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ABSTRACT

Code completion has become a central task, gaining significant attention with the
rise of large language model (LLM)-based tools in software engineering. Although
recent advances have greatly improved LLMs’ code completion abilities, evaluation
methods have not advanced equally. Most current benchmarks focus solely on
functional correctness of code completions based on given context, overlooking
models’ ability to follow user instructions during completion—a common scenario
in LLM-assisted programming. To address this limitation, we present the first
instruction-guided code completion benchmark, Controllable Code Completion
Benchmark (C3-Bench), comprising 2,195 carefully designed completion tasks.
Through comprehensive evaluation of over 40 mainstream LLMs across C3-Bench
and conventional benchmarks, we reveal substantial gaps in instruction-following
capabilities between open-source and advanced proprietary models during code
completion tasks. Moreover, we develop a straightforward data synthesis pipeline
that leverages Qwen2.5-Coder to generate high-quality instruction-completion
pairs for supervised fine-tuning (SFT). The resulting model, Qwen2.5-Coder-C?,
achieves state-of-the-art performance on C3-Bench. We further investigate the inter-
play between instruction-following and code completion correctness, finding that
performance on C3-Bench strongly correlates with results from coding arenas. All
code and datasets are available at https://anonymous.4open.science/r/Controllable-
Code-Completion-Benchmark-42A3.

1 INTRODUCTION

Code completion represents a specialized code generation task that requires models to generate
intermediate code segments while considering both left and right context (Bavarian et al.; 2022; |Allal
et al., 2023). Recent advances in commercial foundation models, including GPT series (OpenAll
2023)), Claude series (Anthropic, 2023a)), and Gemini series, have demonstrated remarkable capabili-
ties in code generation tasks. Concurrently, open-source code LLMs such as StarCoder (Lozhkov:
et al., [2024), DeepSeekCoder (Guo et al.,[2024), and Qwen-Coder (Hui et al.|[2024) have achieved
competitive performance compared to leading proprietary LLMs in code completion tasks. These
advancements have facilitated the emergence of numerous LLM-powered code applications, including
GitHub Copiloﬂ Curso;ﬂ and Devint’| which are significantly enhancing developers’ productivity
throughout the software development lifecycle.

When utilizing LLM-powered code applications like Cursor Composer and Copilot Chat, developers
frequently need models not only to generate middle code based on context but also to follow specific
implementation instructions. However, traditional benchmarks such as HumanEval (Chen et al.,
2021a), CrossCodeEval (Ding et al.,2023)), and SAFIM (Gong et al.|[2024) provide limited evaluation
of code completion capabilities, focusing solely on functional correctness through similarity metrics
or unit tests while overlooking models’ instruction-following abilities. With the increasing adoption
of LLM-based code completion tools in software development, the ability to follow user-specified
instructions has become increasingly critical for practical applications. There is thus a pressing
need for new evaluation methodologies that can effectively assess models’ ability to generate code

Thttps://github.com/features/copilot
Zhttps://www.cursor.com
*https://devin.ai


https://github.com/features/copilot
https://www.cursor.com
https://devin.ai

Under review as a conference paper at ICLR 2026

completions following user-specified fine-grained instructions, providing a more comprehensive
evaluation of code completion capabilities in practical development scenarios.

To effectively .e.\/e.llu.':}te models’ ins.truction- Code Completion Task Controllable Code
following capabilities in code completion tasks, Input Completion Task
we propose the concept of Controllable Code E e |
Completion (CCC). As illustrated in Figure[I] % | PrefxCode

ccC extfands t'radltlona.l code complet}on by in- % St Code g e
corporating diverse middle code variants and
fine-grained control instructions. This enhance- ® g")
ment enables comprehensive assessment of both 3 l o on g.» Fine-Grained
functional correctness and instruction adher- reeen
ence, providing a more complete evaluation of
code completion capabilities. A detailed ex-
ample is presented in Figure Building upon
this concept, we introduce C°-Bench (Control-
lable Code Completion benchmark), comprising
2,195 high-quality, instruction-guided test cases.
The benchmark implements two primary evalu-
ation mechanisms: Implementation-Control
Completion (ICC) evaluates models’ ability
to follow specific implementation requirements.
Test cases share identical code context but vary in implementation instructions, covering four cate-
gories: Structural Specification, Algorithmic Implementation, Control Flow, and Critical Parameter
Requirements. Scale-Control Completion (SCC) assesses models’ ability to generate code of speci-
fied scope, including Line Span, Multi-line, and Statement Block completions. Notably, C3-Bench
employs automated scoring mechanisms, ensuring objective evaluation without human intervention.
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Figure 1: Comparison between Controllable Code
Completion and traditional code completion tasks.
The former extends standard code context by in-
corporating fine-grained instructions to guide the
completion process.

We conduct comprehensive evaluations of over 40 mainstream general-purpose LLMs and code
LLMs on both C3-Bench and conventional code completion benchmarks, providing detailed
cross-benchmark performance analysis. The experimental results reveal widespread limitations
in instruction-following capabilities among LLMs, suggesting that their code completion capabilities
in real-world development scenarios may not match their performance on existing benchmarks.
Moreover, while open-source code LL.Ms achieve competitive performance with proprietary LLMs
on conventional benchmarks, C3-Bench reveals a substantial instruction-following performance gap
between them, indicating that open-source code models may overfit to existing benchmarks and lack
sufficient generalization capabilities in code completion tasks. Furthermore, performance on C3-
Bench strongly correlates with results from the Copilot Arena (Chi et al.| [2025)), underscoring its prac-
tical relevance. To enhance models’ instruction-following capabilities in code completion, we propose
an automated training data synthesis pipeline. This pipeline leverages Qwen2.5-Coder-32B-Instruct
to generate large-scale instruction-completion pairs from unsupervised GitHub repository code data
(Lozhkov et all 2024). Utilizing these synthesized training data, we develop Qwen2.5-Coder-C?,
which achieves state-of-the-art performance in controllable code completion while maintaining its
competence on conventional code completion benchmarks.

Our contributions are summarized as follows:

* We identify the limitations of existing benchmarks in comprehensively evaluating code
completion abilities and present the first instruction-guided benchmark, Controllable Code
Completion Benchmark, to assess both functional correctness and instruction-following
capabilities during code completion.

* We present the first comprehensive assessment of code completion capabilities, evaluating
over 40 general-purpose and code-specialized LLMs across multiple benchmarks. Our anal-
ysis reveals that current evaluation methods systematically overestimate models’ capabilities
in practical applications and identifies significant performance gaps between open-source
and proprietary models. These findings provide valuable insights and directions for future
research in enhancing code completion capabilities of language models.

* We develop a straightforward pipeline for synthesizing instruction-completion training pairs
and leverage these for supervised fine-tuning, producing Qwen2.5-Coder-C? with enhanced
instruction-following capabilities in code completion tasks, contributing to the advancement
of open-source code LLMs.
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Figure 2: Overview of the construction pipeline of C3-Bench.
2 C?® BENCHMARK

In this section, we introduce the overview of Controllable Code Completion Benchmark, with
considerations of definition (Section 2.I)), datasets (Section [2.2)) construction (Section 2.3)) and
evaluations (Section [2.4).

2.1 DEFINITION OF CONTROLLABLE CODE COMPLETION

Controllable Code Completion (C?) extends the traditional code completion paradigm. A conven-
tional code completion instance is defined as a tuple (P, S, G, T), where P (Prefix Code) denotes
left code context, S' (Suffix Code) represents right code context, G (Ground-Truth Middle Code)
indicates the expected middle code implementation, and 7" (Unit Test) comprises test cases validating
G. A CCC instance augments this framework by incorporating I (Fine-Grained Instruction),
which specifies implementation requirements, thus forming a tuple (P, S, G, T, I). Given a dataset
{(P;,S;,Gi,T;, I;)}, we train an LLM M to generate completions such that M (P;, S;, I;) — G;.
The evaluation encompasses two aspects: functional correctness, verified through 77, and instruction
adherence, assessed by measuring the alignment between the implementation approach in G; and the
requirements specified in ;. Based on the nature of instruction I, we categorize CCC tasks into two
distinct types: Implementation-Control Completion (ICC) and Scale-Control Completion (SCC).

Definition 2.1. Implementation-Control Completion (ICC) specifies detailed requirements for
middle code implementation, demanding models to generate complete and functionally correct code
that passes unit tests. The implementation requirements are categorized into four primary types: 1.
Structural Specification Requirements: Code organization and architecture specifications including
basic data structure definitions, composite data type design, class/interface structure specifications,
and data model design requirements. 2. Algorithmic Implementation Requirements: Specific
algorithmic approaches encompassing core algorithm flow, computational logic implementation, data
transformation processing, and optimization strategy requirements. 3. Control Flow Requirements:
Program execution patterns involving execution flow definition, branch logic handling, iteration struc-
ture design, and exception handling mechanisms. 4. Critical Parameter Requirements: Parameter
and variable management including core variable definition specifications, parameter passing rules,
state variable management, and configuration parameter settings.

Definition 2.2. Scale-Control Completion (SCC) implements fine-grained control over the scope
of middle code completion, wherein models are required to generate code segments of precisely
specified scale rather than complete functional implementations. Given its focus on structural
conformity rather than functional completeness, this category does not employ unit test validation.
The scale requirements are systematically categorized into three distinct types: 1. Line Span
Completion: pertains to the completion of partial code lines; 2. Multi-line Completion: mandates the
generation of a predetermined number of complete code lines; and 3. Statement Block Completion:
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encompasses the completion of specific control structures, including IF STATEMENT BLOCK),
FOR STATEMENT BLOCK, and WHILE STATEMENT BLOCK.

Table 1: Statistical analysis of C3-Bench dataset. Token counts (min/max/mean) are reported for each
component across ICC and SCC tasks.

Implementation Control Completion

Structural Algorithmic Control-Flow Parameter Average
|Samples| 111 502 547 126 -
Instruction Tokens 4/20/11 4/27/10 4/26/10 5/20/10 4/27/10
Prefix Tokens 50/1072/548 27/1447/413 38/1447/367 38/1252/455  27/1447/413
Middle Tokens 6/310/87 6/371/75 10/709/72 5/262/64 5/709/73
Suffix Tokens 1/529/31 1/615/55 1/1455/86 1/1132/154 1/1455/57

Scale Control Completion
Span Multi-Lines  Statement-Block Average
|Samples| 97 467 345 - -
Instruction Tokens 6/10/8 6/11/8 6/11/8 - 6/11/8
Prefix Tokens 342/1224/623  257/1593/654  133/2717/665 - - 133/2717/655
Middle Tokens 2/82/9 8/1083/102 2/192/34 - 2/1083/66
Suffix Tokens 5/93/37 3/211/46 3/1825/123 - 3/1825/77

2.2 DATASET STATISTICS

We present comprehensive dataset statistics in Table [1, C3-Bench comprises 2,195 high-quality
Python CCC instances, encompassing 1,286 ICC and 909 SCC task instances, respectively. All test
cases within the ICC task are accompanied by corresponding unit tests. The dataset and its associated
unit tests are derived from two widely-used, high-quality code evaluation datasets: HumanEval
(Chen et al}2021a)) and SAFIM (Gong et al., 2024). To enhance task complexity and diversity, we
have extracted extended middle code segments and developed multiple implementation variants,
each accompanied by carefully crafted detailed instructions. These enhancements facilitate a more
rigorous evaluation of LLMs’ capabilities in following diverse implementation requirements while
maintaining functional correctness.

2.3 BENCHMARK CONSTRUCTION

Figure illustrates the synthesis pipeline for constructing C3-Bench, which consists of four main
steps: (1) middle code extraction (2) equivalent implementation generation (3)data filtering and
instruction generation, which are described in detail below.

2.3.1 MIDDLE CODE EXTRACTION

The original HumanEval and SAFIM datasets primarily contain single-line implementations as
ground truth middle code, which limits the complexity and scope for instruction-guided comple-
tion. To address this limitation, we develop a systematic extraction approach utilizing Abstract
Syntax Trees (AST). ASTs represent Python code as hierarchical tree structures, with each node
corresponding to a specific code construct and capturing syntactic nesting relationships. Leveraging
tree-sitter—-languages ﬂ we parse code snippets and extract logically complete code blocks
that maintain semantic coherence, a crucial requirement for meaningful instruction-guided comple-
tion. Our extraction process comprises two steps: (1) Systematic traversal and manipulation of ASTs,
masking nodes at multiple levels to generate new middle code segments; (2) Additional masking of
3-5 consecutive code lines for 30% of the instances, specifically designated for SCC tasks.

2.3.2 EQUIVALENT IMPLEMENTATION GENERATION

For ICC tasks, we manually authored functionally equivalent implementations for the extracted middle
code segments, while SCC tasks directly utilize the segments from the previous step. We assembled

‘nttps://pypi.org/project/tree-sitter-languages/
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Figure 3: Training dataset analysis showing (a) sequence length distribution and (b) average compo-
nent composition (Context Code, Middle Code, and Instruction).

a team of three senior Python developers who systematically rewrote the middle code segments
extracted in the previous step to produce synonymous implementations. To ensure high quality
and correctness, the developers followed a rigorous authoring process, including cross-validation
and peer reviews, to verify that each new implementation was functionally identical to the original.
This meticulous process yielded over 6,000 distinct implementations, with more than 50% of cases
featuring at least three unique implementation variants for the same code context. Detailed examples
of these variants are presented in Appendix [F

2.3.3 DATA FILTERING AND INSTRUCTION GENERATION

In the final stage of our pipeline, we implement a rigorous quality control process to ensure bench-
mark reliability. Building upon instances that passed unit testing in the previous step, we apply
comprehensive filtering criteria: code readability adhering to PEPS8 standards, appropriate length
constraints (middle code < 30% of total context), significant implementation diversity, and algorith-
mic efficiency. For filtered instances, we employ distinct instruction generation approaches: ICC
tasks receive manually crafted implementation specifications, while SCC tasks utilize Claude3.5-
Sonnet-generated scope requirements. All instructions maintain precise expression and task-specific
focus (implementation methodology for ICC, scale specifications for SCC). The instruction quality
undergoes systematic validation through both expert review (five senior Python developers) and
automated consistency checking (Claude3.5-Sonnet), ensuring reliable assessment of models’ code
understanding capabilities. Detailed examples are presented in Appendix[F

2.4 EVALUATION METRICS

To accurately assess model performance on C3-Bench, we employ three complementary metrics across
Implementation-Control Completion (ICC) and Scale-Control Completion (SCC) tasks: (1) Pass@1
evaluates functional correctness in ICC tasks through unit testing (Chen et al.|[2021b)); (2) Instruction-
Following Rate (IF) measures adherence to specified requirements, assessed only for functionally
correct cases in ICC tasks; and (3) Edit Similarity (ES) serves as a supplementary static analysis
metric for preliminary validation of generation quality. The IF evaluation implements task-specific
approaches: Semantic Validation for ICC: We employ a LLM-based judging system with Claude3.5-
Sonnet as the primary judge (system prompt in Figure [§). The system’s reliability is validated
through extensive experiments, achieving 98% agreement with senior Python developers across 10
independent assessment rounds. Additionally, we provide Qwen2.5-32B-Instruct as a cost-effective
alternative for the research community. Structural Verification for SCC: We implement two
automated approaches: (1) AST-based node type matching for structural requirements and (2) length-
based verification for line count specifications, both leveraging t ree-sitter—-languages for
systematic code analysis.

3 QWEN2.5-CODER-C?

3.1 DATA SYNTHESIS

To address the scarcity of instruction-completion training pairs, we propose a straightforward au-
tomated synthesis pipeline utilizing Python code from GitHub repositories (Lozhkov et al.,[2024)).
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Figure 5: Cross-benchmark comparison of model rankings. Base rankings from C3-Bench (leftmost
column) are compared with relative ranking changes in existing benchmarks, indicated by color-

coded values (| : performance improvement, -: performance degradation, dash: model not

evaluated). Spearman correlation coefficients (r) quantify ranking consistency. CCC-32B represents
Qwen2.5-Coder-32B-C3.

Our pipeline follows a two-phase bootstrapping approach: (1)Initial Seed Generation: We leverage
Claude3.5-Sonnet to generate 1,000 high-quality instruction-completion pairs through middle code
extraction and instruction generation. These pairs serve as seed examples to guide subsequent large-
scale synthesis. (2)Automated Synthesis: Using the seed examples as few-shot demonstrations, we
employ Qwen2.5-Coder-32B-Instruct for automated middle code extraction and instruction genera-
tion. The extracted middle code segments undergo validation through pattern matching to ensure
accuracy. This simple yet effective approach enables the generation of large-scale, high-quality C?
task training data. Detailed statistic analysis of the synthesized data are presented in Figure 3]

3.2 MODEL TRAINING

We develop Qwen2.5-Coder-C3 by
fine-tuning both Qwen2.5-Coder-1.5B
and Qwen2.5-Coder-32B  variants
on 200,000 synthetic instruction-

—System
You are a code completion assistant. Your task is to generate
appropriate middle code that connects the given prefix and

suffix code segments and follows the specific instructions

completion pairs generated from provided.
GitHub data (Lozhkov et all, [2024) Format:
using Qwen2.5-C0der—32B -Instruct. To - Code in Markdown block with language tag

ensure evaluation integrity, we perform
10-gram decontamination between
the training data and C3-Bench. The
training process, implemented on 64
NVIDIA A100-80GB GPUs, employs

the Adam optimizer (Kingma & Bal

2015)) with a learning rate of 3 x 10— Figure 4: The ChatML format of C3-bench. <Instruction >
(50 warmup steps), a global batch size indicts the detail control information of completion. <Pre-

of 1024 samples, tensor parallel size of fix Code > and <Suffix Code> are the prefix and suffix
. code.

Instruction:  <Instruction>
The prefix code is:  <Prefix Code>

The suffix code is:  <Suffix Code>

2, and 4K tokens sequence truncation.
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Table 2: Performance comparison of different LLMs on C3-Bench. Bold and underlined values
denote the best and second-best performance metrics respectively within the same model size range.
The Average column represents the mean IF rate across tasks. FIM column indicates whether models
were evaluated using Fill-In-the-Middle special token format (v') or not (X).

Size Model FIM \ Implementation-Control Scale-Control Average
| ES pass@1 IF | ES IF | IF
DeepSeek-Coder-1.3B-Instruct X 24.4 30.7 6.1 14.3 5.0 5.5
2 DeepSeek-Coder-1.3B-Base v 35.6 26.9 142 26.5 4.4 9.3
2 Qwen2.5-Coder-3B-Instruct X 43.0 40.5 29.7 26.6 142 219
= Qwen2.5-Coder-3B v 423 44.8 26.3 30.1 10.1 18.2
5 Qwen2.5-Coder-1.5B v 38.3 34.0 19.0 26.4 3.6 11.3
- Qwen?2.5-Coder-1.5B-Instruct X 12.4 22.9 0.7 9.2 8.0 4.3
Qwen2.5-Coder-1.5B-C> X 4471323 3971168  29.61289 | 4041312  66.8158.8 48.2143.9
DeepSeek-Coder-6.7B-Instruct X 28.2 39.5 8.0 17.6 32 5.6
- DeepSeek-Coder-6.7B-Base v 40.7 41.8 27.1 29.9 49 182
3 DeepSeek-Coder-V2-Lite-Instruct X 24.3 41.0 8.7 13.5 3.0 5.8
§ DeepSeek-Coder-V2-Lite-Base v 40.9 43.7 275 28.9 4.1 15.8
+ Qwen2.5-Coder-7B-Instruct X 37.3 44.2 21.9 19.2 5.0 134
a Qwen2.5-Coder-7B 4 42.1 45.3 29.1 29.9 7.5 18.3
OpenCoder-8B-Instruct X 19.5 355 1.6 12.1 2.7 2.1
Yi-Coder-9B-Chat X 31.6 423 25.1 11.8 1.8 13.4
- StarCoder2-15B-Instruct-v0.1 X 29.2 36.6 4.2 13.7 1.6 2.6
2 StarCoder2-15B v 9.1 0.2 0.1 79 1.0 0.5
> Qwen2.5-Coder-14B-Instruct X 31.9 52.0 25.7 21.6 13.5 19.6
£ Qwen2.5-Coder-14B 4 45.8 56.1 36.2 30.3 8.7 22.5
b CodeStral-22B-v0.1 X 41.7 50.5 34.1 22.2 6.2 20.1
DeepSeek-Coder-33B-Instruct X 30.7 41.6 15.0 18.7 4.7 9.9
DeepSeek-Coder-33B-Base v 40.7 48.1 32.0 29.3 52 18.6
@ CodeLlama-34B-Instruct X 23.7 12.7 34 16.9 5.0 4.2
3 CodeLlama-70B-Instruct X 31.9 32.0 14.3 13.9 4.6 9.5
§ Qwen2.5-72B-Instruct X 233 47.0 9.8 21.8 9.4 9.6
+ DeepSeek-V3 X 34.2 61.7 473 24.4 20.2 33.8
g DeepSeek-V3-0324 X 29.5 59.4 53.0 24.8 20.2 36.6
o Qwen2.5-Coder-32B v 46.7 58.1 38.7 30.9 5.2 21.9
Qwen?2.5-Coder-32B-Instruct X 30.2 49.8 28.8 20.9 16.9 22.8
Qwen2.5-Coder-32B-C> X 49.3119.1 62.0112.2  52.5123.7 | 4421233  80.71638 | 66.6143.8
GPT-40-mini-2024-07-18 X 39.9 49.1 42.2 30.1 225 329
GPT-4-2024-06-13 X 44.0 58.9 483 322 12.5 30.4
GPT-40-2024-05-13 X 39.1 54.3 413 34.3 20.8 31.0
- GPT-40-2024-08-06 X 393 65.8 58.6 35.0 24.1 40.8
& GPT-40-2024-11-20 X 36.3 65.9 59.6 333 24.1 419
_11 ol-mini X 47.0 64.7 55.0 31.7 44.7 49.8
2 ol-preview X 45.1 70.1 57.7 322 48.9 53.0
8 01-2024-12-17 X 31.3 72.1 62.9 36.3 59.6 61.3
Claude3.5-Haiku X 29.7 54.2 40.7 27.2 26.4 33.6
Claude3.5-Sonnet-20241022 X 30.2 68.8 60.9 323 50.8 55.8
Gemini-1.5-Pro-Flash X 45.9 60.1 41.8 33.1 9.3 255
Gemini-2.0-Flash X 36.9 70.7 59.5 28.9 7.0 332

4 BENCHMARKING STATE-OF-THE-ART MODELS

4.1 PROMPT FORMAT

For all experiments in this work, we employ two distinct prompting strategies based on model
capabilities. For models supporting Fill-In-the-Middle (FIM) format (e.g., DeepSeek and Qwen),
we utilize special token prompts as described in [Hui et al.| (2024). For other models, primarily
chat-oriented ones, we employ the ChatML-formatted (OpenAll |2022) prompt template illustrated in
Figure[d] which explicitly specifies input requirements and expected output formats.

4.2 EXPERIMENTAL SETUP

We conduct comprehensive evaluations across 40+ models spanning diverse parameter scales, en-
compassing both general-purpose and code-specialized LLMs from open and proprietary sources.
The evaluated models include: General-purpose LLMs: GPT series (OpenAl, [2023), Claude series
(Anthropicl 2023b)), Gemini series (Team & etc.,[2024)), Qwen2.5-72B-Instruct (team & etc.,2025),
DeepSeek-V3 (DeepSeek-Al & etc.,[2024)), and ol-series. Code-specialized LL.Ms: Codel.lama
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(Roziere et al., [2023)), Qwen-Coder (Hui et al.| [2024), DeepSeek-Coder (Guo et al.l[2024), StarCoder
(Lozhkov et al.,[2024), Yi-Coder (01.AL 2024), Codestral (Mistral Al 2024}, and OpenCoder (Huang
et al.,|2024). We evaluate these models on multiple benchmarks: C3-Bench, CrossCodeEval (Ding
et al.,[2023))(CCEval), RepoEval (Zhang et al., [2023)), CrossCodeLongEval (Wu et al., 2024)(CC-
LongEval), ExecRepoBench (Yang et al., 2024), and SAFIM (Gong et al.,[2024)). Notably, this work
presents the first comprehensive assessment of advanced general-purpose models’ code completion
capabilities. For implementation, we employ vllm (Kwon et al.,|2023) for open-source model infer-
ence, using greedy sampling with a 1024 tokens length limit. For chat models, we extract code from
markdown blocks for evaluation.

4.3 PERFORMANCE ANALYSIS

We present comprehensive evaluation results through multiple perspectives: Table[2] shows detailed
metrics on C3-Bench, Figureillustrates cross-benchmark ranking comparisons, and Appendix @]
provides complete benchmark results in Tables [ [6] and Figure [I0] Notably, Qwen2.5-Coder-
32B-C3 achieves state-of-the-art performance on C-Bench, demonstrating substantial improvements
in instruction-following capabilities compared to Qwen2.5-Coder-32B-Instruct while maintaining
competitive performance across other benchmarks.Our analysis reveals several key findings:

Gap in Instruction Following: While lightweight open-source code LLMs outperform proprietary
models on similarity-based benchmarks (e.g., CrossCodeEval, RepoEval), they show significant
limitations in instruction-following capabilities on C3-Bench. This gap suggests potential challenges
in meeting real-world development requirements where specific implementation guidance is crucial.
Performance Variations Across Instruction Types: Figure [12|demonstrates how models respond
differently to implementation and scale-control instructions. Despite similar capabilities in following
implementation guidelines (e.g., Gemini-2.0-Flash and o1), models exhibit substantial variations in
scale-controlled code completion. Advanced LLMs including Gemini, DeepSeek-V3, and GPT-40
series struggle with scale-control tasks, indicating potential limitations in their training objectives.

Correlation with Advanced Capabilities: Model rankings on C3-Bench show strong correlation
with performance on tasks requiring extensive context understanding (ExecRepoBench) and user
experience evaluation (Chatbot Arena-Coding (Berkeley et al.| [2024))). This alignment suggests
a potential relationship between instruction-following ability and broader code comprehension
capabilities, offering directions for future research.

Effectiveness of Instruction Tuning: Our synthetic training data significantly improves models’
instruction-following capabilities. While Qwen2.5-Coder-C? achieves superior performance in SCC
tasks, surpassing proprietary LLMs, its ICC performance remains limited by the base model’s
capabilities, particularly in achieving high Pass@1 rates. These results provide valuable insights for
enhancing instruction-following capabilities in open-source code LLMs.

4.4 ABLATION STUDY OF FINE-GRAINED INSTRUCTIONS

In this section, we examine the effectiveness of instructions in C3-Bench through an ablation study on
ICC tasks. We evaluate five representative models: ol-preview, Claude3.5-Sonnet-1022, DeepSeek-
V3, Qwen2.5-Coder-32B-Instruct, and Qwen2.5-Coder-32B-C?, comparing their performance with
and without instruction guidance. As shown in Figure[6] removing instructions from query prompts
leads to significant degradation in /F while Pass@ ] remain largely unchanged, with some models
(e.g., ol-preview) showing slight improvements. These results demonstrate the substantial guiding
effect of fine-grained instructions in C3-Bench on code completion tasks, while also validating our
benchmark’s capability to evaluate models’ instruction-following abilities in code completion.

5 RELATED WORKS

Code Large Language Model. Recent years, Large Language Models (LLMs) have achieved
unprecedented advances in coding capabilities. Leading proprietary LLMs like GPT (OpenAll 2023)
and Claude (Anthropic} |2023a) demonstrate exceptional code generation and understanding abilities
across multiple programming tasks. Specialized code-centric LLMs (Scao et al.,[2022; [Li et al.| 2022}
Fried et al.l 2022} [Jiang et al., 2024} Nijkamp et al., 2023} [Wei et al., 2023 |Zhao et al.| 2024), like
CodeLlama (Roziere et al., [2023)), DeepSeek-Coder (Guo et al., [2024), OpenCoder (Huang et al.,
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Figure 6: Impact of instruction guidance on model performance. Pass@1 and IF-rate metrics are
compared across models under two conditions: with instructions and | without instructions .

2024), and Qwen-Coder (Hui et al.l 2024), excel in targeted tasks including code debugging
et al.| [2022)), translation (Jiao et al., 2023), and completion (Bavarian et al.,[2022). These models
leverage domain-specific architectures and are all trained on vast corpuses comprising billions of
code snippets to optimize programming-related performance. The evaluation landscape has evolved
through comprehensive benchmarks assessing code quality. HumanEval (Chen et al., [2021a) and
MBPP (Austin et al., 2021) provide foundational metrics, while EvalPlus (Liu et al.,[2023) introduces
enhanced testing protocols. Multilingual and multi-task frameworks including MultiPL-E (Cassano

et al] 2023), McEval 2024). MdEval 20245), and BigCodeBench

2024])) enable rigorous assessment across languages, paradigms, and task complexities.

Code Completion. Code completion tasks require models to generate missing code segments
by leveraging both left and right contexts, providing crucial assistance for software development,
several . Several benchmarks have been developed to evaluate models code completion capabilities.

HumanEval-FIM (Zheng et al.,[2023), DS-1000 (Lai et al., 2023)), and SAFIM (Gong et al., 2024)
focus on in-file completion scenarios, while CrossCodeEval 1D1ng et al.} 2023)), RepoEval (Zhang]

2023), CrossCodeLongEval 2024), and ExecRepoBench (Yang et al, assess
cross-file completion abilities considering broader repository contexts and dependencies. However,
existing benchmarks rely solely on execution-based metrics (e.g. Pass @k) or static analysis techniques
(e.g., exact match (EM) and edit similarity (ES)) to evaluate completion correctness, overlooking the
assessment of models’ controllability in code completion tasks.

Additional discussion of related research in LLM instruction-following capabilities and human
preference-based evaluation approaches is presented in detail in Appendix [A]

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we identify that conventional code completion evaluation metrics are incomplete,
particularly in assessing models’ instruction-following capabilities during code completion. To
address this limitation, we introduce C3-Bench, a fine-grained instruction-guided benchmark that
enables comprehensive evaluation of models’ code comprehension abilities. Our extensive evaluation
encompasses over 40 mainstream LLMs across multiple code completion benchmarks, providing
detailed performance analyses.

Our investigation yields several significant findings: (i) contemporary LLMs demonstrate notable
limitations in instruction-following capabilities during code completion, particularly in adhering to
code scale control instructions; (ii) while open-source code LLMs achieve comparable performance
to closed-source models on functional correctness benchmarks, they exhibit substantial gaps in
instruction-following capabilities; and (iii) our straightforward instruction-pair synthesis approach
effectively enhances models’ instruction-following abilities. This work contributes to advancing
open-source model development and provides valuable insights for future research in code completion.

Notwithstanding these contributions, several critical challenges warrant further investigation: Data
Diversity: While C3-Bench currently focuses on in-file Python tasks, future work should explore
multi-language scenarios and repository-level tasks with extended context. Base Model Capabilities:
Our findings indicate that base model capabilities significantly constrain ICC task performance,
suggesting an important direction for future research.
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7 ETHICS STATEMENT

The data used in the C3-Bench benchmark is sourced exclusively from public repositories that are
governed by licenses permitting their use in software and research. Our contributions fully adhere
to the terms of these licenses. We did not use any data beyond what is publicly available and
downloadable from Github. Our work did not involve the participation of any human subjects; we
did not use crowdsourcing or recruit any external human workers for any part of the C3-Bench
benchmark’s creation. All work, including the environment configuration, data curation, synthetic
data generation, and the writing of this paper, was conducted entirely by the author team.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a complete codebase with detailed instructions
for replicating the C3-Bench benchmark results and the Qwen2.5-Coder-C? training process. The
evaluation framework, data synthesis methodology, and training hyperparameters are detailed in
Section[2.4]and Section[3.2] To further facilitate community engagement and standardized evaluation,
we plan to release a PyPI package and host a public leaderboard for the benchmark.

9 LLM USAGE

The use of Large Language Models (LLMs) in this work was limited to providing minor assistance
with the writing and editing of the manuscript.
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A ADDITIONAL RELATED WORK

Instruction-Following Capabilities of LLMs. Recent studies have extensively explored LLMs’
instruction-following capabilities in code generation tasks. |Yan et al.|(2025) introduced CodelF for
evaluating instruction adherence across diverse coding scenarios, while H et al.|(2022) and |P et al.
(2023) leveraged reinforcement learning to enhance code generation quality. |Liu et al.|(2024a)) further
contributed through Conifer, a dataset designed to improve complex instruction-following in LLMs.
Despite these advances in general code generation instruction-following, the specific challenges
of instruction-guided code completion remain largely unexplored, representing a significant gap in
current research.

Human Preference-Based Evaluation. Recent advancements in arena-based frameworks have
provided novel insights into LLM capabilities. (Chi et al.| (2024) evaluates models in dynamic multi-
agent environments, while Berkeley et al.| (2024)) implements human preference-based pairwise
comparisons for assessment, though concerns have been raised regarding data access inequality and
potential training biases (Singh et al., [2025). In code generation specifically, |Chi et al.| (2025) evalu-
ates LLMs in real-world scenarios, revealing significant disparities between traditional benchmark
performance and practical effectiveness. While these approaches effectively capture user preferences
and real-world coding capabilities, their reliance on online deployment and user interaction data limits
widespread applicability, particularly for evaluating open-source models. This limitation underscores
the need for lightweight, generalizable benchmarks that can robustly assess models’ code context
understanding and completion capabilities without requiring extensive online infrastructure.

B EXAMPLE OF CONTROLLABLE CODE COMPLETION TASK

This figure 7] demonstrates a Controllable Code Completion task focusing on the implementation of
the Shortest Path Faster Algorithm (SPFA). The figure is structured in three main components: the
initial code context, followed by two distinct fine-grained implementation instructions. The code
context presents a partially implemented SPFA function framework, including memory allocation for
essential data structures such as distance array, visit markers, and predecessor tracking. The function
signature indicates its application to weighted directed graphs, with parameters for start and end
vertices along with the graph structure. Two fine-grained instructions are provided, each specifying
different optimization strategies for SPFA:

 The first instruction requires implementation of Small Label First (SLF) optimization
utilizing a deque data structure. This approach prioritizes vertices with smaller distance
values by inserting them at the front of the deque, while vertices with larger distance values
are appended to the back.

* The second instruction, accompanied by detailed pseudocode, outlines the Large Label Last
(LLL) optimization strategy using a queue. This implementation maintains queue statistics
(node count and distance sum) and implements a mechanism to reposition nodes whose
distances exceed the queue’s average to the rear, thereby optimizing the processing order.

C LLM AS JUDGE

The figure [§]illustrates a structured judgment prompt designed for Large Language Models (LLMs)
serving as automated evaluators in ICC tasks. The prompt establishes a systematic framework for
binary assessment of code implementations, emphasizing two primary evaluation criteria: instruction
adherence and ground truth alignment. The evaluation protocol is formalized through a structured
output format ((JUDGMENT][/JUDGMENTT] and [REASON][/REASON] tags), enabling consistent
and interpretable assessments. This prompt architecture specifically guides LLMs to focus on critical
implementation aspects, including function definitions, data structures, algorithm steps, and control
flow patterns, while maintaining a clear binary decision mechanism for determining implementation
correctness. Such a structured approach facilitates reliable automated evaluation in code completion
tasks, where precise assessment of implementation fidelity is crucial.
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Code Completion Task

Complete the Implemention code of the SPFA (Shortest
Path Faster Algorithm) for finding shortest paths in a
weighted directed graph

Code Context
void spfa_algorithm(int start, int end, Graph *G)
{

int n = G->vexnum; int *dist = new int[n];

bool *visit = new bool[n];int *prev = new int[n];
memset(dist, INF, n*sizeof(int));

memset(visit, @, n*sizeof(bool));

e Prefix Context

R Missing Middle Code

if (dist[t] == INF)
cout << "No path between the nodes.
else {
cout << "Shortest path found with length "
<< dist[t] << ":" << endl;
int *path = new int[n];

<< endl;

int top = i = g
while (q !
top++; path[top] = q;
a = pre[ql;}

for (; top > @; top--)
cout << G->vexname[path[top]] <<
cout << G->vexname[path[@]] << endl;
delete [Jpath; }
delete []dist;
delete [Jvisit;
delete [Jpre; }

[CH

Suffix Context

Fine-Grained Instruction 1
Implement SPFA with Small Label First optimization using
a deque, where nodes with smaller distance values are
inserted at the front while larger ones at the back.
// SLF:Small Label First optimization using deque
deque<int> Q;
visit[s] = 1;
dist[s] = 0;
Q.push_back(s);

while (!Q.empty())
{

int cur = Q.front(); Q.pop_front();
visit[cur] = 0;

/ Proc
for(p

ss adjacent nodes

->N[cur].next; p; p = p->next) {

// Standard relaxation

if (dist[p->index] > dist[cur] + p->weight) {
dist[p->index] = dist[cur] + p->weight;
pre[p->index] = cur;

/ SLF core: Comp with front node

// to dete > insertion position

if (lvisit[p->index]) {

visit[p->index] = 1;

if(1Q.empty() &&

dist[p->index] < dist[Q.front()])

/ Smaller distance » front

Q.push_front(p->index);
else

// Larger distance » back

Q.push_back(p->index);

}

} Implementation 1

Fine-Grained Instruction 2

Implement SPFA with Large Label Last optimization using
a queue, where nodes with distance values exceeding the
queue's average are repositioned to the back.

// LLL:Large Label Last optimization using queue
queue<int> Q;
int num =

/ Track number of nodes in queue

/ Track sum of distances in queue
int sum ist[s];visit[s] = 1;
dist[s] = 0;

Q.push(s);

while (!Q.empty()) {
int cur = Q.frontQ);
// LLL col Move nodes with

// above-average distance to back
while (num * dist[cur] > sum) {
Q.popQ); Q.push(eur);
cur = Q.frontQ;

}

Q.pop();

visit[cur] = 0;

num--; sum ist[cur]; // Update statistics
//Process adjacent nodes with standard relaxation
for(p = G->N[cur].next; p; p = p->next) {

if (dist[p->index] > dist[cur] + p->weight) {
dist[p->index] = dist[cur] + p->weight;
pre[p->index] = cur;
if (lvisit[p->index]) {
visit[p->index] = 1;
Q.push(p->index);
// Maintain queue statistics
num++; sum += dist[p->index];

Implementation 2

Figure 7: Example of Controllable Code Completion task requiring SPFA implementation with
different optimization strategies (Small Label First vs. Large Label Last) based on distinct fine-

grained instructions.

f Judgment Prompt )
As a code evaluator, assess whether the provided implementation follows the instruction and matches the implementation
approach of the ground truth.

Focus on:
1) Instruction adherence: Does the implementation use the specified method/approach and contain all necessary components?
This includes:
- Required function/class definitions
- Necessary data structures
- Key algorithm steps
- Essential control flow structures
- Critical variables and parameters
2) Ground truth alignment: Does it follow similar implementation strategy and logic flow as the ground truth solution?
Provide your evaluation in the following format:
[JUDGMENT]yes/no[/JUDGMENT]
[REASON]Brief explanation of your judgment (1-2 sentences)[/REASON]
Where:
- "yes": Implementation follows the instruction and matches the core approach of the ground truth
- "no": Implementation uses fundamentally different methods or structures from what was required
. J

Figure 8: The illustration of judgment system prompt
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€

Two Key Requirements:

DIFFERENT: Each version must use a significantly different approach
IDENTICAL: All versions must work EXACTLY like the original code

Basic Rules:

* Put each version in [IMPi][/IMPi] tags

* Make at least 3 versions

* Must pass the same test cases

* Must handle the same edge cases

* Must have same input/output behavior

For Each Version:

* Use a unique implementation approach

* Maintain 100% functional equivalence

* Keep same error handling

* Keep same performance guarantees

Quality Check:

* Different: Clear differences in implementation style
* Same: All functional aspects must be identical
* Test: Should work the same in all situations

* Verify: Double-check all edge cases work

—____implementation generation Prompt
You are a code helper. Your task is to create VERY DIFFERENT but FUNCTIONALLY IDENTICAL versions of a given code piece.

~

Figure 9: The illustration of implementation generation system prompt
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D CobDE COMPLETION PERFORMANCE ON CONVENTIONAL BENCHMARKS

D.1 PERFORMANCE ON CROSSCODEEVAL

The experimental results on CrossCodeEval showed in Table [3] demonstrate several noteworthy
patterns across open-source and closed-source models. Among open-source models, we observe a
general correlation between model size and performance, with larger models typically achieving better
results. Notably, Qwen2.5-Coder-32B achieves state-of-the-art performance with an average EM
score of 57.1The performance comparison between open-source and closed-source models reveals
an interesting trend. Despite the extensive resources behind closed-source models, top-performing
open-source models like Qwen2.5-Coder series demonstrate competitive or superior performance.
For instance, Qwen2.5-Coder-32B outperforms all tested closed-source models, including GPT-4,
Claude, and Gemini, across most metrics. This empirical evidence suggests that recent advances
in open-source language models have achieved performance parity with, or even exceeded, their
closed-source counterparts in code completion tasks.

Table 3: Performance of different approaches on the CrossCodeEval Tasks.

Size Model \ Python Java TypeScript C# Average
\ EM ES EM ES EM ES EM ES EM ES
Qwen2.5-Coder-0.5B 227 662 21.7 668 219 672 321 754 246 689
DS-Coder-1.3B-Base 334 726 349 745 367 764 46.6 835 379 768
Qwen2.5-Coder-1.5B 355 743 379 765 37.6 774 498 845 402 782
StarCoder2-3B 11.0 627 116 69.7 88 758 82 712 99 698
Qwen2.5-Coder-3B 384 76.1 428 798 41.6 805 56.7 87.1 449 809
- StarCoder2-7B 109 63.1 83 71.0 6.7 768 73 721 8.3 708
3 DS-Coder-6.7B-Base 41.1 792 399 80.1 463 824 550 869 456 82.1
= DS-Coder-V2-Lite-Base 41.8 783 46.1 812 446 814 587 879 478 822
§ CodeQwenl.5-7B 40.7 778 47.0 816 458 822 597 876 483 823
3 Qwen2.5-Coder-7B 424 786 48.1 826 468 834 597 879 493 83.1
x StarCoder2-15B 282 705 267 710 247 763 252 742 262 73.0
é Qwen2.5-Coder-14B 477 817 547 857 529 860 664 91.1 554 86.1
o CodeStral-22B 493 827 441 71.1 51.0 850 537 836 495 80.6
DS-Coder-33B-Base 442 804 46,5 827 492 840 552 87.8 488 83.7
Qwen?2.5-Coder-32B 492 821 564 866 549 870 68.0 91.6 57.1 86.8
DeepSeek-V3 37.1 699 428 715 332 669 428 727 39.0 702
DeepSeek-V3-0324 414 772 489 805 388 775 48.6 845 444 799
Qwen2.5-Coder-32B-C? 474 81.1 56.5 866 542 864 655 90.8 559 862
E"j GPT-40-2024-08-06 343 73.1 431 784 36.8 763 46.7 81.0 402 772
< GPT-40-2024-11-20 294 688 373 747 320 730 382 737 342 725
'g 01-2024-12-17 149 670 336 773 306 767 28.6 80.6 269 754
§ Claude3.5-Sonnet-20241022 | 452 79.6 493 843 428 812 525 841 475 823
O Gemini-2.0-Flash 387 69.0 482 779 415 769 47.0 79.0 438 757

D.2 PERFORMANCE ON REPOEVAL

On the RepoEval benchmark (Table[d)), Qwen2.5-Coder-32B achieves state-of-the-art performance
among all tested models, both open-source and closed-source, with an average EM score of 51.6%
and ES score of 78.5%. Qwen2.5-Coder-32B-C? maintains comparable performance with an average
EM of 51.8% and ES of 77.0%, demonstrating clear advantages over leading closed-source models
like Claude3.5-Sonnet and GPT-40

D.3 PERFORMANCE ON CROSSCODELONGEVAL

On the CrossCodeLongEval benchmark (Table E]), Qwen2.5-Coder-32B achieves the best overall
performance among all models, with an average EM score of 36.9% and ES score of 66.4%. This
performance slightly exceeds that of leading closed-source models, including Claude3.5-Sonnet (EM:
32.4%, ES: 63.2%) and other commercial APIs.
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Table 4: Performance of different approaches on the RepoEval Tasks.

Size Model | Line Function API Average
‘ EM ES EM ES EM ES EM ES
Qwen2.5-Coder-0.5B 442 726 46 480 356 685 28.1 630
DS-Coder-1.3B-Base 587 804 62 488 458 750 369 68.1
Qwen2.5-Coder-1.5B 598 826 10.6 524 51.0 80.1 405 717
StarCoder2-3B 223 674 3.1 51.6 206 70.1 153 63.0
Qwen2.5-Coder-3B 649 850 123 558 547 813 440 740
% StarCoder2-7B 195 676 40 535 191 728 142 64.7
B DS-Coder-6.7B-Base 63.1 855 99 533 523 81.7 417 735
= DS-Coder-V2-Lite-Base 66.5 854 10.8 539 53.1 81.3 434 735
§ CodeQwenl.5-7B 59.7 815 48 443 46.1 775 369 678
3 Qwen2.5-Coder-7B 673 86.1 132 552 584 839 463 75.1
b5 StarCoder2-15B 309 625 55 437 217 603 194 555
é Qwen2.5-Coder-14B 743 90.1 141 595 634 873 50.6 79.0
o CodeStral-22B 409 517 99 492 248 408 30.0 46.6
DS-Coder-33B-Base 66.5 86.6 103 529 542 835 437 743
Qwen2.5-Coder-32B 76.1 90.5 13.6 575 651 87.6 516 785
DeepSeek-V3 472 63.1 185 493 476 689 377 604
DeepSeek-V3-0324 604 775 19.6 492 575 78.0 458 68.2
Qwen2.5-Coder-32B-C? 74.8 90.2 13.0 524 677 883 51.8 77.0
E GPT-40-2024-08-06 50.7 69.1 13.6 429 473 726 372 615
< GPT-40-2024-11-20 375 570 5.1 385 346 60.8 257 521
'QO') 01-2024-12-17 575 719 202 558 558 774 445 684
§ Claude3.5-Sonnet-20241022 | 61.9 80.1 22.0 55.1 60.0 81.1 48.0 72.1
©) Gemini-2.0-Flash 59.0 745 160 467 581 804 444 672
Code-Llama 7B
Code-Llama 34B
Code-Llama 70B
StarCoder2 3B
StarCoder2 15B
DS-Coder 6.7B
DS-Coder 33B
DS-Coder-V2-Lite
Qwen2.5-Coder 1.5B
Qwen2.5-Coder 7B
Qwen2.5-Coder 32B
DeepSeek-V3
DeepSeek-V3-0324
Qwen2.5-Coder-32B-CCC
GPT-40-2024-08-06
GPT-40-2024-11-20
01-2024-12-17
Claude3.5-Sonnet-20241022
Gemini-2.0-Flash
0 12.5 25 375 50
Pass@1 (%)

D.4 PERFORMANCE ON SAFIM

Figure 10: Performance of different approaches on the ExecRepoBench Tasks.

On the SAFIM benchmark (Table[6), Qwen2.5-Coder-32B achieves the highest average pass rate
of 71.2% across all evaluated models. The model demonstrates strong performance across all three
categories: Algorithm (61.1%), Control (74.6%), and API (77.7%). Its C3-tuned variant maintains
competitive performance with an average pass rate of 69.5%, significantly outperforming closed-
source models like Gemini-2.0-Flash (64.4%) and Claude3.5-Sonnet (63.6%).
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Table 5: Performance of different approaches on the CrossCodeLongEval Tasks.

Size Model ‘ Chunk Completion  Function completion Average
‘ EM ES EM ES EM ES
Qwen2.5-Coder-0.5B 29.8 64.2 9.5 38.0 19.7 51.1
DS-Coder-1.3B-Base 40.6 71.9 9.6 394 25.1 557
Qwen2.5-Coder-1.5B 44.2 73.9 12.4 44 .4 283 592
StarCoder2-3B 18.5 62.0 10.2 39.2 143 50.6
Qwen2.5-Coder-3B 46.6 76.1 13.5 46.4 30.0 61.3
- StarCoder2-7B 194 63.6 10.2 40.0 148 51.8
3 DS-Coder-6.7B-Base 48.4 78.2 10.7 42.4 29.6 60.3
= DS-Coder-V2-Lite-Base 49.5 77.1 11.4 43.1 304 60.1
§ CodeQwenl.5-7B 48.2 717.5 6.4 30.6 273 541
3 Qwen2.5-Coder-7B 524 79.3 14.4 48.4 334 63.8
(g StarCoder2-15B 21.3 53.7 7.8 30.5 146 42.1
g Qwen2.5-Coder-14B 56.9 81.8 154 49.8 36.1 65.8
o CodeStral-22B 56.7 81.8 10.5 37.8 33.6 59.8
DS-Coder-33B-Base 52.0 79.9 11.9 443 32.0 62.1
Qwen2.5-Coder-32B 57.3 82.1 16.4 50.8 369 664
DeepSeek-V3 35.1 57.3 15.7 49.8 254 535
DeepSeck-V3-0324 44.8 69.4 16.9 50.9 309 602
Qwen2.5-Coder-32B-C? 47.6 69.1 10.5 52.0 29.1 60.5
E GPT-40-2024-08-06 44.8 71.2 15.3 53.3 30.1 622
< GPT-40-2024-11-20 41.9 67.9 10.8 48.4 264 582
'g 01-2024-12-17 39.9 62.7 13.3 50.5 26.6 56.6
§ Claude3.5-Sonnet-20241022 | 47.2 72.7 17.5 53.7 324 632
@ Gemini-2.0-Flash 42.4 65.6 15.6 48.0 29.0 56.8

E ADDITIONAL EXPERIMENTAL ANALYSIS

E.1 MODEL PREFERENCE ANALYSIS

In this section, we analyze the generation preferences of different models in code completion tasks. By
calculating token counts for both completed middle code and additional explanations (Commentary)
on C3-Bench, as shown in Figure we observe distinct patterns among models. Claude Series and
DeepSeek Series models tend to generate more commentary beyond code completion, while GPT
Series, ol-Series, and models like Qwen2.5-Coder-14B-Instruct and Qwen2.5-Coder-3B-Instruct
focus solely on completion without additional commentary.
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500

B Code [ Commentary

count of middle code completions, Commentary represents the token count of additional explanations

Figure 11: Token Counts of different model generations on C3-Bench. Code represents the token
and descriptions provided by models.

[l Qwen2.5-Coder-32B-CCC

B Gemini-2.0-Flash 01-2024-12-17

[l Claude3.5-Sonnet

90
72
54
36
18

ICC-IF ICC-ES ICC-Pass@1 SCC-ES SCC-IF

AVG-IF

Figure 12: Comparison between model performance on ICC and SCC tasks.
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Table 6: Performance of different approaches on the SAFIM Tasks.

Size Model | SAFIM
| Algo.  Control API  Average
Qwen2.5-Coder-0.5B 24.3 37.9 49.7 37.3
DS-Coder-1.3B-Base 39.3 52.6 62.6 51.5
Qwen2.5-Coder-1.5B 37.3 39.6 66.5 47.8
StarCoder2-3B 19.9 29.1 67.4 38.8
- Qwen2.5-Coder-3B 45.7 59.0 68.1 57.6
s StarCoder2-7B 38.5 38.7 70.6 49.3
§ DS-Coder-6.7B-Base 52.8 64.9 71.6 63.1
© DS-Coder-V2-Lite-Base 56.3 69.9 75.5 67.2
S CodeQwenl.5-7B 373 583 719 558
A Qwen?2.5-Coder-7B 50.5 58.1 73.9 60.8
g StarCoder2-15B 36.9 55.9 70.3 54.4
& Qwen?2.5-Coder-14B 57.1 70.8 75.8 67.9
DS-Coder-33B-Base 59.1 69.8 74.2 67.7
Qwen?2.5-Coder-32B 61.1 74.6 71.7 71.2
DeepSeek-V3 60.5 55.8 64.1 60.1
DeepSeek-V3-0324 533 68.1 65.3 62.2
Qwen2.5-Coder-32B-C> 60.9 73.4 68.3 67.5
.Q—H’: GPT-40-2024-08-06 47.9 64.2 54.9 55.7
< GPT-40-2024-11-20 59.5 65.2 58.6 61.1
’05) 01-2024-12-17 62.6 67.1 65.9 65.2
8 Claude3.5-Sonnet-20241022 | 60.6 61.3 68.9 63.6
@] Gemini-2.0-Flash 62.2 66.8 64.1 64.4
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——Implementation Control Completion Prefix Code

def DFS(start):
nodes=set()
stack=[start]
while stack:
parent=stack.pop()
if(not visited[parent]):
nodes.add(parent)
visited[parent]=True
for child in graph[parent]:
if (not visited[child]):
stack.append(child)
else:
if child not in nodes and child!=s:
return child
else:
if parent not in nodes and parent !=s:
return parent
return -1

Figure 13: Prefix Code of the ICC task example

F C3?-BENCH EXAMPLES

F.1 IMPLEMENTATION CONTROL COMPLETION EXAMPLE

In this section, we introduce an example ICC task from C3-Bench. This example focuses on finding
two different paths in a labyrinth from a start node to an end node, where paths can only share the
start and end points. The task requires inputs of n vertices, m edges, and a starting point s, and outputs
either "Possible" with two valid paths or "Impossible".

The task structure consists of multiple components. The prefix code, illustrated in Figure[I3] contains
a helper function for initial DFS exploration to identify potential end points. The suffix code,
shown in Figure|14] manages input processing, result validation, and output formatting. The middle
implementation can be achieved through three distinct approaches: an iterative DFS using a stack
(Figure[I3)), a recursive DFS with parent pointers (Figure[16)), and a BFS implementation using a
queue (Figure [I7). These implementations, while functionally equivalent, demonstrate different
approaches to path finding and parent tracking. The iterative DFS maintains explicit stack control,
the recursive DFS offers cleaner code structure, and the BFS provides shortest path guarantees, each
with its own trade-offs in terms of memory usage and code clarity.

F.2 ScALE CONTROL COMPLETION EXAMPLE

We present an example of a Scale-Control Completion (SCC) task from C3-Bench. As shown in
Figure [I8]and Figure[T9] The task specifically requires generating only a single for statement block,
with no additional code allowed. Figure [20[ shows the system instruction and the implementation
that strictly adheres to this scope constraint, demonstrating precise control over code generation
granularity.
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def get_path(node):
path=[]
while node!=-1:
path.append(node)
node=parent_list[node]
path.reverse()
return path
n,m,s=map(int,input().split()
s-=1
graph=[[] for _ in range(n)]
for _ in range(m):
a,b=map(int,input().split()
a-=1
b-=1
graph[a].append(b)
visited=[False]*n
visited[s]=True

Implementation Control Completion Suffix Code

for child in graphls]:

end=DFS(child)
if end!=-1:
visited = [False] * n
parent_list=[-1]"n
visited[s]=True
ans=[]
for child in graphls]:
if DFS_get_path(child):
ans.append([s]+get_path(end))
if len(ans)==2:
break
print("Possible")
foriin ans:
print(len(i))
print(*[j+1 forjin i)
break

else:

print("Impossible")

Figure 14: Suffix Code of the ICC task example

Use iterative DFS with a stack to find path from start to end node

def DFS_get_path(start):

stack=[start]
parent_list[start]=-1
while stack:

parent=stack.pop()
if parent==end:
visited[end]=False
return True
if(not visited[parent]):
visited[parent]=True
for child in graph[parent]:
if (not visited[child]):
stack.append(child)
parent_list[child]=parent
return False

Figure 15: Instruction and Implementation code 1 of the ICC task example
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Use recursive DFS to find paths from start to end node,
maintaining parent pointers for path reconstruction

def DFS_get_path(start):
if start == end:
visited[end] = False
return True

visited[start] = True
for child in graph[start]:
if not visited[child]:
parent_list[child] = start
if DFS_get_path(child):
return True
return False

Figure 16: Instruction and Implementation code 2 of the ICC task example

Use BFS with a queue to find shortest paths from start to end node,
storing parent pointers for path reconstruction

def BFS_get_path(start):
queue = [(start, -1)]
while queue:
curr, prev = queue.pop(0)
if curr == end:
visited[end] = False
return True

if not visited[curr]:
visited[curr] = True
parent_list[curr] = prev
for child in graph[curr]:
if not visited[child]:
queue.append((child, curr))
return False

Figure 17: Instruction and Implementation code 3 of the ICC task example
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Scale Control Completion Prefix Code
clean_data = data.dropnal)

# Feature and target selection

# Assuming 'EnergyConsumption’ is the target variable and others are features
target_variable = 'EnergyConsumption’

features = clean_data.columns.drop(target_variable)

# Feature selection using Scikit-learn

# Selecting the top 3 features that have the highest correlation with the target variable
k_best_features = 3

selector = SelectKBest(score_func=f_regression, k=k_best_features)

selected_features = selector.fit_transform(clean_data[features], clean_data[target_variable])
selected_feature_names = clean_data[features].columns[selector.get_support()]

print("\nSelected features:")
print(selected_feature_names)

# Splitting the data into training and testing sets
# Using TimeSeriesSplit for cross-validation
n_splits = 3

tscv = TimeSeriesSplit(n_splits=n_splits)

for train_index, test_index in tscv.split(selected_features):

Figure 18: Prefix Code of the SCC task example

Scale Control Completion Suffix Code

# Fitting a Vector Autoregression (VAR) model
model = sm.tsa.VAR(clean_data)
results = model.fit(tmaxlags=5, ic="aic')

# Displaying the summary of the VAR model results
print("\nVAR Model Results:")
print(results.summary())

Figure 19: Suffix Code of the SCC task example
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Just Complete the for statement block in the prefix code.

X_train, X_test = selected_features[train_index], selected_features[test_index]
y_train, y_test = clean_data[target_variable].values[train_index], clean_data[target_variable].values|test_index]

# Fitting a linear regression model using Scikit-learn
Ir_model = LinearRegression()
Ir_model.fit(X_train, y_train)

# Predicting the target variable for the test set
y_pred = Ir_model.predict(X_test)

# Calculating the Mean Squared Error (MSE) for the model
mse = mean_squared_error(y_test, y_pred)
print(f"\nMean Squared Error for split {tscv.split}: {mse}")

Figure 20: Instruction and Implementation code of the SCC task example
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