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Abstract

We study the problem of learning mixtures of Gaussians with approximate differ-
ential privacy. We prove that roughly kd? + k'-5d7® + k2d samples suffice to
learn a mixture of k arbitrary d-dimensional Gaussians up to low total variation
distance, with differential privacy. Our work improves over the previous best
result [AAL24b] (which required roughly k?d* samples) and is provably optimal
when d is much larger than k2. Moreover, we give the first optimal bound for
privately learning mixtures of k univariate (i.e., 1-dimensional) Gaussians. Impor-
tantly, we show that the sample complexity for learning mixtures of univariate Gaus-
sians is linear in the number of components k, whereas the previous best sample
complexity [AAL21]] was quadratic in k. Our algorithms utilize various techniques,
including the inverse sensitivity mechanism [AD20b, |AD20a, HKMN23||, sample
compression for distributions [ABDH™20], and methods for bounding volumes of
sumsets.

1 Introduction

Learning Gaussian Mixture Models (GMMs) is one of the most fundamental problems in algorithmic
statistics. Gaussianity is a common data assumption, and the setting of Gaussian mixture models
is motivated by heterogeneous data that can be split into numerous clusters, where each cluster
follows a Gaussian distribution. Learning mixture models is among the most important problems in
machine learning [Bis06]], and is at the heart of several unsupervised and semi-supervised machine
learning models. The study of Gaussian mixture models has had numerous scientific applications
dating back to the 1890s [Pea94], and is a crucial tool in modern data analysis techniques in a variety
of fields, including bioinformatics [LKWB22]|, anomaly detection [ZSM™ 18], and handwriting
analysis [Bis06].

In this work, we study the problem of learning a GMM from samples. We focus on the density
estimation setting, where the goal is to learn the overall mixture distribution up to low total variation
distance. Unlike the parameter estimation setting for GMMs, density estimation can be done even
without any boundedness or separation assumptions on the parameters of the components. In fact, it
is known that mixtures of k Gaussians in d-dimensions can be learned up to total variation distance «

using O (kd? /a2) samples [ABHT 18].

Ensuring data privacy has emerged as an increasingly important challenge in modern data analysis
and statistics. Differential privacy (DP) [DMNSO06] is a rigorous way of defining privacy, and is
considered to be the gold standard both in theory and practice, with deployments by Apple [Teal7],
Google [EPK14], Microsoft [DKY17], and the US Census Bureau [DLS™17]]. As is the case for many
data analysis tasks, standard algorithms for learning GMMs leak potentially sensitive information
about the individuals who contributed data. This raises the question of whether we can do density
estimation for GMMs under the constraint of differential privacy.
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Private density estimation for GMMs with unrestricted Gaussian components is a challenging task.
In fact, privately learning a single unrestricted Gaussian has been the subject of multiple recent
studies [AAR21], [KMS™22bl [AL22, KMV22, IAKT 23, [HKMN23||. Private learning of GMMs
is significantly more challenging, because even without privacy constraints, parameter estimation
for GMMs requires exponentially many samples in terms of the number of components [MV10].
Therefore, it is not clear how to use the typical recipe of “adding noise” to the estimated parameters or
“privately choosing” from the finite-dimensional space of parameters. Consequently, the only known
sample complexity bounds for privately learning unrestricted GMM:s are loose [AAL24bl IAAL21].

Let us first formally define the problem of learning GMMs. We represent a GMM D =
Zle w;N'(p;, ;) by its parameters, namely {(w;, j1;, %)}, where w; > 0, Yowi =1,
w; € RY, and ¥; is a positive definite matrix. In the following, a GMM learning algorithm A
receives a set of data points in R? and outputs a (representation of) a GMM. The total variation
distance between two distributions is dpv (D, D) = 3 Jpa ID(2) — ls(x)\d

Definition 1.1 (Learning GMMs). For «, 3 € (0,1), we say A learns GMMs with n samples up
to accuracy « and failure probability 3 if for every GMM D, given samples X, ..., X, gt D, it
outputs (a representation of) a GMM D such that dy (ﬁ, D) < « with probability at least 1 — 3.

« and [ are called the accuracy and failure probability, respectively. For clarity of presentation, we
will typically fix the value of 3 (e.g., 8 = 1/3). The above definition does not enforce the constraint
of differential privacy. The following definitions formalizes (approximate) differential privacy.
Definition 1.2 (Differential Privacy (DP) [DMNS06, DKM™06]]). Let £,6 > 0. A randomized
algorithm A : X™ — O is said to be (&, §)-differentially private ((¢, §)-DP) if for any two neighboring
datasets X, X’ € X™ and any measurable subset O C O,

PLAX') € O] < ¢ - P[A(X) € O] + 4.

If the GMM learner A of Definition[1.1]is (e, §)-DP, we say that A privately learns GMMs. Formally,
we have the following definition.

Definition 1.3 (Privately learning GMMs). Fix the number of samples n, dimension d, and number
of mixture components k. For «, 3 € (0,1) and €, > 0, a randomized algorithm .4, that takes as
input X1,..., X, € RY, (¢, §)-privately learns GMM:s up to accuracy « and failure probability 3, if:

1. For any GMM 7D that is a mixture of up to k£ Gaussians in d dimensions, if X =
{X1,..., Xn} "o, A(X1,...,X,) outputs a GMM D such that drv(D,D) < «
with probability at least 1 — 3 (over the randomness of the data X and the algorithm A).

2. For any neighboring datasets X, X’ € (R%)™ (not necessarily drawn from any GMM) and
any measurable subset O C O, P[A(X’) € O] < e® - P[A(X) € O] + 6.

Finally, we assume a default value for 3 of 1/3, meaning that if not stated, the failure probability 3 is
assumed to equal 1/3.

Our main goal in this paper is to understand the number of samples (as a function of the dimension
d, the number of mixture components k, the accuracy «, and the privacy parameters ¢, ) that are
needed to privately and accurately learn the GMM up to low total variation distance.

1.1 Results

In this work, we provide improved sample complexity bounds for privately learning mixtures of
arbitrary Gaussians, improving over previous work of [AAL21, |/AAL24b]. Moreover, our sample
complexity bounds are optimal in certain regimes, when the dimension is either 1 or a sufficiently
large polynomial in k and log %. For general dimension d, we prove the following theorem.

Theorem 1.4. For any o,e,0 € (0,1),k,d € N, there exists an inefficient (¢, 0)-DP algorithm that
can learn a mixture of k arbitrary full-dimensional Gaussians in d dimensions up to accuracy a,
using the following number of samples:

~ (kd2 N kd? + dV k15 10g%5(1/68) + kM5 log'5(1/6) k2d>

n=0 5 + -
(6] (673 «

We are slightly abusing the notation and using D(x) as the pdf of D at points z.



Notably, the mixing weights and the means can be arbitrary and the covariances of the Gaussians can
be arbitrarily poorly conditioned, as long as the covariances are non-singularﬂ

We remark that we omit the dependence on 5 (and assume by default a failure probability of 1/3).
However, it is well-known that one can obtain failure probability 8 with only a multiplicative
O(log 1/8) blowup in sample complexity, in a black-box fashion™} In fact, our analysis can yield
even better dependencies on 3 in some regimes, though to avoid too much complication, we do not
analyze this.

. . . . . . ~ 2 2
For reasonably large dimension, i.e., d > k2 logz(l/é), this can be simplified to O (% + %) s

which is in fact optimal (see Theorem [I.6). Hence, we obtain the optimal sample complexity for
sufficiently large dimension. Theorem 1.4]also improves over the previous best sample complexity
upper bound of [AAL24b], which uses

. 2 74 21 1 1 1 2 72
O(kd + kd?log(1/5) |, kdlog( /6)+kd)

a2e ade ate
samples. Our results provide a polynomial improvement in all parameters, but to simplify the
comparison, if we ignore dependencies in the error parameter a and privacy parameters €, §, we
improve the sample complexity from k2d* to kd? + k?d + k'-5d'-75: note that our result is quadratic
in the dimension whereas [[AAL24b] is quartic.

When the dimension is d = 1, we can provide an improved result, which is optimal for learning
mixtures of univariate Gaussians (see Theorem [I.6]for a matching lower bound).

Theorem 1.5. Forany a,e,d € (0,1),k € N, there exists an inefficient (£, §)-DP algorithm that can
learn a mixture of k arbitrary univariate Gaussians (of nonzero variance) up to accuracy o, using

the following number of samples:
~( k  klog(1/6
n=0 (2 N 0g</>> .
@ ae

For privately learning mixtures of univariate Gaussians, the previous best-known result for arbitrary

Gaussians required 9] (%ﬁé(l/é)) samples [AAL21]. Importantly, we are the first paper to show

that the sample complexity can be linear in the number of components.

Our work purely focuses on sample complexity, and as noted in Theorems|I.4]and[I.3] they do not have
polynomial time algorithms. We note that the previous works of [AAL21, IAAL24b] also do not run
in polynomial time. Indeed, there is reason to believe that even non-privately, it is impossible to learn
GMMs in polynomial time (in terms of the optimal sample complexity) [DKS17, [ BRST21,IGVV22].

Finally, we prove the following lower bound for learning GMMs in any fixed dimension d.

Theorem 1.6. Fix any dimension d > 1 number of components k > 2, any a, € at most a sufficiently
small constant ¢*, and § < (ae/d)®M). Then, any (,8)-DP algorithm that can learn a mixture
of k arbitrary full-dimensional Gaussians in d dimensions up to total variation distance o, with
probability at least 2/3, requires at least the following number of samples:

~ (kd®> kd®> klog(1/§
« Qe ae

Note that for d = 1, this matches the upper bound of Theorem[I.5] thus showing that our univariate
result is near-optimal in all parameters «, €, d. Moreover, our lower bound refutes the conjecture

of [AAL21]], which conjectures that only © (% + £ + M) samples are needed in the univari-

€

[e%3) S

kd? kd2+log(1/6)

ate case and © (? + ) samples are needed in the d-dimensional case. However, we

note that our lower bound asymptotically differs from the conjectured bound in [AAL21]] only when
0 is extremely small.

3For clarity of presentation, we assume the covariance matrices are not singular. However, extending our
results to degenerate matrices is straightforward.

*To obtain success probability 8 with O(n - log 1/3) samples, we repeat the procedure 7' = O(log 1/3)
times on independent groups of n samples each, to get T estimates D1, ..., Dr, and by a Chernoff bound,
at least 51% of the estimates are within total variation distance « of the true mixture D. So, by choosing an
estimate that is within 2« of at least 51% of the estimates, it is still within 3¢ total variation distance of D.



1.2 Related work

In the non-private setting, the sample complexity of learning unrestricted GMMs with respect to total

variation distance (a.k.a. density estimation) is known to be ©(kd?/a?) [ABMIS,[ABH 18], where
the upper bound is obtained by the so-called distributional compression schemes.

In the private setting, the only known sample complexity upper bound for unrestricted GMMs
[AAL24b] is roughly k2d*log(1/d)/(a*e), which exhibits sub-optimal dependence on various
parameterﬂ This bound is achieved by running multiple non-private list-decoders and then pri-
vately aggregating the results. For the special case of axis-aligned GMMs, an upper bound of
k2dlog(1/6)%/2/(a?¢e) is known [AAL21]. These are the only known results even for privately
learning (unbounded) univariate GMMs. In other words, the best known upper bound for sample
complexity of privately learning univariate GMMs has quadratic dependence on k.

In the related public-private setting [BKS22|, BBCT 23|, it is assumed that the learner has access to
some public data. In this setting, [BBC'23]] show that unrestricted GMM:s can be learned with a
moderate amount of public and private data.

Assuming the parameters of the Gaussian components (and the condition numbers of the covari-
ance matrices) are bounded, one can create a cover for GMMs and use private hypothesis selec-
tion [BSKW19] or the private minimum distance estimator [AAK21]] to learn the GMM. On the flip
side, [ASZ21]] prove a lower bound on the sample complexity of learning GMMs, though their lower
bound is weaker than ours and is only against pure-DP algorithms.

The focus of our work is on density estimation. A related problem is learning the parameters a
GMM, which has received extensive attention in the (non-private) literature (e.g., [Das99, MV 10,
BS10,[LM21], BDJ*22, [LL.22] among many other papers). To avoid identifiability issues, one has
to assume that the Gaussian components are sufficiently separated and have large-enough weights.
In the private setting, the early work of [NRSO7]] demonstrated a privatized version of [VWO04] for
learning GMMs with fixed (known) covariance matrices. The strong separation assumption (of
Q(k'/*)) between the Gaussian components in [NRSO7]] was later relaxed to a weaker separation
assumption [CCAd™23]. A substantially more general result for privately learning GMMs with
unknown covariance matrices was established in [KSSU19], based on a privatized version of [AMO3].
Yet, this approach also requires a polynomial separation (in terms of k) between the components, as
well as a bound on the spectrum of the covariance matrices. [CKM™21]] weakened the separation
assumption of [KSSU19] and improved over their sample complexity. This result is based on a generic
method that learns a GMM using a private learner for Gaussians and a non-private clustering method
for GMMs. Finally, [AAL23|| designed an efficient reduction from private learning of GMMs to its
non-private counterpart, removing the boundedness assumptions on the parameters and achieving
minimal separation (e.g., by reducing to [MV10Q]). Nevertheless, unlike density estimation, parameter
estimation for unrestricted GMMs requires exponentially many samples in terms of k£ [MV10].

A final important question is that of efficient algorithms for learning GMMs. Much of the work
on learning GMM parameters focuses on computational efficiency (e.g,. [MV10, BS10, [LM21]
BDJT 22| [LT.22]]), as does some work on density estimation (e.g., [CDSS14, [ADLS17]). However,
under some standard hardness assumptions, it is known that even non-privately learning mixtures of
k d-dimensional Gaussians with respect to total variation distance cannot be done in polynomial time
as a function of k£ and d [DKS17, BRST21,IGVV22].

Addendum. In a concurrent submission, [AAL24al extended the result of [AAL24b] for learning
unrestricted GMMs to the agnostic (i.e., robust) setting. In contrast, our algorithm works only in the
realizable (non-robust) setting. Moreover, [AAL24al slightly improved the sample complexity result
of [AAL24b] from O(log(1/6)k%d*/(ca?)) to O(log(1/8)k?d*/(ea?)). The sample complexity of
our approach is still significantly better than [AAL24a] in terms of all parameters—similar to the
way it improved over [AAL24b].

a“Ee

SMore precisely, the upper bound is O (% 4k log/o) | halog(1/e) 4 %)



2 Technical overview and roadmap

We highlight some of our conceptual and technical contributions. We mainly focus on the high-
dimensional upper bound, and discuss the univariate upper bound at the end.

2.1 Reducing to crude approximation

Suppose we are promised a bound on the means and covariances of the Gaussian components, i.e.,
+-I <% < R-ITand ||l < Rforalli € [k]. In this case, there is in fact a known algorithm,
using private hypothesis selection [BSKW19,|AAK21]], that can privately learn the distribution using

2 2
only O (kd ;‘;g B kd oizg R ) samples. Moreover, with a more careful application of the hypothesis

selection results (see Appendix @]), we can prove that result holds even if (u;,Y;) are possibly
unbounded, but we have some very crude approximation. By this, we mean that if for each ¢ € [k] we

~ N .12 L2
know some X; such that % - <X Y < R-Y;, then it suffices to have n = O (kd log B | kd logR)

a? ae

samples to learn the full GMM in total variation distance.

Our main goal will be to learn every covariance X; with such an approximation, for R =
poly (k d, > E) so that log R can be hidden in the O factor. To explain why this goal is sufficient,
suppose we can crudely learn every covariance %; with approximation ratio R, using n’ samples.

We then need O (kd log R | kd’logR ) =0 (%2 + %d;) additional samples to learn the full distri-

ag

. . . . oo A1 kd®*logR | kd®log R
bution using hypothesis selection, so the total sample complexity is O (n + =+ ).
Hence, we will aim for this easier goal of crudely learning each covariance, for both Theorem
and Theorem using as few samples n’ as possible. We will also need to approximate each mean

15, though for simplicity we will just focus on covariances in this section.

2.2 Overview of Theorem [I.3]for univariate GMMs

The main goal will be to simply provide a rough approximation to the set of standard deviations
o; = v/2;, as we can finish the procedure with hypothesis selection, as discussed above.

Bird’s eye view: Say we are given a dataset X = {X7,..., X, }: note that every X; € R since we
are dealing with umvarlate Gaussians. The main insight is to sort the data in 1ncreasmg order (i.e.,
reorder so that X; < X, < --- < X,,) and consider the unordered multiset of successive differences
{Xo—X1,X5—Xo,..., Xn — X,,—1}. One can show that if a single datapoint X; is changed, then
the set of consecutive differences (up to permutation) does not change in more than 3 locations (see
Lemma [F5|for a formal proof).

We then apply a standard private histogram approach. Namely, for each integer a € Z, we create a
corresponding bucket B,, and map each Xﬁl Xjinto B, if 2 < X141 — X; < 2941 If some
mixture component 4 had variance 3; = o2, we should expect a 51gn1ﬁcant number of X;11 —Xjto
at least be crudely close to o, such as for the X drawn from the " " mixture component. So, some
corresponding bucket should be reasonably large. Finally, by adding noise to the count of each bucket
and taking the largest noisy counts, we will successfully find an approximation to all variances.

In more detail: For each (possibly negative) integer a let ¢, be the number of indices ¢ such that
20 < X1 — X; < 2%F1. We will prove that, if the weight of the i component in the mixture
is w; and there are n points, then we should expect at least Q(w; - n) indices j to be in a bucket a
with 2% within a poly(n) multiplicative factor of the standard deviation o; (see Lemmal|F.3). The
point of this observation is that there are at most O(log n) buckets B, with 2% between #i(n) and

O(o;), but there are at least 2(w; - n) indices mapping to one of these buckets. So by the Pigeonhole

indices, i.e., ¢, > €2 ( ”) for some a with

principle, one of these buckets has at least {2 omn

< 2% < O(oy).

log n
pol}'(n)

Moreover, we know that if we change a single data point X, the set of consecutive differences
{X,4+1 — X} after sorting changes by at most 3. So, if we change a single X, at most 3 of the
counts ¢, can change, each by at most 3.



Now, for every integer a, draw a noise value from the Truncated Laplace distribution (see Defini-
tion[A.2land Lemmal[A.3), and add it to ¢, to get a noisy count &,. The details of the noise distribution
are not important, but the idea is that this distribution is always bounded by O (2 log 1). Moreover,
the Truncated Laplace distribution preserves (g, §)-DP. This means that the counts {¢, } 4z will have
(O(g),0(9))-DP, because the true counts ¢, only change minimally across adjacent datasets.

Our crude approximation to the set of standard deviations will be the set of 2% such that ¢, exceeds
some threshold which is a large multiple of é log %. Ifn>0 (M) and the weight w; > «a/k,

ag

it is not hard to verify that exceeds a large multiple of % log %. So, for each ¢+ < k with weight

logn
at least a/k, some corresponding a with pogj(n) < 2% < O(o;) will have count ¢, significantly
exceeding the threshold, and thus noisy count ¢, exceeding the threshold. This will be enough to
crudely approximate the values o; coming from large enough weight. We can ignore any component
with weight less than «/k, as even if all but one of components have such small weight, together they
only contribute o weight. So, we can ignore them and it will only cost us « in total variation distance,
which we can afford.

klog(1/6)

ag

Putting everything together: In summary, we needed O ( ) samples to approximate each

covariance (of sufficient weight) up to a poly(n) multiplicative factor. By setting R = poly(n) and

klogn

using the reduction described in Section , we then need an additional O kls# + =2

) samples.

If we setn = O (% + M%(;/J)),Wewill obtain that n > O (kl%(;m) + 0 (M(;’# + m) ,

g
which is sufficient to solve our desired problem in the univariate setting.

Note that this proof relies heavily on the use of private histograms and the order of the data points
in the real line. Therefore, it cannot be extended to the high-dimensional setting. We will use a
completely different approach to prove Theorem [I.4]

2.3 Overview of Theorem [1.4]for general GMMs

As in the univariate case, we only need rough approximations of the covariances. We will learn
the covariances one at a time: in each iteration, we privately identify a single covariance 33, which
crudely approximates some covariance ¥; in the mixture, with (¢/4/klog(1/d),d/k)-DP. Using
the well-known advanced composition theorem (see Theorem [A.T]), we will get an overall privacy
guarantee of (e, d)-DP. However, to keep things simple, we will usually aim for (&, §)-DP when
learning each covariance, and we can replace ¢ with e//klog(1/6) and ¢ with §/k at the end.

A natural approach for parameter estimation, rather than learn 3J; one at a time, is to learn all of the
covariances together. However, we believe that this approach would cause the sample complexity
to multiply by a factor of k, compared to learning a single covariance. The advantage of learning
the covariances one at a time is that we can apply advanced composition: this will cause the sample

complexity to multiply by roughly /k log(1/6) instead.

In the rest of this subsection, our main focus is to identify a single crude approximation 3.

Applying robustness-to-privacy: The first main insight is to use the robustness-to-privacy con-
version of Hopkins et al. [HKMN23|| (see also [AUZ23|])). Hopkins et al. prove a black-box (but
not computationally efficient) approach that can convert robust algorithms into differentially private
algorithms, using the exponential mechanism and a well-designed score function. This reduction only
works for finite dimensional parameter estimation and therefore cannot be applied directly to density
estimation. On the other hand, parameter estimation for arbitrary GMMs requires exponentially many
samples in the number of components [MV10]. However, we will demonstrate that this lower bound
does not hold when we only need a very crude estimation of the parameters.

The idea is the following. For a dataset X = {X1,..., X}, letS = S(ENJ, X) be a score function,
which takes in a dataset X of size n and some candidate covariance ¥, and outputs some non-negative

integer. At a high level, the score function S (i, X) will be the smallest number of data points ¢
that we should change in X to get to some new data set X’ with a specific desired property: X’

should “look like” a sample generated from a mixture distribution with X being the covariance of



one of its components — namely, a component with a significant mixing weight. One can define
“looks like” in different ways, and we will adjust the precise definition later. We remark that this
notion of score roughly characterizes robustness, because if the samples in X were truly drawn from
a Gaussian mixture model with covariances {3;}*_,, we should expect S(3;, X) to be 0 (since X
should already satisfy the desired property), but if we altered & data points, the score should be at
most k. The high-level choice of score function is somewhat inspired by a version of the exponential
mechanism called the inverse sensitivity mechanism [[AD20b, IAD20a], though the precise way of
defining the score function requires significant care and is an important contribution of this paper.

The robustness-to-privacy framework of [HKMN23|, tailored to learning a single covariance, implies
the following general result, which holds for any score function S following the blueprint above. For
now, we state an informal (and slightly incorrect) version.

Theorem 2.1 (informal - see Theorem for the formal statement). For any n € [0, 1), and any
dataset X of size n, define the value V, (X) to be the volume (i.e., Lebesgue measure) of the set of
covariance matrices ¥ (where the covariance can be viewed as a vector by flattening), such that
S(E,X)<n-n.

Fix a parameter n) < 0.1, and suppose that for any dataset X of size n such that V;, j5(X) is strictly
positive, the ratio of volumes V;)(X) [V}, 2(X) is at most some K (which doesn’t depend on X). Then,
ifn > logg. f , there is a differentially private algorithm that can find a covariance ¥ of low score (i.e.,
where S(i X) < n-n)using n samples.

Note that Theorem does not seem to say anything about whether X comes from a mixture
of Gaussians. However, we aim to instantiate this theorem with a score function that is carefully

designed for GMMs. Recall that we want & (i X)) to capture the number of points in X that need
to be altered to make it look like a data set that was generated from a mixture, with ¥ being the

covariance of one of the Gaussian components. In other words, S(X, X) should be small if (and
hopefully only if) a “mildly corrupted” version of X includes a subset of points that are generated
from a Gaussian with covariance Y. At the heart of designing such a score function, one needs to
come up with a form of “robust Gaussianity tester” that tells whether a given set of data points are
generated from a Gaussian distribution. Aside from this challenge, the volume ratio associated with
the chosen score function needs to be small for every dataset X otherwise the above theorem would
require a large n (i.e., number of samples). These two challenges are, however, related. If the robust
Gaussianity tester has high specificity—i.e., rejects most of the sets that are not generated from a
(corrupted) Gaussian—then the volume ratio is likely to be small (i.e., a smaller number of candidates

3> would receive a good/low score).

First Attempt: We first try an approach which resembles that of [HKMN23| for privately learning

a single Gaussian. We “define” S (f], X)) as the smallest integer ¢ satisfying the following property:
there exists a subset Y C X of size n/k, such that we can change ¢ data points from Y to get to Y’,

where Y’ “looks like” i.i.d. samples from a Gaussian with some covariance X that is “similar to” 5.
The choice of Y having size n/k is motivated by the fact that each mixture component, on average,
has n/k data points in X.

The notions of “looks like” and “similar to” of course need to be formally defined. We say X is
“similar to” X (or X & X) if they are spectrally close, i.e., 0.5 < X < 2X. We say that Y’ “looks
like” samples from a Gaussian with covariance X if some covariance estimation algorithm predicts
that Y’ came from a Gaussian with covariance . The choice of covariance estimation algorithm
will be quite nontrivial and ends up being a key ingredient in proving Theorem

To apply Theorem 2.1} we first set n = ¢/k for some small constant c. We cannot set a larger value 7,
because if we change ¢ ~ n/k data points, we could in fact create a totally arbitrary new Gaussian
component with large weight. Since there is no bound on the eigenvalues of the covariance matrix,
this could cause the volume V;,(X) to be infinite. The main question we must answer is how to bound
the volume ratio V,,(X)/V;, /2(X). To answer this question, we first need to understand what it means

for S(X,X) <75 -n. If S(,X) < 7 - n, then there exists a corresponding set Y C X of size n/k,
and we can change 1) - n = ¢ - |'Y| points from Y to get to some Y’ which looks like samples from a

Gaussian with covariance Y. ~ 3. Thus, Y looks like c-corrupted samples from such a Gaussian (i.e.,



a c fraction of the data is corrupted). This motivates using a robust covariance estimation algorithm:
indeed, robust algorithms can still approximately learn X even if a small constant fraction of data is
corrupted, so for any Y C X, we expect that no matter how we change a c fraction of Y to obtain
Y’, the robust algorithm’s covariance estimate should not change much. So, for any fixed Y, the set

of possible X, and thus the set of possible 3, should not be that large.

In summary, to bound V,,(X) versus V;, /5(X), there are at most (n7k) choices for Y C X in the
former case, and at least 1 choice in the latter case (since we assume V;, /5(X) > 0 in Theorem 2.1).

Moreover, for any such Y, the volume of corresponding X should be exponential in d? (either for
V(X) or V,, /5(X)), since the dimensionality of the covariance is roughly d?. So, this suggests that

the overall volume ratio is at most (n/k) 9@ Since log (n/k) (n/k) - log k, if we plug into
2

Theoremit suffices to have n > W?(l%. Unfortunately this is impossible unless € > log k.

These ideas will serve as a good starting point, though we need to improve the volume ratio analysis.

To do so, we also modify the robust algorithm, by strengthening the assumptions on what it means

for samples to “look like” they came from a Gaussian.

Improvement via Sample Compression: To improve the volume ratio, we draw inspiration from a
technique called sample compression, which has been used in previous work on non-private density
estimation for mixtures of Gaussians [ABH™ 18,/ ABDH"20]. The idea behind sample compression
is that one does not need the full set Y to do robust covariance estimation; instead, we look at a
smaller set of samples. For instance, if Y C X looks like c-corrupted samples from a Gaussian of
covariance ¥ ~ X, we expect that a random subset Z of Y also looks like c-corrupted samples from
such a Gaussian. Moreover, as long as one uses m > O(d) corrupted samples from a Gaussian, we
can still (inefficiently) approximate the covariance. This motivates us to modify the robust algorithm
as follows: rather than just checking whether Y looks like c-corrupted samples from a Gaussian
of covariance roughly ¥, we also test whether an average subset Z C Y of size m does as well.
Therefore, if ¥ has low score, there exists a corresponding set Z C X of size m, and there are only

(m) < e™log™ choices for Z. So, now it suffices to have n > % which will give us a bound

of O(d?k/e), as long as m < O(d?). Importantly, we still check the robust algorithm on Y of size
roughly n/k, which allows us to keep the robustness threshold 7 at roughly ¢/k.

There is one important caveat that for each subset Z, there is a distinct corresponding covariance
¥, and the volume of & ~ ¥ can change drastically as > changes. (For instance, the volume of

Y~ T Xis T9€) times as large as the volume of ¥ ~ ¥. Since we have no bounds on the
possible covariances, 1" could be unbounded.) For our volume ratio to actually be bounded by about

(r”n) . eo(dz), we want the volume of & ~ ¥ to stay invariant with respect to 2. This can be done by
defining a “normalized volume” where the normalization is inversely proportional to the determinant
(see Appendix [C.T|for more details). The robustness-to-privacy conversion (Theorem [2.1]) will still

hold.

While the bound of O(d?k /<) seems good, we recall that this bound is merely the sample complexity
for (&, 0)-DP crude approximation of a single Gaussian component. As discussed at the beginning
of this subsection, to learn all k& Gaussians, we actually need (¢/+/k log(1/4), §/k)-DP, rather than
(e,0)-DP, when crudely approximating a single component. This will still end up leading to a
significant improvement over previous work [AAL24b], but we can improve the volume ratio even
further and thus obtain even better sample complexity.

Improving Dimension Dependence: Previously, we used the fact that the volume of candidate ¥
(corresponding to a fixed Z) was roughly exponential in d? for either V;, /2(X) or V;,(X), so the ratio

should also be roughly exponential in d?. Here, we improve this ratio, which will improve the overall
volume ratio.

First, we return to understanding the guarantees of the robust algorithm. It is known that, given
m > O(d) samples from a Gaussian of covariance Y., we can provide an estimate > such that

(1—0(\/d/m))L < £ < (1—0(\/d/m))Z. As above, we need to solve this even if a ¢ fraction of



samples are corrupted. While this can cause the relative spectral error to increase from 1+ O(y/d/m)
to 1 + O(c+ y/d/m), for now let us ignore the additional ¢ factor.

If V,,/2(X) > 0, then there is some covariance ¥ and some set Y of size n/k, where the robust

algorithm thinks Y looks like (possibly corrupted) Gaussian samples of covariance ¥. So, every ¥

such that 0.55 < ¥ < 2 has score of at most 77/2 - n. This gives us a lower bound on V,, ;5 (X). We
now want to upper bound V,,(X). If (2, X) < nn, we still have that the robust algorithm thinks
some Y looks like Gaussian samples of covariance ¥, where 0.5% < ¥ < 23. But now, we use
the additional fact that for some Z C Y of size m, the robust algorithm on Z finds a covariance .
By the accuracy of the robust algorithm, ¥ and 3 should be similar, i.c., (1-0(/d/m)X = 3
(1 — O(4/d/m))X (where we ignored the c factor). Thus, there exists some Z C X of size m and a
3 corresponding to Z, such that 0.5(1 — O(y/d/m))S < © < 2(1 + O(y/d/m))%.

Therefore, from 1/2 to 1, we have dilated the candidate set of by a factor of 1 + O(+/d /m) in

the worst case, and we have at least 1 choice in the 7/2 case but at most (;) choices in the 7 case.

Thus, the overall volume ratio is at most () - (1 + O(\/al/m))d2 = O(mlogntd®\/d/m) gince the
mlogn+d2-\/d/m

dimension of 3 is roughly d?. Consequently, it now suffices to have n > — R setting
m = d°/3 gives us an improved bound of O(d®/?k/¢) for learning a single ¥;.

There are some issues with this approach: most notably, we ignored the fact that the spectral error is
really ¢+ +/d/m rather than y/d/m. However, the robust algorithm can do better than just estimating
up to spectral error ¢ + +/d/m: it can also get an improved Frobenius error. While we will not
formally state the guarantees on the robust algorithm here (see Theorem B.3]for the formal statement),
the main high-level observation is that if the robust estimator 3 can be 1 + ¢ times as large as the
true covariance ¥ in only O(1) directions then for an average direction the ratio of 3 to X will be
1+ O(+/d/m). We can utilize this observation to bound the volume ratio, using some careful e-net
arguments (this is executed in Appendix . Our dimension dependence of d°/3 will increase to
d"/*, though this still improves over the previous d> bound.

We will formally define the score function S (i], X) in Appendixand fully analyze the application
of the robustness-to-privacy conversion, as outlined here, in Appendix [E.2]

Accuracy: One important final step that we have so far neglected is ensuring that any ¥ of low
score must be crudely close to some YJ;, if X is actually drawn from a GMM. We will just focus

on the case where S(i, X) =0,sosomeY C X of size n/k looks like a set of samples from a
Gaussian with covariance X. If the samples Y all came from the ¢-th component of the GMM, then it

will not be difficult to show ¥ is similar to ¥;. The more difficult case is when data pointin Y are
generated from several components.

However, if n > 20k%d, then Y| > 20kd, which means that by the Pigeonhole Principle, at least
20d points in Y come from the same mixture component (u;, ;). We are able to prove that, with
high probability over samples drawn from a single Gaussian component N (11;, 3;), that the empirical
covariance of any subset of size at least 20d is crudely close to X; (see Corollary [B.5). As a result,
when verifying that a subset Y “looks like” i.i.d. Gaussian samples with covariance ¥, we can ensure
that the empirical covariance of every subset Z C Y of size 20d is crudely close to X. Thus, if the

score S(f)7 X) =0, 3 is close to X, which is crudely close to some ;.

We also formally analyze the accuracy in Appendix

Putting everything together: To crudely learn a single Gaussian component with (e, §)-DP, we
will need n > O(d"/*k /<) samples to find some covariance 52 with low score, and we also need
n > O(k?d) so that a covariance ¥ of low score is actually a crude approximation to one of the real
mixture components. To crudely approximate all components, we learn each Gaussian component
with (¢/+/klog(1/6), 6 /k)-DP. The advanced composition theorem will imply that repeating this
procedure k times on the same data (to learn all & components) will be (&, §)-DP. Hence, by replacing



- 7/413/2  floa .
e with e/4/klog(1/6), we get that it suffices for n > O M + k2d |, if we need to

crudely learn all of the covariances. Finally, we can apply the private hypothesis selection technique

(recall Section|2.1)), which requires an additional 0) dz—f + 2’k . Combining these terms will give
! o ae g g

the final sample complexity.

We remark that the sample complexity obtained above is actually better than the complexity in
Theorem [[.4] There are two reasons for this. The first is that we have been assuming each com-
ponent has weight 1/k, meaning it contributes about n/k data points. In reality, the weights may
be arbitrary and thus some components may have much fewer data points. However, it turns out
that one can actually ignore any component with less than a/k weight, if we want to solve den-
sity estimation up to total variation distance «. This will multiply the sample complexity terms

- 7/41.3/2
O d'7 k224 /log(1/98) +/€2d

- >, needed for crude approximation, by a factor of 1/«. Finally, the

informal Theorem [2.1]is slightly inaccurate, and the accurate version of the theorem will end up
3/27 . 3/2 ~

adding the additional term of w. Along with the final term O (% + dj—f) from the

private hypothesis selection, these terms will exactly match Theorem [T.4}

2.4 Roadmap

In Appendix [A] we note some general preliminary results. In Appendix [B] we note some additional
preliminaries on robust learning of a single Gaussian. In Appendix [C} we discuss the robustness-
to-privacy conversion and prove some volume arguments needed for Theorem [I.4] In Appendix
we explain how to reduce to the crude approximation setting, using private hypothesis selection. In
Appendix [E] we design and analyze the algorithm for multivariate Gaussians, and prove Theorem|[I.4
In Appendix [F} we design and analyze the algorithm for univariate Gaussians, and prove Theorem|I.5]
In Appendix [G| we prove Theorem[I.6] Finally, Appendix [H|proves some auxiliary results that we
state in Appendices [B]and [C]

Limitations

Our results are on theoretical guarantees on the sample complexity of privately learning Mixtures of
Gaussians. We do not provide any efficient or practical algorithms, and focus on statistical guarantees.
We also do not discuss how to set the parameters and accuracy guarantees for practical applications,
this is a question best left to practitioners. Finally, we assume each sample is i.i.d. drawn from
a Gaussian Mixture Model distribution, though we remark that we use a “robustness-to-privacy”
framework that will automatically make our algorithm robust to a roughly «/k fraction of corruptions.
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A Preliminaries

A.1 Differential Privacy

We state the advanced composition theorem of differential privacy.

Theorem A.1 (Advanced Composition Theorem [DR14), Theorem 3.20]). Let e, d,6” > 0 be arbitrary
parameters. Let Ay, ..., Ay be algorithms on a dataset X, where each A; is (¢,§)-DP. Then, the

concatenation A(X) = (A1(X), ..., Ax(X)) is (\/M ce4 ke (ef—1),k-6+ 5’)-DP.

Moreover, this holds even if the algorithms A; are adaptive. By this, we mean that for all i > 2 the
algorithm A; is allowed to depend on Ay (X), ..., A;—1(X). However, privacy must still hold for
A;, conditioned on the previous outputs A1(X), ..., A;—1(X).

Next, we note the properties of the Truncated Laplace distribution and mechanism.

Definition A.2 (Truncated Laplace Distribution). For A, e, > 0, the Truncated Laplace Distribution
TLap(A, ¢, ) is the distribution with PDF proportional to e~ !#I"=/2 on the region [~ A, A], where

A =2 log (1+ <31), and PDF 0 outside the region [~ A, A].

Lemma A.3 (Truncated Laplace Mechanism [GDGK20, Theorem 1]). Let f : X™ — R be a real-
valued function, and let A > 0, such that for any neighboring datasets X, X', | f(X) — f(X)| < A.
Then, the mechanism A that outputs f(X) + TLap(A,¢,9) is (¢,6)-DP.

A.2 Matrix and Concentration Bounds

In this section, we note some standard but useful lemmas. We first note the Courant-Fischer theorem.

Theorem A.4 (Courant-Fischer). Let A € RY*? be a real symmetric matrix, with eigenvalues
A1 > Ay > -+ > Ag. Then, for each k,

A = max min z' Az = min max z' Az,
VcRrY zeV VCRY zeV
dim(V)=k llzll2=1 dim(V)=d—k+1 llzll2=1

where V refers to a linear subspace of R%.

By setting A = J T .J, we have the following corollary.

Corollary A.5. Let J € R*? be a real (possibly asymmetric) matrix with singular values oy >
09 > -+ > 0gq. Then, for each k,

or = max min ||Jz|s= min max ||Jz|sa.
VcRe €V CRY zeV
dim(V)=k llzll2=1 dim(V)=d—k+1 llzll2=1

Next, we note a basic proposition.

Proposition A.6. [HKMNZ23, Lemma 6.8] Let M € R4 pe g real symmetric matrix, and
J € R4 be any real-valued (but not necessarily symmetric) matrix such that || JJ " —1I||,p < ¢ < 1,
for some parameter ¢. Then, ||J T M J||% < (1 + 3¢) - || M||%.

We also note the Hanson-Wright inequality.

Lemma A.7 (Hanson-Wright). Given a d x d matrix M € R*? and a d-dimensional Gaussian
vector X ~ N(0,1), forany t > 0,

t2 t
P(|X"MX -E[XTMX]| >t) <2exp (—cmin ( )) :
( 29 M5 1Mo
for some universal constant ¢ > 0.

Finally, we note a folklore simple characterization of total variation distance (see also [AAL23|
Theorem 1.8]).

Lemma A.8. For any i1, i € R? and positive definite 1, X € R?*4,

Ay (N (2, Z0), N (12, B2)) < —= - max (12722222 = 1, 130 (01 = o)) -

Sl
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B Robust Estimation of a Single Gaussian

In this section, we establish what a robust algorithm can do for learning a single high-dimensional
Gaussian. We will state the accuracy guarantees in terms of the following definition, which combines
Mahalanobis distance, spectral distance, and Frobenius distance.

Definition B.1. Given mean-covariance pairs (x, 2) and (i, 2), and given parameters -y, p, 7 > 0,

we say that ({1, X) ~ , - (i, 2) if
« |27128%1Y2 — ]|, < 7. (Spectral distance)
« |Z7Y2881Y2 — [||p < p. (Frobenius distance)
« |IZ=Y2(i — p)||]2 < 7. (Mahalanobis distance)

We will also use ~., » as a shorthand for R oy i.e., there is no additional Frobenius norm
condition beyond what is already imposed by the operator norm condition.

Although =~ , - is neither symmetric nor transitive, symmetry and transitivity happen in an approxi-
mate sense. Namely, the following result holds: we defer the proof to Appendix[Hl We remark that
similar results are known (e.g., [AL22, Lemma 3.2], [AAL23| Lemma 4.1]).

Proposition B.2 (Approximate Symmetry and Transitivity). Fix any v, p, ™ > 0 such that v < 0.1.
Then, for any (p1,%1) Ry pr (H2,X2), we have that (pg,X2) ~R2y2p.2- (11, %1), and for any
(11, 21) Ry pr (2, X2) and (p, X2) =y p 7 (3, B3), we have that (11, 1) Rayapar (13, X3).

We note the following theorem about the accuracy of robustly learning a single Gaussian. While this
result will roughly follow from known results and techniques in the literature, we were unable to find
a formal statement of the theorem, so we prove it in Appendix [H]

Theorem B.3. For some universal constants ¢y € (0,0.01) and Cy > 1, the following holds. Fix any
n <~ <co B<1,and p such that 5(7]) < p<coVd Letn > 19) (dHofél/ﬁ) + (dﬂog(;/ﬁ))Q) )

p
Then, there exists an (inefficient, deterministic) algorithm Agy with the following property. For any

W, 3, with probability at least 1 — § over X = {X1,..., X} ~ N (1, X), and for all datasets X’
with dg (X, X') < n-n, we have
AO(X/) R Co7,Cop,Coy (M, E)'

We remark that Ay may have knowledge of n,~, p, 3, but does not have knowledge of i1, %, or the
uncorrupted data X.

B.1 Directional bounds
In this section, we note that, when given i.i.d. samples from a Gaussian, with high probability one
cannot choose a reasonably large subset with an extremely different empirical mean or covariance.

First, we note the following proposition, for which the proof follows by an e-net type argument.

Proposition B.4. Let n > n' > 20d, and L > Cn? for a sufficiently large constant C'. Suppose
that some data points X = {X1, ..., X, } are i.i.d. sampled from N'(0,I). Then, with probability at

least 1 — n~ 1), the following both hold.

1. Forall X; € X, || X2 < L.
2. For all subsets Y C X of size n’, there does not exist any real number r and any unit vector

v such that |(X;,v) —r| < + forall X; € Y.

Proof. If || X;||2 > L, then X' MX > L? for M the d x d identity matrix I. However,
E[XTMX] = d. So, by Lemma the probability of this event is at most 2¢—c-min(n?/dn?) <
26—(3'%2 < TL_Q(”,).

Next, we bound the probability that the first item holds but the second item doesn’t hold. First,
we can create a %-net of unit vectors v’, of size (3L2)% < L3?, and a %—net of real numbers 7’
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from [—L, L], of size 2L2. Now, suppose that the first item holds, but there is some unit vector
v and real number r with [(X;,v) — r| < + forall X; € Y, for some Y C X of size n. In
this case, (X;,v) < || X;||2 < L for all X; € X, so we can assume that || < L. Thus, if v/
is the closest unit vector to v in the net and 7’ is the closest real number to 7 in the net, then
(X2, ) = 7] < (X, 0) = o]+ (X, 0 = o+l = 1'] < 4+ [ Xilla - s + 3 <

In other words, if the first event holds and the second does not, there exists v’,r’ in the net and
Y C X of size n/, such that [(X;,v") — 7/| < 2 forall X; € Y. We can now bound this via a union
bound. To perform the union bound, we first bound the probability of this event holding for some
fixedv',r",Y.

For any fixed v',’,Y, note that (X;,v) x,cy is just n’ ii.d. copies of A'(0,1). Let’s call these
values z1, ..., zy. If there is some 7’ such that |z; — /| < % for all 7, then |z; — 21| < % for all 4.
Since the PDF of a A/(0, 1) is uniformly bounded by at most %, for any fixed z;, the probablity that
any other z; is within < of z is at most &, so the overall probability is at most (6/ L=t

Now, the union bound is done over (:,) choices of Y, at most L3? choices of v/, and at most

2L2 choices of Y. Thus, the overall probability is at most (6/L)" ~' . n® . [34 . 2[2 <
(6n)™ /L™ =334 > (6n/LO7)"'. Thus, as long as L > 100n2, this is much smaller than

—Q(n’) O
n .

By shifting and scaling appropriately, we have the following corollary.

Corollary B.5. Letn > n' > 20d, and L > Cin?, for C1 the same constant as in Proposition
Suppose that some data points X = {X1, ..., X, } are drawn from N (u, X2). Then, with probability
at least 1 — n=2(n"), the following both hold.

1. Forall X; € X, ||S7Y3(X; — p)|l2 < L.

2. For all subsets Y C X of size n/, there does not exist any real number v and any nonzero
vector v such that |(X;,v) —r| < L||SY20|5 forall X; € Y.

B.2 Modified robust algorithm

We can modify the robust algorithm of Theorem [B.3|to have the following guarantees.

Lemma B.6. Let ¢y, Cy be as in Theorem and Cy be as in Proposition Let L := Cy - n.
Also, fix anyn < v < ¢, any e~ < < 1, and and any p such that O(n) < p < cov/d. Finally,

supposenzmza(%—&—z—z).

Then, there exists an (inefficient, deterministic) algorithm A that, on a dataset Y of size m, outputs

either some (fi, %) or L, with the following properties.

1. For any datasets Y, Y’ with dg(Y,Y’) < n-m, if A(Y) = (4, %) #L and A(Y') =
(', %) #.L, then

(:LAL/, E/) ~8Co~,8C0p,8Coy (ﬂﬂ E)

2. For any fixed p,>., with probability at least 1 — O(B3) over Y1,..., Y, ~ N(u,2),
A(Y) #1L and

A(Y) ~Cov,Cop,Co (Ma Z)'

3. Fix an integer k > 1, and additionally suppose that m > 40d - k. Suppose that X =
{X1,..., X} are drawn i.i.d. from some mixture of k Gaussians (u;,%;). Then, with
probability at least 1 — O(B) over X, for every Y' C X of size m and every Y with

du(Y,Y’) < m/2, either A(Y) =L, or A(Y) = (1, X), where there is some i € [k| such
that 515 -2y < S < 9L - 55 and |2 (7 — i) |l2 < 1013,

As in Theorem|B.3] A has knowledge of 1,7, p, 3, but not 1 or .
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Proof. The algorithm A works as follows. Start off by computing Ao (Y) = (i1, %), where A
is the algorithm of Theorem We can run the algorithm on any arbitrary dataset, even if it
didn’t come from Gaussian samples, and we can assume that the algorithm .4 always outputs some
mean-covariance pair (for instance, by having it output (0, I') by default instead of L). Next, A, on a
dataset Y, checks if any of the following three conditions hold.

(a) There exists Y’ such that dg(Y,Y’) <7 -m, and Ao(Y’) %scyv,8C0p,8C0y Ao(Y).
(b) There exists Y; € Y such that [|[$S~1/2(Y; — fi)||2 > 3L.

(c) There exists a subset Z C Y of size gOd, and a unit vector v and real number r, such that
forallY; € Z, |(Y;,v) — r| < 5% - [|XY20])5.

If any of these conditions hold, the output is A(Y) =_L. Otherwise, the output is A(Y) = A (Y).

We now verify that the algorithm satisfies the required properties. Property 1 clearly holds, be-
cause if there exist datasets Y,Y’ with dg(Y,Y’) < n-m, A(Y) #1L and A(Y') #1, and
A(Y) %8cy~.8C0p,8Cy A(Y'), then we would have in fact set A(Y) to L.

For Property 2, note that with probability 1 — O(8), Ao(Y) satisfies the desired property by The-
orem since B > e~ % sod+log1/8 = O(d). So, we just need to make sure that we don’t set
A(Y)tobe L. Since Y1, ...,Y, ~ N (u, X), then with probability 1 — O(3), both Y and any Y’
with dg(Y,Y’) < n-n satisfy the conditions of Theorem In other words, Ao (Y) =cyv,Cop,Con
and Ao(Y') Rcqyry,cop,Cory- S0, by Proposition B.2L Ao(Y7) ~scyy.8c0p,8cey Ao(Y) for any Y’
with dg(Y,Y’) < n - n. Thus, condition a) is not met.

Moreover, by Corollary [B.5} with failure probability at most m =04 < g ||2=1/2(Y; — p)||» < L
forall Y; € Y, and for all Z C Y of size 20d, there does not exist a real r and a nonzero vector
v such that |[(Y;,v) — r| < £ - ||S1/20|| for all ¥; € Y. Now, we know that by Theorem

(i1, %) =~0.5,05 (1, 2). So,
172 = e < 20720 = )l < 201572V - ) +05) = 2L +1 < 3L,

and if |(Y;,v) — r| < 5= - [|[SY20]|a, then |[(Vi,v) — 7| < L. [|[S1/20]|,, for all Y; € Y. Thus,
conditions b) and c) are also not met, so Property 2 holds.

For Property 3, note that if m > 40d - k, then |Y N X| > 20d - k, i.e., Y contains at least 20dk
uncorrupted points. So, by the Pigeonhole Principle, for every possible Y, there is some index ¢ € [k]
such that at least 20d points in Y N X come from the 7™ Gaussian component.

Now, let us condition on the event that Corollary holds for X, where n’ = 20d, which happens
with at least 1 — n~2(") > 1 — 3 probability. We claim that for every possible Y, and for an i € [k]
such that 20d points Z C Y N X came from the i Gaussian component, then either A(Y) =L or if
A(Y) = (4,5) then 51 - %%, < 82 < 9L - % and [|B; /% (3 — ) ||2 < 10L3,

First, we verify that 9% EDIEES )y < 9L* . 3,. Otherwise, there exists a unit vector v such that either

v S >9L* . v Svor v S < 9% v ¥;v. In the former case, by Part 1 of Corollary B.5| for
allY; € Z, =7 2(Y; — pi)|l2 < L. so

_ vT S 1 .
(0, Vi = (Y20, 572 (V)] < LIS 2l = LTS < Ly G = 2015 20l

Thus, if we set 7 = (v, 1;), then [(Y;,v) — r| < 3= - ||21/20]|5 for all Y; € Z, so the algorithm
A would have output L due to condition c). Alternatively, if there exists a unit vector v such that
v Yv < 577 - v' Bjv, then by condition b), |2-Y2(Y; — f1)||2 < 3L forallY; € Z, so
N N - 1
[0, Y = ] = (520, 57205, = )| < 3L [ /20] < 7 - [21 2]

So, there exists 7 = (v, /1) such that [(v, ;) — r| < 1 - /v T %;v which is impossible by Part 2 of
Corollary [B.5]
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Next, we verify that HZ;UQ(/) — 1i)]|2 10L3. By Triangle inequality, for every Y; € Z,
1572 = @l + 152V = pllz = 12720 = @) llo- But, 157 2(Y; — pa)ll2 < L
by Part 1 of Corollary[B.5| and ||£;"/%(Y; — fi)||l < 3L% - |£~Y2(Y; — i)||2 < 3L2 - 3L < 9L,
because we just proved that 9L*Y; = ¥ and assuming we do not reject due to condition b). Thus,
152 (i — @)l < 9L° + L < 10L3. 0

<
>

C Volume and the Robustness-to-Privacy Conversion

In this section, we explain the robustness-to-privacy conversion [HKMN23| that we will utilize in
proving Theorem|[I.4 We will also need some relevant results about computing volume, which will
be important in the robustness-to-privacy conversion.

C.1 Normalized Volume

Given a pair (1, X)), where 1 € R% and ¥ € R4*¢ is positive definite, we will define Proj(u, ¥) €
R®(4+3)/2 to represent the coordinates of ; along with the upper-diagonal coordinates of ¥. For any
set © of mean-covariance pairs (i, X), define Proj(Q2) := {Proj(u, X) : (4, X) € Q}. Because X is
symmetric, Proj(u, X)) fully encodes the information about 1 and 3. We also define vol(2) to be

the Lebesgue measure of Proj(£2), i.e., the @-dimensional measure of all points Proj(u, ) for
(1, X) € Q. Next, we will define the normalized volume

1

voln () ::/ s, )
0c€Proj(Q2) (det E)(d+2)/2

where 6 = Proj(u, ), and we take a Lebesgue integral over 6 € Proj(Q).

To motivate this choice of normalized volume, we will see that the volume is invariant under some
basic transformations.

Given a function f : RP — RP, for some integer D > 1 we recall that the Jacobian J at some x

is the matrix with J;; = gg’j L (). For a function that takes a symmetric matrix ¥ and outputs the
J
symmetric matrix AY AT, we view D = @ and the function X — AX AT as a function f from

RP — RP by taking the upper triangular part of both 3 and AXAT. Note that f is a linear function
(thus f(z) = J -  where J € RP*P_and moreover, the following fact is well-known.

Lemma C.1. [MHOS Theorem 11.1.5] For J as defined above, det(J) = det(A)4*™.

Now, for any fixed u € R? and positive definite ¥ € R?*9, consider the transformation
(i, 2) — (V28212 $51/20 1)), viewed as a linear map g from Proj(ji, 32) — Proj(2'/2/ +
1, LY/2551/2) By setting A := %1/2, note that the map g behaves like f on the last % coor-
dinates, and on the first d coordinates, it is simply an affine map /i — %/2/i + p1. Therefore, the
overall linear map g has determinant det(X'/2) - det(X'/2)4+! = (det X2)(4+2)/2,

From this, we can infer the following.
Lemma C.2. Fix any ;i € R? and positive definite ¥ € R, Let h be the map (fi, f)) —

(21/2,& + u, 21/2221/2). Then, for any set S of mean-covariance pairs, the normalized volume of S
equals the normalized volume of h(S).
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Proof. Let g be the corresponding map from Proj(ji, 32) to Proj(SY/2fi + p, £1/25%1/2). Using a
simple integration by substitution, we have

1 R
/ L

6=Proj(i,£)eProj(h(s)) (det X3)(@+2)/2
1 R

= / ————df
beg(Proj(s)) (det X)(d+2)/2

voly (h(S)) =

1 A
= = - (det g)do
/é_proj(ﬂ,i)eproj(S) (det(X1/23%31/2))(d+2)/2 (detg)
/ _ 1
deproj(s) (det 2)(d+2)/2

df = vol, ().

C.2 Robustness to Privacy Conversion

We note the following restatement of (the inefficient, approx-DP version of) the main robustness-to-
privacy conversion of [HKMN23].

In the following theorem, we will think of the parameter space as lying in R”, with some normalized
volume vol,, () = [,., P(0)d6, where p > 0 is some nonnegative Lebesgue-measurable function
and the integration is Lebesgue integration. In our application, we will think of § = Proj(u, X), and
p(0) = (det X)~(4+2)/2 to match with (T).

Theorem C.3. Restatement of [HKMN23| Lemma 4.2] Let 0 < n < 0.1 and 10n < n* < 1 be
fixed parameters. Also, fix privacy parameters g,y < 1 and confidence parameter By < 1. Let
S = 8(6,X) € Rx¢ be a score function that takes as input a dataset X = {X1,...,X,} and a
parameter 6 € © C RP. For any dataset X and any 0 < rf/ <1, let Vi (X) be the D-dimensional
normalized volume of points § € © with score at most /' -n, i.e., V;y (X) = vol,({# € © : §(0,X) <

' n}).
Suppose the following properties hold:

* (Bounded Sensitivity) For any two adjacent datasets X, X' and any 6 € O, |S(0,X) —
S(0.X")| < 1.

* (Volume) For some universal constant C, and for any X of size n such that there exists 0

with S(0,X) < 0.7n*n, n > (' - 1280 O/Vh sy (X)) Hlog(1/00)

€on*

Then, there exists an (gg, 6o )-DP algorithm M, that takes as input X and outputs either some 6 € O

or L, such that for any dataset X, ifn > C' - max log(v”/(X)/V"(X.)),Hog(l/(ﬁo'n)), then M(X)
n'm<n’<n* con

outputs some 0 € © of score at most 2nm with probability 1 — (.

We remark that the algorithm M is allowed prior knowledge of n, D,n,n*, €9, o, Po, as well as the
domain ©, function p(0) that dictates the normalized volume, and score function S.

We remark that the original result in [HKMN23|| assumes the volumes are unnormalized, but the
result immediately generalizes to normalized volumes. To see why, consider a modified domain
©' € RPHL where 0’ = (0,2) € © ifand only if # € © and 0 < 2 < p(f). Also, consider a
modified score function S’ acting on ©’, where S’((6, z), X) := S(8, X) for for any (6, z) € ©'.

Then, note that the unnormalized volume of ©’, by Fubini’s theorem, is precisely [, (0,2)c0" 1dzdf =
/. oco p(6)df, which is precisely the normalized volume of corresponding to the new ©’ precisely
match the normalized volumes corresponding to the old ©. A similar calculation will give us that the

unnormalized volume of points (6, z) in ©' with S'((¢, z), X) < t equals the normalized volume of
points § € © with S(0,X) < ¢, for any ¢.

Thus, to privately find a parameter § € © of low score with respect to S (assuming the normalized
volume constraints hold), can create ©’ and S’, and apply the unnormalized version of Theorem
to obtain some (6, z). Also, if §'((0,z2),X) < 2nn, then §(9) = §'((0,2),X) < 2nn, and if
outputting (6, z) is (¢, §)-DP, then so is simply outputting 6.
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C.3 Computing Normalized Volume Ratios

Lemma C4. Let M € R be symmetric with | M||,, < 0.1, and let 1 < v < 2 be a scaling
parameter. Then,

_q _ det(I +vM) d
= det(l+ M) —

Proof. If the eigenvalues of M are A1, ..., A\g € [—0.1,0.1], then

d
det(I + v M) 7H1+I/')\i

det(I + M) 1+

i=1

Note that for z € [—0.1,0.1] and v > 1, 1fr :x‘/‘ is an increasing function. Therefore,

and
d d d
H1+V)\ZZH1_01VZ 1:1/7‘1,
. 14+ X _ 1-0.1 11y
=1 =1 =1
where we used the fact that 1 < v < 2. O

We note an important lemmas about the normalized volumes of certain sets.

Lemma C.5. Fix some v, 7 < 0.1 and some scaling parameters 1 < v1 < 2and 1 < vy. Let R4
be the set of (11, Z) ~~ . (0,1) and Ry be the set of (14, X) Xy, .y vy.r (0,1). Then, the ratio of
normalized volumes

VOlIl (Rg)

< p2d®
VO]II(Rl) =71

2

Proof. By definition of normalized volume, we have

1
voly (Ra) = / / dudM,
M|y <tn 7 llnll<vo-r det(] + M)Ld+2)/2

where we are slightly abusing notation because we are truly integrating along the upper-triangular
part of M. (Overall, the integral is @—dimensional.) We have a similar expression for vol,,(R1).

Let us consider the map sending (u, I + M) — (v - u, I + v1 - M). This is a linear map, and for
[leell2 < ~y and symmetric ||M]|,, < 7, this is a bijective map from R4 to Ro. Therefore, by an
integration by substitution, we have

1 d(d+1)/2 4
vol,(R2) = // v vy dpdM
Mo <ylpulla<r det(] + vy - M)@F2/2 ’

d(d+1)/2 d (. —d\—(d+2)/2 1
<y vy - (v™%) // dpdM
1M op <y lulla <7 det(] + M)(@+2)/2

= 1/12d2 v - vol, (Ry).

Above, the first line is integration by substitution, and the second line uses Lemma [C.4] O

Next, we note the following bound on the size of a net of matrices with small Frobenius norm.

Lemma C.6. Fix some v < 0.1 and é < p < 0.1Vd. Let Ry be the set of symmetric matrices
M € R¥*4 with |1M|lop < v and ||M||p < p. Then, for any 1 < £ < d, there exists a net 3 of size

at most 21108 D) sych that for any M € R, there exists B € B such that | M — B||,p < %.
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Proof. First, note that the unit sphere in R? has a J};-net (in Euclidean distance) of size e9(¢10g ),

Let By be this net. The net B Will be the set of matrices Z 1 KiW; w , Where every w; € By, every

ki is an integral multiple of —t5, and every ;| < ~. The cardinality of Bis at most | By|* - (d'9)* <
O(Z -dlog d)

Now, we show that B is actually a net. For any matrix M € Rg3, we can write M = Zle )\iviviT s
where \;, v; are the eigenvalues and eigenvectors, respectively, of M. Assume the eigenvalues are

sorted so that |);| are in decreasing order. Now, since Zle A? < p?, which means that |\;| < %
foralli > /.

Now, let By = Y, , Aivyv; : since the v;’s are orthogonal and |A;| < this means that || B1 || <

f’
\/ Also, note that M = By + ZZ 1 AV T Suppose we replace each \; with «; by rounding to
the nearest multiple of 1/d*°, and replace each v; with w; € By such that ||v; —w;||2 < 1/d*°. Then,

Z[ 1 k;w;w, is in B, and by Triangle inequality, we have
Z/\vZ Zlizwl §€~(|)\ini|+2~)\i~|viwi|)<0( ><\pf
op

Thus, | M — Zle Riwiw; [lop < 2 f -

We also note the following lemma. We defer the proof to Appendix [H|
Lemma C.7. Fix any p and positive definite .. Then, for any uq,
that (u1,%1) Ry pr (2, X2) if and only if (SY2uy + p, 21/2%,51/2
i, 21/22221/2).

Our main lemma in this subsection is the following, which roughly bounds the normalized volume of
a Frobenius norm ball “fattened” by an operator norm ball.

Lemma C.8. Ler ¢; € (0,0.01) be a sufficiently small universal constant. Fix any p and positive

definite 3. Fix some parameters y1,72 € (4,c1) and p2 € (%, 7555 -Vd). Let T1(11,X) represent
the set of {(p1,%1)} such that (11, 1) =, 4, (1, 2). Let 7—2%/1/, Y)) represent the set of {(u2,%2)}
such that (N2v 22) ~vi,m (:u'lv )for some (,Ufla El) 202,72 (:U'v E) Then,

VL (Ta(5: ) _ o sart )
VOln(7-1(/~L7 E)) N

Furthermore, both vol,,(T1(u, X)) and vol,,(T2(u, X)) do not change even if we change i, X.

Proof. For now, we also assume that y = 0 and ¥ = [.

Let 1 < ¢ < d be decided later, and let 3 be the net from Lemma where we set v = 7o
and p = po. Let By be a d%—net (in Euclidean distance) over the d-dimensional unit ball, i.e.,
over u with ||ufla < 1. Note that |B;| < eP(@1ogd) and recall that |[B] < e©(“d1°ed)  Now,
for any (p2,%2) € T2(0,1), we can write (g2, 32) ~q, 4y (1, 21), where |21 — Iop < 72,
|11 = I||F < p2,and ||u1]]2 < 2. Now, we can choose some i’ € By with ||y — p/||2 < d=19 and

B € Bsuchthat [|(X1 — I) — Bllop < 2\%.

What can we say about the relationship between (12, 32) and (1, I + B)? First, note that because
(2, 22) Ry 4y (111, 21), wehave (1—71)-X1 < 3g < (1471)-24. Next, since HZl—(H—B)Hop =
(21 = I) = Blop < 222, and since % has all eigenvalues between 1 — 75 > sand 1+ <2,

f’
this means ( 4\?3) Y1<x({I+B)= (1 + ‘tff) - 31. Thus, if 4p < V¢, we have that
1—m 1+m

-(I+B)s¥X: = -(I+ B).

1+ (4p2/V0) 1— (4p2/V1)

Next, because (112, X2) <, 4, (11, 21), we have [|X] 1/2 (2 — p1)ll2 < 1, which means ||pe —
pill2 < 271. Thus, because ||y — ' ||2 < d=19 < 44, this means that |2 — g/ ||2 < 371. Moreover,
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assuming 10p < V4, the eigenvalues of I + B are at least (1 — 1) - (1 — 4%) > %, which means
that [|(1 + B)~/2(ug — p')[|2 < 671
In summary, if 10p < V¢, then

I—m I+m ~1/2 /
— [+ B) <X I+ B), [(I+B)"/"(p2 — )2 < 67
1+ (4p2/ V) 1 (4p2/VD)
. . . 1+'Yl 10p
Note th?t if y; < 0.1 and 10p < /2, then by a simple calculation, VD S <1l+4+m+ \/2
and WZ/I\/) -y — 7 This implies that (us, Xo) &~ R +10p2 /v E,61 (', I + B), for some

u' € By and B € B. Note that this holds for any (u2,32) € 72(0,1).

Therefore, recalling that |B;| < e©(21°89) and |B| < P(¢d1ogd) we can cover T2(0, ) with at
most e©¢d1o8d) regions, each of which is the set of (g, Xz) R +10p2/VE 671 (1',%"). Now,
by Lemma (H2,%2) & 4 10ps/vi6r, W-2') if and only if ps = 2 + i/ and
S = V2552 where (10, X0) R +10p2/VE 671 (0,1). By Lemma , this means that
the volume of {(ui2, £2) : (tt2,%2) &, 110,,/vi6y (#>3)} equals the volume of {(uo, %) :
(/u‘Oa EO) z71+10p2/ﬂ7671 (0> I)}

Thus, if 10p < v/Z, then 73(0, I) can be covered by e?(¢*41°8 %) regions, each of which has the same

normalized volume as the volume of { (10, 20) : (10, X0) ., 105, /17,64, (0:1)}. Moreover, if we

2

2d
further have 1?/’12 < 71, then by Lemma | this is at most (1 + \1/0”721) - 64 - vol, (T1(0,1)).

We will set ¢ = M

. Since ps > % ¢ > 100 as long as y; < ¢ < 1. Also, ¢/ <

_ 2/3
100 - (1000 d5/2) . 7% = d. Finally, 1\%2 = “’ldl"fs < 71, since py < V/d. Overall, the ratio

volu(72(0, 1)) _
vol,(T2(0.1)) =

2d?
O(t-dlogd) . <1+ ;)Pz > 61 < O o 403/ /D),
t-m

Finally, we show how to remove the assumption that 4 = 0 and ¥ = I. First, note that for
any general 1, Y, (p1,%1) € T1(0,1) if and only if (V2 + pu, B1/25,5Y2) € Ti(u, ), by
Lemma|C.7] So, by Lemma|[C.2} vol, (71 (, X)) = volu(71(0,I)). Next, (uiz, X2) Ry 4y (11, 31)
and (:ulvzl) 202,72 (07]) if and only if (21/2,“2 + Na21/22221/2) ~ym (21/21“ +
p, SY25,3Y2) and (2Y2%py + p, SY258Y2) ., 50 (1,X), by two applications of
Lemmal|C.7] So, by Lemma|C.2} vol, (73 (u, £)) = vol,(72(0, I)). Thus, the volume ratios stay the
same as well. O

D Fine Approximation via Hypothesis Selection

In this section, we prove that if we know a very crude approximation to all of the Gaussian mixture
components with sufficiently large weight, we can privately learn the full density of the Gaussian
mixture model up to low total variation distance. This will be useful for proving both Theorem [I.4]
and Theorem [L3]

We start with the following auxiliary lemma.

Lemma D.1. Let G > 1 and ( < 1 be some parameters. For some d > 1, let i € RY, and let
Y € R pe positive definite. Let U, 5, be the set of (1, X) such that 1 XXX <G-Xand
1-Y2( — 1)||2 < G. Then, there exists a net B, s of size O(GVd/¢)X d+3 ) such that for every
(1, X) € U, 5, there exists (', X') € B, ¢ such that dTV(/\/'(u7 D),NW,x)) <.

Proof. First, assume that 3 = T and i = 0. Now, let us consider the set U := Uy ; = {(1, %) :
|l < G, é I XX G-I}. Let G > G be a parameter that we will set later. Now, we can look
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at the un-normalized volume of U viewed in R%(4+3)/2 (i.e., we are projecting to the upper-triangular
part of X). First, we claim (using a standard volume argument) that there is a cover B C U of
size (2G’)44+3), such that for every (i, ¥) € U, there is (', %) € B with || — 4[|z < & and
15 =X lop < &

To see why, consider a maximal packing of (u;, 33}) € U such that for every i # j, either ||11; — ;|| >
&7 or || = |op > &7 Then, this set is clearly a cover of ¢/ (or else we could have increased the size
of the packing, breaking maximality). Then, the sets S; := {(1, 2) : || — pf|| < 557, |12 = Zf[lop <
3¢ } are disjoint, and are all contained in the set S := {(u1, %) : ||ull2 < 2G",[|Slop < 2G'}. Sis
just a shifting and scaling of .S; by a factor of 4(G”)?, and thus vol(S) = (4(G")?)#+3)/2.yol(S;) =
(2G")Hd+3) . yol(S;). Because every S; is disjoint and contained in S, the number of such indices 4
is at most (2G")(4+3),

Next, consider any (u,¥) € U and (i, %) € B with || — p/[|l2 < &7, (|5 — ¥'|op < é Then,
ISTV2EE Y 2 0,y = SRS — )50y < Sy - [~ Slop < & Also,
1272(p — 1)z < 1272 ||op - It — 1']l2 < ‘é,é In other words, we have found a net B of

size (2G")%@*+3) such that for every (u, ¥) € U, there exists (1/, %) € B with (¢, Y') ~g e,/
(1, %).

Next, consider general fi, 3. Note that (u,2) € uﬂi is equivalent to . = st/ 2lo + fi, where
liollz < G, and © = SY/25,51/2 where é -1 <X ¥y < G-1I. So, if we consider the map
I (o, 20) — (5Y2p0 + 1, BY/28351/2), this bijectively maps U to U, 5. We can also con-
sider the cover B, ¢ = f (B), where B is the cover constructed for /. Then, by Lemma
(16, 20) ~ayar.ayar (o, Xo) if and only if f(ugo, ¥6) ~a/ar.arar f1o, Eo).

Hence, regardless of the choice of /i, 3, for every (11, %) € U, s, there exists (W', %) € B, s
with (1/,%) =g/ c/e (1,%). Moreover, |B, ¢| = |B| (2G")Hd+3) - Moreover, if
W5 ~ojocre (05, then [E1200 — s < & and [SV2EEV2 Iy <
Vi - |8T2EnVE - g, < YEG drv(N (. D), N (i, ) < YEE.
Hence, if we set G/ = GE/E, then the size of the net B, ¢ is O(GVd/¢)*“*3) and for every
(1, X) € U, 5, there exists (u',X') € B, g such that drv (N (p, X), N (1, X)) < ¢. O

Next, we note the following result about differentially private hypothesis selection.

Theorem D.2. [BSKWI9] Let H = {Hi,...,Hp} be a set of probability distributions over
some domain D. There exists an e-differentially private algorithm (with respect to a dataset X =
{X1,...,X,}) which has following guarantees.

Let D be an unknown probability distribution over D, and suppose there exists a distribution
H* € H such that drv (D, H*) < o. If n > O (k’i—zM + logM) and if X1, ..., X, are samples

drawn independently from D, then the algorithm will output a distribution H € H such that
drv(D, H) < 4« with probability at least 9/10.

Given Lemma[D.T|and Theorem|[D.2] we are in a position to convert any crude approximation into a
fine approximation. Namely, we prove the following result.

Lemma D.3. Let D represent an unknown GMM with representation {(w;, p;, %) }¥_,. Let

G > 1 be some fixed parameter. Then there exists an e-differentially algorithm, on n >

0 (d2k-log(G~k<k'-\/E/a) i d?k-log(G-k-k'-Vd/a)
(X2

ag

) samples, with the following property.

Suppose the algorithm is glven as input a set {(fi;, I )}j 1 for some k' > 1, such that for every
(11, 3;) with weight w; > %, there exists j < k' such that & Ej <G- Z and ||Z 1/2(;@

fi)ll2 < G. Then, if the samples are X1,...,X, 5 D, then with probablllty at least 9/10, the

algorithm outputs a mixture of at most k Gaussians H, with drvy (D, H) < O(«).
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Proof. Let ¢ = 2. For each (ji;,%;), let B, s, beasin Lemma We define B = Uj<w By, 5,

Let # be the set of hypotheses consisting of mixtures of up to k Gaussians N (u}, 3}) with weights
w}, with every (u},>}) € B and with every w; an integral multiple of . Note that the number of
hypothesis M = |H| is at most |B|O®) . (1/¢)O®) = (K- G - /d/¢)O@* R Since we set ¢ = a/k,
M< (G- kk’\/&)O(d2~k).

Next, let us consider the true GMM D, with representation { (w;, i, ;) }*_,. Because every (11, %;)
with w; > ¢ satisfies & - 3<% < G-%jand Hﬁ;l/Q(,ui — i)z £ G, by Lemma there

exists (u, X5) € B such that drv (N (i, 23), (15, 25)) < ¢. Moreover, we can round each w; > ¢
to some w; which is an integral multiple of ¢, such that |w; — w;| < ¢. Finally, for each w; < ¢, we

can choose an arbitrary Gaussian in B and round w; to some w; Then, the total variation distance
between D and the GMM with representation {(w}, u}, $7)}%_ is at most

Z (%—f— |w; —w;|) + Z (€ + |w; —wl]) < a+ Ok 0).

i<k:w;>a/k i<k:w;>a/k

Hence, if we set ( = ¢, there exists a distribution H* € H with drv(D, H*) < O(a).

Therefore, the algorithm of Theorem usingn > O (d%'log(cﬁk/'ﬂ/a) + de'log(G;Zk/'\/a/a))

samples, will find H € H such that drv (D, H) < O(«), and is e-differentially private. O

Pseudocode: We give a simple pseudocode for the algorithm of Lemma|[D.3] in Algorithm|[I]

Algorithm 1: FINE-ESTIMATE(X1, Xo,..., X, € R, d, k, K/, e, , G, {(fi;, i?j)}jgk/)

Input: Samples X1, ..., X,,, and crude predictions (/i;,%;), where 1 < j < k' for some £’.
Output: An (g, 0)-DP prediction H, which is a mixture over at most k& Gaussians.
Set ¢ = a/k.
for j =1t k' do
| Define the sets B, 5 asin Lemma for parameters G, C.

end
B« Ujﬁ’f’ Bﬂj»ii'
Let H be the set of mixtures {(w}, u}, ¥})} of k or fewer components, where every (u;, X) € B

and every w} is an integral multiple of .
Run the £-DP algorithm of Theorem [D.2on X1, ..., X,, with respect to .

E The High Dimensional Setting

In this section, we provide the algorithm and analysis for Theorem[I.4] We first describe and provide
pseudocode for the algorithm, and then we prove that it can privately learn mixtures of d-dimensional
Gaussians with low sample complexity.

E.1 Algorithm

High-Level Approach: Suppose that the unknown distribution is a GMM with representation
{(wi, i, o) Yy

Define © to be the set of all feasible mean-covariance pairs (i, %), i.e., where 1 € R% and 3 € R4*4
is positive definite. We also start off with a set {2 = O, which will roughly characterize the region of
“remaining” mean-covariance pairs.

At a high level, our algorithm proceeds as follows. We will first learn a very crude approximation
).

9]
VElog(1/5)" k

of each (u;, X;), one at a time. Namely, using roughly ( DP, we will learn some
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(ji1,%1) € Q which is “vaguely close” to some (y1;, %;). We will then remove every (y1, X) that is
vaguely close to this (fi, f]) from our €2, and then attempt to repeat this process. We will repeat it up
to k times, in hopes that every (u;, 2;) is vaguely close to some (fi;, flj). By advanced composition,
the full set of {(j;,3;)} is still (¢, 5)-DP.

At this point, the remainder of the algorithm is quite simple. Namely, we have some crude estimate
for every (u;, %;) (it is “vaguely close” to some (fi;,X,)). Moreover, one can create a fine net of

roughly ©(@*) (1, X)-pairs that cover all mean-covariance pairs vaguely close to each (15, by ), since
the dimension of (u, ) is O(d?). Moreover, the weight vector (wy, . .., wy) has a fine net of size

roughly e9(*). As a result, we can reduce the problem to a small set of hypotheses: there are roughly

¢9(@) choices for each (i, X;), and €9 choices for w, for a total of eO*¢*) choices for the
mixture of Gaussians. We can then apply known results on private hypothesis selection [BSKW19],
which will suffice.

The main difficulty in the algorithm is in privately learning some (i, ﬁ]) which is “vaguely close”
to some (u;,%;). We accomplish this task by applying the robustness-to-privacy conversion
of [HKMNZ23]], along with a carefully constructed score function, which we will describe later
in this section.

Algorithm Description: Let ¢y < 0.01 and Cy > 1 be the constants of Lemma[B.6| and ¢; < 0.01
be the constant of Lemma [C.8| u Let ¢z < 0.1 - min(cy, ¢1) be a sufficiently small constant. We

set parameters n* = 22y = 10,50 = mﬁo = 2. B0 = e~ We also set m =

O(d*™),N = O <m- Y% kloag(l/é) + \/E'logim(l/é) +kd),andn = N - 25 Finally, we define
parameters 7 = 7 = ¢y and p = ¢y - d'/8. (See Lines of Algorithm [2| for a more precise
description of some of the parameters.)

We now deﬁne the main score function. To do so, we first set some auxiliary parameter ’ = 7' = g Co
and p’ = 2-. We will consider the (deterministic) algorithm A of Lemma. B.6| where A is given

parameters 1] 7', 0, Bo, that acts on a dataset Z and outputs either L or some (fi, E). Next, for some
domain 2 C © of “feasible” mean-covariance pairs (1, 23), we will define a function fq, which takes
as input a dataset Y of size NV and a mean-covariance pair (11, 2) € ©, and outputs

1 if (:u’ E) €, A(Y) Ny, p,T (/~Lv 2) , and ZE)Y [A(Z) Ny,p,T (/~La E)] >
fQ(YaMa E) = |Z|=m
0 else.

wWiny

@

Finally, given a dataset X of size n and (1, i) € O, we define the score function

So((f1,%),X) = min {t: 3X', Y, 41, ¥ such that
dH(X7XI):t’Y/CX/7‘Y/|:N’(/jvi) Ry, ( ) fQ Y/ Ny —1}

Note that (7, %) does not need to be in €2, but it must satisfy (fi, ©) ~ Ry, (1, 2) for some (u, X) € Q.
Also, note that it is p0551b1e that no matter how one changes the data points, the conditions are never
met (for instance if (1, X) %~ (11, 2) for any (p,3) € ). This is not a problem: we will simply
set the score to be +oo if this occurs.

With this definition of score function Sg, we can let M be an (g9, dp)-DP algorithm based on

Theorem with the settings of n, 7, 5", €9, do, Bo as above, and with D = w Here, we recall

that (f, f)) is viewed as w-dimensional by only considering the upper-triangular part of ¥. We

also assume the domain is © and the normalized volume is as in ().

Given this algorithm M (which implicitly depends on €2), the algorithm works as follows. We will
actually draw a total of n + n/ samples (for n as above, and n’ to be defined later), though we start by
just looking at the first n samples X = {X, ..., X, }. We initially set Q = ©, and run the following
procedure up to k times, or until the algorithm outputs L. For the 5" iteration, we use M(X) to
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compute some prediction (f;,>;) (or possibly we output L). Assuming we do not output L, we
remove from § every (u, ¥) such that n='2 - 3, < ¥ g n'2- %, and ||flj_1/2(u — fi;)]l2 < n'2

At the end, we have computed some {(/;, flj)};‘;l where 0 < k' < k. If ¥’ = 0 we simply output L.

d°k
g

Otherwise, we will draw n/ = O (% + zk) fresh samples. We run the e-DP hypothesis selection
based algorithm, Algorithmon the fresh samples, using parameters G = n'? and {(fi;, ij)}f:l

Pseudocode: We give pseudocode for the algorithm in Algorithm 2]

Algorithm 2: ESTIMATE(X 1, Xo, ..., Xy € R k. £,6, @)
Input: Samples X1,..., Xy, Xnt+1,--+, Xntn/-

Output: An (¢, §)-DP prediction { (11, %;), 0; }.

/* Set parameters */

Let ¢y be a sufficiently small constant and K = poly log(d, k

11

Y g
* cora n* e J —d
n 8k 777<_10750<_ 4klog(1/§)7§0<_2k’50<_6 .
M=K dVT, N K (R ) e N2

) e ) o "

log 1) be sufficiently large.

0
N, T 4= cg, p 10 - dV/8.
0,0+ {(11,%) : p € RL Y € R Symmetric, Positive Definite}.
/* Get X */
Obtain samples X + { X7, Xo,..., X, }.
/* Learn a crude approximation (fi;, f)]) of the mean-covariance pairs, one
at a time */

forj =1tk do

Define fo (Y, u, X) and Sqo((1, 2), X) as in (2) and (@), respectively.

Let M be the (eq, 0p)-DP algorithm obtained by Theorem with the score function Sq,
with parameters n, n, n*, g, do, Bo as defined above, D = "(”T'R’), domain ©, and
p(1, ) = (det )~ (@272,

A +— M(X)

if A =1 then

ﬂj7 ij «— A
Q — O\{(1,%) 125, < X <l 8 and |85 (1 - fiy)> < n'2)
else
| Break // Break out of the for loop
end
end

/* Fine approximation, via private hypothesis selection */
&’k | d’k

Sample X, 41, ..., Xnin, and redefine X < {X,11,..., Xnin }-

Run Algorithmon X, {(f15, f]j)}, with & = #{(1;, f]])} and G = n'2.

E.2 Analysis of Crude approximation

In this section, we analyze Lines of Algorithm[2] The main goal is to show that the algorithm
is private, and that for samples drawn from a mixture of Gaussians, every component (j4;, ;) with

large enough weight w; is “vaguely close” to some ({15, 3;) computed by the algorithm.

First, we show that when the samples are actually drawn as a Gaussian mixture, then under some
reasonable conditions, any (u, X) close to a true mean-covariance pair has low score.

Proposition E.1. Suppose X = {X1,...,X,,} is drawn from a Gaussian mixture model, with
representation {(wj, j1;,%;)}e_,. Then, with 1 — O(k - By) probability over X, for any set )
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of mean-covariance pairs, for all i € [k] such that (u;,%;) € Q and w; > «/k, and for all

(ﬁv E) Ry, (:U’ia El)’ SQ((ZL Z), X) = 0.

Proof. Fix any i € [k] with w; > a/k. Set 4 = p; and ¥ = ¥;. Also, let X’ = X, and Y be a
random subset of size N among the samples in X actually drawn from N (u;, ;). Note that the
number of such samples has distribution Bin(n, w;), which for w; > % and n = % - N, is at least
N with e=(V) < 3, failure probability.

Then, Y is just NV i.i.d. samples from A (p;, ;). So, if we draw a random subset Z of size m of Y, it
has the same distribution as m i.i.d. samples from N (;, 3;). We apply Part 2 of Lemma (where

we use parameters 7/, 7', o in the application). Note that m > O (v%

least 1 — O(By) over Z, A(Z) ~3cyv.8Cop",8Co (i, 2i). By our setting of 7/, o, this means that
A(Z) % py (a5 Zi)-

In other words, for each index i € (m) and corresponding subset Z of Y, if we let W; be the
indicator that A(Z) %, ,~ (pi, X;), then P(W; = 1) < O(By). While the values of W; are not
necessarily independent, by linearity of expectation we have that E[Y_ W;] < (z ) - O(Bo), so the
probability that E[3° W;] > 1 - (V) is at most O(3y) by Markov’s inequality. Moreover, because

N>m>O0 (7‘,12 + g%) , we can apply .4 on Y and we again obtain that with probability 1 —O(5p),
A(Y) oy p7 (i, i)

In summary, for any fixed i € [k] with w; > ¢, with probability at least 1 — O(3y) over X, there
exists Y C X of size N, such that A(Y) ~, , , (1;,2;) and at least 2/3 of the subsets Z C 'Y of
size m have A(Z) ~,py (i, %i). Thus, for any set £, if (15, 3;) € Q2 then So((11, %), X) = 0 for

all (i1, X) =~ » (14, 2;). The proof follows by a union bound over all i € [k]. O

+ ;l%), so with probability at

N

Next, we show that for any dataset X, if there is even a single (u*,%*) with low score, there must be

a region of (fz, X2) which all has low score.
Proposition E.2. Suppose that t = min,,« s« So((u*, £*), X). Then, there exists some (1, ¥ such
that for all ([, X) ~~ » (1, X), we have that Sq((i, X),X) = t.

Proof. Fix p*,¥* so that S ((1*, X*), X) = t. Then, there is some (i, ) and some X', Y such

that dg(X,X’) =t, Y C X, |[Y| = N, and fo(Y, u,¥) = 1. Thus, for any (11, 3) ~, - (1, X),

by definition, we have that Sq((1, ¥), X) < ¢. But since ¢ is the minimum possible score, we in fact
have equality: Sq((i, ), X) = ¢ for all such (i, X). O

Next, we want to show that regardless of the dataset (even if not drawn from any Gaussian mixture
distribution), the set of points of low score can’t have that much volume.

Proposition E.3. Fix a dataset X of size n. Then, the set of [i, ¥ such that So (i, ), X) < n* - n
can be partitioned into at most (") regions S;, which is indexed by some (i}, ;). Moreover, for all

(1, X) € S;, there exists (p1, X) such that ([i,2) ~~ 7 (1, X) and (j1, X) g sp,sr (115, 2;).

Proof. Pick any (j1, ) with score at most n* - n. Let X', Y’ 11, 3 be such that dy (X, X') < n* - n,

Y cX,|[Y|=N, (3 =~y (1,2), and fo (Y, u,X) = 1. If we define Y C X of size N to

be the corresponding subset as Y’ is to X', then dp(Y,Y’) <n*-n= % - N.

Now, if we take a random subset Z’ of size m in Y’, and look at the corresponding subset Z of
size m in Y, by a Chernoff bound, with at least 0.99 probability di(Z,Z’) < % - m. Moreover,

with at least 2/3 probability over the random subset Z’, A(Z') ~, , - (1, X). Therefore, there
always exists a subset Z C X of size m and a set Z’ of size m such that dy(Z,Z’) < % - m and

A(Z/) Ny,p,T (Nv 2)'

Now, for any fixed Z C X of size m, if we look at any sets Z’, Z"" of size m and Hamming distance
at most % - m from Z, then dy(Z’, Z") < c3 - m. So, by Property 1 of Lemma for every such
Z’ and Z" with A(Z'), A(Z") #1, we must have A(Z") ~, , . A(Z').
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if there exists some Z’ such that dy(Z;,Z") < % - m and A(Z’ ) #.1, choose an arbitrary such

7/ and let (1}, %) := A(Z'). Otherwise, we do not define (1}, %2}). Then, for any (fi, %) of score
at most ™ - n, there exists (1, X), a subset Z; C X of size m, and a set Z of size m such that

(1,%) =y (1, 2), du(Zi, Zi) < % -m, and A(Z}) =4, (1, X). Because A(Z;) #L and Z;

has Hamming distance at most < - m from Z;, this also implies that A(Z;) ~, , - (u;,%}). By

To complete the proof, we order the subsets Z;, Zo, . .., Z(n of size m in X. For each i < ( ),

Proposition[B.2] this means that (1, ©) ~gy,80,8 (11}, 5;), which completes the proof. O
Proposition E4. Suppose X = {X1,...,X,,} is drawn from a Gaussian mixture model, with

representation {(w;, j1;, %;)}¥_,. Then, with probability at least 1 — O(f3y) over the randomness
of X, for any set Q) of mean-covariance pairs, and for every (i, X3) with So((i, ), X) < %, there
exists an index i € k| such that ﬁ 3 g2 x0nd) -3, and HZ;UQ(ﬁ — pi)ll2 < On®).

Proof. We apply Part 3 of Lemma[B.6] though we use [V to replace the value m in Lemma[B.6] We are
assuming N > 40d - k. So, by definition of score, (fi, %) ~y - (1, X) where fo(Y',n,X) =1, for
some Y’ which can be generated by taking a subset of X of size at most NV and altering at most N/2
elements. Since fo(Y’, 1, ¥) = 1, this means that if (1, £) = A(Y’) then (71, 3) Ry pr (11, 2). So,
by Proposition (1, f]) ~Rgysr ([, ). Assuming y = 7 = ¢ is sufficiently small, this means

that (11, 23) =1 /2,172 (i1, %).

By Part 3 of Lemrna with probability at least 1 —O(p), there exists ¢ € [k] such that ﬁ :
< 0m®) % and |22 (1 — pi)lla < O(nS). However, we know that 1% < 3 < 25, which
means that ﬁ{]i < 5 < 0(n®)- ;. Moreover, | S~12(ji—i)|j2 < 0.5,50 1S5 /2 (a—f1)|2 <

O(n*). Thus, by triangle inequality, we have that ||Ei_1/2 (7 — p)|]2 < O(nd). O

DIFEN

Now, given a set X = {X7,..., X,,} drawn from a GMM with representation {(w;, i, ¥;)}5_, we
say X is regular if it satisfies Propositions [E.T|and In other words:

1. for any set 2 of mean-covariance pairs, for all ¢ € [k] such that (p;, 2;) € Q and w; > «a/k,

and for all (72, ) =+ (s, 24), Sa((7, %), X) = 0.

2. for any set Q2 of mean-covariance pairs, and for every (7, ©) with So (11, %), X) < &, there
exists an index ¢ € [k] such that ﬁ % K X< 0(nd) - %, and ||2;1/2(ﬁ — i)z <
O(n").

When we say X is regular, the components (j;, >;) and weights w; are implicit.

We now show that every step of the crude approximation (Lines [SHI6|in Algorithm [2) will, with
1—0(By) probability, find some crude approximation (/;, ;) to some (1;, 2;), as long as (13, X;) €
Q.

Lemma E.5. For any Q) C ©, the corresponding algorithm M (which depends on Q) is (g¢, 6o )-DP
on datasets X.

Suppose additionally that X is regular, and that there exists i € [k] such that w; > ¢ and (p1;,%;) €
Q. Then, with 1 — O(By) probability (just over the mechanism M), M(X) = (1i, %) and

* There exists i € [k] such that ﬁ-& <Y< 0(n®)-%; and HZ;l/Q(ﬁ—ui)Hg < O(nb).
« There exists (1, %) € Q such that (i, %) ~yr (1, 2).

Proof. We will apply Theorem [C.3] We first need to check the necessary conditions. It follows

almost immediately from the definition of S, that S ((fi, 22), -) has the bounded sensitivity property
with respect to neighboring datasets, for any fixed 2, f, 3.
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To check the volume condition, note that for any dataset X of size n, if min,, » So((, ¥), X) <
0.7n"n, then by Proposition [E.2} there exists u, Y such that So((k, %), X) < 0.8p*n for all
(11,%) ~+.+ (1, %). Conversely, for any X, by Proposmon the set of (fi, ) of score at most 7*n
can be partitioned into () regions S;, indexed by (1}, 33}). Moreover, each S; is contained in the set

of (ji, %) such that there exists (s, ©) such that (ji, %) Ryr (1 2) Rgy.8p,8r (1, 25).

Let us use the notation of Lemma[C.8] where 71 = 7, 72 = 8, and p2 = 8p. Then, we have that the
set of points with score at most 0.81™n contains 77 (u, X2) for some (4, ), but the set of points with
score at most 77 n is contained in the union of 73 (u}, ¥%) for at most () choices of (1}, 37). So, as
long as min,, 5 Sa((, 2), X) < 0.79*n, we can apply Lemma|C.§|to obtain

V,-(X) n /3. logd /3 .
< . ol=——2"1" = O(d7*1ogd 1
Vo.sn* (X) < <m> exp ( ( 71 exp ( ( ogd + mlog n)) ,

since po = 8p = 8¢y - d*/® and v, = v = ¢, and since ¢5 is a constant. Thus, if
O(d"*logd +mlogn) + log(l/do)
€ - n*

we have that M is (g, dg)-DP, by Theorem This holds by our parameter settings, assuming K
is sufficiently large.

n>C-

Next, we prove accuracy. Assume that X is regular. We again adopt the notation of Lemma [C.8]
(with y1 = 7, 72 = 87, and ps = 8p). By the first condition of regularrty, for all ¢ € [k] such that

(1, %) € Qand w; > a/k, every (i, %) € Ti(us, %) satisfies S ((72, %), X) = 0. We still have
that the set of points of score at most 7*n is contained in the union of at most () sets T3 (s}, 3}).
Thus,

V- (X) 7/4

————= <exp (O (d / logd+mlogn)) ,

Va(X)
where we recall that we set n = ”—O So, by Theorem as long as

o(

7/4
N> d"/*logd+mlogn) +log(1/(fo - 77))’
g0 M

which indeed holds, M (X)) outputs some (12, f)) of score at most 2nn, with 1 — 3y probability. By the
second condition of regularity,, there exists an index ¢ € [k] such that ﬁ Y, XY <00n8) -5,

and ||X; Uz(u 11:)||2 < O(n®). Moreover, because (Ji, %) has finite score, (i, 3) ~y - (p,X) for
some (,u, Y)eq. O

Lemma E.6. Lines of Algorithm 2| are (e,6)-DP. Moreover, for every regular set X, with
probability at least 1 — O(k - By) over the randomness of Algorithm|2} for every i € [k] such that

w; > ¢, there exists j such that n=12. f]j <X, <n'?. f]j and ||f);1 2(,u — )2 < ni2

Proof. The privacy guarantee is immediate by (adaptive) advanced composition. Indeed, the algo-
rithm M at each step is (¢, 9 )-DP, and only depends on X and {2, which is determined only by the
output of all previous runs of M.

Now, let’s say that X = { X4, ..., X,,} is regular, and we run Algorithmon X. Now, after 7 > 0
steps of the loop, define P; to be the set of indices 7 € [k] such that w; > ¢ and (u;, %) € €
(where §); refers to the set Q after j steps of the loop are completed) Likewise, deﬁne Qj; to

be the set of indices 7 such that there exists (fi,%) € € with =535 - X; < S < 0. % and

HZ;UQ([L — 113)]|2 < n'°. Note that Py C Qo = [k], and that P; C Q] always. Moreover, because
2 only shrinks, Pj;1 C P; and Q41 C @ always.

Now, after some step j < k, we claim that if P; # (), then |Q;11| < |Q;| — 1 with failure probability
at most O(8y), i.e., ) decreases in size for the next step if P isn’t currently empty. The failure
probability is only over the randomness of M at each step, and holds for any regular dataset X. A
union bound says the total failure probability is O(k - Bp).
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To see why this holds, note that if some index ¢ € P;, then (u;,%;) € Q;. So, we can apply

Lemma Atstep j + 1, we find some (fi;41, 2;41), with the following properties. First, there
exists an index i’ € [k] with ﬁ-&, <S4 < OmB)- Ly and |55, (111 — par )2 < O(nF).

Second, (fij11,%)+1) Ay, (11, 2), for some (u, ) € Q;.

We claim this means i’ € Q;. To see why, it suffices to show that 5 - ¥y < ¥ < n'?- 5, and
~1/2
[p2

il

(n — pir)|l2 < n'0, by definition of Q; and because (11, ) € ;. However, we know that
! .

o S < 8j41 < O(n®)- Ly and §3341 < ¥ < 28541, which implies h5- Y < % < !0 X,

Also, we know that ||Ei_,1/2(ﬂj+1 —pir)]la <O(n®) and |Z7Y2(u — fij11)]]2 < 7 < 1 The latter
inequality along with the fact that ¥ < 1! - ¥, implies that ||£"/% (1 — fij41)|l2 < n®. So, by
triangle inequality, HZ;U? (1= par)ll2 < O(n®) < n'.

Next, we claim that i’ € Pj 1,504 & Q1. Indeed, we have that ﬁl)i/ <31 < 0(nd) -2y,
which immediately means ﬁ X < ﬁ Yt < Ty O(n®) - Yt < nto. Yj41. Also,
1552 (41 = par)ll2 < O(n°), and since Sy < n'® - 54, this means |7 (e — f1y41)2 <
O(n'') < n'2. Thus, the algorithm will remove (7, X;/) from Q at step j + 1,50 i’ & Q1.

Thus, either P; is empty, or Q; decreases in size to ()41 for each 0 < j < k + 1. This implies that
Py, is empty, i.e., for every i € [k] such that w; > ¢, (15, 2;) & ;. This can only happen if each
such (u;, X;) was removed at some point. So, for every such i, there was some index j such that

n12.8 K8 x2Sy and 1S (0 — )]l < ' O

E.3 Summary and Completion of Analysis

We first quickly summarize how to put everything together to prove Theorem[I.4] To prove our main
result, need to ensure that our algorithm is private, uses few enough samples, and accurately learns
the mixture. Privacy will be simple, as we have shown in Lemma[E.¢| that the crude approximation
is private, and the hypothesis selection is private as shown in Appendix [D] The sample complexity
will come from the settings of n and n’ in lines 3 and 18 of the algorithm, and from our setting of
parameters. Finally, we showed in Lemma m that we have found a set of (1, ) ), of at most k£ mean-
covariance pairs, such that every true (u;, ;) of sufficiently large weight is crudely approximated

by some (1, %;). Indeed, this is exactly the situation for which we can apply the result on private
hypothesis selection (Lemma[D.3] based on [BSKW19]).

We are now ready to complete the analysis and prove Theorem [I.4]

Proof of Theorem By Lemma note that the algorithm up to Lineis (e,9)-DP with respect
to X1,...,X,, and does not depend on X,, 41, ..., Xp4n/. Assuming {(f;, flj)} from these lines
is fixed, Lines are (g, 8)-DP with respect to X,, 41, ..., X4, by Lemma[D.3] and do not
depend on X3, ..., X,,. So, the overall algorithm is (¢, §)-DP.

Next, we verify accuracy. Note that by Lemma and for G = n'?, the sets (i, ) ;) that we find
satisfy the conditions for Lemma with failure probability at most O(k - B). This probability
is at most 0.1, assuming e? is significantly larger than k. So, it suffices for n’, the number of
d*k-log(G-kVd/a) + d2k-1og(c-k\/&/a)) _

a? -

ag

samples used in Lineof Algorithm to satisfy n’ > O (

9] (i—f + %), where the last part of the bound holds by our assumptions on G and n. Thus, the
total sample complexity is

~ (kd*  kd?+d“"k'01og?(1/8) + k0 log"°(1/0) | k%d
went =0 (A M o /0 + B eg /0 | Y
o ae o
By Lemma|[D.3] with failure probability at most 0.1, Lines of the algorithm will successfully
output a hypothesis which is a mixture of k& Gaussians, with total variation distance at most O(«)
from the right answer. So, the overall success probability is at least 0.8.
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Finally, we note that the assumption that e? is much larger than & can be made WLOG, by padding d
to be a sufficiently large multiple of log k. Namely, if given samples X; = (X; 1,..., X; 4), we can

add coordinates X; g1, - .., Xo(og k) ~ N(0,1). Then, if the original samples were a mixture of &
Gaussians N (14, 2;), the new distribution is a mixture of k£ Gaussians N ((’%’) , (% ?) ) , with

the same mixing weights. So, we can learn the mixture distribution up to total variation distance « in
the larger space, and then remove all except the first d coordinates, to output our final answer. This
will not affect the sample complexity by more than a poly(log k) factor. O

F The Univariate Setting

In this section, we provide the algorithm and analysis for Theorem[I.5] We first describe and provide
pseudocode for the algorithm, and then we prove that it can privately learn mixtures of Gaussians
with low sample complexity.

We will use o; := /3; to denote the standard deviation of a univariate Gaussian N (p;, 32;).

F.1 Algorithm

As in the algorithm in Appendix [E} we will actually draw a total of n + n’ samples. We start off
by only considering the first n data points X = {X3,..., X, }, where each X; € R. Now, let
Y = {Y1,...,Y,} be the sorted version of X, i.e., Y < Y5 <... <Y,,and (Xy,...,X,,) and
(Y7,...,Y,,) are the same up to permutation. Finally, for each j < n — 1, define Z; to be the ordered
pair (Y},Y;41 — Yj), and define Z = Z(X) to be the unordered multiset of Z;’s. (Note that Z
depends deterministically on X.)

The algorithm now works as follows. Suppose we have data X = {X7,..., X, }. After sorting to
obtain Yl, . ,Yn, let Ty = Y}', S; = Y}'+1 7}/}, and Zj = (T'j, Sj). SO, Z(X) = {(T‘j, 5j)}1§j§n—17
viewed as an unordered set. Note that every s; > 0, and the 7;’s are in nondecreasing order. We will
create a set of buckets that can be bijected onto Z?. For each Z; = (r;, s;), if s; > 0 we assign Z; to
the bucket labeled (a,b) € Z? if 2 < s; < 2Tl and b-n® - 2% <r; < (b+1)-n°-2% If s; =0,
we do not assign Z; to any bucket.

For each element e € Z?, we keep track of the number of indices j € [n — 1] with Z; sent to e. In
other words, for e = (a, b), we define the count ¢, = #{j : 2% < s; < 2¢FL h.n>. 2% <p; <
(b+1)-n5-24}. For each c,, we sample an independent draw g, ~ TLap(1,¢/10,5/10), and define

e = Co + ge. Finally, we let S = {(j1;, )} be the the set of pairs (b - n® - 2%, 22¢) where e = (a, b)
satisfies ¢, > % log 5.

Hence, we have computed some {(fi;, ;) }¥ . for some k' > 0. (We will show in the analysis
that k' < n — 1 always, so k' is finite.) If ¥/ = 0 we simply output L. Otherwise, we will draw
O (% + ﬁ) fresh samples. We run the e-DP hypothesis selection based algorithm, Algorithmon

’

the fresh samples, using parameters G = n'® and {(j1;, 3;)}5,.

Pseudocode. We give pseudocode for the algorithm in Algorithm

F.2 Analysis

We start by analyzing Lines , which generates the set S = {(/i;,3;)} of candidate mean-
covariance pairs.

First, we note a very basic proposition.

Proposition F.1. Let €, 5 < 1. Then, with probability 1, TLap(1,£/10,/10) is at most 12 - log 4
in absolute value.

5/10_1

TLap(1,£/10,6/10)| < oy - log (1+ S5t )
with probability 1. For ¢, < 1, this is less than 12 . log %. O

S

Proof. By definition of Truncated Laplace,
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Algorithm 3: ESTIMATEID(X1, Xo, ..., Xntn €R, Kk, 6,6, )
Input: Samples Xy, ..., X, X,4+1,.-. Xn_m/

Output: An (¢,0)-DP predlctlon { (s, X4), ws }.

/* Set parameters */

Let K = poly log (k, ST L Jog 6) be sufficiently large.
Setn « K - Kloa/d),

/* Get X */

Obtain samples X + {X3, Xo,..., X, }.

/* Obtain some candidate mean-covariance pairs (ﬂi,f]i) x/

Let Y be X in sorted (nondecreasing) order.
Set (4 p) < 0 forall (a,b) € Z2.
forj=1ton—1do
Set Tj “— Y}, Sj — §/j+1 — Y}', Zj “— (’I"j,Sj).
if s; > 0 then
Let a < [logy(rj)], b+ LWJ
Ca,b < Cab t+ 1.
end
end
S« 0.

for (a,b) € Z* do
Sample ¢, < ¢4, + TLap(1,e/10,6/10).
if ¢, p > 100 log 5 L then
\ S<—Su{(b n® .24 220)}
end
end
/* Fine approximation, via private hypothesis selection */

Setn' « K - (Lf 4 Lk
Sample X, 41, ..., Xnin, and redefine X < {X,11,..., Xnin }-

Run Algorithmon X, S = {(fis, )}, with parameters d = 1, k' = #{(fi;, )}, and G = n?.

Next, we show that S is not too large.

Lemma F.2. The number of e = (a,b) € Z* such that ¢, > % . log% is at most n — 1. Thus,
S| <n-—1

Proof. Note that every Z; only increases the count of a single c., so it suffices to prove that

Ce > m log% only if ¢, > 1.
To prove this, suppose that ¢, = 0. Then, ¢, ~ TLap(1,£/10,6/10) < 122.log 1, by Proposition
Thus, ¢, > 100 log% can only happen if ¢, > 0, meaning c. > 1. O

Next, we show that for every Gaussian component (1;, 0;) of sufficiently large weight w;, there are
several pairs Z; = (Y}, Y;41 — Y;) that crudely approximate (1;, o;).

Lemma F.3. Letn > K - klog(l/‘s) , where K = poly log(k, i, E,log 5) is sufficiently large. Let

X be n iid. samples from a GMM with representatlon {(wi, iy 2i )}f 1- Then, with failure
probability at least 0.99, for every i € [k] with w; > 7, there are at least gy - n indices j such that
Yj € (i — 04, i + 0] and 157 < Y1 — Y < 204

Proof. Fix some i € [k] such that w; > 7. By a Chernoff bound since w; -m > 7 - n is a sufficiently

large multlple of log k, with failure probablllty at most 1000 the number of data points X; from
component 7 is at least 5 - n. Let us condition on T C | Ij the set of indices coming from the

i"™ mixture component, and condition on |T;| > % - n. Then, by a Chernoff bound, with failure
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probability at most 10(1)0k, at least ;- - n points X, : r € T; are in the interval [p; — o, u; + 0.
Next, note that for any X, Xr/ ~ N(/iz, 2), X, — X,» ~ N(0,20?), and thus has magnitude at
least n3 with at most failure probablhty So, by a union bound over all r # 1’ € T;, with

Toins® 1000n3
iit most 1000n < 1000k failure probability, all data points X,., X, for r # r’ € T; are separated by at
east

104n3

So, with at least 100% failure probability, there is a subset U; C T; of size at least g} - n, such that
for every r, v’ € Uj, |, i [4i — 04, pi + ;). By a union bound,
this holds simultaneously forall i € [k] with w; > ¢, with probability at least 0.997.

Conditioned on this event, if we consider the elements X in sorted order (i.e., Y) between every
consecutive pair X,., X,» : r,7’ € Uj; (after sorting), We know Xp =Xy 2 7 0 0053 So, there ex1st
some X, <Y;,Y;,1 < X, such that YJH Y; > 15757 Hence, for every z e [k] with w; > £,

there exist at least |U;| — 1 > f 1> Sk 1ndlces J such that Y; 1 —Y; > 1577. Moreover, note
that Y;, Y11 € [ — 04, i + az], so Y11 —Y; < 20;. Hence, conditioned on the event from the
previous paragraph, the lemma holds. O

Given the above lemma, we can prove that for every (u;, 3;) in the Gaussian mixture with at least ¢
weight, there is some corresponding crude approximation (g, ) € S.

Lemma F.A4. Assume that the conditions and result of Lemmaholds. Then, there exists (i, f)) €es
such thatn=° -3 < %, < n'0 - S and | XY2 (s — f1)||2 < nb.

Proof. Fix any i withw; > . Then, forany j with Y}, Y; 1 € [p;—04, pi+oi] and 15707 < Yy

Y; < 20;, the index ¢ contributes to the count of some bucket e = (a,b), where log2 105_n4j S
a < |logy(20;)]. Moreover, Y; € [b-n®-2% (b+ 1) -n®-2%). Therefore, if we consider the
set V; of e = (a,b) such that |log, ;7] < a < [logy(20;)] and [b - n® - 2%, (b+ 1) - n®
2%) N [u; — o4, it + 04] is nonempty, the sum of the counts c. across such e € V; is at least
& . n. But there are at most O(logn) choices of a, and since n® - 2% > 20, there are at most

8k
two choices for b for any fixed a. So, (logn), and } cy. ce > g - m. Assuming that

55 -1 > O(logn - élog %), ie,n> K- kl%(sl/g) for a sufficiently large polylogarithmic factor
K = polylog (k, 2,1 log 1), one of these buckets e = (a,b) € V; must have ¢, > 2% log }. In
this case, e = ce + TLap(1,/10,6/10) > 1% log 1 by Proposition SO we include the pair

(i, 3) := (b-n5 -2, 22%) in S.

Hence, there exists (a,b) € V; such that (2,%) := (b-n® - 2%,22%) in S. By definition of V,
2L <20 < 204,50 15 - B < 227 < 4%, < n'0. %, Moreover, ISV2 (s — )| =27 - s — fi-
But the definition of V; means fi = b - n® - 2% satisfies i < p; + oy and ji > p; — o5 — n® - 2% >
i — (205 + 1) - 0y. So, |fi — pui| < (2n° +1) - 05 < nS- 2% Thus, |22 — ps)| < nb. O

We now prove that the mechanism (until Line[I9) is differentially private. First, we note the following
auxiliary claim.

Lemma F.5. Let X, X' be adjacent datasets of size n (i.e., only differing on a single element). Then,
the corresponding sets Z = Z(X) and Z' = Z(X') differ in distance at most 3, where by distance
we mean that there exists a permutation of the elements in Z and Z/, respectively, such that at most
three indices 1 < n — 1 satisfy Z; # Z..

Proof. Note that for the sorted versions Y, Y’ of X, X', respectively, we can convert from Y to Y’
by removing one data point and adding one more data point, without affecting the order of any other
data points.

Suppose we remove some Y; from Y. If j = 1, then this just removes Z1, and if j = n, then this just
removes Z,_1. If j > 2, this modifies Z;_; and removes Z;. Likewise, if we add some new Y, this
will either add one new ordered pair to Z (if Y}/ is either the smallest or largest element), or replace
one ordered pair in Z with two new pairs. Therefore, if we remove a Y; and then add a Y}/, this will
change at most 3 of the ordered pairs in Z. O

We now prove privacy.
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Lemma F.6. The set S = {(j1;,%;)} of candidate mean-covariance pairs is (¢, 0)-DP with respect
to X = {Xl,...,Xn}.

Proof. Let X, X’ be adjacent datasets of size n. Then, the corresponding sets Z, Z’ (after a possible
permutation) differ in 3 elements. Therefore, if we let {¢. }.cz2 be the counts for Z and {¢, }.cz2 be
the counts for Z’, we have that ||¢. — &, || < 6. Because changing a single count ¢, by 1 leads to
(e/10,6/10)-DP, overall, the counts {¢,. } will satisfy (&, §)-DP. Finally, S is a deterministic function
of the noisy counts ¢, and therefore must also be (e, §)-DP. O

Finally, we can incorporate the fine approximation (i.e., Lines [20H22] of Algorithm [3) and prove
Theorem 1.3

Proof of Theorem([I.3] By Lemma the algorithm up to Line [19]is (¢, §)-DP with respect to

X1,...,Xn, and does not depend on X, 11, ..., Xptn. Assuming S = {(ji;, ﬁ?l)} from these lines
is fixed, Lines are (e, d)-DP with respect to X, 41, ..., Xptn’, DY Lemma and do not
depend on X, ..., X,,. So, the overall algorithm is (e, §)-DP.

Next, we verify accuracy. Note that by Lemma and for G = n'9, the sets (i, f)l) that we find
satisfy the conditions for Lemma [D.3] with failure probability at most 0.01. Moreover, the size

of S = {(u, f)l)} is at most n, by Lemmam So, because d = 1, it suffices for n/, the number
of samples used in Line of Algorithm to satisfy n’ > O (’“‘log(gf"/“) + k'log(G'k"/o‘)) =

(o2

O (X + £, where the last part of the bound holds by our assumptions on G and n. Thus, the total
g p y p

b ~<k10g(1/5)+ k:)

sample complexity is
n+n' =0 —
g (6%

By Lemma|[D.3] with failure probability at most 0.1, Lines of the algorithm will successfully
output a hypothesis which is a mixture of & Gaussians, with total variation distance at most O(«)
from the right answer. So, the overall success probability is at least 0.8. O

G Lower Bound

In this section, we prove Theorem@ The proof of the lower bound will, at a high level, follow from

known lower bounds for privately learning a single Gaussian [KV 18| [KMS22al], which we now state.

Theorem G.1. [KVI8|] For some sufficiently small constant c*, (e, d)-privately learning an arbitrary
log(1/4)

univariate Gaussian N (i1, 02) up to total variation distance c* requires §) (f> samples.

Moreover, this lower bound holds even if we are promised that || < (1/8)€ for a sufficiently large
constant C, and o = 1.

Note that this lower bound immediately implies the same lower bound for general dimension d.

Theorem G.2. [KMS22d] Let o be at most a sufficiently small constant, and let 6 < (%)C fora
sufficiently large constant C. Then, (g, 8)-privately learning a d-dimensional Gaussian N (1, 3) up

~ 2
to total variation distance o requires §) (i—g) samples.
Moreover, this lower bound holds even if we are promised that n = 0, and [ < X < 21.

Note that a tighter version of the above theorem has been proved in [Nar23l |[PH24]|; we also refer the
reader to [BUV 14].

Proof Sketch of Theorem First, the lower bound of ’L—dj is already known — see [ABH " 18].

The lower bound of % will follow from Theorem To explain how, we consider £ distinct
Gaussians N (p;,Y;), where the means p; are known and very far away from each other, and
I < ¥; <X 21 are unknown. The overall mixture that we will try to learn is the uniform mixture over
N (i, %), ie., every weight w; = 1/k. By making them very far away from each other, we are
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making learning the full mixture equivalent to learning each component (on average). Namely, even
if we are given the information of which Gaussian each sample comes from, we will need to learn at
least 2/3 of the Gaussians up to total variation distance O(«), to learn the full mixture up to total
variation distance «. Hence, we will need at least &k times as many samples as for learning a single

. . ~ 2
Gaussian, which means we need 2 (%) total samples.

The lower bound of kl%(;/é) will follow from Theorem |G.1| Note that it suffices to prove the lower
bound in the univariate case. We plant & distinct Gaussians NV (u;, 1), where the p; are very far away
from each other, i.e., pairwise |1; — ;] > (1/8)1°¢. We also assume that y; = 0 is known, and the
remaining /; are unknown but we are promised the value of each y; up to error (1/6)°. The overall
mixture will have the first Gaussian A/ (0, 1) of weight w; = 1 — a/c*, and the remaining Gaussians
N (s, 1) each have weight w; = a/(c* - (k — 1)). Even if we are given the information of which
Gaussian component each sample comes from, to learn the overall mixture up to error «, we need to
learn at least 2/3 of the small-weight components, each up to total variation distance O(c*). Hence,
log(1/9)

we will need == samples from most of the small-weight components. Since the small weight

components have weight ©(a/k), we need (M> total samples. O

ag
We now give a formal proof of Theorem [I.6]

G.1 Formal Proof of Theorem

First, we note two lemmas that will be helpful in proving the Theorem.

Lemma G.3. Let o € [0, 1). Let f be a probability density function over RY. Assume g : R — R=0
exists such that

[ @)~ 9@ @r < a.
Rd

Then there exists h such that h is a probability density function over R?, and

/ |f(x) — h(z)| dz < 2a.
]Rd

Proof. We know that

y (z) dz — /Rd g(z) dz

Therefore, G := [, g(x) dz =1+ o

< [ @) =g dr <.

Now two cases are possible either G < 1, or G > 1, otherwise we are done. If G < 1, let h(x) be
the density function corresponding to the following distribution: with probability G take a sample
from g(x)/G, and with probability 1 — G select 0. Then

/ (@) — h(z)| dz <1- G+/ (@) - g(@)] da < 20,
Rd R4

as desired. If G > 1, let h(z) be a density function as follows: Vz : 0 < h(z) < g(x), and
Jga h(z) dz = 1. It is easy to see such an h exists by greedily picking h. Then we have

Jga lg(x) = h(z)| dz = [z, g(x) — h(z) dz < G — 1 < . Therefore, we can write

[ 1@ ~h@)l de< [ 1@ - g@)] ot [ lo(o) - ho)] do < 20,

]Rd
as desired.

O

Lemma G.4. Suppose w € (0, 1) is fixed. Suppose an (e, 9) differentially private algorithm exists
that takes n samples from the mixture D = wD; + (1 — w)Ds, and learns D1 in total variation
distance up to error «, with success probability 1 — 3. Moreover, assume while sampling it is
known which component the sample is sampled from. Then there exists an (g, 0) differentially private
algorithm A that takes nw [~ samples from D1 and outputs an estimate of Dy up to total variation
distance o, with success probability 1 — 3 — .
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Proof. We can view the sampling procedure of the mixture as sampling a random variable ¢ ~
Bin(n, w), and taking ¢ samples from D; and n — ¢ samples from Dsy. In order to make an algorithm
using nw /~ samples we can take that many samples from D1, and then sample ¢ from Bin(n, w), and
run A on n data points constructed as follows: If ¢ is smaller than nw/~, use ¢ of the samples taken
from D; and set the rest to 0, If ¢ is larger than nw/~, just run A on all zeroes. Finally output the
output of A on this input. Clearly, this would be (e, §) differentially private. We know the Algorithm
succeeds with probability 1 — 3, over the random coins of the algorithm and the randomness of
sampling, if the input is sampled from wD; + (1 — w)Dy. From Markov’s inequality, we know
Pt < nw/~] > 1 — ~. Therefore, our constructed sample is drawn i.i.d from wD; + (1 — w) Dy
with probability at least 1 — ~, where D is the fixed 0 distribution. Therefore, there exists an (e, J)
differentially private algorithm that takes nw/~ many samples from D; and outputs an estimate of

D1 up to total variation distance «, with success probability 1 — 3 — -, as desired. O
We now prove Theorem [1.6]
Proof. We prove the lower bound terms one by one. The first term £4° (the non private term) is

known by previous work [ABH™ 18]. We prove the lower bound for the second term and the last term
here using Theorems [G.1T]and [G.2] m

Let’s prove the second term £ We apply Theorem L this theorem implies that for any « smaller
than a sufficiently small constant and § < (2£)“ fora sufﬁmently large C, any (g, ¢) differentially
private algorithm A taking n samples in R, satlsfymg

VX such that 1 < X < 21 : PXNN(O,E)®", A’s internal random bits [dTV (A(X)7N(Oa Z)) S O‘] > 067

must also satisfy n = Q(i—i_)

Let ,u;s be k distinct vectors in R each having ¢ distance M from each other, for M to be set later.
To see why such a set exists, we can take p; = M<iej, where e; is the first unit vector. Now consider
the following set of Gaussians: D; = N (u;, 3;), where p;’s are known and constructed as above and
3; unknown. Consider the uniform mixture D over these Gaussians, with weights w; = 1/k. We
also assume that when sampling from this distribution we know that which component the samples
came from. Consider an (g, ¢) dlfferentlally private algorithm A that takes n samples from D and

outputs a distribution D such that drv (D, D) < a with probability 2/3.

Now consider a sample from D;, from standard Gaussian tail bounds we know that at least 1 —
exp(—M?/800) fraction of the mass of D; is contained within a ball of radius M /10, around ;. Let
B; denote this ball, and note that B;’s are disjoint.

Let f, fi, f be the probability density functions corresponding to D, D;, D respectively. Assuming,
we are in the success regime, we can write

~ k A~
0= fwl =3 [ |5 - fw)] a

Now let B C [k] be the set of indices ¢ such that [, ‘f(x) - f(x)‘ dz > 200a/k, and G be its
complement. Then we have that || < k/100. Therefore, there exists G such that |G| > 0.99%,
andVi € G : [, ‘f(sc) - f(x)‘ dz < 2000 /k. Assume ¢ € G is one such index. Note that

flx) = Z?:l fj(x)/k. Therefore, we can write

J,

2x Z 2dTv(D,.D) = /
Rd

sk = @) e < [ |- j@ e [ 1) - @) 0
< QOOa/k’ + I?igi]pXNDj (X é Bj]

< 200a/k + exp(—M?/800)
< 300a/k,
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where the last inequality comes from taking M > 304/log(k/100«). We show that using the
distribution D, we can construct an answer to the problem of learning the Gaussian D;. To do so first
take g; to be equal to k f(x) over B; and 0 everywhere else. We have

[ @) = o) dx:/&

Now we may apply Lemma and deduce that given D we can construct probability density
functions and distributions Di’s such that dTV(Di, D;) < 800q, for all i € G. To recap, so far we
have shown that given an (g, d) differentially private algorithm that takes as inputs samples from
our constructed mixture of Gaussians and outputs a density D that has total variation distance at
most «, from the ground truth distribution with success probability 2/3, we can use D to construct
densities lA)Z- such that dTV(f)Z-, D;) < 800« for 0.99k of the indices ¢. This implies that there exists
a fixed index ¢ for which the component D); is learned up to error 800ar with success probability
2/3—0.01 > 0.65. Applying Lemma|G.4] implies that there must exist an (g, §) differentially private
algorithm that takes 100n/k samples from D, and estimates its density up to total variation distance
800cv, with success probability at least 0.6. Therefore, applying Theorem [G.2] we conclude that

n=Q(kL),

g

filz) — kf(x)‘ d:c+/Rd\B‘ fi(z) do < 300 + 100a/k < 400a.

Now let’s prove the last term M%(El/é). We aim to apply Theorem Let p;’s be k distinct values
in R, each having distance M from each other, for M > (1/6)'¢ to be set later, where yi; = 0.
It is easy to see such a set exists. Now consider the following set of Gaussians: D; = N (u;, 1),
where f1;’s are known up to log(1/6)¢, and p; = 0 is also known. Consider the mixture D over
these Gaussians, with weights w; = 1 — «/¢*, and w; = «o/(c*(k — 1)). We also assume that when
sampling from the mixture we know which component each sample comes from. Consider an (¢, )
differentially private algorithm .4 that takes n samples from D and outputs a distribution D such that
drv(D, D) < o with probability 2/3.

Now consider a sample from D;, from standard Gaussian tail bounds we know that at least 1 —
exp(—M?/200) fraction of the mass of D; is contained within a ball of radius M /10, around ;. Let
B; denote this ball, and note that B;’s are disjoint.

Let f, fi, f be the probability density functions corresponding to D, D;, D respectively. Assuming,
we are in the success regime, similar to the proof of the previous term, we can show that there exists

a set G of indices such that |G| > 0.99k, and Vi € G : fB,v ’f(x) - f(x)‘ dz < 200c/k. Moreover,
with a similar argument as the previous term for ¢ € G we can say as long as M > 20+/log(k/100«),
J B, ‘wl filz)—f (x)‘ dz < 300a/k. We show that using the distribution D, we can construct an

answer to the problem of learning the Gaussian D;, for i # 1. To do so take g; to be equal to f () /w;,
over B; and 0 everywhere else. We have

[ 15 - gl ar= [

Now we may apply Lemma and deduce that given D, we can construct probability density
functions and distributions ﬁi’s such that dTV(ﬁZ—, D;) < 800c*, for all i € G. To recap, so far we
have shown that given an (¢, §) differentially private algorithm that takes as inputs samples from our
constructed mixture of Gaussians and outputs density D that has total variation distance at most a
from the ground truth distribution with success probability 2/3, we can use D to construct densities
lji such that dTv(lj,-, D;) < 800c*, for 0.99k of the indices 4. This implies that there exists a fixed
index i # 1, for which the component D, is learned up to error 800c*, with success probability
2/3 —0.01 > 0.65. Applying Lemma implies that there must exist an (e, §) differentially
private algorithm that takes 100nw; samples from D, and estimates its density up to total variation
distance 800c*, with success probability 0.6. Therefore, applying Theorem [G.I} and noting that

w; = af (¢*(k — 1)) we conclude that n = Q(M). O

e

300 100
daz—l—/ filz)dz < a+7a < 400c*.
R4\ B, kw; k

fil) = f(x)/w;
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H Omitted Proofs

In this section, we prove Proposition [B.2] Theorem[B.3] and Lemma|[C.7]

H.1 Proof of Proposition [B.2]

First, we note a basic fact.

Fact H.1. Forany z,y € [0.9,1.1], we have that (zy — 1)?> < 4((x — 1)? + (y — 1)?).

Proof. Notethat|xy—1| |x—1—|—x( - )|§|x—1|+|x\ |y—1|<\f (lz =1+ |y — 1]).
Thus, (zy — 1)* < 2(jz — 1| + |y — 1))* <4((z — 1)* + (y = 1)°). H

We now prove Proposition [B.2]

Proof. Let J; := %5 '/?51/? and J, := x5 /252,

First, assume (11, $1) R4+ (f12, $2). This means ||.J1J;" — I||op < vand ||J1J] —I||p < p. We
then have that 21_1/22221_1/2 = J7 NI T = (JJ1) 7t Now, note that J;J;" and J;" J; are
both symmetric and have the same eigenvalues. If we call these eigenvalues Ay, ..., A4, then the
eigenvalues of 21_1/22221_1/2 are )\fl, cee )\;1. Now, our assumption (1, X1) /v, (2, X2)
implies that 1 — ’y <A <l+4+vandd (1-X)? < p This means that, assuming v < 0.1, 1 —2v <
SN < S <142y and 3D (1 -4 D2 <= M) A2 <2301 — A2 = 202
1/25, 1/2HF < 2.

1+'y —
This means that ||E 125, 2_1/2||Op < 2vand ||Z]

Finally, ¥, 12 (1 — p2) = Jlegl/ (11 — p2). Because X Y2y — t2) has magnitude at
most 7 by our assumption, J; 122_ 1/2 (11 — p2) has magnitude at most the maximum singular
value of J; ' times 7. But every singular value of J; ' is some )\;1/2 which is at most 2, so
1272 (2 = )2 = 177155 V2 (i = )2 < 27

Next, assume (u1,%1) Ry ,r (H2,22) and (po,X2) =~ ,r (us,X3). First, note that
5528552 = B JT IS = (JoJi)(JoJi)T. I the eigenvalues of JiJ) are {\;} and the
eigenvalues of J,.J, are {)\}}, then the singular values of J; and J5 are {/A;} and {1/\]}, respec-
tively. By our assumption, 1—~ < A;, A; < 1+, which means that /T — v < v/A;, /A, < T+ 7.

Thus, the singular values of J5.J; are between 1 — v and 1 + -, which means that the eigenvalues of
(J2J1)(J2J1) T are between (1 — )2 and (1 + 7)2. T TS = I|op < 4.

Assume that \;, \} are in decreasing order. We now consider the k™ largest singular value of Jo.J;. If
ok = /A is the kth largest singular value of .J; and o7, := \/7 is the k™ largest singular value of
J2, by Corollary[A.5]there exist subspaces Vj, V of dimension d — k + 1 such that ||.Jyv]|s < oy, Hv||2
for all v € Vi and | Jov|l2 < o}|[v]]2 for all v € V{. Therefore, for every v € Vi, N J; 'V
(note that .J; is invertible since .J;.J;" has all eigenvalues between 1 —  and 1 + 7) we have that
| JoJ1v]|2 < o} ]| J1v]|2 < ool ||v]|2- Because Vi, and J; 'V} both have dimension d — k + 1, their
intersection has dimension at least d — 2k + 2. So, there is a subspace of dimension at least d — 2k + 2
such that every v in the subspace has ||.JoJ1v||2 < o0y, - [|v]|2.

Thus, the (2k — 1) largest singular value of .J5.J; is at most o, o},, so the (2k — 1)™ largest eigenvalue
of JoJyJJ' Jy is at most Ak A% The same argument, looking at the smallest singular values, tells us
that the (2k — 1)™ smallest eigenvalue of JoJ1.J; J; is at least Ag—p41 N, 1. Thus, for any ¢, the

" largest eigenvalue of Jo.J;J;  Jy is at most Alt+1)/2] XL(H-U/?J and at least Af(q4¢) /2] X((d+t)/21‘
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Overall, this means that
d
| Ja i )Ty = T)[% <) max ((M(tﬂ)/ﬂ Ner1yy2) = D% Mty 21 X () 21 — 1)2>
t=1

d
2 2
<> (W(tﬂ)/% Me+ny/2) = 7+ (a2 a2 = D )

=1 ;
23 (A~ 1)

MNi—1)2+8- Z/\’—l

1 i=1
(1N = I+ (2 Jy = IE) < 1607,

‘M&

I /\

where the fourth line uses Fact Thus, ||E_1/22123_1/2 —I|r < 4p.

Fmauy,notethatnz Y2 (n—ps)ll2 < 125 (1 —paa) H2+HE Y2 (o —pz) |2 = 112252 (11—
p2)l2+ 155 "% (112 — p3) || 2. By our assumptions, both [|£5 /% (111 — 12) |2 and | S5 /% (12 — u3) |2

are at most 7, and J has operator norm at most 1.1 < 2, which means that ||Z5 12 (1 — p3)ll2 <
3.

H.2 Proof of Theorem [B.3|

First, we note a series of known results that will be key to proving the theorem. We start with the
bound for robust covariance estimation in spectral error.

Lemma H.2 (e.g., [DK22| Exercise 4.3]). Fix anyn € (0,n0), where 1g < 0.01 is a small universal
constant, and fix any B € (0, 1). There is a (deterministic, inefficient) algorithm Ay with the following
property. Let 3. € R4 be any covariance matrix, and let X = {X1,..., X,,} ~ N(0, %), where
n > O((d+log(1/8))/n?). Then, with probability at least 1 — 3 over the randomness of X, for any n-
corruption X' = { X1, ..., X/} of X, A1 (X') outputs 321 such that |2 ~/23, 5712 -1||,, < O(n).
Importantly, A; may have knowledge of ) and 3, but does not have knowledge of X or X.

Next, we prove how to robustly estimate the covariance up to Frobenius error. We start with the
following structural lemma.

Lemma H.3. There exists a universal constant ¢ € (0,0.1) with the following property. Fix any
1 <k <d and let n > é(d - k) be a sufficiently large (i.e., n > dk - (Cs log(dk))c4 for some
absolute constants Cs3, Cy). If we sample i.i.d. X = {X1,..., X, } ~ N(0, I), then with probability
at least 1 — e~ over X, for all symmetric matrices P C R%*? of rank at most k and Frobenius
norm 1, and for all subsets S C [n] of size at least (1 — c) - n, |+ 3, o(X; X7 — I, P)| <0.1.

Proof. Consider any fixed P C R?*¢ of rank k and Frobenius norm 1, and fix any integer m. For
any data points X1,..., X, i N(0,1),let X = (Xy,...,X,,) € R™ be the concatenation of
X1,..., X, and let Q € ROm4)*(md) pe the block matrix

0 0 ... P
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Then, L 3" (X;X] —I,P) = L™ (X PX, - Tr(P)) = L (XTQX — Tr(Q)). By the
Hanson-Wright inequality, we have that for any fixed || P||r < 1, and for any ¢ < 1,

P (‘; (XTQX -Tr(Q))| > t) =P(|XTQX —Tr(Q)| >m-t)

< 2-exp <— min (ﬂ?(ﬁ?;’ IQI(DTT:;)>

< 2-exp (—Q(m - t?)).
By setting t = 0.01, we have that for some universal constant ¢,

1 m
Y (XX —1P)

p<
mia

Now, we draw X1, ..., X,, ~ N(0,T), and take a union bound over all subsets S C [n] of size at
least (1 — ¢)n (with m = |S|) and a union bound over a net of possible matrices P. The number

of options for S'is at most >, ., (7) < (e/c)*". For P, we can choose a 1/n'%-sized net over the

Frobenius norm metric (i.e., the distance between two matrices Py, P, is ||P; — Ps|| ) for each of
the k nonzero eigenvalues and eigenvectors in the unit d-dimensional sphere, which has size at most
n'00¢k Therefore, by a union bound, the probability that ‘% Yies (XX —1, P’>‘ < 0.01 for

every |S| > (1 — ¢)n and every P’ in the net is at least 1 — (2e/c)°" - n'00d-k . g=c1n/2,

> 0.01) < 2e” ™,

- €

Finally, we consider P outside of the net. For any symmetric P of rank k£ and Frobenius norm 1, it
has Frobenius distance at most 1/n8 from some P’ in the net. Let us consider the event that every
| X:]|3 < 10n, which for n > d occurs with failure probability at most 2n - e~“1" by Hanson-Wright.

Under this event, (X; X,| — I, P — P') < || X;X,” —I||p - ||P — P'||r < (10n +V/d)/n® < 0.01.

As aresult, with failure probability at most (2¢/c)°" -n100dk.e=c1n/2 L 9. e=c1m < =" (assuming
cis sufficiently small), we have both properties. Namely, [+ 3. < (X; X;" — I, P’)| < 0.01 for every
|S| > (1 — c)n and every P’ in the net, and for any P, (X;X,” — I, P — P’)0.01 for the closest P’
LY es(Xa X —1,P)| <01 O

We prove another lemma which contrasts with Lemma[H.3]

Lemma H.4. Fixany 2 < p < \/d. Let k = 4d/p? and letn > O(d - k) and ¢ € (0,0.1) be as
in Lemma |H.3| - Fix any covariance matrix ¥ and let X = {X1 5 Xn} ~ N(0,%). Then, with
probability at least 1 — e~ ", for every S such that 0.95 - X < 2 < 1.05 -Yand |[£71/2E81/2 -

I||F > p, for every symmetric matrix P € R4*? of rank at most k and Frobenius norm 1, and for
every S C [n] of size at least (1 — ¢)n,

1 ~ ~
= (ETVPX xR P) > 07

i€S

Proof. Let J = £~Y/2%1/2 andlet Y; = ¥~1/2X;. Then, £~1/2X, = JY;, which means that
STVX XSV =gy I T =JyY, DI+ (JJTT ).

From now on, we assume that for all S C [n] of size at least (1 — ¢) - n, and for all symmetric matrices

|2 3,e(YiY;T — I, P)| < 0.1. This happens with at least e ="

probability, by Lemma [H.3]
Now, for any subset S C [n],

,Z S2X XS 1/2—I,P>:EZ(U(YZ-YZT—I)JT,P>+<JJT—I,P>)

i€S " €S
1
=_ (Z Te(J(V;Y," — I)JTP)> + 151 (JJT —1,P)
" €S n
1
= (Zmyf —1, JTPJ>> + % (JJT —1,P).
€S
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Now, note that by our assumptions, [|£~/25%"1/2 — [|,, < 0.05 and || S~/285 Y2 — [ || > p.
Thus, by Proposition |Z-1/285-1/2 — |, < 0.1, and by Propositionagain, applied the
reverse direction this time, | S ~/285 12 — ||z > p/2. We just showed ||JJ T — I||,, < 0.1, s0
by Proposition |JTPJ||p < 2||P||p < 2. Therefore, |1 >, o(ViY;" — I,JTPJ)| <0.2.

Conversely, we just showed || JJT — I||r > p/2. So, if we order the eigenvalues of JJ T as
A1, Az, ..., Aq (and the corresponding unit eigenvectors vy, . . . , v4) such that | \; —1| are in decreasing

order, then % (), — 1)2/ > p? /4, which means that Z?i/l’JQ (A\i —1)%2 > 1. So, if we choose P to
“1/2
be (zg‘i{f(xi - 1)2) S40% (A — 1)vv] , we have that || P|| 7 = 1 and

4d/p? T2 sy 1d/p? 1/2
(JIT=LPy=| > (A -1 =P = > (1) > 1.
=1 =1 =1

Therefore,

1 ~ ~
=y (ETVPX XS P) > LIy >1—c—02>0.7.
n

€S

Now, we can show how to learn the covariance of ¥ up to Frobenius error.

Lemma H.5. Fixanyn € (0,19), where njg < 0.01 is a small universal constant, any 5 € (0,1), and
any 6(77) < p < \/d. There is a (deterministic, possibly inefficient) algorithm As with the following
property. Let 3. € R4 be any covariance matrix, and let X = {X1,..., X,,} ~ N(0, %), where
n>0 (M + log(%)). Then, with probability at least 1 — (3 over the randomness of X, for

any n-corruption X' = {X}, ..., X} of X, Ao (X') outputs 3y such that |2 ~/28,5" 12 [ || <
O(p). Importantly, As may have knowledge of n, p, and (3, but does not have knowledge of X or X.

Proof. In the case that p < 2, the claim follows immediately from known results (for instance, it is
implicit from [HKMN23])).

Alternatively, assume that p > 2. In this case, the algorithm works as follows. Assume 1 < 1y <
¢/2, where c is the constant in Lemma First, compute 21 based on Lemma Note that
(1-0()- - =<3 < (1+0(n) -2 with 1 — 3 probability, since the number of samples is
sufficiently large. Now, find any positive definite 3 and a set T’ C [n] of size at least (1 — 1), such

that:
c(1-0(n) -1 <K (1+0(n) .

o forany S C T of size at least (1 — 2n)n,

%Zies@_l/QXiXiTi_l/Q - I,P)‘ <0.2.

First, we note that ¥ = ¥ is a feasible choice of X. Indeed, the first condition trivially holds. For
the second condition, let 7" be the subset of uncorrupted data points (i.e., X; = X;). Then, for any
S C T, the data points X for i € S are the same as X, so by Lemma with 1 — (5 probability,
forevery such S, |1 3, o(S71/2X, X' "12 — [, P)| < 0.1.

Next, we show that every & with ||[S~1/25%-1/2 — [||z > p is infeasible. First, we may assume
that 0.95% < ¥ < 1.05%, as otherwise, we cannot simultaneously satisfy (1 — O(n)) - 31 < ¥ <%
(I1+40(M))-X1and (1-=0(n)) - X xX1 < (14+0(n)) - X, assuming n < ¢/2 is sufficiently small.

Hence, we just have to verify the infeasibility for every & such that |2 ~/25%~1/2 — [||z > pand

0.95% < ¥ < 1.05%. Indeed, for any subset T of size at least (1 — 1)n, let S be the uncorrupted
points in 7'. Because there are at most nn uncorrupted points, [S| > (1 — 2n)n. So by Lemma[H.4]

with 1 — 3 probability, for every such S, ‘% Zies<§]’1/2XiXiT§)’1/2 -1, P)’ >0.8.
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Therefore, with at most O(3) failure probability, some f)g = Y is returned, and it satisfies
|E-12887 2 — I||p < p. O

Next, we note some results on robust mean estimation. We first note the definition of stability, and
some properties.

Lemma H.6 ([DK22, Proposition 3.3]). Let n > O((d + log(1/8))/a?), for some o >
O(ny/log1/n). Let X = {X;}, "% D, where D is a subgaussian random variable with
mean pi € RY and covariance I. Then, with probability 1 — 3, for all vectors b € [0,1]"™ such that

E;b; > 1 — 1 and all unit vectors v € R?, we have:
1 |E;bi(v, X; — )| < a.
2. |Eibi{v, Xi — p)? — 1] < o

Given a dataset X with these properties, call it (1), «)-stable with respect to .

Lemma H.7 (implicit from [DK22| Section 2]). Fix n sufficiently small and o = O(n). There is a
deterministic algorithm As that, on a dataset X', outputs [i such that ||i — pll2 < O(a), for any
n-corruption X' of any X that is (1, o)-mean stable with respect to any i € R%. Importantly, As
does not require knowledge of X or p.

We now prove Theorem [B.3]

Proof. We first show how to estimate the covariance Y. First, we apply a “sample pairing” trick

(e.g., see [DK22, Section 4.4]). Namely, assume WLOG that n is even, and define X to be the set
{(Xa2i-1 — Xgi)/\/i}?:/f, and X' = {(X}, |, — Xél)/\@}?ﬁ Note that X are i.i.d. samples from

N(0,%), and X' is at most 27)-corrupted.

Now, because n < 7, X' is at most 2y corrupted, so Lemmaon X’ (replacing 1 with 2) gives
us some 3 such that [|[2~1/25,%1/2 — [||,,, < O(y), by our assumed bound on the number of
samples. Next, Lemmaon X' gives us some %y such that | £=1/23,%71/2 — [||p < O(p),
by our assumed bound on the number of samples. So, we can set 3 to be any covariance such that
[5-1/25 5712 — I]|,p < O(7) and || 271/235571/2 — [ < O(p). Note that 3 satisfies these
properties, and any 3 that satisfies these properties must satisfy [|[S~1/25%-1/2 — I||p < O(y)
and |2~1/25%-1/2 — ||z < O(p), by the approximate symmetry and transitivity properties
(Proposition [B.Z)).

Now, we estimate the mean 1. Taking the original data X', we compute {3~'/2X!}. By stability
(Lemma , we know that with 1 — 3 probability, {X~1/2X;} is (7, v)-stable with respect to
(where we are using the uncorrupted data and the true covariance X). Letting J = 371/251/2 we
know that .J has all singular values between 1 — O(7) and 1 + O(y), and that {J~! - 5=1/2X,} is
(1, ~)-stable with respect to 1. Moreover, note that we can write (v, $~'/2(X; — p)) = (Juv, J -
$1/2(X;—p)), and that 1— O () < ||Jvlla < 140(5). Therefore, {3~1/2X;} is (1, O(7))-stable
with respect to 371/2;, which means that by Lemma As on {£1/2X!} outputs some value &/
such that || — 37 /2|| < O(~). Thus, by setting i := %1/2 ., we have that ||~/ (ji — v)]| <
O(y), which means that [5~Y/2(3 — o) = |1~ "S-2(3 — )l < (1+O()) - [£~/2(j -
w2 < O(7). O

H.3 Proof of Lemmal[C.7|

In this subsection, we prove Lemma|[C.7]

Proof. First, note that for any positive definite matrices ¥y, Sy, || X5 /25,55 /% = I||,p < 7 is
equivalent to (1 — )T < £5 /?,55"/% < (1 +~)I. Since M being PSD implies AM AT is PSD
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(and vice versa if A is invertible), the previous statement is thus equivalent to (1 — ) - ¥5 < X1 <
(1 + 7)X5. Next, note that

||Z;1/2212;1/2 —I|lp = \/ﬂ ((251/2212;1/2 . 1)2)

= \/Tr (251/2212;1212;1/2 —2.x iy sy 4 1)

_ \/Ty (512,153, — 23,350 4+ 1), )

where the first two lines are a straightforward expansion, and the final line simply uses the fact that
Tr(AB) = Tr(BA) for any matrices A, B. Finally, note that

12521 — o)l = /a1 — 12) TS5 (11 — o). s)

Now, consider replacing 31 with X3 := 21725, %1/2 5, with &4 := 2125, %12 11y with pg :=
Y201 + p, and po with g == 2'/2 s + p. Again, since M being PSD implies AM AT is PSD (and
vice versa), we have that (1—v)-2 < X1 < (147)- g ifand only if (1—7)-34 < 33 < (147)-X4.
Moreover, note that

Tr(232; 182 ) = (228, 5,10, 55 1 12) = (32, 25 1 20 )

and
Tr(238;)) = (228,218 12) = (2,250,

which means that (E[) would be the same if we replaced 3; with X3 and 35 with 4. Finally,
(ns—pa) "S5 (ns—pa) = (pa—p2) TSY2(S728 TSV SR (g —pg) = (—p2) T 25 (11— pa2),

which means that (@) would be the same if we replaced p; with pg, 12 With g, 31 with X3, and 3o
with >4.

Overall, by the definition of ~, , ., we have that (u1,%1) =4, (t2,%2) if and only if
(13, 33) ~y,p,7 (14, 24). O
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. Experimental Result Reproducibility
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
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. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: No experiments.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: No experiments.
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is entirely theoretical, and we do not see any potential harms coming
from our research.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is entirely theoretical, and we do not see any potential negative
societal impacts coming from our research.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our work is entirely theoretical, and poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: Our paper does not use any existing assets, such as code/data/models/etc.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release any new assets
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.
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