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ABSTRACT

Audio-Visual Speech Recognition (AVSR) aims to improve the performance of
Automatic Speech Recognition (ASR) by incorporating visual cues in addition to
audio information. Synchronized visual information plays a pivotal role in dif-
ferentiating phonetically similar words, and it is highly beneficial in scenarios
with high levels of noise. In AVSR, the crucial aspect is establishing temporal
correspondence while aligning the mutually complementary nature of audio and
visual modalities. To this end, we propose the Siamese Masked Interaction LEarn-
ing (SMILE) framework, which integrates multimodal mask learning with the
Siamese architecture. SMILE facilitates global interactions among audio-visual
features and enables single-modal and cross-modal local alignment. In addition,
we propose an adaptive dynamic multimodal fusion strategy that effectively cap-
tures the complementary relationship between the audio and visual modalities.
With extensive experiments, our model SMILE, when tested with different model
scales and noise levels, achieves state-of-the-art performance on LRS2 and LRS3
datasets under both low-resource and high-resource settings.

1 INTRODUCTION

Audio-Visual Speech Recognition (AVSR) (Shi et al., 2022a; Radford et al., 2022; Anwar et al.,
2023) is an active and evolving research area derived from the Automatic Speech Recognition (ASR)
task. It is primarily designed to address real-world scenarios with challenges such as high levels of
noise and speech occlusion. It integrates synchronized visual information with audio features to
enhance the recognition accuracy and robustness. Zhang et al. (2023) propose the hypothesis that
the lip movements of speakers in videos carry valuable information pertaining to appearance and
temporal dynamics, which has a closer relationship with speech features than facial or body gestures.
Lip movements can mainly provide phonetic articulatory details, including the place of articulation
for sounds like bilabial, labiodental, and dental. It also conveys emphasis or stress, providing visual
cues for heightened articulation, intensity, or duration. Due to this, we use the extracted frame-wise
lip-region features in our experiments. Lip movements primarily contribute to the improvement
of Automatic Speech Recognition (ASR) in two main scenarios. Firstly, they offer distinct visual
cues that aid in differentiating between speech words that sound similar. Secondly, they provide
valuable visual cues that enhance speech recognition accuracy in the presence of various types of
noise commonly encountered in real-world environments.

Effectively leveraging visual information and promoting interaction between the audio and video
modalities remains an area that requires further exploration. Most AVSR methods (Shi et al.,
2022a; Zhu et al., 2022) utilize early fusion by concatenating audio and video modalities. This
can promote models to learn the global modality-general features but lacks the ability to align
local modality-specific features. Other methods (Hu et al., 2023; Dai et al., 2023) utilize cross-
modal attention and contrastive learning to enable interactive communication between audio and
video streams. This can facilitate better alignment of local modality-specific features but may suf-
fer from insufficient global interactions. According to Li et al. (2022), the human brain will ini-
tially gather audio and visual information together and repeatedly interact between the two modal-
ities, indicating the importance of early fusion and deep interaction. Inspired by this, we pro-
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pose a Siamese Masked Interaction LEarning (SMILE)1 framework to implement the multimodal
interaction in an end-to-end manner, allowing for effective interactions throughout the process.

(a)  (b)  (c)

Figure 1: Modal interaction types. (a)
Single-modal interaction. (b) Cross-modal
interaction. (c) Global modal interaction.
Gray shapes represent masked modalities.
The masked output modality interacts with
all of its unmasked input modalities.

Siamese network (Bromley et al., 1993; Chopra et al.,
2005; Koch et al., 2015; Chen & He, 2020; Grill
et al., 2020; Caron et al., 2021; Zbontar et al., 2021)
is a class of network architectures containing two or
more identical sub-networks. It is a contrastive-based
self-supervised learning method and can be viewed
as an augmentation technique to enhance the seman-
tic alignment capability of a model. In recent years,
several methods have combined mask reconstruction
with the Siamese architecture (Mishra et al., 2022;
Assran et al., 2022; Shi et al., 2022c; Tao et al., 2022).
These methods make the model establish stronger
spatial or temporal contextual correlation while en-
hancing semantic alignment capability. In contrast,
the purpose of the proposed SMILE framework is
to enable single-modal interaction, cross-modal inter-
action, and global modal interaction simultaneously.
This is achieved by carefully designed transformer at-
tention layers and mask learning mechanisms. Fig. 1 depicts the three types of modality interactions,
which will be demonstrated in detail in section 3.2.

2 RELATED WORKS

2.1 AUDIO-VISUAL SPEECH RECOGNITION

Most existing approaches try to make a better fusion between audio and video modalities with differ-
ent model architectures and training strategies. Several methods have proposed utilizing transformer
self-attention and cross-attention mechanisms between the audio and video modalities to enhance
their interaction (Hu et al., 2023; Dai et al., 2023). Alternative approaches introduced prompts (Lin
et al., 2023) or adapters (Thomas et al., 2022) to enhance the fusion of audio-visual multimodal
information. Cheng et al. (2023a) and Cheng et al. (2023b) employed distinct training strategies
to further align visual features in the multimodal feature space. To train a large multimodal model
from scratch, Shi et al. (2022a) employed a clustering-based unsupervised pretraining approach and
Shi et al. (2022b) further explored the noise robustness of audio-visual multimodal models. Halias-
sos et al. (2023) applied both intra-modality and inter-modality distillation techniques for multi-task
learning. Zhu et al. (2022) designed a three-pathway multimodal model for three modalities. Ob-
taining aligned and labeled data in multimodality is rather cost-demanding.

2.2 SIAMESE MASKED INTERACTION LEARNING

The original Siamese networks (Bromley et al., 1993; Chopra et al., 2005; Koch et al., 2015; Chen
& He, 2020; Grill et al., 2020; Caron et al., 2021; Zbontar et al., 2021) use two identical sub-
networks for multi-view data augmentation, combined with stop-gradient operation, Exponential
Moving Average (EMA) momentum update or other techniques to prevent feature collapse. In
recent years, Masked Image Modeling (MIM) has emerged as a highly efficient method for semantic
modeling (He et al., 2021; Huang et al., 2023), yielding remarkable results across various tasks.
Several approaches (Mishra et al., 2022; Assran et al., 2022; Shi et al., 2022c; Tao et al., 2022;
Wu et al., 2023) have been proposed to effectively integrate Siamese networks and masked image
modeling, leading to promising results. These approaches attempted to mask image patches either in
both views of the Siamese network (Mishra et al., 2022) or in a single view (Assran et al., 2022; Tao

1The term “interaction learning” specifically refers to the learning process of capturing the interplay between
different modalities, distinguishing it from the conventional notion of learning through human interactions,
commonly known as interactive learning.
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Figure 2: The overall model pipeline. Top branch: the target encoder. Bottom branch: the online
encoder. The target encoder and online encoder share the same set of parameters. Our model benefits
from early fusion and alignment interactions, achieving better audio-visual multimodal fusion.

et al., 2022), employing an aggressive masking rate (Wu et al., 2023). In our work, we use Siamese
masked interaction learning in audio-visual speech recognition.

3 METHOD

3.1 PRELIMINARIES

The task of AVSR is to use audio-visual utterance pairs as input and generate the corresponding text
as output. We extract audio and video features after data processing. As shown in Fig. 2, we use
one linear projection layer for the audio front-end followed by layer normalization (Ba et al., 2016).
And the generated speech feature is denoted by Fa = {F t

a}
T−1
t=0 ∈ RT×B×C , where T represents

the temporal length, B represents the batch size and C represents the channel numbers. For video
front-end, Fv = {F t

v}
T−1
t=0 ∈ RT×B×C is extracted by the modified ResNet-18 (Shi et al., 2022a)

containing both 2D and 3D convolutions. Note that the sampling rate of speech is higher than that of
video, so we stack several extracted audio frames in the temporal dimension to align with one video
frame. The target of the model is to generate the corresponding text g = {gi}G−1

i=0 ∈ RG where gi
represents the i-th word in the text with a total length of G.

3.2 SIAMESE MASKED INTERACTION LEARNING

The overall pipeline is depicted in Fig. 2. After feature extraction, we concatenate Fa and Fv along
the temporal dimension for deep interactions. We first pass the concatenated features through the
Siamese encoder architecture. The Siamese encoder consists of two branches, each taking differ-
ent inputs while sharing parameters. We define the network that receives features without random
masking as the target encoder and the network that processes features with random masking as the
online encoder. We apply random masking on the concatenated features for the online encoder and
get features [F̂a, F̂v] for the two modalities. As for the target encoder, we pass the original [Fa, Fv]
through it to provide target representation labels for the reconstructed output of the online encoder.
We apply stop gradient operation on the target encoder to prevent the trivial constant embedding
mentioned in Chen & He (2020). Let [F 0

a ← Fa, F
0
v ← Fv] be the input for the target encoder and

[FN
a , FN

v ] be the output for the target encoder, where← indicates the tensor copy operation and N

denotes the number of encoder layers. Similarly, [F̂ 0
a ← F̂a, F̂

0
v ← F̂v] and [F̂N

a , F̂N
v ] are the input

and output of the online encoder. Assuming that idxa and idxv represent the indexes of masked to-
kens in the audio and video feature sequences, the Masked Representation Modeling (MRM) object
can be described as follows:

Lmrm = MSE(FN
a [idxa], F̂

N
a [idxa]) + MSE(FN

v [idxv], F̂
N
v [idxv]). (1)

We use Mean Square Error (MSE) to calculate the loss between masked tokens and their target la-
bels. Note that the target labels are generated through the global multimodal interaction process,
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where each token has already obtained rich semantic information from a global multimodal per-
spective. Thus, the Siamese architecture with masked representation modeling can make the model
perform global modal interactions by learning to reconstruct the masked tokens in the correspond-
ing positions (see Fig. 1(c)). Besides, the Siamese architecture enables learning a similarity metric
by comparing pairs of corresponding representation views derived from the same unimodal feature.
This enables the network to generalize effectively, even when trained with limited data.

Though mask learning enforces global modal interaction, reconstructing masked tokens from exist-
ing modality tokens is highly challenging. It requires a heavy interaction between the two modal-
ities for modality-general and modality-specific information extraction. To strengthen the ability
of single-modal and cross-modal interaction and alignment, we propose the mix-attention encoder
layer. We apply a random masking strategy for each modality along the temporal dimension with dif-
ferent masking rates, where different masking lengths are applied at each randomly selected mask-
ing position. We define M as the masked tokens. The feature representation for each modality with
random masking can be expressed as follows:

F̂a = [Fa1
, Fa2

,M, ..., Fat−2
,M, Fat

], F̂v = [Fv1 , Fv2 , Fv3 , ...,M, Fvt−1
, Ft]. (2)

Let (Qa, Ka, Va) denote the (query, key, value) triplet attention projection of audio features, and
(Qv , Kv , Vv) denote the triplet for video features. We define (Qz , Kz , Vz) as follows:

Qz = [Qm
a , Qu

a , Q
m
v , Qu

v ],Kz = [Km
a ,Ku

a ,K
m
v ,Ku

v ], Vz = [V m
a , V u

a , V m
v , V u

v ]. (3)

In the equations above, every Qz is the concatenation (denoted by [...]) of audio and video features
containing both masked feature tokens Qm

a , Qm
v and unmasked feature tokens Qu

a , Q
u
v . And the

same is for Kz and Vz . Note that the relative position between each masked and unmasked token
is random. For clarity of explanation, the Qm

a and Qu
a in equation 3 only indicate the two types of

tokens included in Qa, without implying any specific order. The output of the attention operation
Az can be obtained via:

Az = Softmax(
QzK

T
z√

D
)Vz, (4)

in which D represents the normalization factor. To further explain the single-modal and cross-modal
interactions between audio and video masked and unmasked features, we conduct a more in-depth
analysis below. Define Rz as the correlation map calculated in the attention calculation, it can be
described as:

Rz = Softmax
(
QzK

T
z√

D

)

= Softmax
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(5)

We have omitted the transpose operation T for simplicity. From the audio perspective, Rxy
aa denotes

the single-modal similarity, and Rxy
av denotes the cross-modality similarity. Rmm

aa measures similar-
ity between any masked tokens and Rum

aa measures the similarity between unmasked and masked
tokens. The same observations also apply to the relation map of video tokens. It shows that each
modality simultaneously conducts self-attention and cross-modal attention, promoting single-modal
and cross-modal interactions. As shown in Fig. 3, we then send the calculated Ai

z for the i− th layer
into the Feed-Forward Network (FFN) to obtain the output [F̂ i+1

a , F̂ i+1
v ], which serves as input for

the next mix-attention encoder layer.

The decoder component is a transformer auto-regressive decoding structure. We set the number of
decoder layers to be half the number of encoder layers. The end-to-end encoder-decoder model
is supervised by the cross-entropy loss denoted as Lce, which is computed between the model’s
output and the corresponding text labels. This loss function measures the dissimilarity between
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the predicted output and the ground truth labels, guiding the model to minimize the discrepancy
and optimize its performance. Overall, the final loss L is composed of supervised loss Lce and
self-supervised loss Lmrm, which is defined as:

L = αLmrm + βLce, (6)

in which α and β are weight parameters to balance the contribution of the two losses. We intro-
duce both self-supervised and supervised learning in our model, which can improve the model’s
performance with better audio-visual multimodal interactions.

3.3 ADAPTIVE MULTIMODAL FUSION

Since representations with masked tokens can further enhance the generalization ability of the de-
coder, we take the representation output from the online encoder and send it to the decoder. More-
over, we apply adaptive multimodal fusion on the concatenated multimodal output to fuse them
across modalities and different encoder layers. The output representation from every online encoder
transformer layer is of shape 2T × B × C, in which 2T represents the temporal combination of
audio and video representations. In AVSR, video serves as a supplementary modality to comple-
ment and enhance the audio information. Due to this, we partition the concatenated representation
into the audio and video representation component both with shape T × B × C, and introduce a
dynamic scaling factor to add them together. This can adjust the contribution of video modality to
the fusion process. The dynamic scaling factor S is shared across all layers. The formulation for
dynamic scaling and addition for every i-th encoder layer and the weighted sum process is described
as follows:

F̂ i
av = F̂ i

a + S ∗ F̂ i
v,

F̂fuse =

N∑
i=1

wiF̂
i
av,

(7)

in which F̂ i
av represents the dynamic fusion results for audio and video modalities, and N represents

the total number of mix-attention encoder layers. As mentioned in the study by Yang et al. (2021),
the shallower layers in audio models tend to prioritize speaker-related information, while the deeper
layers tend to emphasize content-related information. Recently, in the image domain, Liu et al.
(2023) also explored the application of multi-level feature fusion and demonstrated improved per-
formance. Inspired by these works, we adopt a similar approach by applying a multi-layer weighted
sum to aggregate all layers together, akin to the method proposed by Yang et al. (2021). The weight
coefficient wi corresponds to layer i in the weighted summation, determining the contribution of
each layer’s output F i

av to the final fused output Ffuse. Both the weighting factor wi and the scal-
ing factor S are set as learnable parameters with an initial value of 1. Throughout the training, the
model can adaptively adjust these factors to learn the optimal combination that effectively utilizes
the complementary information from the audio and visual modalities.
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Figure 3: Encoder layer and adaptive multimodal fusion. Each encoder layer contains an addi-
tional audio-visual adapter to adapt the pre-trained weights. The dynamic fusion strategy is applied
to the output [F̂ i+1

a , F̂ i+1
v ] for each mix-attention encoder layer i.
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The structure of adaptive multimodal fusion is shown in Fig. 3. Note that the Siamese masked
interaction learning process uses the concatenated output representations [F̂N

a , F̂N
v ] without using

any fusion strategy. As the reconstruction of masked tokens is extremely difficult, we try to initialize
our model with the parameters from Shi et al. (2022a) for easier startup. The difference is that we
concatenate audio and video features in the temporal dimension and get shape 2T × B × C, while
Shi et al. (2022a) concatenate the two features in the channel dimension and get shape T ×B× 2C.
The difference in concatenation may produce significant biases during the attention operation in the
transformer layer. Thus, we add the audio-visual adapter at the front of the transformer encoder
layer. It has the same structure as the one proposed by Houlsby et al. (2019), which can adapt to
changes in concatenation dimensions.

4 EXPERIMENTS

4.1 EVALUATION METRICS

In this paper, we measure the performance of Siamese masked interaction learning on AVSR tasks
with two datasets. The evaluation metric used in speech recognition is the Word Error Rate (WER),
which is defined as WER = (P +D + I)/G, where P,D, I denote the counts of words replaced,
deleted, and inserted, respectively, and G represents the total number of reference words.

4.2 IMPLEMENTATION DETAILS

We take Shi et al. (2022a) for AVSR with temporal-wise feature concatenation and additional audio-
visual adapters as our baseline. Since lip movement exhibits the highest correlation with speech
among visual cues, we only extract the lip region as visual speech input for our model. Moreover,
we first detect 68 facial key points for the image face using dlib (King, 2009) and then align the
profile face frames found in the video with its neighboring frontal faces. Next, we crop a 96 × 96
Region-Of-Interest (ROI) in the lip region. Also, we randomly crop a region of 88 × 88 from the
entire ROI and perform a horizontal flip with probability 0.5 for data enhancement. As for the audio
part, we extract a 26-dimensional log filter-bank energy feature at a stride of 10 ms with a sample
rate of 16,000 Hz from the input raw waveform. Since image frames are sampled at 25Hz, we stack
four adjacent acoustic frames together to synchronize the two modalities.

4.3 EXPERIMENTAL RESULTS

We show our results on the LRS2 (Afouras et al., 2018a) and LRS3 (Afouras et al., 2018b) datasets
(more information about the datasets can be found in Appendix D). We train our model un-
der different model scales and dataset sizes with the parameters initialized in Shi et al. (2022a).
The model scales include transformer-base and transformer-large. The transformer-base with
blocks/embedding dimension/feed-forward dimension/attention heads in each transformer block
is 12/768/3072/12. The transformer-large with blocks/embedding dimension/feed-forward dimen-
sion/attention heads in each transformer block is 24/1024/4096/16. Regarding the dataset size, we
consider both low-resource and high-resource scenarios. The low-resource setting involves using 29
hours of labeled data from LRS2 and 30 hours of labeled data from LRS3, while the high-resource
setting utilizes larger 224 hours of labeled data from LRS2 and the full 433 hours of labeled data
from LRS3. Table 1 presents the results of our experiments, showcasing the performance under
different combinations of model scales and dataset sizes.

As shown in Table 1, we compare our model with the previous methods on LRS2 and LRS3 datasets
for the task of AVSR. It can be observed that our method can achieve state-of-the-art performance
under different model scales and dataset sizes. This shows that our model can provide a better
multimodal interaction strategy for audio and video modality with global and local single-modal
and cross-modal interactions. Especially, our method demonstrates substantial advancements in
scenarios with limited resources, indicating that the proposed Siamese architecture combined with
masked representation modeling can effectively improve the model’s generalization capability. The
performance for the LRS2 low-resource setting is improved by 0.9% and 1.1% with transformer-
base and transformer-large models, respectively.
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Table 1: Experimental results on LRS2 and LRS3 clean datasets. LM denotes whether or not the
model utilizes the language model. “Unlab hrs” denotes the number of unlabelled data hours used
for pretraining. And “Lab hrs” denotes the number of labeled data hours used for finetuning. *

denotes a seq-to-seq loss which is different from Cross-Entropy loss (CE). † is a technique where a
model labels unannotated data using its own predictions to improve performance iteratively, which
has proved effective for pretraining and usually improves the performance of downstream AVSR.
We compare our method with both supervised and self-supervised methods. Besides, we show the
model’s performance under various settings of different model scales and data resource sizes.

Method Encoder Criterion LM Unlab hrs Lab hrs WER(%)
LRS2 LRS3

supervised
Afouras et al. (2018a) Transformer S2S* ✓ - 224 8.5 8.3
Afouras et al. (2018a) Transformer C2C ✓ - 224 8.2 -
Xu et al. (2020) RNN CE ✗ - 590 - 7.2
Petridis et al. (2018) LSTM CTC ✓ - 380 7.0 -
Yu et al. (2020) TDNN CTC ✓ - 224 5.9 -
Makino et al. (2019) RNN Transducer ✓ - 31,000 - 4.8
Ma et al. (2021) Conformer CTC+CE ✓ - 380 4.7 3.2
Hong et al. (2022) Transformer CE ✗ - 224/433 4.5 3.4
Hong et al. (2023) Transformer CE ✗ - 224/433 4.1 2.8
Hu et al. (2023) Transformer CE ✗ - 224 3.1 -
Serdyuk et al. (2021) Transformer - ✗ - 90,000 - 2.3

self-supervised
Base models, less training data
Hsu et al. (2021) Transformer-Base CE ✗ 1,759 30 - 5.0
Zhu et al. (2022) Transformer-Base CE ✗ 1759 30 - 4.0
Shi et al. (2022a) Transformer-Base CE ✗ 1,759 29/30 5.8 3.8
Haliassos et al. (2023) Transformer-Base CTC+CE ✗ 1759 30 - 3.8
SMILE (Ours) Transformer-Base CE ✗ 1,759 29/30 4.9 3.5
Large models, less training data
Hsu et al. (2021) Transformer-Large CE ✗ 1759 30 - 3.2
Shi et al. (2022a) Transformer-Large CE ✗ 1759 29/30 4.8 2.9
Zhu et al. (2022) Transformer-Large CE ✗ 1759 30 - 2.7
Haliassos et al. (2023) Transformer-Large CTC+CE ✗ 1759 30 - 2.7
SMILE (Ours) Transformer-Large CE ✗ 1759 29 3.7 2.5
Large models, more training data
Shi et al. (2022a) Transformer-Large CE ✗ 1,759 224/433 2.5 1.3
Hsu & Shi (2022) Transformer-Large CE ✗ 1,759 433 - 1.2
Cheng et al. (2023a) Transformer-Large CE ✗ 1,759 224 2.7 -
Pan et al. (2022) Transformer CE ✗ 60000 224 2.6 -
Zhu et al. (2022) Transformer-Large CE ✗ 1,759 224/433 2.3 1.2
Haliassos et al. (2023) Transformer-Large CTC+CE ✗ 1,759 224/433 2.5 1.4
Haliassos et al. (2023) w/ self-training† Transformer-Large CTC+CE ✓ 1,759 224/433 2.3 1.4
Zhu et al. (2022) Transformer-Large CE ✗ 1759 224/433 2.3 1.2
SMILE (Ours) Transformer-Large CE ✗ 1,759 224/433 2.2 1.2

Table 2: Experimental results on LRS2 dataset with musan noises. The number of mixture noise is
set to 1. The noise probability is set to 1, which means that all test speeches are added with noise.
Note that both (Hsu et al., 2021) and our model are trained under same noise setting.

Model Encoder Lab hrs Test noise snr WER Avg.
-10 -5 0 5 10

Base models, less training data
Hsu et al. (2021) Transformer-Base 29h 34.69 19.06 11.65 8.51 6.98 16.18

Smile(Ours) Transformer-Base 29h 24.36 14.32 9.02 7.47 6.42 12.32

Large models, less training data
Hsu et al. (2021) Transformer-Large 29h 22.65 13.82 8.28 7.71 7.03 11.90

Smile(Ours) Transformer-Large 29h 20 10.76 6.69 5.67 5.3 9.68

Large models, more training data
Hsu et al. (2021) Transformer-Large 224h 12.22 7.34 4.39 3.24 3.07 6.05

Smile(Ours) Transformer-Large 224h 11.05 6.68 4.12 3.14 3.02 5.60
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We suppose that lip movments can provide valuable visual cues that enhance speech recognition
accuracy in various real-world noises. To validate the performance of our model under noise con-
ditions, we use musan dataset (Snyder et al., 2015) combined with LRS3 (Afouras et al., 2018b)
speech noise as our noise dataset. We trained our model on LRS2 dataset with different model
settings. For each speech segment in the dataset, we intentionally introduced a random type of
noise from musan, setting the signal-to-noise ratio (SNR) to 0. The experimental results under noise
scenarios are shown in 2.

4.4 ABLATION STUDY

To validate the effectiveness of our model, we conduct a comparative analysis between our default
setting and other alternative approaches.

Effectiveness of different components. As shown in Table 3, we compare different parts with
the baseline. We take Shi et al. (2022a) for AVSR with temporal-wise feature concatenation and
additional audio-visual adapters as our baseline. The model’s performance improves after incorpo-
rating adaptive multimodal fusion, indicating an enhanced ability to capture deep complementary
relationships between the audio and video modalities. Then, we present results when masking is
applied solely to the features as a form of feature augmentation rather than incorporating it with
the Siamese architecture. The observed improvement resulting from the masked feature augmen-
tation provides evidence of its effectiveness in enhancing the model’s ability to capture temporal
dependencies on features by mitigating temporal feature redundancy. Furthermore, we combine the
masked data augmentation with Siamese architecture. We find that the Siamese masked interaction
learning strategy improves the model’s performance by a large margin of 0.7% (4.4%→ 3.7%) and
0.3% (2.8%→ 2.5%) separately, which shows its effectiveness of learning audio-visual multimodal
interactions.

Table 3: Ablation study for the efficacy of different components in our method. We use transformer-
large model for LRS2 and LRS3 low-resource datasets.

Method WER(%)

LRS2 LRS3

Shi et al. (2022a) + Audio-visual adapter (Baseline) 4.8 3.0
+ Adaptive multimodal fusion 4.6 2.9

+ Masked feature augmentation 4.4 2.8
+ Siamese masked interaction learning 3.7 2.5
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Figure 4: The efficacy of Siamese masked interaction learning for audio-visual temporal correlation.
Each row in the visualization corresponds to the temporal token index of the video representations,
while each column represents the temporal token index of the audio representations.

To further demonstrate the effectiveness of Siamese masked interaction learning, we visualize the
cosine correlation between the audio and video representations at the output of the encoder trans-
former layer. As depicted in Fig. 4, we present the results for the model trained under three sce-
narios: without Siamese and mask, only with mask, and with Siamese and mask. The diagonal of
the visualization represents the corresponding pairs of audio and video tokens, while the other parts
represent the pairs of audio and video tokens without temporal correspondence. The visualization
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Table 4: Ablation study on Siamese training strategies and masking rate ablation. The ablations
for Siamese training strategies are under the low-resource LRS2 29h dataset with transformer-
base model. The ablations for masking rates and lengths are under low-resource LRS3 30h with
transformer-base model.

(a) Siamese training strategies.

Siamese architecture WER(%)
Target encoder Online encoder

(1) Finetune Finetune 6.71
(2) Stop gradient Finetune 4.94
(3) EMA update Finetune 5.18
(4) Initially frozen Finetune 5.28

(b) Masking rate ablations.

Masking rate WER(%)
Speech Length Video Length

0.3 6 0.3 6 3.71
0.4 12 0.6 6 3.69
0.6 12 0.4 6 3.54
0.8 12 0.6 6 3.72

clearly illustrates that the Siamese architecture combined with masked interaction learning can ef-
fectively promote the temporal alignment between audio and video modalities, capturing the deep
correspondence between them.

Different training strategies. The proposed Siamese architectures (Mishra et al., 2022; Assran
et al., 2022; Shi et al., 2022c; Tao et al., 2022) usually apply different training strategies to the
target network like stop gradient operation and Exponential Moving Average (EMA). Our model
defines the network that receives features without the masking strategy as the target encoder and the
network that processes features with random masking as the online encoder. In Table 4a, we mainly
explore different training strategies for the target encoder. We first train the online encoder and target
encoder with shared parameters simultaneously. Subsequently, we experiment with incorporating
the stop gradient operation for the target network, resulting in improved results (see row 2 in Table
4a). Next, we explore updating the target network using the EMA momentum update, leading to a
slower update pace for the target network than the online network. Additionally, we examine the
scenario where the target encoder remains frozen from the beginning and is not updated during the
training process. Notably, updating the target encoder at a slower rate or even not updating it at all
(rows 3 and 4 in Table 4a) does not yield results as promising as the stop gradient operation. This
observation suggests that the target encoder, with shared parameters, may offer more accurate labels
for the masked representation predictions generated by the online encoder.

We apply the masking strategy for audio representation and video representation with different
masking rates and lengths at each masking position. As shown in Table 4b, the optimal performance
of the model is achieved when 60% of the audio representations and 40% of the video represen-
tations are masked. We observe that masking a higher audio percentage than video yields better
results. This can be attributed to the fact that capturing the temporal dependencies in audio by
reconstructing the masked tokens with audio-visual interactions globally and locally is crucial for
achieving optimal model performance. In addition to the masking rate for each modality, the results
indicate that the performance remains satisfactory even with a masking length of up to 12 in the
audio representation at each masking position. It suggests that there is significant temporal redun-
dancy in audio features. Therefore, eliminating this redundancy and enhancing the model’s temporal
modeling capacity by reconstructing with multimodal interactions are necessary.

5 CONCLUSION

In this paper, we propose the Siamese Masked Interaction Learning (SMILE) framework for AVSR.
SMILE facilitates global interactions among audio-visual features and enables single-modal and
cross-modal local alignment. Experimental results on two public datasets LRS2 and LRS3 show
that our method can achieve state-of-the-art performance under different dataset scales and different
numbers of labeled data. Our model demonstrates significant performance improvements, specif-
ically in resource-constrained settings such as LRS2 (29 hours) and LRS3 (30 hours). In future
work, we will try other audio-visual multimodal tasks. Since the language model has demonstrated
tremendous power recently, we will explore the pre-trained model combined with three modalities
of audio, video and language in the future.
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ETHICS STATEMENT

All data utilized in this study are publicly available and have been obtained under the following
three licenses: TED terms of use, Creative Commons BY-NC-ND 4.0 license, and Creative Com-
mons Attribution 4.0 International License. We have conducted spot-checking and found that the
datasets exhibit gender balance and encompass a diverse range of races and ages. However, it should
be noted that the distribution of speakers in the data may not be representative of the global human
population, potentially introducing unintended biases related to societal, gender, racial, and other
factors. To ensure anonymity, the visuals in the paper exclusively focus on the mouth area of speak-
ers whenever they are depicted. It is important to exercise caution regarding unintentional biases
that may arise from this fact. The proposed method has potential applications in various domains,
including security and crime investigations. However, it is crucial to acknowledge the potential for
misuse, such as surveillance and wiretapping. We are committed to responsible distribution of our
code and model, taking special care to address any potential security and privacy concerns that may
arise.

REPRODUCIBILITY

To ensure reproducibility, we provide as many implementation details as possible in the main paper
as well as tables showing the hyperparameter values in the appendix. Moreover, we plan on making
the code and pre-trained models publicly available.
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A ABLATION RESULTS

Table 5: Ablations for the Siamese masked interaction learning architecture and the total loss weight.
* in ablation table (a) refers to padding the masked speech tokens with temporally aligned video
tokens.

(a) Masking types.

Padding types WER(%)
Zero 4.9
Noise 5.4

Correspondence* 5.2

(b) Masking strategies.

Loss WER(%)
Masked 4.9

All 5.1

(c) Prediction heads for loss.

Prediction heads WER(%)
Both 5.1

Online Network 5.0
None 4.9

(d) Loss weight parameters.

Alpha Beta WER
0.8 0.2 5.66
0.5 0.5 5.55
0.2 0.8 5.59

More ablations about Siamese masked interaction learning can be found in Table 5. We present
ablation studies involving diverse masking types, masking strategies, and the incorporation of pre-
diction heads for loss calculation. In Table 5a, we try different masking types and find that zero
padding shows the best performance. We hypothesize that zero padding helps maintain consistency
and smoothness in the multimodal training process. Table 5b, shows that the reconstruction loss
with only masked indexed tokens performs better than loss with all tokens, which may lead to a
trivial solution for the Siamese architecture. In Table 5c, we try to add prediction heads aside for
loss calculation. And we find that no prediction heads for the online network or the teacher net-
work perform best. In Table 5d, we investigated the impact of the weight relationship between two
different losses on the experimental results.

B AUDIO-VISUAL AND AUDIO-ONLY COMPARISON

Table 6: Audio-visual and audio-only comparison. For the audio-visual test and audio-only test
settings, the models are trained using the noise-pro set to 1 and noise-snr set to 0. And test the
model with audio-visual and audio-only conditions. For the Audio-only train&test setting, the model
is both trained and tested with only the audio modality.

Model Settings Clean WER Test noise snr Noise WER
-10 -5 0 5 10

Hsu et al. (2021)
Audio-visual test 6.42 34.69 19.06 11.65 8.51 6.98 16.18

Audio-only test 7.28 82.01 54.84 26.11 14.21 9.53 37.34

Audio-only train&test 7.79 71.75 44.5 20.52 12.28 8.87 31.58

Smile(Ours)
Audio-visual test 5.55 24.36 14.32 9.02 7.47 6.42 12.32

Audio-only test 11.02 79.56 53.52 30.78 19.45 14.42 39.55

Audio-only train&test 7.02 72.62 43.84 20.24 12.13 8.75 31.52
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C TRAINING SETTINGS

Table 7: Training settings.

Hyperparameter Tansformer-base value Transfomer-large value

Max tokens 1000 1000
Max steps 30k 18k

Learning rate scheduler tri stage tri stage
Warmup steps 10k 6k
Decay steps 20k 12k

Learning rate encoder 1e-4 1e-4
Learning rate decoder 1e-3 1e-3

Optimizer (β1,β2) (0.9,0.98) (0.9,0.98)
Encoder blocks 12 24

Encoder hidden size 768 1024
Encoder FFN hidden size 3072 4096
Encoder attention heads 12 16

Decoder blocks 6 12
Decoder hidden size 768 1024

Decoder FFN hidden size 372 4096
Decoder attention heads 4 8

D DATASETS

LRS2-BBC The Oxford-BBC Lip Reading Sentences 2 (Afouras et al., 2018a) dataset is a publicly
available English lip-reading dataset that is commonly used for research in the field of lip-reading
and audio-visual speech recognition. This dataset contains a large amount of video data extracted
from BBC television shows, which cover a wide range of topics and have diverse speakers. The
videos are transcribed at the sentence level, aligning every spoken word with the corresponding text.
LRS2 consists of approximately 224 hours of training data, including 195 hours of pretraining data
and 29 hours of trained data. One notable difference between the pretraining and training partitions
is that the video clips in the pretraining partition are not strictly trimmed. This means the video
duration in the pretraining partition may be longer than the corresponding sentence text.

LRS3-TED Lip Reading Sentence 3 dataset (Afouras et al., 2018b) has the same structure as the
LRS2-BBC dataset. It includes 433 hours of video extracted from TED and TEDx talks, along with
the corresponding subtitles and word alignment boundaries. Similarly, 433h of the pretraining data
is for high-resource training and 29h for low-resource training.

E RESULTS COMPARISONS

As shown in Fig. 5, we choose some results and provide the corresponding lip-movement visualiza-
tions. Note that we only chose some short audio-visual pairs to have a clearer look at the variations
in the lip shape and better understand how lip movements affect the accuracy of recognition re-
sults. The first two examples are cases where Siamese masked interaction learning can enhance the
utilization of lip-reading information by the model. The following two examples demonstrate that
combining the finetuned model with the Siamese masked interaction learning method can result in
excessive reliance on lip information. We can observe that mismatched lip movements with normal
pronunciation can lead to recognition errors. The last two examples indicate some challenging cases
where correct recognition is not achieved even with the inclusion of the Siamese masked interac-
tion learning method. However, we can still observe that integrating Siamese masked interaction
learning provides a certain level of corrective effect. We can see that incorporating the Siamese
masked interaction learning method allows the model to establish better connections between audio
and video, resulting in improved multimodal fusion.
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Figure 5: Transcriptions from different audio-visual speech recognition models. GT: ground-truth,
Proposed: SMILE training, Supervised: original model with decoder. Red: wrong words in the
output

Correct with Siamese masked interaction learning

(1)
GT: let’s just calm down
Supervised: let’s just come down
Proposed: let’s just calm down

(2)
GT: end of november
Supervised: in north november
Proposed: end of november

Wrong with Siamese masked interaction learning

(3)
GT: but you have to go
Supervised: but you have to go
Proposed: that you have to go

(4)
GT: harold in neighbours
Supervised: harold in neighbours
Proposed: harold and neighbours

Both wrongly recognized cases

(5)
GT: fame and fortune
Supervised: famous (and) fortune
Proposed: famous a fortune

(6)
GT: the shot of musket
Supervised: the shared of muscar
Proposed: the shirt of musket
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