraphRAG generally matches or 1072

slightly exceeds the performance of PGraphRAG- 1073

N, suggesting that the additional target-user history 1074

portion of the context contributes minimally to the 1075

personalized text generation task for these datasets. 1076

The ablation study results for the GPT-4o-mini 1077

model on the short-text generation tasks are in- 1078

cluded in Table 10. The same trends can be seen in 1079

those studies across all datasets, except for GPT-4o- 1080

mini performance on the Hotel Experience Sum- 1081

mary Generationtask, where LaMP performs the 1082

best of the three methods. 1083

C.2 Impact of the Retrieved Items k 1084

To evaluate the impact of the number of retrieved- 1085

context reviews (k) on model performance, we con- 1086

ducted experiments with k = 1, 2, and 4. Table 1087

11 summarizes the results of this ablation study 1088

on long-text generation (Tasks 1–4) using GPT-4o- 1089

mini and LLaMA-3.1-8B-Instruct. The correspond- 1090

ing results for short-text generation (Tasks 5–8) are 1091

presented in Table 12. 1092

The effect of increasing k varies depending on 1093

the dataset’s characteristics. The results demon- 1094

strate that increasing the amount of retrieved- 1095

context from neighboring users and the target user 1096

generally leads to better performance across all 1097

datasets and metrics. This trend highlights the 1098

importance of retrieval scales for enhancing the 1099

diversity and relevance of retrieved context. 1100

However, due to data sparsity, many user pro- 1101

files contain fewer than four "Neighboring-user 1102

reviews" or "Target-user’s other reviews." In such 1103

instances, when the retriever attempts to retrieve 1104

more reviews than are available, it retrieves all ex- 1105

isting reviews. Consequently, PGraphRAG may 1106

retrieve only one or two reviews, even when con- 1107

figured to retrieve k = 4. This behavior reflects the 1108

realistic scenario of handling cold-start users with 1109

limited existing data, a central focus of our study. 1110
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Figure 3: Examples of different prompt configurations used in each of our task types. Teletype text is replaced with
realistic data for each task.

Long Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.173 0.177 0.168
ROUGE-L 0.124 0.127 0.125
METEOR 0.150 0.154 0.134

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.272 0.197
ROUGE-L 0.156 0.162 0.128
METEOR 0.191 0.195 0.121

Task 3: Stylized Feedback Generation
ROUGE-1 0.226 0.222 0.181
ROUGE-L 0.171 0.165 0.134
METEOR 0.192 0.186 0.147

Task 4: Multilingual Product Review Generation
ROUGE-1 0.174 0.172 0.174
ROUGE-L 0.139 0.137 0.141
METEOR 0.133 0.126 0.125

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.186 0.185 0.169
ROUGE-L 0.126 0.125 0.114
METEOR 0.187 0.185 0.170

Task 2: Hotel Experiences Generation
ROUGE-1 0.265 0.268 0.217
ROUGE-L 0.152 0.153 0.132
METEOR 0.206 0.209 0.161

Task 3: Stylized Feedback Generation
ROUGE-1 0.205 0.204 0.178
ROUGE-L 0.139 0.138 0.121
METEOR 0.203 0.198 0.178

Task 4: Multilingual Product Review Generation
ROUGE-1 0.191 0.190 0.164
ROUGE-L 0.142 0.140 0.123
METEOR 0.173 0.169 0.155

Table 9: Ablation study results for long text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context
retrieval.
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Short Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.125 0.129 0.115
ROUGE-L 0.119 0.123 0.109
METEOR 0.117 0.120 0.111

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.121 0.124 0.119
ROUGE-L 0.113 0.115 0.111
METEOR 0.099 0.103 0.105

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.132 0.135 0.128
ROUGE-L 0.128 0.130 0.124
METEOR 0.129 0.132 0.124

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.131 0.131 0.124
ROUGE-L 0.123 0.122 0.114
METEOR 0.118 0.110 0.098

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.111 0.116 0.112
ROUGE-L 0.106 0.111 0.108
METEOR 0.097 0.099 0.095

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.118 0.119 0.109
ROUGE-L 0.112 0.113 0.104
METEOR 0.085 0.085 0.077

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.109 0.107 0.108
ROUGE-L 0.107 0.105 0.104
METEOR 0.096 0.094 0.091

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.108 0.109 0.116
ROUGE-L 0.104 0.104 0.109
METEOR 0.082 0.089 0.091

Table 10: Ablation study results for short text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context
retrieval.
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Long Text Generation Metric k = 1 k = 2 k = 4

LLaMA-3.1-8B-Instruct

Task 1: User-Product
Review Generation

ROUGE-1 0.160 0.169 0.173
ROUGE-L 0.121 0.125 0.124
METEOR 0.125 0.138 0.150

Task 2: Hotel
Experiences Generation

ROUGE-1 0.230 0.251 0.263
ROUGE-L 0.141 0.151 0.156
METEOR 0.152 0.174 0.191

Task 3: Stylized
Feedback Generation

ROUGE-1 0.200 0.214 0.226
ROUGE-L 0.158 0.165 0.171
METEOR 0.154 0.171 0.192

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.163 0.169 0.174
ROUGE-L 0.134 0.137 0.139
METEOR 0.113 0.122 0.133

GPT-4o-mini

Task 1: User-Product
Review Generation

ROUGE-1 0.176 0.184 0.186
ROUGE-L 0.121 0.125 0.126
METEOR 0.168 0.180 0.187

Task 2: Hotel
Experiences Generation

ROUGE-1 0.250 0.260 0.265
ROUGE-L 0.146 0.150 0.152
METEOR 0.188 0.198 0.206

Task 3: Stylized
Feedback Generation

ROUGE-1 0.196 0.200 0.205
ROUGE-L 0.136 0.136 0.139
METEOR 0.186 0.192 0.203

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.163 0.169 0.174
ROUGE-L 0.134 0.137 0.139
METEOR 0.113 0.122 0.133

Table 11: Ablation study results showing the im-
pact of varying k (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-4o-mini on long-text
generation tasks (Tasks 1 - 4).
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Short Text Generation Metric k = 1 k = 2 k = 4

LLaMA-3.1-8B-Instruct

Task 5: User Product
Review Title Generation

ROUGE-1 0.128 0.123 0.125
ROUGE-L 0.121 0.118 0.119
METEOR 0.123 0.118 0.117

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.122 0.121 0.121
ROUGE-L 0.112 0.114 0.113
METEOR 0.104 0.102 0.099

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.129 0.132 0.132
ROUGE-L 0.124 0.126 0.128
METEOR 0.129 0.130 0.129

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.129 0.126 0.131
ROUGE-L 0.120 0.119 0.123
METEOR 0.117 0.116 0.118

GPT-4o-mini

Task 5: User Product
Review Title Generation

ROUGE-1 0.111 0.110 0.111
ROUGE-L 0.106 0.105 0.106
METEOR 0.093 0.094 0.097

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.114 0.114 0.118
ROUGE-L 0.109 0.109 0.112
METEOR 0.082 0.082 0.085

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.100 0.103 0.109
ROUGE-L 0.098 0.101 0.107
METEOR 0.087 0.090 0.096

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.104 0.104 0.108
ROUGE-L 0.098 0.098 0.104
METEOR 0.077 0.078 0.082

Table 12: Ablation study results showing the im-
pact of varying k (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-4o-mini on short-text
generation tasks (Tasks 5-8).

C.3 Impact of Retriever method R1111

We study the impact of the retriever method on1112

the proposed PGraphRAG method; we conduct an1113

ablation study comparing two retrievers, BM25 and1114

Contriever.1115

In Table 13, we compare the performance of1116

our PGraphRAG method using these two retrievers.1117

Across all datasets and tasks, the results demon-1118

strate that the performance of PGraphRAG is stable1119

and not highly sensitive to the choice of retriever.1120

Both BM25 and Contriever show comparable re-1121

sults, with BM25 showing slight improvements in1122

some cases. This stability highlights the robustness1123

of PGraphRAG in adapting to different retrieval1124

contexts.1125

Long Text Generation Metric Contriever BM25

LLaMA-3.1-8B-Instruct

Task 1: User-Product
Review Generation

ROUGE-1 0.172 0.173
ROUGE-L 0.122 0.124
METEOR 0.153 0.150

Task 2: Hotel
Experiences Generation

ROUGE-1 0.262 0.263
ROUGE-L 0.155 0.156
METEOR 0.190 0.191

Task 3: Stylized
Feedback Generation

ROUGE-1 0.195 0.226
ROUGE-L 0.138 0.171
METEOR 0.180 0.192

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.172 0.174
ROUGE-L 0.134 0.139
METEOR 0.135 0.133

GPT-4o-mini

Task 1: User-Product
Review Generation

ROUGE-1 0.182 0.186
ROUGE-L 0.122 0.126
METEOR 0.184 0.187

Task 2: Hotel
Experiences Generation

ROUGE-1 0.264 0.265
ROUGE-L 0.152 0.152
METEOR 0.207 0.206

Task 3: Stylized
Feedback Generation

ROUGE-1 0.194 0.205
ROUGE-L 0.128 0.139
METEOR 0.201 0.203

Task 4: Multilingual
Product Review Generation

ROUGE-1 0.190 0.191
ROUGE-L 0.141 0.142
METEOR 0.174 0.173

Table 13: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the long-text generation task (Tasks 1-4).
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Short Text Generation Metric Contriever BM25

LLaMA-3.1-8B-Instruct

Task 5: User Product
Review Title Generation

ROUGE-1 0.122 0.125
ROUGE-L 0.116 0.119
METEOR 0.115 0.117

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.117 0.121
ROUGE-L 0.110 0.113
METEOR 0.095 0.099

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.125 0.132
ROUGE-L 0.121 0.128
METEOR 0.122 0.129

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.126 0.131
ROUGE-L 0.118 0.123
METEOR 0.112 0.118

GPT-4o-mini

Task 5: User Product
Review Title Generation

ROUGE-1 0.113 0.111
ROUGE-L 0.108 0.106
METEOR 0.097 0.097

Task 6: Hotel Experience
Summary Generation

ROUGE-1 0.113 0.118
ROUGE-L 0.107 0.112
METEOR 0.080 0.085

Task 7: Stylized Feedback
Title Generation

ROUGE-1 0.108 0.109
ROUGE-L 0.106 0.107
METEOR 0.094 0.096

Task 8: Multi-lingual Product
Review Title Generation

ROUGE-1 0.108 0.108
ROUGE-L 0.103 0.104
METEOR 0.082 0.082

Table 14: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the short-text generation task (Tasks 5-8).

D GPT Experiments1126

D.1 Impact of Ranked Retrieval1127

In Table 15, two variations of the PGraphRAG1128

framework show the impact of ranked re-1129

trieval: PGraphRAG*, which retrieves four ran-1130

domly selected reviews as context (k=4), and1131

PGraphRAG**, which retrieves and passes all1132

available context within the model’s limit (k ap-1133

proaches ∞). Since PGraphRAG** expectedly1134

performs better, we focus on analyzing the effect1135

of removing ranking.1136

Our results show that removing ranking1137

(PGraphRAG → PGraphRAG*) leads to an aver-1138

age ROUGE-1 drop of 2.29% for long-text tasks1139

and 3.18% for short-text tasks, demonstrating the1140

importance of ranking in retrieval. Similarly, re-1141

moving ranking from target user-specific retrieval1142

(PGraphRAG-U → PGraphRAG-U*) results in a1143

0.92% decrease in long-text tasks and a 1.98% drop1144

in short-text tasks. These findings confirm that1145

ranked retrieval plays a key role in PGraphRAG’s1146

effectiveness.1147

While PGraphRAG** achieves the highest per- 1148

formance, it is impractical for larger datasets due 1149

to retrieval cost and scalability constraints. In con- 1150

trast, PGraphRAG* provides a more controlled and 1151

comparable evaluation setting with a fixed retrieval 1152

threshold (k=4). This analysis highlights the trade- 1153

offs between retrieval ranking, retrieval limits, and 1154

performance scaling, demonstrating that ranking 1155

improves effectiveness while structured retrieval 1156

strategies ensure efficiency. 1157

D.2 Impact of GPT Models 1158

To explore GPT model performances, we compared 1159

the performance of PGraphRAG from our best re- 1160

triever and k size settings on 3.5 Turbo, 4o, 4o-mini, 1161

and o1-preview. We selected GPT-4o-mini as the 1162

best model for performance, cost, and consistency 1163

across long text generation tasks. 1164

D.3 Impact of Length Contraints 1165

For short-text generation, we explore length con- 1166

straints of 3, 5, and 10 words, finding that a 5-word 1167

constraint achieves the best balance across metrics, 1168

combining precision and informativeness. This 1169

configuration is adopted for all short-text genera- 1170

tion tasks. 1171

E Validation results 1172

We conduct a comprehensive set of experiments on 1173

the validation set for five tasks, testing all combi- 1174

nations of language models, retrieval methods, and 1175

top-k retrieval settings for each method. As shown 1176

in Table 16, 17, and 18. The configurations yield- 1177

ing the best results on the validation set are selected 1178

for subsequent test set experiments, where trends 1179

observed in the validation are consistent with those 1180

seen in the test set. 1181

F Related Work 1182

Personalization in natural language processing 1183

(NLP) tailors responses to individual user prefer- 1184

ences, behaviors, and contexts, significantly en- 1185

hancing user interaction and satisfaction. Early 1186

work in personalization focused on tasks such 1187

as text generation, leveraging attributes like re- 1188

view sentiment (Zang and Wan, 2017) and stylis- 1189

tic features (Dong et al., 2017). These methods, 1190

based on neural networks and encoder-decoder 1191

models, laid the foundation for personalization in 1192

text-based systems. Recent advancements have ex- 1193

panded personalization techniques to incorporate 1194
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Figure 4: Comparison of GPT-4o-mini and GPT-o1 performance on test set across Task 1 - 4 on BM25, and k = 4

Figure 5: Impact of length constraints of 3, 5, and 10 on short-text generation tasks using PGraphRAG, evaluated on
the validation set.
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Task Metric PGraphRAG PGraphRAG* PGraphRAG** PGraphRAG-U PGraphRAG-U* PGraphRAG-U**

Long Text Generation

Task 1: User-Product Review Generation
ROUGE-1 0.189 0.186 0.191 0.171 0.169 0.170
ROUGE-L 0.130 0.125 0.130 0.117 0.114 0.117
METEOR 0.196 0.188 0.205 0.176 0.173 0.180

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.266 0.267 0.221 0.223 0.225
ROUGE-L 0.152 0.152 0.153 0.135 0.134 0.135
METEOR 0.206 0.209 0.216 0.164 0.168 0.171

Task 3: Stylized Feedback Generation
ROUGE-1 0.211 0.200 0.210 0.185 0.180 0.186
ROUGE-L 0.140 0.133 0.136 0.123 0.122 0.123
METEOR 0.202 0.206 0.225 0.183 0.184 0.189

Task 4: Multilingual Product Review Generation
ROUGE-1 0.194 0.188 0.196 0.168 0.167 0.171
ROUGE-L 0.144 0.138 0.141 0.125 0.125 0.128
METEOR 0.171 0.176 0.188 0.154 0.155 0.155

Short Text Generation

Task 5: User Product Review Title Generation
ROUGE-1 0.115 0.114 0.119 0.108 0.108 0.111
ROUGE-L 0.112 0.109 0.114 0.105 0.102 0.105
METEOR 0.099 0.121 0.128 0.091 0.116 0.119

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.116 0.117 0.121 0.108 0.121 0.119
ROUGE-L 0.111 0.107 0.112 0.104 0.111 0.110
METEOR 0.081 0.104 0.109 0.075 0.109 0.107

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.122 0.111 0.120 0.113 0.115 0.114
ROUGE-L 0.118 0.105 0.114 0.109 0.109 0.108
METEOR 0.104 0.117 0.126 0.096 0.124 0.123

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.111 0.108 0.112 0.115 0.110 0.110
ROUGE-L 0.105 0.100 0.104 0.107 0.103 0.101
METEOR 0.083 0.101 0.105 0.088 0.108 0.107

Table 15: Zero-shot test set results for text generation using GPT-4o-mini. PGraphRAG* denotes no ranked retrieval
method of k = 4, while PGraphRAG** represents the second variation where k has no limit to the models context
length.

Long Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 1: User-Product Review Generation
ROUGE-1 0.173 0.168 0.172 0.126
ROUGE-L 0.124 0.125 0.121 0.095
METEOR 0.150 0.134 0.152 0.101

Task 2: Hotel Experiences Generation
ROUGE-1 0.263 0.197 0.224 0.211
ROUGE-L 0.156 0.128 0.141 0.130
METEOR 0.191 0.121 0.148 0.147

Task 3: Stylized Feedback Generation
ROUGE-1 0.226 0.181 0.177 0.142
ROUGE-L 0.171 0.134 0.125 0.104
METEOR 0.192 0.147 0.168 0.119

Task 4: Multilingual Product Review Generation
ROUGE-1 0.174 0.174 0.173 0.146
ROUGE-L 0.139 0.141 0.134 0.117
METEOR 0.133 0.125 0.130 0.110

GPT-4o-mini

Task 1: User-Product Review Generation
ROUGE-1 0.186 0.169 0.168 0.157
ROUGE-L 0.126 0.114 0.113 0.112
METEOR 0.187 0.170 0.173 0.148

Task 2: Hotel Experiences Generation
ROUGE-1 0.265 0.217 0.222 0.233
ROUGE-L 0.152 0.132 0.133 0.138
METEOR 0.206 0.161 0.164 0.164

Task 3: Stylized Feedback Generation
ROUGE-1 0.205 0.178 0.177 0.168
ROUGE-L 0.139 0.121 0.119 0.117
METEOR 0.203 0.178 0.184 0.160

Task 4: Multilingual Product Review Generation
ROUGE-1 0.191 0.164 0.167 0.171
ROUGE-L 0.142 0.123 0.125 0.131
METEOR 0.173 0.155 0.153 0.150

Table 16: Zero-shot Validation set results for long text generation using LLaMA-3.1-8B-Instruct and GPT-4o-mini
on Tasks 1-4.
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Short Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 5: User Product Review Title Generation
ROUGE-1 0.125 0.114 0.111 0.101
ROUGE-L 0.119 0.108 0.105 0.095
METEOR 0.117 0.111 0.104 0.094

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.121 0.119 0.115 0.115
ROUGE-L 0.113 0.111 0.108 0.107
METEOR 0.105 0.105 0.100 0.094

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.132 0.128 0.127 0.108
ROUGE-L 0.128 0.124 0.122 0.104
METEOR 0.129 0.124 0.118 0.103

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.132 0.128 0.108 0.127
ROUGE-L 0.128 0.124 0.104 0.122
METEOR 0.129 0.124 0.103 0.118

GPT-4o-mini

Task 5: User Product Review Title Generation
ROUGE-1 0.114 0.106 0.109 0.107
ROUGE-L 0.107 0.100 0.103 0.102
METEOR 0.119 0.115 0.116 0.109

Task 6: Hotel Experience Summary Generation
ROUGE-1 0.115 0.115 0.114 0.112
ROUGE-L 0.105 0.106 0.106 0.103
METEOR 0.105 0.106 0.106 0.099

Task 7: Stylized Feedback Title Generation
ROUGE-1 0.105 0.101 0.105 0.098
ROUGE-L 0.102 0.097 0.101 0.093
METEOR 0.118 0.111 0.118 0.105

Task 8: Multi-lingual Product Review Title Generation
ROUGE-1 0.108 0.106 0.108 0.103
ROUGE-L 0.099 0.098 0.099 0.095
METEOR 0.101 0.102 0.103 0.095

Table 17: Zero-shot Validation set results for short text generation using LLaMA-3.1-8B and GPT-4o-mini on Tasks
5-8.

retrieval-augmented generation (RAG) strategies.1195

For example, methods such as in-context prompt-1196

ing (Lyu et al., 2024b), retrieval-based summariza-1197

tion (Richardson et al., 2023), and optimization1198

techniques like reinforcement learning and knowl-1199

edge distillation (Salemi et al., 2024a) have fur-1200

ther refined personalized models. Benchmarks like1201

LaMP (Salemi et al., 2024b) and LongLaMP (Ku-1202

mar et al., 2024) have been developed to evaluate1203

personalized tasks, emphasizing user-specific his-1204

tory for text generation tasks such as email com-1205

pletion and abstract writing. Retrieval-based ap-1206

proaches, such as (Kim et al., 2020), have also1207

explored personalization by enhancing retrieval1208

pipelines for long-form personalized content gen-1209

eration. However, most existing methods for per-1210

sonalization rely heavily on user history to aug-1211

ment the context or prompt, limiting their effec-1212

tiveness in scenarios where user history is sparse1213

or unavailable. This reliance poses challenges in1214

real-world applications, particularly for cold-start1215

users. Furthermore, these approaches often over-1216

look the potential of integrating structured data,1217

such as knowledge graphs, to provide richer and 1218

more diverse user-specific contexts. 1219

Personalization in NLP 1220

Personalization in natural language processing tai- 1221

lors responses to individual user preferences, be- 1222

haviors, and contexts, enhancing user interaction 1223

and satisfaction. Early work in personalization fo- 1224

cused on text generation tasks, leveraging attributes 1225

such as review sentiment (Zang and Wan, 2017) 1226

and stylistic features (Dong et al., 2017). These 1227

approaches, which employed neural networks and 1228

encoder-decoder models, laid the groundwork for 1229

personalization in text-based systems. Addressing 1230

challenges like limited user data, techniques such 1231

as warm-attention mechanisms (Amplayo et al., 1232

2018) and social media-derived personalized lan- 1233

guage models (Huang et al., 2014) were introduced 1234

to mitigate the cold-start problem. 1235

Recent advancements have extended personal- 1236

ization to retrieval-augmented generation (RAG) 1237

strategies such as prompting (Lyu et al., 2024b), 1238

summarization with retrieval (Richardson et al., 1239

2023), and optimization methods like reinforce- 1240
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Ordinal Classfication Metric PGraphRAG LaMP No-retrieval Random-retrieval

LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings
MAE ↓ 0.3272 0.3220 0.3200 0.3516
RMSE ↓ 0.7531 0.7280 0.7294 0.7972

Task 10: Hotel Experience Ratings
MAE ↓ 0.3868 0.3685 0.3614 0.4008
RMSE ↓ 0.6989 0.6750 0.6643 0.7178

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3356 0.3368 0.3372 0.3812
RMSE ↓ 0.6856 0.6859 0.6826 0.7759

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.5228 0.5216 0.5282 0.5392
RMSE ↓ 0.8483 0.8395 0.8519 0.8704

GPT-4o-mini

Task 9: User Product Review Ratings
MAE ↓ 0.3652 0.3508 0.3484 0.4176
RMSE ↓ 0.7125 0.6943 0.6925 0.7792

Task 10: Hotel Experience Ratings
MAE ↓ 0.3308 0.3472 0.3528 0.3640
RMSE ↓ 0.6056 0.6394 0.6475 0.6627

Task 11: Stylized Feedback Ratings
MAE ↓ 0.3340 0.3364 0.3356 0.3972
RMSE ↓ 0.6515 0.6545 0.6484 0.7158

Task 12: Multi-lingual Product Ratings
MAE ↓ 0.4568 0.4832 0.4908 0.4820
RMSE ↓ 0.7414 0.7808 0.7897 0.7917

Table 18: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-4o-mini and LLaMA-3.1-8B-
Instruct on the validation set. Results are reported using MAE and RMSE metrics across retrieval methods.

ment learning and knowledge distillation (Salemi1241

et al., 2024a) have further refined personalized1242

models. Personalization has also been explored1243

for tasks involving user-specific attributes, such as1244

those studied in benchmarks like LongLaMP (Ku-1245

mar et al., 2024), and retrieval methods for long-1246

form personalized generation (Kim et al., 2020).1247

In addition to text generation, integrating person-1248

alization into recommendation systems has shown1249

success in combining user-specific attributes with1250

retrieval-based frameworks (Tsai et al., 2024). A1251

comprehensive survey on personalization in large1252

language models underscores the importance of1253

robust methodologies for managing diverse and1254

large-scale user data (Zhang et al., 2024). However,1255

current approaches often overlook the potential of1256

structured data, such as knowledge graphs, to en-1257

hance personalization.1258

Knowledge Graphs & Retrieval-Augmented1259

Generation (RAG)1260

Knowledge graphs have played a pivotal role in nat-1261

ural language processing by providing structured1262

and relational information for tasks such as ques-1263

tion answering, reasoning, and retrieval (Schneider1264

et al., 2022; Liu et al., 2018). Their ability to lever-1265

age subgraphs for precise and contextually relevant1266

answers has been demonstrated in multi-hop rea- 1267

soning tasks (Salnikov et al., 2023). Techniques 1268

like data synthesis have further improved traversal 1269

efficiency and scalability in large graphs (Agarwal 1270

et al., 2021). 1271

Retrieval-Augmented Generation (RAG) builds 1272

on this foundation by integrating external data 1273

sources, such as dense vector indexes and knowl- 1274

edge graphs, into the generation process, signifi- 1275

cantly improving the factuality and relevance of 1276

responses (Izacard and Grave, 2020). When com- 1277

bined with knowledge graphs, RAG models excel 1278

in handling complex reasoning tasks, such as multi- 1279

hop question answering (Saleh et al., 2024), and 1280

in recognizing rare word patterns in previously un- 1281

seen domains (Mathur et al., 2024). These methods 1282

also enhance large language models (LLMs) by 1283

reducing hallucinations and improving contextual 1284

accuracy (Kang et al., 2023; Chen et al., 2023). 1285

Despite their success, knowledge graphs face 1286

scalability challenges, particularly in large-scale 1287

applications like recommender systems (Ji et al., 1288

2022). Constructing and maintaining accurate and 1289

consistent graphs require refinement techniques 1290

to ensure data reliability and relevance (Paulheim, 1291

2017). Comprehensive surveys on knowledge 1292
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graph technologies emphasize the need for better1293

methodologies for creating, managing, and scaling1294

these structures (Hogan et al., 2021). Additionally,1295

traditional RAG approaches often struggle with ir-1296

relevant document retrieval and the inefficiencies1297

of integrating multiple knowledge sources (Gao1298

et al., 2024).1299

The intersection of knowledge graphs, RAG, and1300

personalization presents a promising avenue for1301

research, enabling models to combine user-centric1302

retrieval strategies with structured knowledge to1303

enhance accuracy and scalability.1304

Traditional RAG methods, which often rely1305

on vector-based document retrieval, have demon-1306

strated substantial improvements in tasks like com-1307

bining pre-trained sequence-to-sequence models1308

with dense indexes (e.g., Wikipedia) (Lewis et al.,1309

2021).1310
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