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Abstract

As large language models (LLMs) evolve, their
ability to deliver personalized and context-
aware responses offers transformative poten-
tial for improving user experiences. Exist-
ing personalization approaches, however, of-
ten rely solely on user history to augment
the prompt, limiting their effectiveness in gen-
erating tailored outputs, especially in cold-
start scenarios with sparse data. To address
these limitations, we propose Personalized
Graph-based Retrieval-Augmented Generation
(PGraphRAG), a framework that leverages user-
centric knowledge graphs to enrich personal-
ization. By directly integrating structured user
knowledge into the retrieval process and aug-
menting prompts with user-relevant context,
PGraphRAG enhances contextual understand-
ing and output quality. We also introduce
the Personalized Graph-based Benchmark for
Text Generation, designed to evaluate personal-
ized text generation tasks in real-world settings
where user history is sparse or unavailable. Ex-
perimental results show that PGraphRAG sig-
nificantly outperforms state-of-the-art person-
alization methods across diverse tasks, achiev-
ing an average relative gain of 14.8% ROUGE-
1 on the long-text generation tasks and 4.6%
ROUGE-1 on the short-text generation tasks,
demonstrating the unique advantages of graph-
based retrieval for personalization.

1 Introduction

The recent development of large language mod-
els (LLMs) has unlocked numerous applications
in natural language processing (NLP), including
advanced conversational agents, automated con-
tent creation, and code generation. For instance,
models like GPT-4 (OpenAl, 2024) have been em-
ployed to power virtual assistants capable of an-
swering complex queries, summarizing lengthy
documents, and engaging in human-like conver-
sations. These advancements highlight the trans-
formative potential of LLMs to automate and en-
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Figure 1: Overview of the proposed personalized
graph-based retrieval-augmented generation framework,
PGraphRAG. We first construct user-centric graphs
from user history and interactions. Then, the result-
ing structured data is utilized for retrieval. The retrieved
information is provided to the language models for con-
text in generating text tailored to user .

hance tasks across various domains (Brown et al.,
2020). As LLMs continue to evolve, their ability
to deliver highly personalized and context-aware
responses opens new possibilities for transforming
user experiences (Salemi et al., 2024b). Personal-
ization enables these models to adapt outputs to in-
dividual preferences, contexts, and goals, fostering
richer and more meaningful interactions (Huang
et al., 2022). For example, personalized text gener-
ation allows Al systems to provide responses that
are more relevant, contextually appropriate, and
aligned with the style and preferences of individual
users (Zhang et al., 2024).

Personalization. The concept of personalization is
well-established in Al and has been extensively ex-
plored across various fields, including information
retrieval, human-computer interaction (HCI), and
recommender systems. In information retrieval,
personalization techniques are employed to tailor
search results based on user profiles and past in-
teractions, enhancing the relevance of retrieved
documents (Xue et al., 2009). HCI research has
focused on creating adaptive user interfaces and
interactions that cater to individual needs, improv-
ing usability and accessibility (Fowler et al., 2015).



Recommender systems utilize personalization to
suggest products, services, or content that match
user interests, driving engagement in applications
ranging from e-commerce to entertainment (Nau-
mov et al., 2019; Lyu et al., 2024a). Despite the
widespread acknowledgment of the importance of
personalization in these domains, the development
and evaluation of large language models (LLMs)
for generating personalized responses remain rela-
tively understudied.

One of the key challenges in advancing personal-
ized LLMs is the lack of suitable benchmarks that
adequately capture personalization tasks. Popu-
lar natural language processing (NLP) benchmarks
(e.g., (Wang et al., 2019b), (Wang et al., 2019a),
(Gehrmann et al., 2021)) primarily focus on gen-
eral language understanding and generation capa-
bilities, with limited emphasis on personalization
aspects. As a result, researchers and practition-
ers lack standardized datasets and evaluation met-
rics to develop and assess models designed for
personalized text generation. Recently, some ef-
forts have been made towards personalized LLM
benchmarks. The LaMP benchmark offers a com-
prehensive evaluation framework focusing on per-
sonalized text classification and generation includ-
ing email subject generation, news headline gen-
eration, paper title generation, product rating and
movie tagging (Salemi et al., 2024b). LongL.aMP
extended this scope with four tasks emphasizing
long text generation, such as email completion and
paper abstract generation (Kumar et al., 2024). Un-
fortunately, these recently developed personalized
LLM benchmarks rely exclusively on user history
to model personalization.

Cold Start Users. While user history is undoubt-
edly valuable for capturing a user’s preferences and
behaviors, this approach has significant limitations.
In scenarios where user data is sparse or entirely
unavailable — such as with new users in cold-start
situations — models that depend solely on user
history fail to generate personalized outputs effec-
tively. This dependency restricts the applicabil-
ity of such benchmarks in evaluating personalized
LLMs for real-world use cases, where the avail-
ability and quality of user history can vary greatly.
For example, Figure 2 shows the user profile distri-
bution for Amazon user-product reviews (Ni and
McAuley, 2018) where 99.99% of users have only
one or two reviews in their profile. Interestingly,
other personalized LLM benchmarks such as LaMP

and LongL.aMP limited their datasets to users with
sufficient profile size.
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Figure 2: The user profile distribution for Amazon user-
product dataset which highlights how most users have a
small profile size with few reviews. The red vertical line
marks the minimum profile size in other benchmarks
(e.g., LaMP, LongLaMP).

PGraphRAG. To address these challenges, we
propose Personalized Graph-based Retrieval-
Augmented Generation (PGraphRAG), a novel
framework that leverages user-centric knowledge
represented as structured graphs to enhance per-
sonalized text generation. By incorporating user-
centric knowledge graphs directly into the retrieval
process and augmenting the generation context or
prompt with structured user-specific information,
PGraphRAG provides a richer and more compre-
hensive understanding of the user’s context, pref-
erences, and relationships (see Figure 1 for an
overview of the framework). This approach tran-
scends the limitations of relying solely on user
history by integrating diverse and structured user
knowledge, enabling the model to generate more
accurate and personalized responses even when
user history is sparse or unavailable. The use of
structured graphs allows PGraphRAG to represent
complex user information, such as interests and
past interactions, in a structured and interconnected
manner. By augmenting the prompt with this struc-
tured knowledge during the generation process,
PGraphRAG facilitates more effective retrieval and
integration of relevant user-centric information, sig-
nificantly enhancing the model’s ability to produce
contextually appropriate and personalized outputs.
In cold-start scenarios, where traditional models
fail due to the lack of user history, PGraphRAG
leverages available structured knowledge to deliver
meaningful personalization.

Benchmark. To evaluate our approach, we intro-
duce the Personalized Graph-based Benchmark for
Text Generation, a novel evaluation benchmark de-
signed to fine-tune and assess LLMs on twelve
personalized text generation tasks including long



and short text generation, as well as classification.
This benchmark addresses the limitations of exist-
ing personalized LLM benchmarks by providing
datasets that specifically target personalization ca-
pabilities in real-world settings where user history
is sparse. In addition, the benchmark enables a
more comprehensive assessment of a model’s abil-
ity to personalize outputs based on structured user
information. Our contributions can be summarized
as follows:

1. Benchmark. We propose a Personalized
Graph-based Benchmark for with 12 distinct
tasks. To support further research, we make it
available '.

2. Problem. Current approaches to personalized
text generation struggle with cold-start users,
who have only minimal history data. To ad-
dress this problem, we propose PGraphRAG
by augmenting the context with structured
user-specific information.

3. Effectiveness. We demonstrate the state-of-
the-art performance of PGraphRAG across
the new benchmark in producing personalized
outputs using user-centric knowledge graphs.

2 Personalized Graph-based Benchmark
for LLMs

Here, we discuss the proposed Personalized Graph-
Based Benchmark to evaluate LLMs in their abil-
ity to produce personalized text generations for
twelve personalized tasks including long text gen-
eration, short text generation, and ordinal classifica-
tion. The benchmark datasets were collected from
several real-world datasets from various domains.
LLMs typically take an input = and predict the
most likely sequence of tokens y that follows z. As
such, each data entry in the benchmark consists of:
(1) an input sequence x that serves as the input to
LLMs, (2) a target output sequence y that the LLM
is expected to generate, and (3) a user-centric bi-
partite graph. Given an input sample (x, y) for any
user i, the goal is to generate a personalized output
7 that matches the target output y conditioning on
the user profile P;.

We represent the user-centric graph as a bipar-
tite knowledge graph G = (U, V, E), such that
U denotes user nodes, V' denotes item nodes, and
F denotes the interaction edges among users and
items. For example, an edge (4, j) € E may repre-

"https://anonymous.4open.science/r/
PGraphRAG-186B/

sent a review written by user ¢ for item 7, including
all details such as the review text, title, and rating.
In this benchmark, we define the user profile P; as
the set of reviews written by user 4, and the set of
reviews for item j written by other users k where
k # i. We provide a summary of all task statistics
and their associated graphs in Table 1 and Table 2
respectively. Due to space limitations, details of
dataset splits are in the appendix section.

2.1 Task Definitions

Task 1: User Product Review Generation. Per-
sonalized review text generation has progressed
from incorporating user-specific context to utiliz-
ing LLMs for generating fluent and contextually
relevant reviews and titles (Ni and McAuley, 2018).
This task aims to generate a target product review
Trext given the target user’s product review title e
and a set of additional reviews P; from their profile.
We use the Amazon Reviews 2023 dataset (Hou
et al., 2024) to construct data splits and bipartite
graphs across multiple product categories.

Task 2: Hotel Experience Generation. Hotel
reviews often contain detailed narratives reflecting
users’ personal experiences, making personaliza-
tion crucial for capturing individual preferences
and accommodations (Kanouchi et al., 2020). This
task focuses on generating a personalized hotel ex-
perience story iy based on the target user’s hotel
review summary 4. and a set of additional re-
views P;. The Hotel Reviews dataset, a subset of
Datafiniti’s Business Database (Datafiniti, 2017), is
used to construct data splits and a user-hotel graph.

Task 3: Stylized Feedback Generation. User
writing style, influenced by grammar, punctuation,
and spelling, reflects individual preferences and is
shaped by geographic and cultural factors, making
it critical for personalized text generation (Alhafni
et al., 2024). This task involves generating target
feedback i« based on the target user’s feedback
title 7 and a set of additional feedback P; from
their profile. We use the Grammar and Online
Product dataset, a subset of the Datafiniti Business
dataset (Datafiniti, 2018), which highlights writing
quality across multiple platforms.

Task 4:  Multi-lingual Review Generation.
Personalization in multilingual review generation
presents unique challenges due to variations in lin-
guistic structures, cultural nuances, and stylistic
conventions (Cortes et al., 2024). In this task, we
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Task Type Avg. Input Length  Avg. Output Length Avg. Profile Size # Classes
User-Product Review Generation Long Text Generation 3.754 £ 2.71 47.90 £ 19.28 1.05+0.31 -
Hotel Experiences Generation Long Text Generation 4.29 £ 2.57 76.26 + 22.39 1.14 +£0.61 -
Stylized Feedback Generation Long Text Generation 3.35 +2.02 51.80 & 20.07 1.09 £0.47 -
Multilingual Product Review Generation Long Text Generation 2.9 £2.40 34.52 £ 12.55 1.08+0.33 -
User-Product Review Title Generation Short Text Generation 30.34 £ 37.95 7.02+£1.14 1.05+0.31 -
Hotel Experiences Summary Generation Short Text Generation 90.40 £+ 99.17 7.64 £0.92 1.14 +0.61 -
Stylized Feedback Title Generation Short Text Generation 37.42 + 38.17 716+ 1.11 1.09 £0.47 -
Multilingual Product Review Title Generation ~ Short Text Generation 22.17 4+ 20.15 7.15+1.09 1.08 £0.33 -
User-Product Review Ratings Ordinal Classification 34.10 & 38.66 - 1.05£0.31 5
Hotel Experiences Ratings Ordinal Classification 94.69 £ 99.62 - 1.14 +0.61 5
Stylized Feedback Ratings Ordinal Classification 40.77 £ 38.69 - 1.09 4+ 0.47 5
Multilingual Product Ratings Ordinal Classification 25.15 4+ 20.75 - 1.08 £0.33 5

Table 1: Data statistics for PGraphRAG Benchmark across the four datasets. The table reports the average input
length and average output length in words (done for the test set on GPT-40-mini on BM25 back on all methods).
The average profile size for each task is the number of reviews a user has.

Dataset Users Items Edges/Reviews Average Degree
User-Product Review Graph 184,771 51,376 198,668 1.68
Hotel Experiences Graph 15,587 2975 19,698 2.12
Stylized Feedback Graph 58,087 600 71,041 2.42
Multilingual Product Review Graph 112,993 55,930 131,075 1.55

Table 2: Graph statistics for the datasets used in the personalized tasks. The table provides the number of users,
items, edges (reviews), and the average degree for each dataset: User-Product Graph, Multilingual Product Graph,

Stylized Feedback Graph, and Hotel Experiences Graph.

generate target product reviews iy in Brazilian
Portuguese based on the target user’s review title
ttite and additional reviews P; in their profile. The
B2W-Reviews dataset (Real et al., 2019), collected
from Brazil’s largest e-commerce platform, is used
to create data splits.

Task 5: User Product Review Title Generation.
Short text generation for personalized review ti-
tles is particularly challenging due to the need for
summarization, sentiment dissemination, and cap-
turing user behavior styles. This task generates a
target review title 4. using the target user’s review
text iex¢ and additional reviews P; from their pro-
file, without relying on parametric user information
(Xu et al., 2023). We construct the dataset from the
Amazon Reviews dataset (Hou et al., 2024).

Task 6: Hotel Experience Summary Generation.
Consolidating hotel information to help guests
make informed decisions and personalize their ex-
perience is crucial (Kamath et al., 2024). This task
focuses on generating the target user’s hotel ex-
perience summary e using their experience text
text and additional experiences P;. We leverage
the Datafiniti Business Database on Hotel Reviews
(Datafiniti, 2017).

Task 7: Stylized Feedback Title Generation.
Opinion datasets often lack review titles and rely
on comparing reviews with desirable feedback
to generate Stylized Opinion Summarization (Iso
et al., 2024). This task benchmarks stylized feed-
back across domains such as music, groceries, and
household items. The goal is to generate the target
user’s feedback title i based on their feedback
text itex¢ and additional feedback P;. The dataset
is constructed from the Datafiniti Products dataset
(Datafiniti, 2018).

Task 8: Multi-lingual Review Title Generation.
Brazilian Portuguese presents unique challenges
in simplifying review text (Scalercio et al., 2024),
particularly in a multilingual approach to gener-
ating review titles. This short task generates the
target user’s product review title %y using their re-
view text iy and additional user reviews P;. The
dataset is created from the B2W-Reviews dataset
(Real et al., 2019).

Task 9: User Product Review Ratings. Recent
advancements in sentiment analysis have utilized
graph structures to enhance sentiment prediction
(Zhang et al., 2023; Kertkeidkachorn and Shirai,
2023). This task focuses on predicting ratings
within an ordinal classification framework, assign-



ing values from 1 to 5. To generate a user-product
review rating ipying, We use the target user’s prod-
uct review i, the corresponding title %y, and
additional reviews P, as context. The dataset is con-
structed from the Amazon Reviews dataset (Hou
etal., 2024).

Task 10: Hotel Experience Ratings. Guest re-
views often address multiple aspects of hotel expe-
riences, which are typically framed as multi-label
classification problems (Fehle et al., 2023). This
task adapts this aspect to evaluating personalized
bias lodging scores. We define a user’s hotel expe-
rience rating iraing based on their hotel experience
story eyt and the summary %4y, With additional
context from FP,. The dataset is derived from the
Hotel Reviews dataset (Datafiniti, 2017).

Task 11: Stylized Feedback Ratings. Exploring
sentiment across different domains highlights vari-
ations in writing quality and the factors influencing
sentiment (Yu et al., 2021). This task investigates
domain-specific variations by assigning a numeri-
cal feedback rating iping to a target stylized user
review. The input includes the stylized review text
ttext and title 740.. The dataset is constructed from
the Datafiniti Product Database on Grammar and
Online Product Reviews (Datafiniti, 2018).

Task 12: Multi-lingual Product Ratings. Senti-
ment analysis has proven effective at the sentence
level when applied in Portuguese (de Araujo et al.,
2024). However, this task extends beyond simple
sentences to explore variability in Brazilian product
reviews by generating a Portuguese user-product
rating iraing for a targeted review by considering
both the review text iy and the review title e
as context. We construct the dataset from B2W-
Reviews (Real et al., 2019).

3 PGraphRAG Framework

In this section, we present PGraphRAG, our pro-
posed approach for personalizing large language
models (LLMs). PGraphRAG enhances person-
alization by prompting a shared model with user-
specific context, effectively integrating structured
user-specific knowledge to enable tailored and
context-aware text generation. As discussed in Sec-
tion 2, PGraphRAG leverages a rich user-centric
bipartite graph G that enables our approach to a
broader context beyond the user history. Specifi-
cally, for any user ¢, we define the user profile P;
as the set of previous texts written by user 7 (i.e.,

{(i,j) € E}), and the set of texts written by other
users k for the same items connected to user 7 (i.e.,
{(k,j) € E | (i,j) € E}). As such, the user
profile P; is defined as follows,

Pz' = {(Zv]) € E} U {(kaj) S | (273) € E}
ey

VjeVkeUk#i

Considering the context length limitations of cer-
tain LLMs and the computational costs of process-
ing contexts, we utilize retrieval augmentation to
extract only the most relevant information from the
user profile with respect to the input query. This
retrieved information is then used to condition the
model’s predictions for the current unseen test case.

Given an input sample (z, y) for user i, we fol-

low a few steps to generate g, which includes a
query function, a graph-based retrieval model, and
a prompt construction function seen in Figure 1.

1. Query Function (¢,): The query function
transforms the input x into a query for retriev-
ing from the user profile.

2. Graph-Based Retrieval (R): The retrieval
function R(q, G, k) takes as input the query
q, the bipartite graph G, and a threshold k.
First, the retrieval function leverages the graph
G to construct the user profile P;. Then, it
retrieves the k-most relevant entries from the
user profile.

3. Prompt Construction (¢,): The prompt con-
struction assembles a personalized prompt for
user ¢ by combining the input x with the re-
trieved entries.

We define the constructed input using R as Z:

= ¢p($aR(¢q<$)7G7 k)) ()

Then, we use (Z, y) to train or evaluate LLMs.

4 Experiments

Setup. The LLaMA-3.1-8B-Instruct model (Tou-
vron et al., 2023) is implemented using the Hug-
gingface transformers library using default
settings and configured to produce outputs with
a maximum length of 512 tokens. Thes experi-
ments are conducted on an NVIDIA A100 GPU
with 80GB of memory. We access GPT-40-mini
model(OpenAl, 2024) via the Azure OpenAl Ser-
vice (Services, 2023), using the AzureOpenAT
class with the temperature set to 0.4.



4.1 Data Construction and Splitting

To construct our user—item graph, we model users
and products as nodes, with edges representing
user reviews of products. Each user must have at
least one reviewed product that is also reviewed
by another user (i.e., forming a shared connection)
to be selected as a gold-label edge. If the ran-
domly selected review from a user does not meet
this neighbor criterion, we instead select another
review from the user’s profile. Users who have no
neighbor-compatible reviews remain in the dataset
but are excluded from selection, as our random
draw occurs at the edge level rather than across the
user’s full node profile. This filtering step ensures
the resulting user—item graph remains connected,
facilitating comparative tasks (e.g., multiple review-
ers for the same product) and cold-start scenarios,
where even users with few reviews maintain shared
item nodes with others.

After identifying each user’s valid “neighbor-
linked” review(s), we split users into training, de-
velopment, and test sets in a way that preserves
these neighbor relationships:

1. Global Neighbor Preservation: Products
with multiple reviewers are assigned in
batches so that at least one other user in the
same split has reviewed the same product.

2. Local Neighbor Preservation: Once a user
with a particular product is placed in a split,
subsequent users who reviewed that product
are assigned to the same split to maintain con-
nectivity.

Finally, we stratify each split by user review pro-
file size to reflect the original distribution from the
original dataset while retaining local and global
neighbor structures. Controlling the neighbor
preservation and stratification of user profile size,
product review distribution (amount of reviews per
product) is maintained. This comprehensive pro-
cess ensures that each split is representative of real-
world user review patterns and that all three graph
properties are reflective of the original. The graph
statistics are seen in Table 2. Data statistics are
shown in Table 1 and data split size in Table 8.
Graph Construction. We construct a bipartite
user-item graph from the selected user profiles in
our validation and test splits. Each user node con-
nects to item nodes representing products they have
reviewed, with edges denoting individual reviews.
This structure underpins two retrieval modes: (1)

LaMP, which only searches edges corresponding to
the user’s own reviews, and (2) PGraphRAG Neigh-
bors, which further incorporates reviews from
neighboring user nodes via the graph. Traversing
the node will return a list, where both modes create
the context for PGraphRAG.

Ranking and Retrieval. The query differs by
task category: Long Text Generation (review title),
Short Text Generation(review text), Ordinal Clas-
sification(review title + text). We employ BM25
(Robertson and Zaragoza, 2009) and Contriever
(Lei et al., 2023) that retrieve the top k£ = 5 re-
views from each the user’s own edges (LaMP) and
their nearest neighbors in the graph. By ranking,
it retrieves only the most relevant context with the
k limit, where the minority of products is above
the limit as shown in 7 and 2. These constraints
users or products with a lot of reviews to be simi-
lar to those of cold-start users. The initial corpus
was tokenized using NLTK’s word_tokenize
before being passed to the retrievers. They use nor-
mal settings without additional hyperparameters
where the contriever applies mean pooling to token
embeddings.

LLM Prompt Generation. Once the top-k re-
views are identified, we incorporate them into a
template-based prompt passed to a large language
model (LLM). As illustrated in Figure ??, the
prompt includes both the user’s query (e.g., a re-
quest for a long-form review, a short title, or a
rating) and the list of reviews. Then, the LLM re-
turns the predicted task given the set of instructions
as shown in Figure 3.

Baseline Methods. We compare our method
against several non-personalized and personalized
approaches. (1) No-Retrieval serves as a non-
personalized baseline where the prompt is con-
structed without any retrieval augmentation. The
LLM generates the target text solely based on
the query. (2) Random-Retrieval serves as a non-
personalized baseline where the prompt is con-
structed with augmentation using a random item
from all user profiles. (3) LaMP (Salemi et al.,
2024b) is a personalized baseline where the prompt
is constructed with augmentation with user-specific
input or context, such as previous reviews written
by the user.

Evaluation. For evaluation, we assess each
method by providing task-specific inputs and mea-
suring performance based on the generated outputs.



For long and short text generation tasks, we utilize
the ROUGE-1, ROUGE-L (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005) metrics. For
rating prediction tasks, we evaluate performance
using MAE and RMSE as metrics.

4.2 Baseline Comparison

Together, these three tasks illustrate how review
formulation—whether expanding a short title, gen-
erating concise text, or assigning numerical rat-
ings—directly impacts how user information is dis-
seminated throughout the model. For more descrip-
tive tasks, user knowledge graphs provide richer
context that can elevate the generation quality. Con-
versely, when prompts are minimal or scores are
discrete, retrieving and integrating user data may
offer limited gains if the prompt lacks the necessary
hooks or if domain-specific biases dominate.

Long Text Generation. Table 3 & 16 shows
PGraphRAG consistently outperforms the base-
line methods in order of no-retrieval, random re-
trieval, and LaMP across all metrics. PGraphRAG
showed the greatest improvement in Hotel Ex-
perience Generation over the LaMP baseline in
both models, with gains in ROUGE-1 (+32.1%),
ROUGE-L (+21.7%), and METEOR (+25.7%) in
LLaMA-3.1-8B-Instruct . This shows the benefits
gained by incorporating a broader context from
user-centric graphs. Due to the greater length of
the reference and predicted text, there are more
opportunities for predicted review body to overlap
with the gold label, resulting in higher scores.

Short Text Generation. Table 4 & 17 ,
PGraphRAG outperforms the baselines in most
cases, where User Product Review Title Generation
PGraphRAG achieves small, consistent improve-
ments in ROUGE-1 (+5.6%), ROUGE-L (+5.9%),
and METEOR (+6.8%) over LaMP in LLaMA-
3.1-8B-Instruct . Since the short-generation tasks
inherently provide fewer words to match against
the reference, the ROUGE and METEOR scores
tend to be lower for these tasks. Minor lexical dif-
ferences can lead to significant score reductions,
and there are fewer opportunities to align with ref-
erence labels.

Ordinal Classification. In Tables 6, and 18,
PGraphRAG out performs 1 of 4 tasks in LLaMa
and 2 of 4 in GPT with nonsignificant improve-
ments of MAE (+1.75%) and RMSE (+1.12%) for

Multi-lingual Product Ratings across both configu-
rations compared to LaMP, with improvements of
MAE (+2.16%) and RMSE (+3.17%) respectively.
We speculate that the granularity of the domain is
important as similar reviews in Hotel Experience
and the Multilingual of digital/electronic items pro-
vide less variability for the model to reason the
product quality to the user’s expectations.

4.3 Ablation Study

We conduct ablation studies to evaluate the
impact of different retrieval configurations on
PGraphRAG’s performance. These experiments
examine variations in retrieval depth, retrieval do-
main, and retriever model. Results and further
analysis are provided in Appendix C & D.

5 Conclusion

In this paper, we introduce PGraphRAG, a frame-
work that enhances personalized text generation
by integrating user-centric knowledge graphs into
retrieval-augmented generation.  Unlike tradi-
tional approaches that rely solely on user history,
PGraphRAG incorporates structured user knowl-
edge, enabling more context-aware and adaptive re-
sponses. Our experiments demonstrate that graph-
based retrieval significantly improves personaliza-
tion, outperforming state-of-the-art methods across
multiple personalized text generation tasks.

Beyond immediate performance improvements,
our work opens new directions for personalization
at scale. We highlight how LLMs can scale per-
sonalization to a broader audience by generalizing
across similar users. This introduces new opportu-
nities for extending user information dynamically,
allowing models to infer and adapt to user prefer-
ences even in cold-start scenarios.

By guiding LLMs in discerning which contex-
tual information is most relevant, our personaliza-
tion strategy not only refines the model’s reasoning
but also lays the groundwork for more advanced
user assistance—helping individuals navigate items
or interests with increased clarity. Moreover, the
use of a structured knowledge base offers a strong
foundation for agentic systems, particularly in sce-
narios where user data are sparse. Combining
retrieval-augmented generation with user knowl-
edge graphs enables better adaptive personalization
for LLMs, enhancing informed inferences across
diverse social and user-centric platforms.



Long Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval
LLaMA-3.1-8B-Instruct

ROUGE-1 0.178 0.173 0.172 0.124
Task 1: User-Product Review Generation ROUGE-L 0.129 0.129 0.123 0.094
METEOR 0.151 0.138 0.154 0.099
ROUGE-1 0.263 0.199 0.231 0.216
Task 2: Hotel Experiences Generation ROUGE-L 0.157 0.129 0.145 0.132
METEOR 0.191 0.152 0.153 0.152
ROUGE-1 0.217 0.186 0.190 0.184
Task 3: Stylized Feedback Generation ROUGE-L 0.158 0.134 0.131 0.108
METEOR 0.178 0.177 0.167 0.122
ROUGE-1 0.188 0.176 0.174 0.146
Task 4: Multilingual Product Review Generation ROUGE-L 0.147 0.141 0.136 0.116
METEOR 0.145 0.125 0.131 0.109
GPT-40-mini
ROUGE-1 0.189 0.171 0.169 0.159
Task 1: User-Product Review Generation ROUGE-L 0.130 0.117 0.116 0.114
METEOR 0.196 0.176 0.177 0.153
ROUGE-1 0.263 0.221 0.223 0.234
Task 2: Hotel Experiences Generation ROUGE-L 0.152 0.135 0.135 0.139
METEOR 0.206 0.164 0.166 0.181
ROUGE-1 0.211 0.185 0.187 0.177
Task 3: Stylized Feedback Generation ROUGE-L 0.140 0.123 0.123 0.121
METEOR 0.202 0.183 0.189 0.165
ROUGE-1 0.194 0.168 0.170 0.175
Task 4: Multilingual Product Review Generation ROUGE-L 0.144 0.125 0.128 0.133
METEOR 0.171 0.154 0.152 0.149

Table 3: Zero-shot performance on the test set for the Long Text Generation tasks using LLaMA-3.1-8B-Instruct and
GPT-40-mini. The best retriever was selected based on validation performance.

Short Text Generation Metric PGraphRAG LaMP No-Retrieval Random-Retrieval
LLaMA-3.1-8B-Instruct
ROUGE-1 0.131 0.124 0.121 0.103
Task 5: User Product Review Title Generation =~ ROUGE-L 0.125 0.118 0.115 0.098
METEOR 0.125 0.117 0.112 0.096
ROUGE-1 0.127 0.126 0.122 0.118
Task 6: Hotel Experience Summary Generation ROUGE-L 0.118 0.117 0.114 0.110
METEOR 0.102 0.106 0.101 0.093
ROUGE-1 0.149 0.140 0.136 0.133
Task 7: Stylized Feedback Title Generation ROUGE-L 0.142 0.134 0.131 0.123
METEOR 0.142 0.136 0.129 0.121
ROUGE-1 0.124 0.121 0.125 0.120
Task 8: Multi-lingual Review Title Generation = ROUGE-L 0.116 0.122 0.117 0.110
METEOR 0.108 0.094 0.092 0.103
GPT-40-mini
ROUGE-1 0.115 0.108 0.113 0.102
Task 5: User Product Review Title Generation = ROUGE-L 0.112 0.105 0.110 0.099
METEOR 0.099 0.091 0.093 0.085
ROUGE-1 0.116 0.108 0.114 0.112
Task 6: Hotel Experience Summary Generation ROUGE-L 0.111 0.104 0.109 0.107
METEOR 0.081 0.075 0.079 0.076
ROUGE-1 0.122 0.113 0.114 0.115
Task 7: Stylized Feedback Title Generation ROUGE-L 0.118 0.109 0.110 0.111
METEOR 0.104 0.096 0.097 0.093
ROUGE-1 0.111 0.115 0.118 0.108
Task 8: Multi-lingual Review Title Generation = ROUGE-L 0.105 0.107 0.110 0.102
METEOR 0.083 0.088 0.089 0.078

Table 4: Zero-shot performance on the on the test set for the Short Text Generation tasks using LLaMA-3.1-8B-
Instruct and GPT-40-mini. The best retriever was selected based on validation performance.



6 Limitations

The proposed approach presents several opportuni-
ties for future enhancement. One significant chal-
lenge is the development of more sophisticated
strategies to train models effectively using user-
specific inputs. While personalization is a core
aspect of the approach, striking the right balance
between capturing individual user preferences and
ensuring broader model generalization remains a
complex task. Another area for extension lies in
its application to recommender systems. Future
efforts will focus on exploring methods to dynam-
ically adapt to evolving user preferences and ad-
dress challenges such as cold-start scenarios and
context-aware recommendations. Additionally, we
aim to design more robust and scalable training
frameworks for personalized models, broadening
their applicability and improving the effectiveness
and adaptability of recommender systems.
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A Additional Tables

Table 5 shows the relative percent gain of
PGraphRAG compared to LaMP with improve-
ments in Task 1-7 except Task 8 in Multi-lingual
Review Title Generation. We speculate the cultural
differences in how users review item titles make
a difference with a large proportion titling "Muito
bom," translated as "Very good" in English. The
model will tend to generate a more detailed an-
swer as opposed to the social norm descriptor title.
In long text generation for GPT, score improve-
ment is approximately 15% for ROUGE-1, 13% for
ROUGE-L, and 15% for METEOR, while LLaMa
achieves approximately 15% for ROUGE-1, 11%
for ROUGE-L, and 13% for METEOR. For short
text generation, GPT shows improvements of ap-
proximately 5% for ROUGE-1, 5% for ROUGE-L,
and 5% for METEOR. LLaMa achieves approxi-
mately 4% for ROUGE-1, 2% for ROUGE-L, and
6% for METEOR.

B Prompt and Output Example

The output example (shown below) compares the
PGraphRAG output with the LaMP output against
the gold label, for Task 2 (Hotel Experience Gen-
eration). The gold label’s title is passed to the
prompt alongside retrieved context to generate the
review bodies. When the information is sparse, the
LaMP method is too reliant on the user’s other re-
views, generating reviews with wrong context, but
the PGraphRAG method is able to capture specific
information about the target from neighboring user
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Model Metric Task 1 Task2 Task3 Task4 Task5 Task6 Task7 Task8

ROUGE-1 1053 1896 14.05 1548  6.48 7.41 7.96 -3.48
GPT-40-mini ROUGE-L 11.11 1259 13.82 1520 6.67 6.73 8.26 -1.87
METEOR 11.36 2561 1038 11.04 8.79 8.00 8.33 -5.68

ROUGE-1 289 3216 16.67 6.82 5.65 0.79 6.43 2.48
LLaMA-3.1-8B-Instruct  ROUGE-L  0.00 21.71 1791 4.26 5.93 0.85 5.97 -4.92
METEOR 942 2566 0.56 16.00 6.84 -3.77 4.41 14.89

Table 5: Relative percent gains of PGraphRAG over state-of-art LaMP for GPT-40-mini and LLaMA-3.1-8B-Instruct
across Tasks 1 - 8

Ordinal Classfication Metric  PGraphRAG LaMP No-retrieval Random-retrieval
LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings gll\ligg . 8;222 33;2(2) 83;3 832?2
e
Task 11: Stylized Feedback Ratings g/IQSEi L 8342‘4712 ggggg 822(5)2 83;23
Task 12: Multi-lingual Product Ratings E/II\??Ei L gggzg gggég ggggg 82(5)4913
GPT-40-mini

Task 9: User Product Review Ratings ;/IQISEEi . 8;?35 8§3§2 g;gzg 8:523
e
St i oue e oo
Task 12: Multi-lingual Product Ratings gIIGISEEi L g;gzg 8471‘6132 8‘;3?: 8‘8‘1(1)(2)

Table 6: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-4o-mini and LLaMA-3.1-8B.

reviews. Figure 3 shows the prompt construction
for the input and Table 7 shows the review density TS Ao sty

per product, where sparsity is balanced from the Review: I recently had an amazing stay at the Newark

original graph for both product and user nodes. Garden Hotel. Despite the circumstances that brought
my family together, the hotel provided a comforting
and welcoming environment. The rooms were immac-
ulate, and the staff went above and beyond to ensure
we felt at home. The hot breakfast each morning was
a delightful touch that made our mornings brighter. I
highly recommend this hotel for anyone looking for a
pleasant and accommodating stay!

Title: Amazing stay!

Review: Had a great stay, our room was very clean
and very peaceful. It is in the heart of DT Seattle. We
took the train to the hotel and it was pretty easy. We
enjoyed walking all over downtown Seattle—no need
to rent a car. Major shopping and amazing restaurants
right around the corner! We will stay here again!
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Title: Amazing stay!

Review: I had an amazing stay at the Grand Hyatt
Seattle! From the moment I checked in, the staff
was incredibly welcoming and attentive. The room
was spacious, clean, and beautifully appointed, with
a stunning view of the city. The bathroom was a
highlight, featuring a luxurious soaking tub and a
large walk-in shower. The location was perfect, just a
short walk to Pike Place Market and other attractions.
I also enjoyed the fantastic amenities, including the
well-equipped gym and the delicious food options
available at the hotel. Overall, it was a wonderful
experience, and I can’t wait to return!

Reviews (n) Exact Count (Pct.) Cumulative Count (Pct.)
25,530 (49.69%) 25,530 (49.69%)
9,488 (18.47%) 35,018 (68.16%)

4,784 (9.31%)
2,639 (5.14%)
1,836 (3.57%)

39,802 (77.47%)
42,441 (82.61%)
44,277 (86.18%)

[ O R S

Table 7: Distribution of the number of reviews for prod-
ucts in the Amazon Review Dataset for Task 1, 5, and 9.
The majority of products have five or fewer reviews.

Dataset Train Size  Validation Size  Test Size
User-Product Review 20,000 2,500 2,500
Multilingual Product Review 20,000 2,500 2,500
Stylized Feedback 20,000 2,500 2,500
Hotel Experiences 9,000 2,500 2,500

Table 8: Dataset split sizes for training, validation, and
testing across four datasets: User-Product Review, Mul-
tilingual Product Review, Stylized Feedback, and Hotel
Experiences.

C Ablation Study Details
C.1 PGraphRAG Ablation Details

To investigate the impact of incorporating user
and/or neighboring-user data in the retrieved con-
text, we conduct an ablation study comparing three
variants of PGraphRAG:

* PGraphRAG: The full method, where
retrieved-context consists of both the target
user’s other reviews and reviews from neigh-
boring users.

PGraphRAG-N: Retrieval is limited to re-
views from neighboring-users. The target
user’s other reviews are excluded from the
retrieved context.

PGraphRAG-U: Retrieval is limited to re-
views from the target user, disregarding re-
views from neighboring users.
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Table 9 presents the ablation study using the
GPT-40-mini and LLaMA-3.1-8B models for the
long-text generation task on Task 1 - 4. Across
all datasets, both PGraphRAG and PGraphRAG-N
retrieval methods consistently outperform LaMP,
contrasting the impact of retrieving neighboring-
user context with that of retrieving target-user his-
tory as context. PGraphRAG generally matches or
slightly exceeds the performance of PGraphRAG-
N, suggesting that the additional target-user history
portion of the context contributes minimally to the
personalized text generation task for these datasets.

The ablation study results for the GPT-40-mini
model on the short-text generation tasks are in-
cluded in Table 10. The same trends can be seen in
those studies across all datasets, except for GPT-40-
mini performance on the Hotel Experience Sum-
mary Generationtask, where LaMP performs the
best of the three methods.

C.2 Impact of the Retrieved Items &

To evaluate the impact of the number of retrieved-
context reviews (k) on model performance, we con-
ducted experiments with £k = 1,2, and 4. Table
11 summarizes the results of this ablation study
on long-text generation (Tasks 1-4) using GPT-4o-
mini and LLaMA-3.1-8B-Instruct. The correspond-
ing results for short-text generation (Tasks 5-8) are
presented in Table 12.

The effect of increasing k varies depending on
the dataset’s characteristics. The results demon-
strate that increasing the amount of retrieved-
context from neighboring users and the target user
generally leads to better performance across all
datasets and metrics. This trend highlights the
importance of retrieval scales for enhancing the
diversity and relevance of retrieved context.

However, due to data sparsity, many user pro-
files contain fewer than four "Neighboring-user
reviews" or "Target-user’s other reviews." In such
instances, when the retriever attempts to retrieve
more reviews than are available, it retrieves all ex-
isting reviews. Consequently, PGraphRAG may
retrieve only one or two reviews, even when con-
figured to retrieve k = 4. This behavior reflects the
realistic scenario of handling cold-start users with
limited existing data, a central focus of our study.



Input

Task 1 - 4 Long Text Generation

Given the following reviews from the same user and other
users on the same product:
[USER PROFILE(s), NEIGHBOR PROFILE(s)]
Generate a review for the following product from this user
given the review fitle, without any explanation:
[REVIEW TITLE]

Task 5 - 8 Short Text Generation

Given the following reviews from the same user and other
users on the same product:

[USER PROFILE(s), NEIGHBOR PROFILE(s)]
Generate a title for the following product review from this
user without any explanation
: [REVIEW TEXT]

Task 9 - 12 Ordinal Classfication

Given the following reviews from the same user and other
users on the same product:

[USER PROFILE(s), NEIGHBOR. PROFILE(s)]
Generate an integer rating from 1-5 for the following product
from this user given the review fitle and text, without any
explanation:

[REVIEW TEXT] [REVIEW TITLE]

Retrieved Profile(s)

Qutput

[REVIEW TITLE], [REVIEW TEXT]

User Review Profile: ]

Neighbor Review Profile:
[REVIEW TITLE], [REVIEW TEXT]

User Review Profile:
{ [REVIEW TITLE], [REVIEW TEXT]
Neighbor Review Profile:
[REVIEW TITLE], [REVIEW TEXT]

l [REVIEW TITLE], [REVIEW TEXT]

User Review Profile: ]

4

Neighbor Review Profile:
[REVIEW TITLE], [REVIEW TEXT]

Figure 3: Examples of different prompt configurations used in each of our task types. Teletype text is replaced with

realistic data for each task.

Long Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct
ROUGE-1 0.173 0.177 0.168
Task 1: User-Product Review Generation ROUGE-L 0.124 0.127 0.125
METEOR 0.150 0.154 0.134
ROUGE-1 0.263 0.272 0.197
Task 2: Hotel Experiences Generation ROUGE-L 0.156 0.162 0.128
METEOR 0.191 0.195 0.121
ROUGE-1 0.226 0.222 0.181
Task 3: Stylized Feedback Generation ROUGE-L 0.171 0.165 0.134
METEOR 0.192 0.186 0.147
ROUGE-1 0.174 0.172 0.174
Task 4: Multilingual Product Review Generation = ROUGE-L 0.139 0.137 0.141
METEOR 0.133 0.126 0.125
GPT-40-mini
ROUGE-1 0.186 0.185 0.169
Task 1: User-Product Review Generation ROUGE-L 0.126 0.125 0.114
METEOR 0.187 0.185 0.170
ROUGE-1 0.265 0.268 0.217
Task 2: Hotel Experiences Generation ROUGE-L 0.152 0.153 0.132
METEOR 0.206 0.209 0.161
ROUGE-1 0.205 0.204 0.178
Task 3: Stylized Feedback Generation ROUGE-L 0.139 0.138 0.121
METEOR 0.203 0.198 0.178
ROUGE-1 0.191 0.190 0.164
Task 4: Multilingual Product Review Generation ROUGE-L 0.142 0.140 0.123
METEOR 0.173 0.169 0.155

Table 9: Ablation study results for long text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context

retrieval.
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Short Text Generation Metric PGraphRAG PGraphRAG-N PGraphRAG-U
LLaMA-3.1-8B-Instruct

ROUGE-1 0.125 0.129 0.115
Task 5: User Product Review Title Generation ROUGE-L 0.119 0.123 0.109
METEOR 0.117 0.120 0.111
ROUGE-1 0.121 0.124 0.119
Task 6: Hotel Experience Summary Generation ROUGE-L 0.113 0.115 0.111
METEOR 0.099 0.103 0.105
ROUGE-1 0.132 0.135 0.128
Task 7: Stylized Feedback Title Generation ROUGE-L 0.128 0.130 0.124
METEOR 0.129 0.132 0.124
ROUGE-1 0.131 0.131 0.124
Task 8: Multi-lingual Product Review Title Generation =~ ROUGE-L 0.123 0.122 0.114
METEOR 0.118 0.110 0.098
GPT-40-mini
ROUGE-1 0.111 0.116 0.112
Task 5: User Product Review Title Generation ROUGE-L 0.106 0.111 0.108
METEOR 0.097 0.099 0.095
ROUGE-1 0.118 0.119 0.109
Task 6: Hotel Experience Summary Generation ROUGE-L 0.112 0.113 0.104
METEOR 0.085 0.085 0.077
ROUGE-1 0.109 0.107 0.108
Task 7: Stylized Feedback Title Generation ROUGE-L 0.107 0.105 0.104
METEOR 0.096 0.094 0.091
ROUGE-1 0.108 0.109 0.116
Task 8: Multi-lingual Product Review Title Generation =~ ROUGE-L 0.104 0.104 0.109
METEOR 0.082 0.089 0.091

Table 10: Ablation study results for short text generation tasks using LLaMA-3.1-8B-Instruct and GPT-4o-mini.
PGraphRAG-N represents Neighbors-only context retrieval and PGraphRAG-U represents User-only context
retrieval.

16



Long Text Generation Metric k=1 k=2 k=4
LLaMA-3.1-8B-Instruct
ROUGE-l  0.160 0.169  0.173
Task 1: User-Product ROUGE-L  0.121 0125  0.124
Review Generatlon
METEOR  0.125  0.138  0.150
ROUGE-1 0230 0251 0263
Task 2: Hotel ‘ ROUGE-L  0.141 0151  0.156
Experiences Generation
METEOR  0.152  0.174  0.191
) ROUGE-1 0200 0214 0226
pusk 3 Suylieed ROUGEL 0158 0165  0.171
METEOR  0.154  0.171  0.192
o ROUGE-1  0.163  0.169  0.174
g'fiﬁi} ggjf‘el‘f%“;:mﬁo" ROUGEL  0.134 0137  0.139
METEOR  0.113  0.122 0133
GPT-40-mini
ROUGE-l  0.176  0.184 0186
Task 1: User-Product ROUGE-L 0121 0125  0.126
Review Generation
METEOR  0.168  0.180  0.187
ROUGE-1 0250 0260  0.265
Task 2: Hotel . ROUGELL  0.146 0150  0.152
Experiences Generation
METEOR  0.188  0.198  0.206
. ROUGE-1  0.196 0200  0.205
pask 3 Sulieed ROUGE-L 0136 0136  0.139
METEOR  0.186  0.192  0.203
o ROUGE-l  0.163  0.169  0.174
I ROUGEL 015 017 o1
METEOR  0.113 0122  0.133

Table 11: Ablation study results showing the im-
pact of varying k£ (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-40-mini on long-text

generation tasks (Tasks 1 - 4).
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Short Text Generation Metric k=1 k=2 k=4 Long Text Generation Metric Contriever ~ BM25
LLaMA-3.1-8B-Instruct LLaMA-3.1-8B-Instruct
Task 5: User Product ROUGE-T 0.128  0.123 = 0.125 ROUGE-1 0.172 0.173
Review Title Generation ROUGE-L 0.121 0.118 0.119 Task 1: User-Product ROUGE-L 0.122 0.124
METEOR 0.123 0.118 0.117 Review Generation - . :
METEOR 0.153 0.150
Task 6 Hotel Exverd ROUGE-1 0122 0121  0.121
Si;méry‘éeener";ﬁf““ ROUGELL 0112 0114 0113 Task 2 Hotel ROUGE-1 0.262 0.263
METEOR 0104 0102  0.099 SX 2 ) ROUGE-L 0.155 0.156
Experiences Generation METEOR 0.190 0.191
. ROUGE-1 0129 0132 0132 : :
Task 7: Stylized Feedback ROUGE-L 0.124 0.126 0.128
Title Generation METEO;( 0‘129 0‘130 0'129 Task 3: Stylized ROUGE-1 0.195 0.226
Feedback Generation ROUGE-L 0.138 0.171
Task 8: Multi-li I Prod ROUGE-1 0.129 0.126 0.131 METEOR 0.180 0.192
Revion Title Goreus, M0 ROUGEL 0120 0119 0.123
METEOR  0.117  0.116  0.118 o I ROUGE-1 0.172 0.174
GPT-4o0-mini g:‘lzlc(llit I\lf;l\l?el\l)\lljg(;edrieration ROUGE-L 0.134 0.139
METEOR 0.135 0.133
ROUGE-1 0111  0.110  0.111 .
Task 5: User Product ROUGELL ~ 0.106  0.105  0.106 GPT-4o-mini
Review Title Generation METEOR 0.093 0.094 0.097
. . . ROUGE-1 0.182 0.186
Task 1: User-Product
Task 6: Hotel Experience ROUGE-1 0.114 0.114 0.118 Review Generation ROUGE-L 0.122 0.126
S S PS ROUGE-L 0.109 0.109 0.112 METEOR 0.184 0.187
ummary Generation
METEOR 0082  0.082  0.085
Task 2: Hotel ROUGE-1 0.264 0.265
) ROUGE-1  0.100  0.103  0.109 ask 2:
Task 7: Stylized Feedback -~ Experiences Generation ROUGE-L 0.152 0.152
Title Generation ROUGE-L 009 0101 0.107 P METEOR 0.207 0.206
METEOR 0087  0.090  0.096 :
ROUGE-1 0.194 0.205
. L ROUGE-1 0.104 0.104 0.108 Task 3: Stylized
Task §: Multtingual Product pouGEL 0098 0098 0.104 Foodbnck Gonoration ROUGE-L 0.128 0.139
METEOR 0.077 0.078 0.082 METEOR 0.201 0.203
. . . Task 4: Multilineual ROUGE-1 0.190 0.191
Table 12: Ablation study results showing the im- ase & putmgna ROUGE-L 0.141 0.142
Product Review Generation
METEOR 0.174 0.173

pact of varying k£ (number of retrieved neighbors) on
PGraphRAG’s performance. Results are reported for
LLaMA-3.1-8B-Instruct and GPT-40-mini on short-text
generation tasks (Tasks 5-8).

C.3 Impact of Retriever method R

We study the impact of the retriever method on
the proposed PGraphRAG method; we conduct an
ablation study comparing two retrievers, BM25 and
Contriever.

In Table 13, we compare the performance of
our PGraphRAG method using these two retrievers.
Across all datasets and tasks, the results demon-
strate that the performance of PGraphRAG is stable
and not highly sensitive to the choice of retriever.
Both BM25 and Contriever show comparable re-
sults, with BM25 showing slight improvements in
some cases. This stability highlights the robustness
of PGraphRAG in adapting to different retrieval
contexts.
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Table 13: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the long-text generation task (Tasks 1-4).



Short Text Generation Metric Contriever BM25
LLaMA-3.1-8B-Instruct
ROUGE-1 0.122 0.125
METEOR 0.115 0.117
. ROUGE-1 0.117 0.121
ok 0: Hotel Pxperience ROUGEL 0110  0.113
Ty METEOR 0.095 0.099
. ROUGE-1 0.125 0.132
sk - Solzed Feedback goUGE-L  0.121 0.128
METEOR 0.122 0.129
. ROUGE-1 0.126 0.131
R T TR
METEOR 0.112 0.118
GPT-40-mini
ROUGE-1 0.113 0.111
Roviow Titl Gonteation ROUGEL 0.8 0.0
METEOR 0.097 0.097
. ROUGE-1 0.113 0.118
ok 0: Hotel Pxperience ROUGE-L  0.107 0.112
Ty METEOR 0.080 0.085
. ROUGE-1 0.108 0.109
sk G Solzed Feedback  ROUGEL 0106 0.107
METEOR 0.094 0.096
- ROUGE-1 0.108 0.108
Taslf 8: Mulu—lmgual_ Product ROUGE-L 0.103 0.104
Review Title Generation
METEOR 0.082 0.082

Table 14: Ablation study results showing the effect of
retriever choice on PGraphRAG performance. Results
are reported for LLaMA-3.1-8B-Instruct and GPT-4o-
mini on the short-text generation task (Tasks 5-8).

D GPT Experiments

D.1 Impact of Ranked Retrieval

In Table 15, two variations of the PGraphRAG
framework show the impact of ranked re-
trieval: PGraphRAG*, which retrieves four ran-
domly selected reviews as context (k=4), and
PGraphRAG**, which retrieves and passes all
available context within the model’s limit (k ap-
proaches oo). Since PGraphRAG** expectedly
performs better, we focus on analyzing the effect
of removing ranking.

Our results show that removing ranking
(PGraphRAG — PGraphRAG*) leads to an aver-
age ROUGE-1 drop of 2.29% for long-text tasks
and 3.18% for short-text tasks, demonstrating the
importance of ranking in retrieval. Similarly, re-
moving ranking from target user-specific retrieval
(PGraphRAG-U — PGraphRAG-U*) results in a
0.92% decrease in long-text tasks and a 1.98% drop
in short-text tasks. These findings confirm that
ranked retrieval plays a key role in PGraphRAG’s
effectiveness.
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While PGraphRAG** achieves the highest per-
formance, it is impractical for larger datasets due
to retrieval cost and scalability constraints. In con-
trast, PGraphRAG* provides a more controlled and
comparable evaluation setting with a fixed retrieval
threshold (k=4). This analysis highlights the trade-
offs between retrieval ranking, retrieval limits, and
performance scaling, demonstrating that ranking
improves effectiveness while structured retrieval
strategies ensure efficiency.

D.2 Impact of GPT Models

To explore GPT model performances, we compared
the performance of PGraphRAG from our best re-
triever and k size settings on 3.5 Turbo, 40, 40-mini,
and ol-preview. We selected GPT-40-mini as the
best model for performance, cost, and consistency
across long text generation tasks.

D.3 Impact of Length Contraints

For short-text generation, we explore length con-
straints of 3, 5, and 10 words, finding that a 5-word
constraint achieves the best balance across metrics,
combining precision and informativeness. This
configuration is adopted for all short-text genera-
tion tasks.

E Validation results

We conduct a comprehensive set of experiments on
the validation set for five tasks, testing all combi-
nations of language models, retrieval methods, and
top-k retrieval settings for each method. As shown
in Table 16, 17, and 18. The configurations yield-
ing the best results on the validation set are selected
for subsequent test set experiments, where trends
observed in the validation are consistent with those
seen in the test set.

F Related Work

Personalization in natural language processing
(NLP) tailors responses to individual user prefer-
ences, behaviors, and contexts, significantly en-
hancing user interaction and satisfaction. Early
work in personalization focused on tasks such
as text generation, leveraging attributes like re-
view sentiment (Zang and Wan, 2017) and stylis-
tic features (Dong et al., 2017). These methods,
based on neural networks and encoder-decoder
models, laid the foundation for personalization in
text-based systems. Recent advancements have ex-
panded personalization techniques to incorporate



Direct Comparison of GPT-40-mini and GPT-01 Across Metrics (with Task Names)

0 GPT-4o-mini
0.25r = GPT-0l
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Datasets and Metrics

Figure 4: Comparison of GPT-40-mini and GPT-ol performance on test set across Task 1 - 4 on BM25, and k =4

Ablation Study: Length Constraints in Short Text Generation
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Figure 5: Impact of length constraints of 3, 5, and 10 on short-text generation tasks using PGraphRAG, evaluated on
the validation set.
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Task Metric PGraphRAG PGraphRAG* PGraphRAG** PGraphRAG-U PGraphRAG-U* PGraphRAG-U**

Long Text Generation

ROUGE-1 0.189 0.186 0.191 0.171 0.169 0.170
Task 1: User-Product Review Generation ROUGE-L 0.130 0.125 0.130 0.117 0.114 0.117
METEOR 0.196 0.188 0.205 0.176 0.173 0.180
ROUGE-1 0.263 0.266 0.267 0.221 0.223 0.225
Task 2: Hotel Experiences Generation ROUGE-L 0.152 0.152 0.153 0.135 0.134 0.135
METEOR 0.206 0.209 0.216 0.164 0.168 0.171
ROUGE-1 0.211 0.200 0.210 0.185 0.180 0.186
Task 3: Stylized Feedback Generation ROUGE-L 0.140 0.133 0.136 0.123 0.122 0.123
METEOR 0.202 0.206 0.225 0.183 0.184 0.189
ROUGE-1 0.194 0.188 0.196 0.168 0.167 0.171
Task 4: Multilingual Product Review Generation ROUGE-L 0.144 0.138 0.141 0.125 0.125 0.128
METEOR 0.171 0.176 0.188 0.154 0.155 0.155
Short Text Generation
ROUGE-1 0.115 0.114 0.119 0.108 0.108 0.111
Task 5: User Product Review Title Generation ROUGE-L 0.112 0.109 0.114 0.105 0.102 0.105
METEOR 0.099 0.121 0.128 0.091 0.116 0.119
ROUGE-1 0.116 0.117 0.121 0.108 0.121 0.119
Task 6: Hotel Experience Summary Generation ROUGE-L 0.111 0.107 0.112 0.104 0.111 0.110
METEOR 0.081 0.104 0.109 0.075 0.109 0.107
ROUGE-1 0.122 0.111 0.120 0.113 0.115 0.114
Task 7: Stylized Feedback Title Generation ROUGE-L 0.118 0.105 0.114 0.109 0.109 0.108
METEOR 0.104 0.117 0.126 0.096 0.124 0.123
ROUGE-1 0.111 0.108 0.112 0.115 0.110 0.110
Task 8: Multi-lingual Product Review Title Generation ROUGE-L 0.105 0.100 0.104 0.107 0.103 0.101
METEOR 0.083 0.101 0.105 0.088 0.108 0.107

Table 15: Zero-shot test set results for text generation using GPT-4o0-mini. PGraphRAG* denotes no ranked retrieval
method of k = 4, while PGraphRAG** represents the second variation where k has no limit to the models context
length.

Long Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval
LLaMA-3.1-8B-Instruct
ROUGE-1 0.173 0.168 0.172 0.126
Task 1: User-Product Review Generation ROUGE-L 0.124 0.125 0.121 0.095
METEOR 0.150 0.134 0.152 0.101
ROUGE-1 0.263 0.197 0.224 0.211
Task 2: Hotel Experiences Generation ROUGE-L 0.156 0.128 0.141 0.130
METEOR 0.191 0.121 0.148 0.147
ROUGE-1 0.226 0.181 0.177 0.142
Task 3: Stylized Feedback Generation ROUGE-L 0.171 0.134 0.125 0.104
METEOR 0.192 0.147 0.168 0.119
ROUGE-1 0.174 0.174 0.173 0.146
Task 4: Multilingual Product Review Generation ROUGE-L 0.139 0.141 0.134 0.117
METEOR 0.133 0.125 0.130 0.110
GPT-40-mini
ROUGE-1 0.186 0.169 0.168 0.157
Task 1: User-Product Review Generation ROUGE-L 0.126 0.114 0.113 0.112
METEOR 0.187 0.170 0.173 0.148
ROUGE-1 0.265 0.217 0.222 0.233
Task 2: Hotel Experiences Generation ROUGE-L 0.152 0.132 0.133 0.138
METEOR 0.206 0.161 0.164 0.164
ROUGE-1 0.205 0.178 0.177 0.168
Task 3: Stylized Feedback Generation ROUGE-L 0.139 0.121 0.119 0.117
METEOR 0.203 0.178 0.184 0.160
ROUGE-1 0.191 0.164 0.167 0.171
Task 4: Multilingual Product Review Generation ROUGE-L 0.142 0.123 0.125 0.131
METEOR 0.173 0.155 0.153 0.150

Table 16: Zero-shot Validation set results for long text generation using LLaMA-3.1-8B-Instruct and GPT-4o0-mini
on Tasks 1-4.
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Short Text Generation Metric PGraphRAG LaMP No-retrieval Random-retrieval
LLaMA-3.1-8B-Instruct
ROUGE-1 0.125 0.114 0.111 0.101
Task 5: User Product Review Title Generation ROUGE-L 0.119 0.108 0.105 0.095
METEOR 0.117 0.111 0.104 0.094
ROUGE-1 0.121 0.119 0.115 0.115
Task 6: Hotel Experience Summary Generation ROUGE-L 0.113 0.111 0.108 0.107
METEOR 0.105 0.105 0.100 0.094
ROUGE-1 0.132 0.128 0.127 0.108
Task 7: Stylized Feedback Title Generation ROUGE-L 0.128 0.124 0.122 0.104
METEOR 0.129 0.124 0.118 0.103
ROUGE-1 0.132 0.128 0.108 0.127
Task 8: Multi-lingual Product Review Title Generation ROUGE-L 0.128 0.124 0.104 0.122
METEOR 0.129 0.124 0.103 0.118
GPT-40-mini
ROUGE-1 0.114 0.106 0.109 0.107
Task 5: User Product Review Title Generation ROUGE-L 0.107 0.100 0.103 0.102
METEOR 0.119 0.115 0.116 0.109
ROUGE-1 0.115 0.115 0.114 0.112
Task 6: Hotel Experience Summary Generation ROUGE-L 0.105 0.106 0.106 0.103
METEOR 0.105 0.106 0.106 0.099
ROUGE-1 0.105 0.101 0.105 0.098
Task 7: Stylized Feedback Title Generation ROUGE-L 0.102 0.097 0.101 0.093
METEOR 0.118 0.111 0.118 0.105
ROUGE-1 0.108 0.106 0.108 0.103
Task 8: Multi-lingual Product Review Title Generation ROUGE-L 0.099 0.098 0.099 0.095
METEOR 0.101 0.102 0.103 0.095

Table 17: Zero-shot Validation set results for short text generation using LLaMA-3.1-8B and GPT-4o0-mini on Tasks

5-8.

retrieval-augmented generation (RAG) strategies.
For example, methods such as in-context prompt-
ing (Lyu et al., 2024b), retrieval-based summariza-
tion (Richardson et al., 2023), and optimization
techniques like reinforcement learning and knowl-
edge distillation (Salemi et al., 2024a) have fur-
ther refined personalized models. Benchmarks like
LaMP (Salemi et al., 2024b) and LongL.aMP (Ku-
mar et al., 2024) have been developed to evaluate
personalized tasks, emphasizing user-specific his-
tory for text generation tasks such as email com-
pletion and abstract writing. Retrieval-based ap-
proaches, such as (Kim et al., 2020), have also
explored personalization by enhancing retrieval
pipelines for long-form personalized content gen-
eration. However, most existing methods for per-
sonalization rely heavily on user history to aug-
ment the context or prompt, limiting their effec-
tiveness in scenarios where user history is sparse
or unavailable. This reliance poses challenges in
real-world applications, particularly for cold-start
users. Furthermore, these approaches often over-
look the potential of integrating structured data,
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such as knowledge graphs, to provide richer and
more diverse user-specific contexts.

Personalization in NLP

Personalization in natural language processing tai-
lors responses to individual user preferences, be-
haviors, and contexts, enhancing user interaction
and satisfaction. Early work in personalization fo-
cused on text generation tasks, leveraging attributes
such as review sentiment (Zang and Wan, 2017)
and stylistic features (Dong et al., 2017). These
approaches, which employed neural networks and
encoder-decoder models, laid the groundwork for
personalization in text-based systems. Addressing
challenges like limited user data, techniques such
as warm-attention mechanisms (Amplayo et al.,
2018) and social media-derived personalized lan-
guage models (Huang et al., 2014) were introduced
to mitigate the cold-start problem.

Recent advancements have extended personal-
ization to retrieval-augmented generation (RAG)
strategies such as prompting (Lyu et al., 2024b),
summarization with retrieval (Richardson et al.,
2023), and optimization methods like reinforce-



Ordinal Classfication Metric  PGraphRAG LaMP No-retrieval Random-retrieval
LLaMA-3.1-8B-Instruct

Task 9: User Product Review Ratings II\{/IQISEEi 1 83?;? 8;;;8 gg;gg 83;2
Task 10: Hotel Experience Ratings g[l\ligEi 1 ggggg 82328 322‘1; 8‘7“1)22
Task 11: Stylized Feedback Ratings gdh?gEi 1 gzzgg gz;gg gz;;z 833;;
Task 12: Multi-lingual Product Ratings gIQEE\L . 855;42152 g:g;g ggg?g 823(9)421
GPT-40-mini

Task 9: User Product Review Ratings gﬁ@gg 1 83?;; 82322 gg;gg 83;;2
Task 10: Hotel Experience Ratings ;/IIGISEEi 1 82322 82‘31;21 82232 82232
Tl 1 Solized Feedbuck Raings  pVce | 0651S  ogsas  0gass o7
Task 12: Multi-lingual Product Ratings Il\{/llélsaEi 1 g;igg 8323; 8?283 8‘;2?(7)

Table 18: Performance comparison on rating prediction tasks (Tasks 9-12) using GPT-40-mini and LLaMA-3.1-8B-
Instruct on the validation set. Results are reported using MAE and RMSE metrics across retrieval methods.

ment learning and knowledge distillation (Salemi
et al., 2024a) have further refined personalized
models. Personalization has also been explored
for tasks involving user-specific attributes, such as
those studied in benchmarks like Longl.aMP (Ku-
mar et al., 2024), and retrieval methods for long-
form personalized generation (Kim et al., 2020).

In addition to text generation, integrating person-
alization into recommendation systems has shown
success in combining user-specific attributes with
retrieval-based frameworks (Tsai et al., 2024). A
comprehensive survey on personalization in large
language models underscores the importance of
robust methodologies for managing diverse and
large-scale user data (Zhang et al., 2024). However,
current approaches often overlook the potential of
structured data, such as knowledge graphs, to en-
hance personalization.

Knowledge Graphs & Retrieval-Augmented
Generation (RAG)

Knowledge graphs have played a pivotal role in nat-
ural language processing by providing structured
and relational information for tasks such as ques-
tion answering, reasoning, and retrieval (Schneider
et al., 2022; Liu et al., 2018). Their ability to lever-
age subgraphs for precise and contextually relevant
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answers has been demonstrated in multi-hop rea-
soning tasks (Salnikov et al., 2023). Techniques
like data synthesis have further improved traversal
efficiency and scalability in large graphs (Agarwal
et al., 2021).

Retrieval-Augmented Generation (RAG) builds
on this foundation by integrating external data
sources, such as dense vector indexes and knowl-
edge graphs, into the generation process, signifi-
cantly improving the factuality and relevance of
responses (Izacard and Grave, 2020). When com-
bined with knowledge graphs, RAG models excel
in handling complex reasoning tasks, such as multi-
hop question answering (Saleh et al., 2024), and
in recognizing rare word patterns in previously un-
seen domains (Mathur et al., 2024). These methods
also enhance large language models (LLMs) by
reducing hallucinations and improving contextual
accuracy (Kang et al., 2023; Chen et al., 2023).

Despite their success, knowledge graphs face
scalability challenges, particularly in large-scale
applications like recommender systems (Ji et al.,
2022). Constructing and maintaining accurate and
consistent graphs require refinement techniques
to ensure data reliability and relevance (Paulheim,
2017). Comprehensive surveys on knowledge



graph technologies emphasize the need for better
methodologies for creating, managing, and scaling
these structures (Hogan et al., 2021). Additionally,
traditional RAG approaches often struggle with ir-
relevant document retrieval and the inefficiencies
of integrating multiple knowledge sources (Gao
et al., 2024).

The intersection of knowledge graphs, RAG, and
personalization presents a promising avenue for
research, enabling models to combine user-centric
retrieval strategies with structured knowledge to
enhance accuracy and scalability.

Traditional RAG methods, which often rely
on vector-based document retrieval, have demon-
strated substantial improvements in tasks like com-
bining pre-trained sequence-to-sequence models
with dense indexes (e.g., Wikipedia) (Lewis et al.,
2021).
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