
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

C3-BENCH: EVALUATING AND ACHIEVING CONTROL-
LABLE CODE COMPLETION IN CODE LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

Code completion has become a central task, gaining significant attention with the
rise of large language model (LLM)-based tools in software engineering. Although
recent advances have greatly improved LLMs’ code completion abilities, evaluation
methods have not advanced equally. Most current benchmarks focus solely on
functional correctness of code completions based on given context, overlooking
models’ ability to follow user instructions during completion—a common scenario
in LLM-assisted programming. To address this limitation, we present the first
instruction-guided code completion benchmark, Controllable Code Completion
Benchmark (C3-Bench), comprising 2,195 carefully designed completion tasks.
Through comprehensive evaluation of over 40 mainstream LLMs across C3-Bench
and conventional benchmarks, we reveal substantial gaps in instruction-following
capabilities between open-source and advanced proprietary models during code
completion tasks. Moreover, we develop a straightforward data synthesis pipeline
that leverages Qwen2.5-Coder to generate high-quality instruction-completion
pairs for supervised fine-tuning (SFT). The resulting model, Qwen2.5-Coder-C3,
achieves state-of-the-art performance on C3-Bench. We further investigate the inter-
play between instruction-following and code completion correctness, finding that
performance on C3-Bench strongly correlates with results from coding arenas. All
code and datasets are available at https://anonymous.4open.science/r/Controllable-
Code-Completion-Benchmark-42A3.

1 INTRODUCTION

Code completion represents a specialized code generation task that requires models to generate
intermediate code segments while considering both left and right context (Bavarian et al., 2022; Allal
et al., 2023). Recent advances in commercial foundation models, including GPT series (OpenAI,
2023), Claude series (Anthropic, 2023a), and Gemini series, have demonstrated remarkable capabili-
ties in code generation tasks. Concurrently, open-source code LLMs such as StarCoder (Lozhkov
et al., 2024), DeepSeekCoder (Guo et al., 2024), and Qwen-Coder (Hui et al., 2024) have achieved
competitive performance compared to leading proprietary LLMs in code completion tasks. These
advancements have facilitated the emergence of numerous LLM-powered code applications, including
GitHub Copilot1, Cursor2, and Devin3, which are significantly enhancing developers’ productivity
throughout the software development lifecycle.

When utilizing LLM-powered code applications like Cursor Composer and Copilot Chat, developers
frequently need models not only to generate middle code based on context but also to follow specific
implementation instructions. However, traditional benchmarks such as HumanEval (Chen et al.,
2021a), CrossCodeEval (Ding et al., 2023), and SAFIM (Gong et al., 2024) provide limited evaluation
of code completion capabilities, focusing solely on functional correctness through similarity metrics
or unit tests while overlooking models’ instruction-following abilities. With the increasing adoption
of LLM-based code completion tools in software development, the ability to follow user-specified
instructions has become increasingly critical for practical applications. There is thus a pressing
need for new evaluation methodologies that can effectively assess models’ ability to generate code

1https://github.com/features/copilot
2https://www.cursor.com
3https://devin.ai

1

https://github.com/features/copilot
https://www.cursor.com
https://devin.ai

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

completions following user-specified fine-grained instructions, providing a more comprehensive
evaluation of code completion capabilities in practical development scenarios.

Code Completion Task

Prefix Code

Suffix Code

Input

Output

Middle Code Solution

Controllable Code
Completion Task

Prefix Code

Suffix Code

Middle Code
Implementation 1

Middle Code
Implementation 2

Fine-Grained
Instruction 1

Fine-Grained
Instruction 2

Generate
Completion

Figure 1: Comparison between Controllable Code
Completion and traditional code completion tasks.
The former extends standard code context by in-
corporating fine-grained instructions to guide the
completion process.

To effectively evaluate models’ instruction-
following capabilities in code completion tasks,
we propose the concept of Controllable Code
Completion (CCC). As illustrated in Figure 1,
CCC extends traditional code completion by in-
corporating diverse middle code variants and
fine-grained control instructions. This enhance-
ment enables comprehensive assessment of both
functional correctness and instruction adher-
ence, providing a more complete evaluation of
code completion capabilities. A detailed ex-
ample is presented in Figure 7. Building upon
this concept, we introduce C3-Bench (Control-
lable Code Completion benchmark), comprising
2,195 high-quality, instruction-guided test cases.
The benchmark implements two primary evalu-
ation mechanisms: Implementation-Control
Completion (ICC) evaluates models’ ability
to follow specific implementation requirements.
Test cases share identical code context but vary in implementation instructions, covering four cate-
gories: Structural Specification, Algorithmic Implementation, Control Flow, and Critical Parameter
Requirements. Scale-Control Completion (SCC) assesses models’ ability to generate code of speci-
fied scope, including Line Span, Multi-line, and Statement Block completions. Notably, C3-Bench
employs automated scoring mechanisms, ensuring objective evaluation without human intervention.

We conduct comprehensive evaluations of over 40 mainstream general-purpose LLMs and code
LLMs on both C3-Bench and conventional code completion benchmarks, providing detailed
cross-benchmark performance analysis. The experimental results reveal widespread limitations
in instruction-following capabilities among LLMs, suggesting that their code completion capabilities
in real-world development scenarios may not match their performance on existing benchmarks.
Moreover, while open-source code LLMs achieve competitive performance with proprietary LLMs
on conventional benchmarks, C3-Bench reveals a substantial instruction-following performance gap
between them, indicating that open-source code models may overfit to existing benchmarks and lack
sufficient generalization capabilities in code completion tasks. Furthermore, performance on C3-
Bench strongly correlates with results from the Copilot Arena (Chi et al., 2025), underscoring its prac-
tical relevance. To enhance models’ instruction-following capabilities in code completion, we propose
an automated training data synthesis pipeline. This pipeline leverages Qwen2.5-Coder-32B-Instruct
to generate large-scale instruction-completion pairs from unsupervised GitHub repository code data
(Lozhkov et al., 2024). Utilizing these synthesized training data, we develop Qwen2.5-Coder-C3,
which achieves state-of-the-art performance in controllable code completion while maintaining its
competence on conventional code completion benchmarks.

Our contributions are summarized as follows:
• We identify the limitations of existing benchmarks in comprehensively evaluating code

completion abilities and present the first instruction-guided benchmark, Controllable Code
Completion Benchmark, to assess both functional correctness and instruction-following
capabilities during code completion.

• We present the first comprehensive assessment of code completion capabilities, evaluating
over 40 general-purpose and code-specialized LLMs across multiple benchmarks. Our anal-
ysis reveals that current evaluation methods systematically overestimate models’ capabilities
in practical applications and identifies significant performance gaps between open-source
and proprietary models. These findings provide valuable insights and directions for future
research in enhancing code completion capabilities of language models.

• We develop a straightforward pipeline for synthesizing instruction-completion training pairs
and leverage these for supervised fine-tuning, producing Qwen2.5-Coder-C3 with enhanced
instruction-following capabilities in code completion tasks, contributing to the advancement
of open-source code LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Step 1

Parse the
code

Source
Code

Abstract
Syntax 

Tree

Code 
Completion 

Task

Random 
Node 

Masking

Origin 
Task

Generate

Step 2

Execution 
and 

Debugging

Step 3

equivalent
implementations

New
Tasks

Data filtering

High
Quality
Tasks

Instruction 
Generation

Instruction completion pairs

Figure 2: Overview of the construction pipeline of C3-Bench.

2 C3 BENCHMARK

In this section, we introduce the overview of Controllable Code Completion Benchmark, with
considerations of definition (Section 2.1), datasets (Section 2.2) construction (Section 2.3) and
evaluations (Section 2.4).

2.1 DEFINITION OF CONTROLLABLE CODE COMPLETION

Controllable Code Completion (C3) extends the traditional code completion paradigm. A conven-
tional code completion instance is defined as a tuple (P, S,G, T), where P (Prefix Code) denotes
left code context, S (Suffix Code) represents right code context, G (Ground-Truth Middle Code)
indicates the expected middle code implementation, and T (Unit Test) comprises test cases validating
G. A CCC instance augments this framework by incorporating I (Fine-Grained Instruction),
which specifies implementation requirements, thus forming a tuple (P, S,G, T, I). Given a dataset
{(Pi, Si, Gi, Ti, Ii)}, we train an LLM M to generate completions such that M(Pi, Si, Ii) → Gi.
The evaluation encompasses two aspects: functional correctness, verified through Ti, and instruction
adherence, assessed by measuring the alignment between the implementation approach in Gi and the
requirements specified in Ii. Based on the nature of instruction I , we categorize CCC tasks into two
distinct types: Implementation-Control Completion (ICC) and Scale-Control Completion (SCC).
Definition 2.1. Implementation-Control Completion (ICC) specifies detailed requirements for
middle code implementation, demanding models to generate complete and functionally correct code
that passes unit tests. The implementation requirements are categorized into four primary types: 1.
Structural Specification Requirements: Code organization and architecture specifications including
basic data structure definitions, composite data type design, class/interface structure specifications,
and data model design requirements. 2. Algorithmic Implementation Requirements: Specific
algorithmic approaches encompassing core algorithm flow, computational logic implementation, data
transformation processing, and optimization strategy requirements. 3. Control Flow Requirements:
Program execution patterns involving execution flow definition, branch logic handling, iteration struc-
ture design, and exception handling mechanisms. 4. Critical Parameter Requirements: Parameter
and variable management including core variable definition specifications, parameter passing rules,
state variable management, and configuration parameter settings.

Definition 2.2. Scale-Control Completion (SCC) implements fine-grained control over the scope
of middle code completion, wherein models are required to generate code segments of precisely
specified scale rather than complete functional implementations. Given its focus on structural
conformity rather than functional completeness, this category does not employ unit test validation.
The scale requirements are systematically categorized into three distinct types: 1. Line Span
Completion: pertains to the completion of partial code lines; 2. Multi-line Completion: mandates the
generation of a predetermined number of complete code lines; and 3. Statement Block Completion:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

encompasses the completion of specific control structures, including IF STATEMENT BLOCK ,
FOR STATEMENT BLOCK , and WHILE STATEMENT BLOCK .

Table 1: Statistical analysis of C3-Bench dataset. Token counts (min/max/mean) are reported for each
component across ICC and SCC tasks.

Implementation Control Completion

Structural Algorithmic Control-Flow Parameter Average

|Samples| 111 502 547 126 -
Instruction Tokens 4/20/11 4/27/10 4/26/10 5/20/10 4/27/10
Prefix Tokens 50/1072/548 27/1447/413 38/1447/367 38/1252/455 27/1447/413
Middle Tokens 6/310/87 6/371/75 10/709/72 5/262/64 5/709/73
Suffix Tokens 1/529/31 1/615/55 1/1455/86 1/1132/154 1/1455/57

Scale Control Completion

Span Multi-Lines Statement-Block Average

|Samples| 97 467 345 - -
Instruction Tokens 6/10/8 6/11/8 6/11/8 - 6/11/8
Prefix Tokens 342/1224/623 257/1593/654 133/2717/665 - - 133/2717/655
Middle Tokens 2/82/9 8/1083/102 2/192/34 - 2/1083/66
Suffix Tokens 5/93/37 3/211/46 3/1825/123 - 3/1825/77

2.2 DATASET STATISTICS

We present comprehensive dataset statistics in Table 1. C3-Bench comprises 2,195 high-quality
Python CCC instances, encompassing 1,286 ICC and 909 SCC task instances, respectively. All test
cases within the ICC task are accompanied by corresponding unit tests. The dataset and its associated
unit tests are derived from two widely-used, high-quality code evaluation datasets: HumanEval
(Chen et al., 2021a) and SAFIM (Gong et al., 2024). To enhance task complexity and diversity, we
have extracted extended middle code segments and developed multiple implementation variants,
each accompanied by carefully crafted detailed instructions. These enhancements facilitate a more
rigorous evaluation of LLMs’ capabilities in following diverse implementation requirements while
maintaining functional correctness.

2.3 BENCHMARK CONSTRUCTION

Figure 2 illustrates the synthesis pipeline for constructing C3-Bench, which consists of four main
steps: (1) middle code extraction (2) equivalent implementation generation (3)data filtering and
instruction generation, which are described in detail below.

2.3.1 MIDDLE CODE EXTRACTION

The original HumanEval and SAFIM datasets primarily contain single-line implementations as
ground truth middle code, which limits the complexity and scope for instruction-guided comple-
tion. To address this limitation, we develop a systematic extraction approach utilizing Abstract
Syntax Trees (AST). ASTs represent Python code as hierarchical tree structures, with each node
corresponding to a specific code construct and capturing syntactic nesting relationships. Leveraging
tree-sitter-languages 4, we parse code snippets and extract logically complete code blocks
that maintain semantic coherence, a crucial requirement for meaningful instruction-guided comple-
tion. Our extraction process comprises two steps: (1) Systematic traversal and manipulation of ASTs,
masking nodes at multiple levels to generate new middle code segments; (2) Additional masking of
3-5 consecutive code lines for 30% of the instances, specifically designated for SCC tasks.

2.3.2 EQUIVALENT IMPLEMENTATION GENERATION

For ICC tasks, we manually authored functionally equivalent implementations for the extracted middle
code segments, while SCC tasks directly utilize the segments from the previous step. We assembled

4https://pypi.org/project/tree-sitter-languages/

4

https://pypi.org/project/tree-sitter-languages/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Length Distribution

Pe
rc

en
ta

ge
 (%

)

0

7.5

15

22.5

30

Sequence Length (tokens)

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

>20
00

Code Context
Middle Code
Instruction

3%
17%

80%

(b) Composition

Figure 3: Training dataset analysis showing (a) sequence length distribution and (b) average compo-
nent composition (Context Code, Middle Code, and Instruction).

a team of three senior Python developers who systematically rewrote the middle code segments
extracted in the previous step to produce synonymous implementations. To ensure high quality
and correctness, the developers followed a rigorous authoring process, including cross-validation
and peer reviews, to verify that each new implementation was functionally identical to the original.
This meticulous process yielded over 6,000 distinct implementations, with more than 50% of cases
featuring at least three unique implementation variants for the same code context. Detailed examples
of these variants are presented in Appendix F.
2.3.3 DATA FILTERING AND INSTRUCTION GENERATION

In the final stage of our pipeline, we implement a rigorous quality control process to ensure bench-
mark reliability. Building upon instances that passed unit testing in the previous step, we apply
comprehensive filtering criteria: code readability adhering to PEP8 standards, appropriate length
constraints (middle code ≤ 30% of total context), significant implementation diversity, and algorith-
mic efficiency. For filtered instances, we employ distinct instruction generation approaches: ICC
tasks receive manually crafted implementation specifications, while SCC tasks utilize Claude3.5-
Sonnet-generated scope requirements. All instructions maintain precise expression and task-specific
focus (implementation methodology for ICC, scale specifications for SCC). The instruction quality
undergoes systematic validation through both expert review (five senior Python developers) and
automated consistency checking (Claude3.5-Sonnet), ensuring reliable assessment of models’ code
understanding capabilities. Detailed examples are presented in Appendix F.

2.4 EVALUATION METRICS

To accurately assess model performance on C3-Bench, we employ three complementary metrics across
Implementation-Control Completion (ICC) and Scale-Control Completion (SCC) tasks: (1) Pass@1
evaluates functional correctness in ICC tasks through unit testing (Chen et al., 2021b); (2) Instruction-
Following Rate (IF) measures adherence to specified requirements, assessed only for functionally
correct cases in ICC tasks; and (3) Edit Similarity (ES) serves as a supplementary static analysis
metric for preliminary validation of generation quality. The IF evaluation implements task-specific
approaches: Semantic Validation for ICC: We employ a LLM-based judging system with Claude3.5-
Sonnet as the primary judge (system prompt in Figure 8). The system’s reliability is validated
through extensive experiments, achieving 98% agreement with senior Python developers across 10
independent assessment rounds. Additionally, we provide Qwen2.5-32B-Instruct as a cost-effective
alternative for the research community. Structural Verification for SCC: We implement two
automated approaches: (1) AST-based node type matching for structural requirements and (2) length-
based verification for line count specifications, both leveraging tree-sitter-languages for
systematic code analysis.

3 QWEN2.5-CODER-C3

3.1 DATA SYNTHESIS

To address the scarcity of instruction-completion training pairs, we propose a straightforward au-
tomated synthesis pipeline utilizing Python code from GitHub repositories (Lozhkov et al., 2024).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CCC-32B 1 -1 -1 -4 -5 -3 -

o1-2024-12-17 2 -7 -2 -5 0 -3 +1

Claude3.5-Sonnet 3 -2 0 0 +2 +1 +2

GPT-4o-1120 4 -4 -5 -5 0 -5 -1

DeepSeek-V3 5 -2 -2 -3 0 -2 +2

Gemini-2.0-Flash 5 -1 0 -1 +3 -1 +2

Qwen2.5-Coder-32B 7 +6 +6 +6 -1 +6 +1

Codestral-22B-V0.1 8 +5 0 +6 -1 0 -

DS-Coder-33B 9 +5 +3 +5 +2 +6 +2

r=-0.28 r=0.40 r=-0.38 r=0.60 r=-0.04 r=0.92

CCC-B
en

ch

CCEva
l

Rep
oE

va
l

CCLo
ng

Eva
l

Exe
cR

ep
oB

en
ch

SAFIM
Cop

ilo
t A

ren
a

 (C

od
ing

)

Figure 5: Cross-benchmark comparison of model rankings. Base rankings from C3-Bench (leftmost
column) are compared with relative ranking changes in existing benchmarks, indicated by color-
coded values (green : performance improvement, red : performance degradation, dash: model not
evaluated). Spearman correlation coefficients (r) quantify ranking consistency. CCC-32B represents
Qwen2.5-Coder-32B-C3.

Our pipeline follows a two-phase bootstrapping approach: (1)Initial Seed Generation: We leverage
Claude3.5-Sonnet to generate 1,000 high-quality instruction-completion pairs through middle code
extraction and instruction generation. These pairs serve as seed examples to guide subsequent large-
scale synthesis. (2)Automated Synthesis: Using the seed examples as few-shot demonstrations, we
employ Qwen2.5-Coder-32B-Instruct for automated middle code extraction and instruction genera-
tion. The extracted middle code segments undergo validation through pattern matching to ensure
accuracy. This simple yet effective approach enables the generation of large-scale, high-quality C3

task training data. Detailed statistic analysis of the synthesized data are presented in Figure 3.

3.2 MODEL TRAINING

System

User

You are a code completion assistant. Your task is to generate

appropriate middle code that connects the given prefix and

suffix code segments and follows the specific instructions

provided.

Format:

- Code in Markdown block with language tag

Instruction: <Instruction>

The prefix code is: <Prefix Code>

The suffix code is: <Suffix Code>

Figure 4: The ChatML format of C3-bench. <Instruction >
indicts the detail control information of completion. <Pre-
fix Code > and <Suffix Code> are the prefix and suffix
code.

We develop Qwen2.5-Coder-C3 by
fine-tuning both Qwen2.5-Coder-1.5B
and Qwen2.5-Coder-32B variants
on 200,000 synthetic instruction-
completion pairs generated from
GitHub data (Lozhkov et al., 2024)
using Qwen2.5-Coder-32B-Instruct. To
ensure evaluation integrity, we perform
10-gram decontamination between
the training data and C3-Bench. The
training process, implemented on 64
NVIDIA A100-80GB GPUs, employs
the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 3 × 10−5

(50 warmup steps), a global batch size
of 1024 samples, tensor parallel size of
2, and 4K tokens sequence truncation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different LLMs on C3-Bench. Bold and underlined values
denote the best and second-best performance metrics respectively within the same model size range.
The Average column represents the mean IF rate across tasks. FIM column indicates whether models
were evaluated using Fill-In-the-Middle special token format (✓) or not (✗).

Size Model FIM Implementation-Control Scale-Control Average

ES pass@1 IF ES IF IF

1B
+

M
od

el
s

DeepSeek-Coder-1.3B-Instruct ✗ 24.4 30.7 6.1 14.3 5.0 5.5
DeepSeek-Coder-1.3B-Base ✓ 35.6 26.9 14.2 26.5 4.4 9.3
Qwen2.5-Coder-3B-Instruct ✗ 43.0 40.5 29.7 26.6 14.2 21.9
Qwen2.5-Coder-3B ✓ 42.3 44.8 26.3 30.1 10.1 18.2
Qwen2.5-Coder-1.5B ✓ 38.3 34.0 19.0 26.4 3.6 11.3
Qwen2.5-Coder-1.5B-Instruct ✗ 12.4 22.9 0.7 9.2 8.0 4.3
Qwen2.5-Coder-1.5B-C3 ✗ 44.7↑32.3 39.7↑16.8 29.6↑28.9 40.4↑31.2 66.8↑58.8 48.2↑43.9

6B
+

M
od

el
s

DeepSeek-Coder-6.7B-Instruct ✗ 28.2 39.5 8.0 17.6 3.2 5.6
DeepSeek-Coder-6.7B-Base ✓ 40.7 41.8 27.1 29.9 4.9 18.2
DeepSeek-Coder-V2-Lite-Instruct ✗ 24.3 41.0 8.7 13.5 3.0 5.8
DeepSeek-Coder-V2-Lite-Base ✓ 40.9 43.7 27.5 28.9 4.1 15.8
Qwen2.5-Coder-7B-Instruct ✗ 37.3 44.2 21.9 19.2 5.0 13.4
Qwen2.5-Coder-7B ✓ 42.1 45.3 29.1 29.9 7.5 18.3
OpenCoder-8B-Instruct ✗ 19.5 35.5 1.6 12.1 2.7 2.1
Yi-Coder-9B-Chat ✗ 31.6 42.3 25.1 11.8 1.8 13.4

14
B

+
M

od
el

s StarCoder2-15B-Instruct-v0.1 ✗ 29.2 36.6 4.2 13.7 1.6 2.6
StarCoder2-15B ✓ 9.1 0.2 0.1 7.9 1.0 0.5
Qwen2.5-Coder-14B-Instruct ✗ 31.9 52.0 25.7 21.6 13.5 19.6
Qwen2.5-Coder-14B ✓ 45.8 56.1 36.2 30.3 8.7 22.5
CodeStral-22B-v0.1 ✗ 41.7 50.5 34.1 22.2 6.2 20.1

20
B

+
M

od
el

s

DeepSeek-Coder-33B-Instruct ✗ 30.7 41.6 15.0 18.7 4.7 9.9
DeepSeek-Coder-33B-Base ✓ 40.7 48.1 32.0 29.3 5.2 18.6
CodeLlama-34B-Instruct ✗ 23.7 12.7 3.4 16.9 5.0 4.2
CodeLlama-70B-Instruct ✗ 31.9 32.0 14.3 13.9 4.6 9.5
Qwen2.5-72B-Instruct ✗ 23.3 47.0 9.8 21.8 9.4 9.6
DeepSeek-V3 ✗ 34.2 61.7 47.3 24.4 20.2 33.8
DeepSeek-V3-0324 ✗ 29.5 59.4 53.0 24.8 20.2 36.6
Qwen2.5-Coder-32B ✓ 46.7 58.1 38.7 30.9 5.2 21.9
Qwen2.5-Coder-32B-Instruct ✗ 30.2 49.8 28.8 20.9 16.9 22.8
Qwen2.5-Coder-32B-C3 ✗ 49.3↑19.1 62.0↑12.2 52.5↑23.7 44.2↑23.3 80.7↑63.8 66.6↑43.8

C
lo

se
d-

A
PI

s

GPT-4o-mini-2024-07-18 ✗ 39.9 49.1 42.2 30.1 22.5 32.9
GPT-4-2024-06-13 ✗ 44.0 58.9 48.3 32.2 12.5 30.4
GPT-4o-2024-05-13 ✗ 39.1 54.3 41.3 34.3 20.8 31.0
GPT-4o-2024-08-06 ✗ 39.3 65.8 58.6 35.0 24.1 40.8
GPT-4o-2024-11-20 ✗ 36.3 65.9 59.6 33.3 24.1 41.9
o1-mini ✗ 47.0 64.7 55.0 31.7 44.7 49.8
o1-preview ✗ 45.1 70.1 57.7 32.2 48.9 53.0
o1-2024-12-17 ✗ 31.3 72.1 62.9 36.3 59.6 61.3
Claude3.5-Haiku ✗ 29.7 54.2 40.7 27.2 26.4 33.6
Claude3.5-Sonnet-20241022 ✗ 30.2 68.8 60.9 32.3 50.8 55.8
Gemini-1.5-Pro-Flash ✗ 45.9 60.1 41.8 33.1 9.3 25.5
Gemini-2.0-Flash ✗ 36.9 70.7 59.5 28.9 7.0 33.2

4 BENCHMARKING STATE-OF-THE-ART MODELS

4.1 PROMPT FORMAT

For all experiments in this work, we employ two distinct prompting strategies based on model
capabilities. For models supporting Fill-In-the-Middle (FIM) format (e.g., DeepSeek and Qwen),
we utilize special token prompts as described in Hui et al. (2024). For other models, primarily
chat-oriented ones, we employ the ChatML-formatted (OpenAI, 2022) prompt template illustrated in
Figure 4, which explicitly specifies input requirements and expected output formats.

4.2 EXPERIMENTAL SETUP

We conduct comprehensive evaluations across 40+ models spanning diverse parameter scales, en-
compassing both general-purpose and code-specialized LLMs from open and proprietary sources.
The evaluated models include: General-purpose LLMs: GPT series (OpenAI, 2023), Claude series
(Anthropic, 2023b), Gemini series (Team & etc., 2024), Qwen2.5-72B-Instruct (team & etc., 2025),
DeepSeek-V3 (DeepSeek-AI & etc., 2024), and o1-series. Code-specialized LLMs: CodeLlama

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(Rozière et al., 2023), Qwen-Coder (Hui et al., 2024), DeepSeek-Coder (Guo et al., 2024), StarCoder
(Lozhkov et al., 2024), Yi-Coder (01.AI, 2024), Codestral (MistralAI, 2024), and OpenCoder (Huang
et al., 2024). We evaluate these models on multiple benchmarks: C3-Bench, CrossCodeEval (Ding
et al., 2023)(CCEval), RepoEval (Zhang et al., 2023), CrossCodeLongEval (Wu et al., 2024)(CC-
LongEval), ExecRepoBench (Yang et al., 2024), and SAFIM (Gong et al., 2024). Notably, this work
presents the first comprehensive assessment of advanced general-purpose models’ code completion
capabilities. For implementation, we employ vllm (Kwon et al., 2023) for open-source model infer-
ence, using greedy sampling with a 1024 tokens length limit. For chat models, we extract code from
markdown blocks for evaluation.

4.3 PERFORMANCE ANALYSIS

We present comprehensive evaluation results through multiple perspectives: Table 2 shows detailed
metrics on C3-Bench, Figure 5 illustrates cross-benchmark ranking comparisons, and Appendix D
provides complete benchmark results in Tables 3, 4, 5, 6 and Figure 10. Notably, Qwen2.5-Coder-
32B-C3 achieves state-of-the-art performance on C3-Bench, demonstrating substantial improvements
in instruction-following capabilities compared to Qwen2.5-Coder-32B-Instruct while maintaining
competitive performance across other benchmarks.Our analysis reveals several key findings:

Gap in Instruction Following: While lightweight open-source code LLMs outperform proprietary
models on similarity-based benchmarks (e.g., CrossCodeEval, RepoEval), they show significant
limitations in instruction-following capabilities on C3-Bench. This gap suggests potential challenges
in meeting real-world development requirements where specific implementation guidance is crucial.
Performance Variations Across Instruction Types: Figure 12 demonstrates how models respond
differently to implementation and scale-control instructions. Despite similar capabilities in following
implementation guidelines (e.g., Gemini-2.0-Flash and o1), models exhibit substantial variations in
scale-controlled code completion. Advanced LLMs including Gemini, DeepSeek-V3, and GPT-4o
series struggle with scale-control tasks, indicating potential limitations in their training objectives.

Correlation with Advanced Capabilities: Model rankings on C3-Bench show strong correlation
with performance on tasks requiring extensive context understanding (ExecRepoBench) and user
experience evaluation (Chatbot Arena-Coding (Berkeley et al., 2024)). This alignment suggests
a potential relationship between instruction-following ability and broader code comprehension
capabilities, offering directions for future research.

Effectiveness of Instruction Tuning: Our synthetic training data significantly improves models’
instruction-following capabilities. While Qwen2.5-Coder-C3 achieves superior performance in SCC
tasks, surpassing proprietary LLMs, its ICC performance remains limited by the base model’s
capabilities, particularly in achieving high Pass@1 rates. These results provide valuable insights for
enhancing instruction-following capabilities in open-source code LLMs.

4.4 ABLATION STUDY OF FINE-GRAINED INSTRUCTIONS

In this section, we examine the effectiveness of instructions in C3-Bench through an ablation study on
ICC tasks. We evaluate five representative models: o1-preview, Claude3.5-Sonnet-1022, DeepSeek-
V3, Qwen2.5-Coder-32B-Instruct, and Qwen2.5-Coder-32B-C3, comparing their performance with
and without instruction guidance. As shown in Figure 6, removing instructions from query prompts
leads to significant degradation in IF while Pass@1 remain largely unchanged, with some models
(e.g., o1-preview) showing slight improvements. These results demonstrate the substantial guiding
effect of fine-grained instructions in C3-Bench on code completion tasks, while also validating our
benchmark’s capability to evaluate models’ instruction-following abilities in code completion.

5 RELATED WORKS

Code Large Language Model. Recent years, Large Language Models (LLMs) have achieved
unprecedented advances in coding capabilities. Leading proprietary LLMs like GPT (OpenAI, 2023)
and Claude (Anthropic, 2023a) demonstrate exceptional code generation and understanding abilities
across multiple programming tasks. Specialized code-centric LLMs (Scao et al., 2022; Li et al., 2022;
Fried et al., 2022; Jiang et al., 2024; Nijkamp et al., 2023; Wei et al., 2023; Zhao et al., 2024), like
CodeLlama (Rozière et al., 2023), DeepSeek-Coder (Guo et al., 2024), OpenCoder (Huang et al.,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10

24

38

52

66

80

IF-rate with Instruction IF-rate w/o Instruction Pass@1 with Instruction Pass@1 w/o Instruction

O1-preview Claude3.5-Sonnet-1022 Deepseek-V3 Qwen2.5-Coder-32B-Instruct Qwen2.5-Coder-32B-CCC

Figure 6: Impact of instruction guidance on model performance. Pass@1 and IF-rate metrics are
compared across models under two conditions: with instructions and without instructions .

2024), and Qwen-Coder (Hui et al., 2024), excel in targeted tasks including code debugging (Huq
et al., 2022), translation (Jiao et al., 2023), and completion (Bavarian et al., 2022). These models
leverage domain-specific architectures and are all trained on vast corpuses comprising billions of
code snippets to optimize programming-related performance. The evaluation landscape has evolved
through comprehensive benchmarks assessing code quality. HumanEval (Chen et al., 2021a) and
MBPP (Austin et al., 2021) provide foundational metrics, while EvalPlus (Liu et al., 2023) introduces
enhanced testing protocols. Multilingual and multi-task frameworks including MultiPL-E (Cassano
et al., 2023), McEval (Chai et al., 2024), MdEval (Liu et al., 2024b), and BigCodeBench (Zhuo et al.,
2024) enable rigorous assessment across languages, paradigms, and task complexities.

Code Completion. Code completion tasks require models to generate missing code segments
by leveraging both left and right contexts, providing crucial assistance for software development,
several . Several benchmarks have been developed to evaluate models’ code completion capabilities.
HumanEval-FIM (Zheng et al., 2023), DS-1000 (Lai et al., 2023), and SAFIM (Gong et al., 2024)
focus on in-file completion scenarios, while CrossCodeEval (Ding et al., 2023), RepoEval (Zhang
et al., 2023), CrossCodeLongEval (Wu et al., 2024), and ExecRepoBench (Yang et al., 2024) assess
cross-file completion abilities considering broader repository contexts and dependencies. However,
existing benchmarks rely solely on execution-based metrics (e.g. Pass@k) or static analysis techniques
(e.g., exact match (EM) and edit similarity (ES)) to evaluate completion correctness, overlooking the
assessment of models’ controllability in code completion tasks.

Additional discussion of related research in LLM instruction-following capabilities and human
preference-based evaluation approaches is presented in detail in Appendix A.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we identify that conventional code completion evaluation metrics are incomplete,
particularly in assessing models’ instruction-following capabilities during code completion. To
address this limitation, we introduce C3-Bench, a fine-grained instruction-guided benchmark that
enables comprehensive evaluation of models’ code comprehension abilities. Our extensive evaluation
encompasses over 40 mainstream LLMs across multiple code completion benchmarks, providing
detailed performance analyses.

Our investigation yields several significant findings: (i) contemporary LLMs demonstrate notable
limitations in instruction-following capabilities during code completion, particularly in adhering to
code scale control instructions; (ii) while open-source code LLMs achieve comparable performance
to closed-source models on functional correctness benchmarks, they exhibit substantial gaps in
instruction-following capabilities; and (iii) our straightforward instruction-pair synthesis approach
effectively enhances models’ instruction-following abilities. This work contributes to advancing
open-source model development and provides valuable insights for future research in code completion.

Notwithstanding these contributions, several critical challenges warrant further investigation: Data
Diversity: While C3-Bench currently focuses on in-file Python tasks, future work should explore
multi-language scenarios and repository-level tasks with extended context. Base Model Capabilities:
Our findings indicate that base model capabilities significantly constrain ICC task performance,
suggesting an important direction for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

The data used in the C3-Bench benchmark is sourced exclusively from public repositories that are
governed by licenses permitting their use in software and research. Our contributions fully adhere
to the terms of these licenses. We did not use any data beyond what is publicly available and
downloadable from Github. Our work did not involve the participation of any human subjects; we
did not use crowdsourcing or recruit any external human workers for any part of the C3-Bench
benchmark’s creation. All work, including the environment configuration, data curation, synthetic
data generation, and the writing of this paper, was conducted entirely by the author team.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a complete codebase with detailed instructions
for replicating the C3-Bench benchmark results and the Qwen2.5-Coder-C3 training process. The
evaluation framework, data synthesis methodology, and training hyperparameters are detailed in
Section 2.4 and Section 3.2. To further facilitate community engagement and standardized evaluation,
we plan to release a PyPI package and host a public leaderboard for the benchmark.

9 LLM USAGE

The use of Large Language Models (LLMs) in this work was limited to providing minor assistance
with the writing and editing of the manuscript.

REFERENCES

01.AI. Meet yi-coder: A small but mighty llm for code, September 2024.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. SantaCoder: Don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023. URL https://arxiv.org/
abs/2301.03988.

Anthropic. Introducing Claude, 2023a. URL https://www.anthropic.com/index/
introducing-claude.

Anthropic. Claude 2. Technical report, Anthropic, 2023b. URL https://www-files.
anthropic.com/production/images/Model-Card-Claude-2.pdf.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022.

UC Berkeley, Stanford, and UCSD Researchers. Chatbot Arena: An Open Platform for Evaluating
LLMs by Human Preference, March 2024. URL https://chatbotarena.org.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-e:
a scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions on
Software Engineering, 2023.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. arXiv preprint
arXiv:2406.07436, 2024.

10

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://www-files.anthropic.com/production/images/Model-Card-Claude-2.pdf
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://chatbotarena.org

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, abs/2107.03374, 2021a.
URL https://arxiv.org/abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. LLMArena: Assessing
Capabilities of Large Language Models in Dynamic Multi-Agent Environments. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1234–1245,
Online, 2024. Association for Computational Linguistics. URL https://arxiv.org/abs/
2406.09328.

Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot Arena: A Platform
for Code LLM Evaluation in the Wild, February 2025. URL https://arxiv.org/abs/
2502.09328.

DeepSeek-AI and etc. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/
2412.19437.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Kr-
ishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. Crosscodee-
val: A diverse and multilingual benchmark for cross-file code completion. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida I. Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, abs/2204.05999, 2022. URL https://arxiv.
org/abs/2204.05999.

Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. Evaluation of llms on syntax-aware
code fill-in-the-middle tasks. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise
of code intelligence. arXiv preprint arXiv:2401.14196, 2024. URL https://arxiv.org/
abs/2401.14196.

Le H, Nguyen T, Nguyen T, Nguyen T, and Nguyen T. Coderl: Mastering code generation through
pretrained models and deep reinforcement learning. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 1234–1245, 2022.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J Yang,
JH Liu, Chenchen Zhang, Linzheng Chai, et al. Opencoder: The open cookbook for top-tier code
large language models. arXiv preprint arXiv:2411.04905, 2024.

11

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2406.09328
https://arxiv.org/abs/2406.09328
https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Faria Huq, Masum Hasan, Md Mahim Anjum Haque, Sazan Mahbub, Anindya Iqbal, and Toufique
Ahmed. Review4repair: Code review aided automatic program repairing. Information and Software
Technology, 143:106765, 2022.

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han,
Wei Ning, Gen Wang, Yihong Dong, Kechi Zhang, and Ge Li. aixcoder-7b: A lightweight and
effective large language model for code completion. CoRR, abs/2410.13187, 2024. doi: 10.48550/
ARXIV.2410.13187. URL https://doi.org/10.48550/arXiv.2410.13187.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun Shen. On the evaluation
of neural code translation: Taxonomy and benchmark. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 1529–1541. IEEE, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau
Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for
data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 18319–18345. PMLR, 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with AlphaCode. arXiv preprint arXiv:2203.07814, abs/2203.07814, 2022. URL
https://arxiv.org/abs/2203.07814.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, abs/2305.01210, 2023. URL https://arxiv.org/abs/2305.
01210.

Lixin Liu, Lixin Liu, Lixin Liu, and Lixin Liu. Conifer: Improving complex constrained instruction-
following for llms, 2024a.

Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi, He Zhu, Liran Wang, Ke Jin, Wei Zhang, Hualei
Zhu, Shuyue Guo, et al. Mdeval: Massively multilingual code debugging. arXiv preprint
arXiv:2411.02310, 2024b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

MistralAI. Codestral. https://mistral.ai/news/codestral, 2024. 2024.05.29.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo Zhou. Codegen2:
Lessons for training llms on programming and natural languages. CoRR, abs/2305.02309, 2023.
doi: 10.48550/ARXIV.2305.02309. URL https://doi.org/10.48550/arXiv.2305.
02309.

12

https://doi.org/10.48550/arXiv.2410.13187
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://mistral.ai/news/codestral
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2305.02309

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI. ChatML, 2022. URL https://github.com/openai/openai-python/blob/
e389823ba013a24b4c32ce38fa0bd87e6bccae94/chatml.md.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

Shojaee P, Shojaee P, Shojaee P, and Shojaee P. Execution-based code generation using deep reinforce-
ment learning. In Proceedings of the 2023 International Conference on Learning Representations,
2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. BLOOM: A 176B-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Shivalika Singh, Yiyang Nan, Alex Wang, Daniel D’Souza, Sayash Kapoor, Ahmet Üstün, Sanmi
Koyejo, Yuntian Deng, Shayne Longpre, Noah A. Smith, Beyza Ermis, Marzieh Fadaee, and Sara
Hooker. The leaderboard illusion, 2025. URL https://arxiv.org/abs/2504.20879.

Gemini Team and etc. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context, 2024. URL https://arxiv.org/abs/2403.05530.

Qwen team and etc. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.
15115.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120, abs/2312.02120, 2023. doi: 10.48550/ARXIV.
2312.02120. URL https://doi.org/10.48550/arXiv.2312.02120.

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xiaofei Ma. Repoformer:
Selective retrieval for repository-level code completion. arXiv preprint arXiv:2403.10059, 2024.

Kaiwen Yan, Xinyun Chen, Qiuyi Wu, Arun Tejasvi Chaganty, Percy Liang, and Tengyu Ma. Codeif:
Benchmarking the instruction-following capabilities of large language models for code generation,
2025.

Jian Yang, Jiajun Zhang, Jiaxi Yang, Ke Jin, Lei Zhang, Qiyao Peng, Ken Deng, Yibo Miao, Tianyu
Liu, Zeyu Cui, Binyuan Hui, and Junyang Lin. Execrepobench: Multi-level executable code
completion evaluation, 2024. URL https://arxiv.org/abs/2412.11990.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 2471–2484. Association for Computational Linguistics, 2023.

Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, Christopher A.
Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, Luke Vilnis, Mateo Wirth, Paul Michel,
Peter Choy, Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shubham Agrawal, Zhitao Gong, Jane
Fine, Tris Warkentin, Ale Jakse Hartman, Bin Ni, Kathy Korevec, Kelly Schaefer, and Scott
Huffman. Codegemma: Open code models based on gemma. CoRR, abs/2406.11409, 2024.
doi: 10.48550/ARXIV.2406.11409. URL https://doi.org/10.48550/arXiv.2406.
11409.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568,
abs/2303.17568, 2023. doi: 10.48550/ARXIV.2303.17568. URL https://doi.org/10.
48550/arXiv.2303.17568.

13

https://github.com/openai/openai-python/blob/e389823ba013a24b4c32ce38fa0bd87e6bccae94/chatml.md
https://github.com/openai/openai-python/blob/e389823ba013a24b4c32ce38fa0bd87e6bccae94/chatml.md
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2504.20879
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://doi.org/10.48550/arXiv.2312.02120
https://arxiv.org/abs/2412.11990
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Benchmarking code
generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877,
2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Additional Related Work 16

B Example of Controllable Code Completion Task 16

C LLM as Judge 16

D Code Completion Performance on conventional Benchmarks 19

D.1 Performance on CrossCodeEval . 19

D.2 Performance on RepoEval . 19

D.3 Performance on CrossCodeLongEval . 19

D.4 Performance on SAFIM . 20

E Additional Experimental Analysis 21

E.1 Model Preference Analysis . 21

F C3-Bench Examples 24

F.1 Implementation Control Completion Example . 24

F.2 Scale Control Completion Example . 24

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Instruction-Following Capabilities of LLMs. Recent studies have extensively explored LLMs’
instruction-following capabilities in code generation tasks. Yan et al. (2025) introduced CodeIF for
evaluating instruction adherence across diverse coding scenarios, while H et al. (2022) and P et al.
(2023) leveraged reinforcement learning to enhance code generation quality. Liu et al. (2024a) further
contributed through Conifer, a dataset designed to improve complex instruction-following in LLMs.
Despite these advances in general code generation instruction-following, the specific challenges
of instruction-guided code completion remain largely unexplored, representing a significant gap in
current research.

Human Preference-Based Evaluation. Recent advancements in arena-based frameworks have
provided novel insights into LLM capabilities. Chi et al. (2024) evaluates models in dynamic multi-
agent environments, while Berkeley et al. (2024) implements human preference-based pairwise
comparisons for assessment, though concerns have been raised regarding data access inequality and
potential training biases (Singh et al., 2025). In code generation specifically, Chi et al. (2025) evalu-
ates LLMs in real-world scenarios, revealing significant disparities between traditional benchmark
performance and practical effectiveness. While these approaches effectively capture user preferences
and real-world coding capabilities, their reliance on online deployment and user interaction data limits
widespread applicability, particularly for evaluating open-source models. This limitation underscores
the need for lightweight, generalizable benchmarks that can robustly assess models’ code context
understanding and completion capabilities without requiring extensive online infrastructure.

B EXAMPLE OF CONTROLLABLE CODE COMPLETION TASK

This figure 7 demonstrates a Controllable Code Completion task focusing on the implementation of
the Shortest Path Faster Algorithm (SPFA). The figure is structured in three main components: the
initial code context, followed by two distinct fine-grained implementation instructions. The code
context presents a partially implemented SPFA function framework, including memory allocation for
essential data structures such as distance array, visit markers, and predecessor tracking. The function
signature indicates its application to weighted directed graphs, with parameters for start and end
vertices along with the graph structure. Two fine-grained instructions are provided, each specifying
different optimization strategies for SPFA:

• The first instruction requires implementation of Small Label First (SLF) optimization
utilizing a deque data structure. This approach prioritizes vertices with smaller distance
values by inserting them at the front of the deque, while vertices with larger distance values
are appended to the back.

• The second instruction, accompanied by detailed pseudocode, outlines the Large Label Last
(LLL) optimization strategy using a queue. This implementation maintains queue statistics
(node count and distance sum) and implements a mechanism to reposition nodes whose
distances exceed the queue’s average to the rear, thereby optimizing the processing order.

C LLM AS JUDGE

The figure 8 illustrates a structured judgment prompt designed for Large Language Models (LLMs)
serving as automated evaluators in ICC tasks. The prompt establishes a systematic framework for
binary assessment of code implementations, emphasizing two primary evaluation criteria: instruction
adherence and ground truth alignment. The evaluation protocol is formalized through a structured
output format ([JUDGMENT][/JUDGMENT] and [REASON][/REASON] tags), enabling consistent
and interpretable assessments. This prompt architecture specifically guides LLMs to focus on critical
implementation aspects, including function definitions, data structures, algorithm steps, and control
flow patterns, while maintaining a clear binary decision mechanism for determining implementation
correctness. Such a structured approach facilitates reliable automated evaluation in code completion
tasks, where precise assessment of implementation fidelity is crucial.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

// SLF:Small Label First optimization using deque
deque<int> Q;
visit[s] = 1;
dist[s] = 0;
Q.push_back(s);

while (!Q.empty())
{
 int cur = Q.front(); Q.pop_front();
 visit[cur] = 0;

 // Process adjacent nodes
 for(p = G->N[cur].next; p; p = p->next) {
 // Standard relaxation
 if (dist[p->index] > dist[cur] + p->weight) {
 dist[p->index] = dist[cur] + p->weight;
 pre[p->index] = cur;

 // SLF core: Compare with front node
 // to determine insertion position
 if (!visit[p->index]) {
 visit[p->index] = 1;
 if(!Q.empty() &&
 dist[p->index] < dist[Q.front()])

 // Smaller distance → front
 Q.push_front(p->index);
 else
 // Larger distance → back
 Q.push_back(p->index);
 }
 }
 }
 }Suffix Context

Prefix Context

Missing Middle Code

Implementation 1 Implementation 2

Code Completion Task
Complete the Implemention code of the SPFA (Shortest
Path Faster Algorithm) for finding shortest paths in a
weighted directed graph

Code Context
void spfa_algorithm(int start, int end, Graph *G)
{
 int n = G->vexnum; int *dist = new int[n];
 bool *visit = new bool[n];int *prev = new int[n];
 memset(dist, INF, n*sizeof(int));
 memset(visit, 0, n*sizeof(bool));
 dist[start] = 0;

 if (dist[t] == INF)
 cout << "No path between the nodes." << endl;
 else {
 cout << "Shortest path found with length "
 << dist[t] << ":" << endl;
 int *path = new int[n];
 int top = -1; int q = t;
 while (q != -1) {
 top++; path[top] = q;
 q = pre[q];}
 for (; top > 0; top--)
 cout << G->vexname[path[top]] << "-->";
 cout << G->vexname[path[0]] << endl;
 delete []path; }
 delete []dist;
 delete []visit;
 delete []pre; }

Fine-Grained Instruction 1
Implement SPFA with Small Label First optimization using
a deque, where nodes with smaller distance values are
inserted at the front while larger ones at the back.

Fine-Grained Instruction 2

// LLL:Large Label Last optimization using queue
queue<int> Q;
int num = 1; // Track number of nodes in queue
// Track sum of distances in queue
int sum = dist[s];visit[s] = 1;
dist[s] = 0;
Q.push(s);
while (!Q.empty()) {
 int cur = Q.front();
 // LLL core: Move nodes with
 // above-average distance to back
 while (num * dist[cur] > sum) {
 Q.pop(); Q.push(cur);
 cur = Q.front();
 }

 Q.pop();
 visit[cur] = 0;
 num--; sum -= dist[cur]; // Update statistics
//Process adjacent nodes with standard relaxation
for(p = G->N[cur].next; p; p = p->next) {
 if (dist[p->index] > dist[cur] + p->weight) {
 dist[p->index] = dist[cur] + p->weight;
 pre[p->index] = cur;
 if (!visit[p->index]) {
 visit[p->index] = 1;
 Q.push(p->index);
 // Maintain queue statistics
 num++; sum += dist[p->index];
 }
 }
 }
}

Implement SPFA with Large Label Last optimization using
a queue, where nodes with distance values exceeding the
queue's average are repositioned to the back.

Figure 7: Example of Controllable Code Completion task requiring SPFA implementation with
different optimization strategies (Small Label First vs. Large Label Last) based on distinct fine-
grained instructions.

Judgment Prompt
As a code evaluator, assess whether the provided implementation follows the instruction and matches the implementation
approach of the ground truth.

Focus on:

1) Instruction adherence: Does the implementation use the specified method/approach and contain all necessary components?
This includes:

- Required function/class definitions

- Necessary data structures

- Key algorithm steps

- Essential control flow structures

- Critical variables and parameters

2) Ground truth alignment: Does it follow similar implementation strategy and logic flow as the ground truth solution?

Provide your evaluation in the following format:

[JUDGMENT]yes/no[/JUDGMENT]

[REASON]Brief explanation of your judgment (1-2 sentences)[/REASON]

Where:

- "yes": Implementation follows the instruction and matches the core approach of the ground truth

- "no": Implementation uses fundamentally different methods or structures from what was required

Figure 8: The illustration of judgment system prompt

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

implementation generation Prompt
You are a code helper. Your task is to create VERY DIFFERENT but FUNCTIONALLY IDENTICAL versions of a given code piece.

Two Key Requirements:
DIFFERENT: Each version must use a significantly different approach
IDENTICAL: All versions must work EXACTLY like the original code
Basic Rules:
* Put each version in [IMPi][/IMPi] tags
* Make at least 3 versions
* Must pass the same test cases
* Must handle the same edge cases
* Must have same input/output behavior
For Each Version:
* Use a unique implementation approach
* Maintain 100% functional equivalence
* Keep same error handling
* Keep same performance guarantees
Quality Check:
* Different: Clear differences in implementation style
* Same: All functional aspects must be identical
* Test: Should work the same in all situations
* Verify: Double-check all edge cases work

Figure 9: The illustration of implementation generation system prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D CODE COMPLETION PERFORMANCE ON CONVENTIONAL BENCHMARKS

D.1 PERFORMANCE ON CROSSCODEEVAL

The experimental results on CrossCodeEval showed in Table 3 demonstrate several noteworthy
patterns across open-source and closed-source models. Among open-source models, we observe a
general correlation between model size and performance, with larger models typically achieving better
results. Notably, Qwen2.5-Coder-32B achieves state-of-the-art performance with an average EM
score of 57.1The performance comparison between open-source and closed-source models reveals
an interesting trend. Despite the extensive resources behind closed-source models, top-performing
open-source models like Qwen2.5-Coder series demonstrate competitive or superior performance.
For instance, Qwen2.5-Coder-32B outperforms all tested closed-source models, including GPT-4,
Claude, and Gemini, across most metrics. This empirical evidence suggests that recent advances
in open-source language models have achieved performance parity with, or even exceeded, their
closed-source counterparts in code completion tasks.

Table 3: Performance of different approaches on the CrossCodeEval Tasks.

Size Model Python Java TypeScript C# Average

EM ES EM ES EM ES EM ES EM ES

O
pe

n-
So

ur
ce

M
od

el
s

Qwen2.5-Coder-0.5B 22.7 66.2 21.7 66.8 21.9 67.2 32.1 75.4 24.6 68.9
DS-Coder-1.3B-Base 33.4 72.6 34.9 74.5 36.7 76.4 46.6 83.5 37.9 76.8
Qwen2.5-Coder-1.5B 35.5 74.3 37.9 76.5 37.6 77.4 49.8 84.5 40.2 78.2
StarCoder2-3B 11.0 62.7 11.6 69.7 8.8 75.8 8.2 71.2 9.9 69.8
Qwen2.5-Coder-3B 38.4 76.1 42.8 79.8 41.6 80.5 56.7 87.1 44.9 80.9
StarCoder2-7B 10.9 63.1 8.3 71.0 6.7 76.8 7.3 72.1 8.3 70.8
DS-Coder-6.7B-Base 41.1 79.2 39.9 80.1 46.3 82.4 55.0 86.9 45.6 82.1
DS-Coder-V2-Lite-Base 41.8 78.3 46.1 81.2 44.6 81.4 58.7 87.9 47.8 82.2
CodeQwen1.5-7B 40.7 77.8 47.0 81.6 45.8 82.2 59.7 87.6 48.3 82.3
Qwen2.5-Coder-7B 42.4 78.6 48.1 82.6 46.8 83.4 59.7 87.9 49.3 83.1
StarCoder2-15B 28.2 70.5 26.7 71.0 24.7 76.3 25.2 74.2 26.2 73.0
Qwen2.5-Coder-14B 47.7 81.7 54.7 85.7 52.9 86.0 66.4 91.1 55.4 86.1
CodeStral-22B 49.3 82.7 44.1 71.1 51.0 85.0 53.7 83.6 49.5 80.6
DS-Coder-33B-Base 44.2 80.4 46.5 82.7 49.2 84.0 55.2 87.8 48.8 83.7
Qwen2.5-Coder-32B 49.2 82.1 56.4 86.6 54.9 87.0 68.0 91.6 57.1 86.8
DeepSeek-V3 37.1 69.9 42.8 71.5 33.2 66.9 42.8 72.7 39.0 70.2
DeepSeek-V3-0324 41.4 77.2 48.9 80.5 38.8 77.5 48.6 84.5 44.4 79.9
Qwen2.5-Coder-32B-C3 47.4 81.1 56.5 86.6 54.2 86.4 65.5 90.8 55.9 86.2

C
lo

se
d-

A
PI

s GPT-4o-2024-08-06 34.3 73.1 43.1 78.4 36.8 76.3 46.7 81.0 40.2 77.2
GPT-4o-2024-11-20 29.4 68.8 37.3 74.7 32.0 73.0 38.2 73.7 34.2 72.5
o1-2024-12-17 14.9 67.0 33.6 77.3 30.6 76.7 28.6 80.6 26.9 75.4
Claude3.5-Sonnet-20241022 45.2 79.6 49.3 84.3 42.8 81.2 52.5 84.1 47.5 82.3
Gemini-2.0-Flash 38.7 69.0 48.2 77.9 41.5 76.9 47.0 79.0 43.8 75.7

D.2 PERFORMANCE ON REPOEVAL

On the RepoEval benchmark (Table 4), Qwen2.5-Coder-32B achieves state-of-the-art performance
among all tested models, both open-source and closed-source, with an average EM score of 51.6%
and ES score of 78.5%. Qwen2.5-Coder-32B-C3 maintains comparable performance with an average
EM of 51.8% and ES of 77.0%, demonstrating clear advantages over leading closed-source models
like Claude3.5-Sonnet and GPT-4o

D.3 PERFORMANCE ON CROSSCODELONGEVAL

On the CrossCodeLongEval benchmark (Table 5), Qwen2.5-Coder-32B achieves the best overall
performance among all models, with an average EM score of 36.9% and ES score of 66.4%. This
performance slightly exceeds that of leading closed-source models, including Claude3.5-Sonnet (EM:
32.4%, ES: 63.2%) and other commercial APIs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Performance of different approaches on the RepoEval Tasks.

Size Model Line Function API Average

EM ES EM ES EM ES EM ES
O

pe
n-

So
ur

ce
M

od
el

s
Qwen2.5-Coder-0.5B 44.2 72.6 4.6 48.0 35.6 68.5 28.1 63.0
DS-Coder-1.3B-Base 58.7 80.4 6.2 48.8 45.8 75.0 36.9 68.1
Qwen2.5-Coder-1.5B 59.8 82.6 10.6 52.4 51.0 80.1 40.5 71.7
StarCoder2-3B 22.3 67.4 3.1 51.6 20.6 70.1 15.3 63.0
Qwen2.5-Coder-3B 64.9 85.0 12.3 55.8 54.7 81.3 44.0 74.0
StarCoder2-7B 19.5 67.6 4.0 53.5 19.1 72.8 14.2 64.7
DS-Coder-6.7B-Base 63.1 85.5 9.9 53.3 52.3 81.7 41.7 73.5
DS-Coder-V2-Lite-Base 66.5 85.4 10.8 53.9 53.1 81.3 43.4 73.5
CodeQwen1.5-7B 59.7 81.5 4.8 44.3 46.1 77.5 36.9 67.8
Qwen2.5-Coder-7B 67.3 86.1 13.2 55.2 58.4 83.9 46.3 75.1
StarCoder2-15B 30.9 62.5 5.5 43.7 21.7 60.3 19.4 55.5
Qwen2.5-Coder-14B 74.3 90.1 14.1 59.5 63.4 87.3 50.6 79.0
CodeStral-22B 40.9 51.7 9.9 49.2 24.8 40.8 30.0 46.6
DS-Coder-33B-Base 66.5 86.6 10.3 52.9 54.2 83.5 43.7 74.3
Qwen2.5-Coder-32B 76.1 90.5 13.6 57.5 65.1 87.6 51.6 78.5
DeepSeek-V3 47.2 63.1 18.5 49.3 47.6 68.9 37.7 60.4
DeepSeek-V3-0324 60.4 77.5 19.6 49.2 57.5 78.0 45.8 68.2
Qwen2.5-Coder-32B-C3 74.8 90.2 13.0 52.4 67.7 88.3 51.8 77.0

C
lo

se
d-

A
PI

s GPT-4o-2024-08-06 50.7 69.1 13.6 42.9 47.3 72.6 37.2 61.5
GPT-4o-2024-11-20 37.5 57.0 5.1 38.5 34.6 60.8 25.7 52.1
o1-2024-12-17 57.5 71.9 20.2 55.8 55.8 77.4 44.5 68.4
Claude3.5-Sonnet-20241022 61.9 80.1 22.0 55.1 60.0 81.1 48.0 72.1
Gemini-2.0-Flash 59.0 74.5 16.0 46.7 58.1 80.4 44.4 67.2

Code-Llama 7B
Code-Llama 34B
Code-Llama 70B

StarCoder2 3B
StarCoder2 15B
DS-Coder 6.7B
DS-Coder 33B

DS-Coder-V2-Lite
Qwen2.5-Coder 1.5B

Qwen2.5-Coder 7B
Qwen2.5-Coder 32B

DeepSeek-V3
DeepSeek-V3-0324

Qwen2.5-Coder-32B-CCC
GPT-4o-2024-08-06
GPT-4o-2024-11-20

o1-2024-12-17
Claude3.5-Sonnet-20241022

Gemini-2.0-Flash

Pass@1 (%)
0 12.5 25 37.5 50

Figure 10: Performance of different approaches on the ExecRepoBench Tasks.

D.4 PERFORMANCE ON SAFIM

On the SAFIM benchmark (Table 6), Qwen2.5-Coder-32B achieves the highest average pass rate
of 71.2% across all evaluated models. The model demonstrates strong performance across all three
categories: Algorithm (61.1%), Control (74.6%), and API (77.7%). Its C³-tuned variant maintains
competitive performance with an average pass rate of 69.5%, significantly outperforming closed-
source models like Gemini-2.0-Flash (64.4%) and Claude3.5-Sonnet (63.6%).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Performance of different approaches on the CrossCodeLongEval Tasks.

Size Model Chunk Completion Function completion Average

EM ES EM ES EM ES
O

pe
n-

So
ur

ce
M

od
el

s
Qwen2.5-Coder-0.5B 29.8 64.2 9.5 38.0 19.7 51.1
DS-Coder-1.3B-Base 40.6 71.9 9.6 39.4 25.1 55.7
Qwen2.5-Coder-1.5B 44.2 73.9 12.4 44.4 28.3 59.2
StarCoder2-3B 18.5 62.0 10.2 39.2 14.3 50.6
Qwen2.5-Coder-3B 46.6 76.1 13.5 46.4 30.0 61.3
StarCoder2-7B 19.4 63.6 10.2 40.0 14.8 51.8
DS-Coder-6.7B-Base 48.4 78.2 10.7 42.4 29.6 60.3
DS-Coder-V2-Lite-Base 49.5 77.1 11.4 43.1 30.4 60.1
CodeQwen1.5-7B 48.2 77.5 6.4 30.6 27.3 54.1
Qwen2.5-Coder-7B 52.4 79.3 14.4 48.4 33.4 63.8
StarCoder2-15B 21.3 53.7 7.8 30.5 14.6 42.1
Qwen2.5-Coder-14B 56.9 81.8 15.4 49.8 36.1 65.8
CodeStral-22B 56.7 81.8 10.5 37.8 33.6 59.8
DS-Coder-33B-Base 52.0 79.9 11.9 44.3 32.0 62.1
Qwen2.5-Coder-32B 57.3 82.1 16.4 50.8 36.9 66.4
DeepSeek-V3 35.1 57.3 15.7 49.8 25.4 53.5
DeepSeek-V3-0324 44.8 69.4 16.9 50.9 30.9 60.2
Qwen2.5-Coder-32B-C3 47.6 69.1 10.5 52.0 29.1 60.5

C
lo

se
d-

A
PI

s GPT-4o-2024-08-06 44.8 71.2 15.3 53.3 30.1 62.2
GPT-4o-2024-11-20 41.9 67.9 10.8 48.4 26.4 58.2
o1-2024-12-17 39.9 62.7 13.3 50.5 26.6 56.6
Claude3.5-Sonnet-20241022 47.2 72.7 17.5 53.7 32.4 63.2
Gemini-2.0-Flash 42.4 65.6 15.6 48.0 29.0 56.8

E ADDITIONAL EXPERIMENTAL ANALYSIS

E.1 MODEL PREFERENCE ANALYSIS

In this section, we analyze the generation preferences of different models in code completion tasks. By
calculating token counts for both completed middle code and additional explanations (Commentary)
on C3-Bench, as shown in Figure 11, we observe distinct patterns among models. Claude Series and
DeepSeek Series models tend to generate more commentary beyond code completion, while GPT
Series, o1-Series, and models like Qwen2.5-Coder-14B-Instruct and Qwen2.5-Coder-3B-Instruct
focus solely on completion without additional commentary.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

T
o
ke

n
C

o
un

ts

0

125

250

375

500

o1
-p

re
vi
ew

o1
-m

in
i

G
PT

-4
o-

20
24

-0
5-

13

G
PT

-4
o-

20
24

-0
8-

06

G
PT

-4
o-

20
24

-1
1-

20

G
PT

-4
-2

02
4-

06
-1

3

G
PT

-4
o-

m
in

i-
20

24
-0

7-
18

C
la

ud
e3

.5
-S

on
ne

t-
20

24
10

22
C
la

ud
e3

.5
-H

ai
ku

G
em

in
i-

1.
5-

pr
o-

fla
sh

D
ee

pS
ee

k-
V3

Q
w
en

2.
5-

72
B
-I

ns
tr
uc

t

C
od

eL
la

m
a-

70
B
-I

ns
tr
uc

t

D
ee

ps
ee

k-
C
od

er
-3

3B
-I

ns
tr
uc

t

C
od

eL
la

m
a-

34
B
-I

ns
tr
uc

t

Q
w
en

2.
5-

C
od

er
-3

2B
-I

ns
tr
uc

t

C
od

es
tr
al

-2
2B

-v
0.

1

Q
w
en

2.
5-

C
od

er
-1

4B
-I

ns
tr
uc

t

St
ar

C
od

er
2-

15
B
-I

ns
tr
uc

t-
v0

.1

Q
w
en

2.
5-

C
od

er
-7

B
-I

ns
tr
uc

t

D
ee

ps
ee

k-
C
od

er
-6

.7
B
-I

ns
tr
uc

t

D
ee

ps
ee

k-
C
od

er
-V

2-
Li

te
-I

ns
tr
uc

t

Y
i-

C
od

er
-9

B
-C

ha
t

Q
w
en

2.
5-

C
od

er
-3

B
-I

ns
tr
uc

t

Q
w
en

2.
5-

C
od

er
-1

.5
B
-I

ns
tr
uc

t

D
ee

ps
ee

k-
C
od

er
-1

.3
B
-I

ns
tr
uc

t

D
ee

ps
ee

k-
C
od

er
-3

3B
-B

as
e

Q
w
en

2.
5-

C
od

er
-3

2B

Q
w
en

2.
5-

C
od

er
-1

4B

Q
w
en

2.
5-

C
od

er
-7

B

D
ee

ps
ee

k-
C
od

er
-6

.7
B
-B

as
e

D
ee

ps
ee

k-
C
od

er
-V

2-
Li

te
-B

as
e

Q
w
en

2.
5-

C
od

er
-3

B

Q
w
en

2.
5-

C
od

er
-1

.5
B

D
ee

ps
ee

k-
C
od

er
-1

.3
B
-B

as
e

Q
w
en

2.
5-

C
od

er
-1

.5
B
-C

C
C

Q
w
en

2.
5-

C
od

er
-3

2B
-C

C
C

Code Commentary

Figure 11: Token Counts of different model generations on C3-Bench. Code represents the token
count of middle code completions, Commentary represents the token count of additional explanations
and descriptions provided by models.

0

18

36

54

72

90

AVG-IF ICC-IF ICC-ES ICC-Pass@1 SCC-ES SCC-IF

Claude3.5-Sonnet Gemini-2.0-Flash O1-2024-12-17 Qwen2.5-Coder-32B-CCC

Figure 12: Comparison between model performance on ICC and SCC tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: Performance of different approaches on the SAFIM Tasks.

Size Model SAFIM

Algo. Control API Average

O
pe

n-
So

ur
ce

M
od

el
s

Qwen2.5-Coder-0.5B 24.3 37.9 49.7 37.3
DS-Coder-1.3B-Base 39.3 52.6 62.6 51.5
Qwen2.5-Coder-1.5B 37.3 39.6 66.5 47.8
StarCoder2-3B 19.9 29.1 67.4 38.8
Qwen2.5-Coder-3B 45.7 59.0 68.1 57.6
StarCoder2-7B 38.5 38.7 70.6 49.3
DS-Coder-6.7B-Base 52.8 64.9 71.6 63.1
DS-Coder-V2-Lite-Base 56.3 69.9 75.5 67.2
CodeQwen1.5-7B 37.3 58.3 71.9 55.8
Qwen2.5-Coder-7B 50.5 58.1 73.9 60.8
StarCoder2-15B 36.9 55.9 70.3 54.4
Qwen2.5-Coder-14B 57.1 70.8 75.8 67.9
DS-Coder-33B-Base 59.1 69.8 74.2 67.7
Qwen2.5-Coder-32B 61.1 74.6 77.7 71.2
DeepSeek-V3 60.5 55.8 64.1 60.1
DeepSeek-V3-0324 53.3 68.1 65.3 62.2
Qwen2.5-Coder-32B-C3 60.9 73.4 68.3 67.5

C
lo

se
d-

A
PI

s GPT-4o-2024-08-06 47.9 64.2 54.9 55.7
GPT-4o-2024-11-20 59.5 65.2 58.6 61.1
o1-2024-12-17 62.6 67.1 65.9 65.2
Claude3.5-Sonnet-20241022 60.6 61.3 68.9 63.6
Gemini-2.0-Flash 62.2 66.8 64.1 64.4

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

def DFS(start):

 nodes=set()

 stack=[start]

 while stack:

 parent=stack.pop()

 if(not visited[parent]):

 nodes.add(parent)

 visited[parent]=True

 for child in graph[parent]:

 if (not visited[child]):

 stack.append(child)

 else:

 if child not in nodes and child!=s:

 return child

 else:

 if parent not in nodes and parent != s:

 return parent

 return -1

Implementation Control Completion Prefix Code

Figure 13: Prefix Code of the ICC task example

F C3-BENCH EXAMPLES

F.1 IMPLEMENTATION CONTROL COMPLETION EXAMPLE

In this section, we introduce an example ICC task from C3-Bench. This example focuses on finding
two different paths in a labyrinth from a start node to an end node, where paths can only share the
start and end points. The task requires inputs of n vertices, m edges, and a starting point s, and outputs
either "Possible" with two valid paths or "Impossible".

The task structure consists of multiple components. The prefix code, illustrated in Figure 13, contains
a helper function for initial DFS exploration to identify potential end points. The suffix code,
shown in Figure 14, manages input processing, result validation, and output formatting. The middle
implementation can be achieved through three distinct approaches: an iterative DFS using a stack
(Figure 15), a recursive DFS with parent pointers (Figure 16), and a BFS implementation using a
queue (Figure 17). These implementations, while functionally equivalent, demonstrate different
approaches to path finding and parent tracking. The iterative DFS maintains explicit stack control,
the recursive DFS offers cleaner code structure, and the BFS provides shortest path guarantees, each
with its own trade-offs in terms of memory usage and code clarity.

F.2 SCALE CONTROL COMPLETION EXAMPLE

We present an example of a Scale-Control Completion (SCC) task from C3-Bench. As shown in
Figure 18 and Figure 19. The task specifically requires generating only a single for statement block,
with no additional code allowed. Figure 20 shows the system instruction and the implementation
that strictly adheres to this scope constraint, demonstrating precise control over code generation
granularity.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

def get_path(node):

 path=[]

 while node!=-1:

 path.append(node)

 node=parent_list[node]

 path.reverse()

 return path

n,m,s=map(int,input().split())

s-=1

graph=[[] for _ in range(n)]

for _ in range(m):

 a,b=map(int,input().split())

 a-=1

 b-=1

 graph[a].append(b)

visited=[False]*n

visited[s]=True

Implementation Control Completion Suffix Code
for child in graph[s]:

 end=DFS(child)

 if end!=-1:

 visited = [False] * n

 parent_list=[-1]*n

 visited[s]=True

 ans=[]

 for child in graph[s]:

 if DFS_get_path(child):

 ans.append([s]+get_path(end))

 if len(ans)==2:

 break

 print("Possible")

 for i in ans:

 print(len(i))

 print(*[j+1 for j in i])

 break

else:

 print("Impossible")

Figure 14: Suffix Code of the ICC task example

def DFS_get_path(start):

 stack=[start]

 parent_list[start]=-1

 while stack:

 parent=stack.pop()

 if parent==end:

 visited[end]=False

 return True

 if(not visited[parent]):

 visited[parent]=True

 for child in graph[parent]:

 if (not visited[child]):

 stack.append(child)

 parent_list[child]=parent

 return False

Implementation 1
Instruction：
Use iterative DFS with a stack to find path from start to end node

Middle Code：

Figure 15: Instruction and Implementation code 1 of the ICC task example

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

def DFS_get_path(start):

 if start == end:

 visited[end] = False

 return True

 visited[start] = True

 for child in graph[start]:

 if not visited[child]:

 parent_list[child] = start

 if DFS_get_path(child):

 return True

 return False

Implementation 2
Instruction：
Use recursive DFS to find paths from start to end node,

maintaining parent pointers for path reconstruction

Middle Code：

Figure 16: Instruction and Implementation code 2 of the ICC task example

def BFS_get_path(start):

 queue = [(start, -1)]

 while queue:

 curr, prev = queue.pop(0)

 if curr == end:

 visited[end] = False

 return True

 if not visited[curr]:

 visited[curr] = True

 parent_list[curr] = prev

 for child in graph[curr]:

 if not visited[child]:

 queue.append((child, curr))

 return False

Implementation 3
Instruction：
Use BFS with a queue to find shortest paths from start to end node,

storing parent pointers for path reconstruction

Middle Code：

Figure 17: Instruction and Implementation code 3 of the ICC task example

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

clean_data = data.dropna()

Feature and target selection

Assuming 'EnergyConsumption' is the target variable and others are features

target_variable = 'EnergyConsumption'

features = clean_data.columns.drop(target_variable)

Feature selection using Scikit-learn

Selecting the top 3 features that have the highest correlation with the target variable

k_best_features = 3

selector = SelectKBest(score_func=f_regression, k=k_best_features)

selected_features = selector.fit_transform(clean_data[features], clean_data[target_variable])

selected_feature_names = clean_data[features].columns[selector.get_support()]

print("\nSelected features:")

print(selected_feature_names)

Splitting the data into training and testing sets

Using TimeSeriesSplit for cross-validation

n_splits = 3

tscv = TimeSeriesSplit(n_splits=n_splits)

for train_index, test_index in tscv.split(selected_features):

Scale Control Completion Prefix Code

Figure 18: Prefix Code of the SCC task example

Fitting a Vector Autoregression (VAR) model

model = sm.tsa.VAR(clean_data)

results = model.fit(maxlags=5, ic='aic')

Displaying the summary of the VAR model results

print("\nVAR Model Results:")

print(results.summary())

Scale Control Completion Suffix Code

Figure 19: Suffix Code of the SCC task example

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

 X_train, X_test = selected_features[train_index], selected_features[test_index]

 y_train, y_test = clean_data[target_variable].values[train_index], clean_data[target_variable].values[test_index]

 # Fitting a linear regression model using Scikit-learn

 lr_model = LinearRegression()

 lr_model.fit(X_train, y_train)

 # Predicting the target variable for the test set

 y_pred = lr_model.predict(X_test)

 # Calculating the Mean Squared Error (MSE) for the model

 mse = mean_squared_error(y_test, y_pred)

 print(f"\nMean Squared Error for split {tscv.split}: {mse}")

Implementation
Instruction：
Just Complete the for statement block in the prefix code.

Middle Code：

Figure 20: Instruction and Implementation code of the SCC task example

28

	Introduction
	C3 Benchmark
	Definition of Controllable Code Completion
	Dataset Statistics
	Benchmark Construction
	Middle Code Extraction
	Equivalent Implementation Generation
	Data Filtering and Instruction Generation

	Evaluation Metrics

	Qwen2.5-Coder-C3
	Data Synthesis
	Model Training

	Benchmarking State-of-the-art Models
	Prompt Format
	Experimental Setup
	Performance Analysis
	Ablation Study of Fine-Grained Instructions

	Related Works
	Conclusion and Future Directions
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Additional Related Work
	Example of Controllable Code Completion Task
	LLM as Judge
	Code Completion Performance on conventional Benchmarks
	Performance on CrossCodeEval
	Performance on RepoEval
	Performance on CrossCodeLongEval
	Performance on SAFIM

	Additional Experimental Analysis
	Model Preference Analysis

	C3-Bench Examples
	Implementation Control Completion Example
	Scale Control Completion Example

