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Abstract

Tightly coupled Visual-Inertial SLAM (VISLAM) algo-
rithms are now state of the art approaches for indoor local-
ization. There are many implementations of VISLAM, like
filter-based and non-linear optimization based algorithms.
They all require an accurate temporal alignment between
sensors clock and an initial IMU state (gyroscope and ac-
celerometer biases value, gravity direction and initial ve-
locity) for precise localization. In this paper we propose
an initialization procedure of VISLAM that estimates simul-
taneously IMU-camera temporal calibration and the initial
IMU state. To this end, the concept of Time Shifted IMU
Preintegration (TSIP) measurements is introduced: an in-
terpolation of IMU preintegration that takes into account
the effect of sensors clock misalignment. These TSIP mea-
surements are included along with visual odometry mea-
surements in a graph that is incrementally optimized. It re-
sults in a real time, accurate and robust initialization for
VISLAM as demonstrated in the experiments on real data.

1. Introduction

Visual-inertial odometry is an active research topic in
robotics and computer vision communities. This is the most
widespread and efficient solution to solve indoor localiza-
tion problem. Cameras and Inertial Measurement Units
(IMU) are small, cheap and low power consumption sen-
sors. IMU brings robustness by giving a motion prediction,
and visual information ensures precision of the localization
by reducing the divergence of cheap IMU-only localization
and allowing to observe IMU biases. VISLAM algorithms
are used as dead reckoning tools and/or to build metric scale
dense maps. Given an initial state, position and orientation
are estimated in real time using tight sensor fusion. Imple-
mentations of VISLAM can be split in two main families.
Filtered-based [10, 16] algorithms use an extended Kalman
filter on a multi state estimation (MSCKF). In contrast, non-
linear optimization methods [12, 6] fuse visual and inertial

data in a bundle adjustment where inertial constraints are
added through the concept of IMU preintegration [6].

Regardless of the visual-inertial fusion algorithm used,
the localization accuracy they reach greatly relies on tempo-
ral alignment of sensor streams [5, 13]. Since high precision
sensor timestamping is expensive and requires a high hard-
ware expertise, streams are often software timestamped. It
leads to a time shift between each sensor data sampling in-
stant and its attached timestamp. Hardware sensors trigger-
ing allows to prevent stream temporal drift but a constant
time delay between sensors data timestamps remains. The
value of this delay sometimes differs too significantly from
one acquisition to another and therefore often needs to be
estimated at every use of the system.

State of the art IMU-camera time shift estimations are
based on the fact that these sensors are able to measure re-
dundant information. For example the common tool Kalibr
[14] estimate temporal calibration and IMU biases by inter-
polation and correlation of visual odometry trajectory with
IMU motion prediction. Nevertheless, althought offering
great precision and robustness, this method suffers from be-
ing too computation costly to be executed in real time. Re-
cent works have been focusing on online time shift estima-
tion for visual-inertial systems. Several methods propose
a temporal calibration incorporated in a VISLAM, suppos-
edly well initialized beforehand. In [13] a time shift esti-
mation in a bundle-based VISLAM is proposed. It is build
on visual feature interpolation by introducing the concept of
feature velocity that enables to predict the time shift impact
on feature 2D position. In [18] a filtered-based VISLAM is
used to estimate time shift and its observability is studied.
Online methods work sequentially, starting by estimating
IMU initial state in order to run a VISLAM with time shift
estimation in a second phase. However, without temporal
alignment, the initialization of the IMU state may be inac-
curate leading to VISLAM failure as shown in tests carried
out in [5].

Both time shift and initial IMU state have to be simul-
taneously initialized for accurate VISLAM localization. To
this end we propose in this paper two contributions.
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The first contribution of this work is the concept of Time
Shifted IMU Preintegration (TSIP) measurements: a tempo-
ral interpolation of IMU preintegration measurements [6].
To the best of our knowledge, no method that takes into ac-
count time shift in preintegration measurements of raw IMU
data has been proposed before. TSIP are designed to be effi-
ciently estimated in a non-linear optimization algorithm and
are therefore well suited for real time use.

The second contribution is an incremental probabilistic
estimation of both time shift and initial visual-inertial state
in a single non-linear optimization. The proposed TSIP
measurements and poses from visual odometry are taken
as input. The robustness of the proposed initialization is in-
creased by taking into account the uncertainty of the visual
odometry and by handling odometry failures.

After introducing some preliminaries in section 2, the
concept of time shifted preintegration measurement is pre-
sented in section 3 and the non-linear optimization for IMU
initialization and time shift estimation is detailed in section
4. Experimental evaluations are presented in section 5.

2. Preliminaries
From camera and IMU sensors, visual-inertial systems

provide two types of data streams:

• A visual stream, bringing 2D features that are detected
then matched in images of calibrated camera(s),

• An inertial stream, that includes synchonized gyro-
scope and accelerometer data.

These streams of data are preprocessed before being used in
the proposed initialization algorithm: the matched features
are used to estimate an odometry and its uncertainty, and
IMU raw data are preintegrated.

2.1. Visual odometry

A Visual SLAM [11] is used to create keyframe poses
from the video stream in real time. They are rigid trans-
formations from a body frame B to a world frame W at
instants ti:

PWB(ti) =

[
RWB(ti) WpB(ti)
01×3 1

]
∈ SE(3). (1)

For clarity of notation, frames indication ”WB” for odome-
try poses is dropped in future expressions, i.e. PWB(ti) =
Pi, RWB(ti) = Ri and WpB(ti) = pi. These poses are
optimized in a bundle adjustment and gathered in the set
P .

= {Pi}i=1...N .
To evaluate the quality of the localization, odometry

uncertainty ΣP is recovered from the information matrix
of the bundle adjustment. In practice, the costly com-
putation of the entire covariance matrix ΣP has to be

avoided. Therefore, only parts of this matrix are computed
by marginalization [9] to summerize the uncertainty of ev-
ery delta pose ∆Pi,i+1 = P−1

i Pi+1 in inter pose covari-
ances Σ∆Pi,i+1 defined as:

Σ∆Pi,i+1 = Ji,i+1 Cov(Pi, Pi+1) J>i,i+1, (2)

Ji,i+1 =

[
R>i+1Ri 03×3 −I3×3 03×3

03×3 R>i+1Ri 03×3 −I3×3

]
. (3)

with Cov(Pi, Pi+1) being the covariance matrix of the Lie
representation of Pi and Pi+1, obtained by marginalization.

2.2. IMU Preintegration

The IMU stream contains triaxial gyroscope and ac-
celerometer data measuring the angular velocity Iω ∈ R3

and the acceleration Ia ∈ R3 of the IMU frame I at regular
intervals. Both measurements are affected by sensor noise
ηg and ηa, and slow varying biases of the gyroscope and the
accelerometer : bg and ba. Moreover the accelerometer is
subject to gravity Ig, leading to following measurements:

ω̃(t) = Iω(t) + bg(t) + ηg(t) (4a)
ã(t) = Ia(t)− Ig(t) + ba(t) + ηa(t) (4b)

In order to efficiently use IMU data in an optimization
framework, raw gyroscope and accelerometer data are
preintegrated. Motion between instants ti and tj is then
defined in terms of this preintegration measurement to prop-
agate the state of the IMU frame I:

RWI(tj) = RWI(ti) ∆Ri,j , (5a)

WvI(tj) = WvI(ti) + Wg∆ti,j +RiWI∆vi,j , (5b)

WpI(tj) = WpI(ti) + WvI(ti) ∆ti,j

+
1

2
Wg∆t2

i,j +RWI(ti) ∆pi,j . (5c)

with preintegration measurement between instants ti and tj
defined as:

Ii,j
.
= (6)

∆Ri,j = Exp

(∫ tj

ti

[ω̃(t)−bg(t)]dt

)
,

∆vi,j =

∫ tj

ti

Exp

(∫ t

ti

[ω̃(s)−bg(s)]ds

)
[ã(t)−ba(t)]dt,

∆pi,j =

∫∫ tj

ti

Exp

(∫ t

ti

[ω̃(s)−bg(s)]ds

)
[ã(t)−ba(t)]dt2,

with Exp(φ) standing for exp(φ×) and φ× for the skew-
symmetric matrix of φ. Discrete computation formulae of
both Ii,j and its covariance ΣIi,j are explicited in [6].

Considering system states at two consecutive time in-
stants i and j, preintegration measurement allow to de-
fine inertial residual errors on position, rotation and speed.



Those residual errors are given by [6]:

r∆R
i,j = Log

(
∆R>i,jR

>
BIR
>
i RjRBI

)
, (7a)

r∆v
i,j = WvI(tj)− WvI(ti)− Wg∆ti,j

−RiRBI∆vi,j , (7b)

r∆p
i,j = s(pj − pi) + (Rj −Ri)BpI − WvI(ti) ∆ti,j

− 1

2
Wg∆t2

i,j −RiRBI∆pi,j , (7c)

where IMU extrinsic calibration is represented by a rigid
transformation TBI = [RBI | BpI] ∈ SE(3), and s ∈ R is
a scale factor. Log is the reciprocal bijection of Exp in Lie
group of rotations SO(3), expressions of these functions are
explicited in [6].

The IMU preintegration of equation 6 directly depends
on IMU biases, which are refined in the VISLAM optimiza-
tion. To prevent its recomputation from raw IMU data at
each iteration, Foster et al. proposed in [6] a linearization
of the preintegration measurement taking into account bi-
ases update δbg and δba:

Îi,j(δbg, δba) =


∆R̂i,j = ∆Ri,j Exp(Jg

∆R δbg)

∆v̂i,j = ∆vi,j + Jg
∆v δbg +J a

∆v δba

∆p̂i,j = ∆pi,j + Jg
∆p δbg +J a

∆p δba

(8)

with Jg
(.) and J a

(.) standing for the jacobians of preintegra-
tion measurement with regard to IMU biases.

3. Time shifted IMU preintegration

IMU preintegration measurements presented in the pre-
vious section are taking into account IMU biases, but not
the effect of a time offset. In this section a new IMU prein-
tegration framework called Time Shifted IMU preintegra-
tion (TSIP) is proposed. It takes into account both biases
and time shift influence and is designed for non-linear op-
timization. We first study the time shift influence on IMU
preintegration measurements and propose a model for their
temporal interpolation. Then the method to compute TSIP
measurement is presented.

3.1. Temporal interpolation for IMU preintegration

Considering preintegration measurements Ii,j between
two instants ti and tj , we seek a method to compute the
value of Īi,ja,b, an approximation of this preintegration mea-
surement for any time instants ta and tb with [ta, tb] ⊂
[ti, tj ] without using raw IMU data.

To do so, gyroscope and accelerometer data as well as
IMU biases are assumed to be constant during the preinte-
gration time ∆ti,j . Rewriting equation 6 with ∀ t ∈ [ti, tj ],
ω̃(t)−bg(t) = ω̄i,j and ã(t)−ba(t) = āi,j , gives:

∆Ri,j = Exp(ω̄i,j∆ti,j) (9a)

∆vi,j =

∫ tj

ti

Exp(ω̄i,j(tj − t))dt āi,j

= E1(ω̄i,j∆ti,j) āi,j ∆ti,j (9b)

∆pi,j =

∫∫ tj

ti

Exp(ω̄i,j(tj − t))dt2 āi,j

= E2(ω̄i,j∆ti,j) āi,j ∆t2
i,j (9c)

with:

E1(φ) = I3 +

(
1− cos(‖φ‖)
‖φ‖2

)
φ× +

(
‖φ‖− sin(‖φ‖)
‖φ‖3

)
φ2
× (9d)

E2(φ) =
1

2
I3 +

(
‖φ‖− sin(‖φ‖)
‖φ‖3

)
φ× +

(
1

2‖φ‖2
+

cos(‖φ‖)−1
‖φ‖4

)
φ2
× (9e)

Using this model, the preintegration Īi,ja,b can thus be es-
timated by replacing ∆ti,j with ∆ta,b in equation 9:

Īi,ja,b
.
=


∆R̄i,ja,b = Exp(ω̄i,j∆ta,b)

∆v̄i,ja,b = E1(ω̄i,j∆ta,b) āi,j ∆ta,b

∆p̄i,ja,b = E2(ω̄i,j∆ta,b) āi,j ∆t2
a,b

(10)

The constant values ω̄i,j and āi,j are deduced from Ii,j
such that Īi,ji,j = Ii,j :

ω̄i,j =
Log(∆Ri,j)

∆ti,j
, (11a)

āi,j =
1

∆ti,j
[E1(ω̄i,j∆ti,j)]

−1
∆vi,j , (11b)

with:

[E1(φ)]
−1

= I3 −
1

2
φ× +

(
1

‖φ‖2
− 1 + cos(‖φ‖)
2‖φ‖ sin(‖φ‖)

)
φ2
×. (11c)

3.2. TSIP measurement

Using the temporal interpolation of the previous section,
we propose an approximation of preintegration measure-
ment called TSIP that takes into account both time shift and
IMU biases update.

Consider four consecutive time instants ti, tj , tk & tl and
three preintegration measurements Ii,j , Ij,k and Ik,l. After
computing approximations of these preintegration measure-
ments (section 3.1), a time shift update δτs on Ij,k can be
taken into account as follows (Fig. 1):

Îj,k(δτs)
.
=

{
Īj,kj+δτs,k ⊕ Ī

k,l
k,k+δτs

if δτs > 0

Īi,jj+δτs,j ⊕ Ī
j,k
j,k+δτs

if δτs < 0,
(12)

The addition⊕ of two IMU preintegration measurement in-
terpolations Ī is deduced from the preintegration definition



Figure 1: Time shifted preintegration measurement (equa-
tion 12) for a positive time shift update δτs. The result-
ing TSIP measurement is a sum of two approximated IMU
preintegration. The first one, Īj,kj+δτs,k, uses ω̄j,k and āj,k

for a duration ∆tj,k − δτs, and the second one, Īk,lk,k+δτs
,

uses ω̄k,l and āk,l for a duration δτs.
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Figure 2: TSIP Îj,k(δτs) for δτs ∈ [−∆tj,k,∆tj,k] and
∆ti,j = ∆tj,k = ∆tk,l = 0.5s using IMU data from Eu-
RoC MAV V1 02 medium sequence [2] (continuous line).
Dotted lines are IMU preintegration values computed with
raw IMU data. The first dimension of Log(∆R̂j,k(δτs)),
∆v̂j,k(δτs) and ∆p̂j,k(δτs) are here depicted. For the two
other dimensions similar behavior is observed.

(equation 6) assuming that the biases are constant:

Īi,ja,b⊕Ī
j,k
b,c

.
=


∆R̄i,ja,b∆R̄

j,k
b,c

∆v̄i,ja,b + ∆R̄i,ja,b∆v̄
j,k
b,c

∆p̄i,ja,b+∆v̄i,ja,b∆tb,c+∆R̄i,ja,b∆p̄
j,k
b,c

(13)

A comparison of the TSIP Îj,k(δτs) and the preintegra-
tion recomputed using raw IMU data in [tj + τs, tk + τs] is
depicted in Figure 2. The TSIP measurement evolution with
time shift influence sticks correctly to the reference value.
In particular, the curves slightly bend in the right direction
to stay close their real value.

Concerning IMU biases update, it is taken into account
by substracting the update to gyroscope and accelerometer
approximation for each interpolation of IMU preintegration
Ī defined in equation 10. Therefore, the following TSIP
are an approximation of preintegration taking into account
both time shift and IMU biases update without requiring to
re-preintegrate gyroscope and accelerometer data:

Îj,k(δτs, δbg, δba)
.
= (14){

Īj,kj+δτs,k(δbg, δba) ⊕ Īk,lk,k+δτs
(δbg, δba) if δτs > 0,

Īi,jj+δτs,j(δbg, δba) ⊕ Īj,kj,k+δτs
(δbg, δba) if δτs < 0.

with every Īm,n(.) (δbg, δba) being Īm,n(.) of equation 10

where ω̄m,n and ām,n are replaced by ω̄m,n − δbg and
ām,n − δba respectively.

4. Incremental VISLAM initialization
Given the TSIP measurement presented in the previous

section, we propose in this section an IMU initialization that
aims to estimate both time shift and initial visual-inertial
state in a robust non-linear optimization. After the pre-
sentation of previous work on VISLAM initialization, the
proposed algorithm is explicited: optimization parameters
are firstly analysed, then visual and inertial constraints con-
stituting the VISLAM initialization graph are introduced,
and finally its incremental optimization including the stop-
ping criterion and the robustness to odometry failures is pre-
sented.

4.1. Related work

Since good knowledge of initial values of the system
state has a significant impact on VISLAM performance,
many methods to bootstrap visual-inertial odometry have
already been proposed. In [12, 17], the use of known vi-
sual odometry and IMU data in a multi-step process enables
to estimate IMU biases, gravity direction and metric scale
of the monocular visual odometry. Recent work proposed
by [3] extends a closed-form solution presented in [7, 4] to
tightly fuse IMU data and visual features for a robust initial-
ization procedure.These approaches estimate accuratly the
inital state, however the time shift is not estimated. In [5]
an IMU initialization is presented, that uses a constant an-
gular velocity approximation on odometry to estimate time
shift along with gyroscope bias ; the rest of the IMU initial
state is then recovered separately in a second step.

Besides, all these initialization algorithms assume a con-
tinuity in the visual data. They do not handle failure situ-
ation of visual odometry (abrupt movement, motion blur).
Furthermore, their criteria for stopping the IMU initializa-
tion do not guarantee the quality of the estimation. An ini-
tialization where odometry failures are handled and with a
reliable end of estimation criteria is therefore presented.

4.2. Optimization parameters

Using visual odometry poses and TSIP measurement de-
scribed in section 3, the proposed VISLAM initialization al-
gorithm aims to give a first estimation of the constant time
shift τs and the initial IMU state i.e. the IMU biases bg and
ba and the gravity direction. The scale factor s of the vi-
sual odometry may also be estimated for monocular SLAM
odometry. Since gravity vector norm is known, only gravity
direction has to be estimated. Thus gravity vector can be
written as Wg = GExp(ψ)u, with G the gravity norm, u a
unit vector and ψ the vector reflecting the gravity direction.

Besides, the rotation component of each odometry pose
is added in the optimization. Indeed, since gravity is ex-



pressed in the world reference frame, a rotational drift of
the odometry would lead to an inaccurate estimation of the
gravity. Only the first rotation is fixed to remove gauge free-
dom. In contrast, translation components of the odometry
poses remain fixed, since only delta positions are used (and
their covariance) to estimate the initialization parameters.
Velocity is not included in the optimization since VSLAM
does not provide accurate velocity estimation. It also re-
duces the dimension of the estimated parameters. Conse-
quently, the set of optimized parameters forN+1 odometry
keyframes is defined as:

θ
.
= {τs,bg,ba, s, Wg} ∪ {Ri}i=1...N (15)

The extrinsic calibration of the IMU is considered fixed.
It could be easily added in the proposed graph if required.
The velocity WvI(t) of the IMU frame I expressed in frame
W at any time t may also be computed at the end of the
initialization by using equations 5, as done in [12].

4.3. Graph constraints

Considering N + 1 odometry keyframes, the estimation
of θ is obtained through the minimization of the sum of
three different constraints:

θ∗ = arg min
θ

 N∑
i=1

Ebgts
i,i+1 +

N−1∑
i=1

Esgbats
i,i+1,i+2 +

N∑
i=1

Einter
i,i+1

 . (16)

where a constraint E(.) corresponds to a residual error r(.)

weighted by its information matrix Σ(.)−1
:

E(.) = r(.)>Σ(.)−1
r(.). (17)

Here, Ebgts
i,i+1 is a constraint between two odometry rota-

tions and the rotation component of TSIP, enabling to refine
both bg and τs. Esgbats

i,i+1,i+2 is the constraint connecting the
scale factor s, the gravity vector Wg, the accelerometer bias
ba and the time shift τs, using three consecutive odometry
rotations of indices i, i + 1, i + 2 and their related TSIP.
Einter
i,i+1 is the inter rotation prior term for two consecutive

odometry rotations. Figure 3 illustrates the graph structure
with the constraints and their related optimized variables.

The first two constraints are extensions of IMU initializa-
tion constraints used in [12] where TSIP method is applied.
They are sufficient to estimate both the time shift and initial
IMU parameters. The third constraint is added to the graph
to increase the robusness of the proposed initialization to
rotation drift of visual odometry.

4.3.1 BgTs constraint

BgTs residual error is obtained by incorporating TSIP mea-
surement in equation 7a, and results in:

rbgts
i,j = Log

([
∆R̂i,j(δτs, δbg)

]>
R>BIR

>
j RiRBI

)
. (18)

Figure 3: Structure of the graph used for the incremental
initialization.

The information matrix of this residual is the inverse of
the covariance of ∆Ri,j , deduced from the covariance of
Ii,j :

Σbgts
i,j = [I3×3 03×3 03×3] ΣIi,j [I3×3 03×3 03×3]>. (19)

4.3.2 SGBaTs constraint

Residual error r∆p (eq. 7c) is the relation between the scale
factor s, the gravity vector and the preintegration measure-
ments. However it involves state velocity WvI, that does
not belong to the set of parameters to optimize and that can
not be fixed in the optimization since no precise estimate is
known. Therefore, two residual errors r∆p for three consec-
utives odometry keyframes at times ti, tj and tk are com-
bined to build the SGBaTs residual error:

rsgbats
i,j,k = r∆p

j,k∆ti,j − r∆p
i,j ∆tj,k

= s ((pk − pj)∆ti,j − (pj − pi)∆tj,k)

− (WvI(tj)− WvI(ti))∆ti,j∆tj,k

+
1

2
Wg(∆t2

i,j∆tj,k −∆t2
j,k∆ti,j)

−RjRBI∆pj,k∆ti,j +RiRBI∆pi,j∆tj,k

− (Rj −Ri)BpI∆tj,k + (Rk −Rj)BpI∆ti,j .

(20)

Since WvI(tj) − WvI(ti) is equal to Wg∆ti,j +
RiRBI∆vi,j (eq. 5b), the presence of the velocity in equa-
tion 20 can be removed.

TSIP are substituted to preintegration measurement and
SGBaTs residual becomes:

rsgbats
i,j,k = s ((pk − pj)∆ti,j − (pj − pi)∆tj,k)

−RiRBI∆v̂i,j(δτs, δbg, δba) ∆ti,j∆tj,k

− 1

2
Wg(∆t2

i,j∆tj,k + ∆t2
j,k∆ti,j)

+RiRBI∆p̂i,j(δτs, δbg, δba) ∆tj,k

+RjRBI∆p̂j,k(δτs, δbg, δba) ∆ti,j

− (Rj −Ri)BpI∆tj,k + (Rk −Rj)BpI∆ti,j .

(21)

To compute Σsgbats
i,j,k , we derive rsgbats

i,j,k with respect to
preintegration measurements and visual odometry delta po-
sitions. The covariance is then a sum of covariances from



visual and IMU measurements:

Σsgbats
i,j,k = JIi,jΣ

Ii,jJIi,j
>

+ JIj,kΣIj,kJIj,k
>

+ JPi,jΣ
∆Pi,jJPi,j

>
+ JPj,kΣ∆Pj,kJPj,k

>
,

(22)

where jacobians JIi,j , J
I
j,k, JPi,j and JPj,k are analytically

computed.

4.3.3 Inter rotation constraint

The uncertainty of the visual odometry rotations is included
in the graph through the inter rotation covariance. Consid-
ering two consectutive rotations at indices i and j, these
constraints act like a prior on their inter rotation R>j Ri re-
lated to its initial value R̃>j R̃i determined by the odometry.
The residual error is therefore the difference of these two
rotations in Lie group SO(3):

rinter
i,j = Log

(
[R̃>j R̃i]

>R>j Ri

)
. (23)

The information matrix of this residual error is the in-
verse of the rotation component of the computed inter rota-
tion covariance presented in equation 2:

Σinter
i,j =

[
I3×3 03×3

]
Σ∆Pi,j

[
I3×3 03×3

]>
. (24)

4.4. Incremental graph optimization

In this section, we describe how the graph presented
above is initialized, incrementally constructed and opti-
mized.

Optimization of the graph begin when the system is ob-
servable. For N odometry poses, since dim(θ) = 3N + 7

and dim(rinter
i,j ) + dim(rbgts

i,j ) + dim(rsgbats
i,j,k ) = 9N − 12, the

minimum number of odometry poses needed before begin-
ning estimation is equal to 4. The graph is optimized using
Levenberg-Marquardt as non-linear solver. The optimiza-
tion then takes place as follow:

• Initialization and first optimization of the graph:
The first odometry rotations are added to the graph and
IMU biases and time shift are set to zero. IMU data
are preintegrated between timestamps of consecutive
odometry key-frames poses and TSIP measurements
computed (equation 11). A first estimation of bg and
τs is obtained by optimizing the graph with BgTs and
delta rotation prior constraints. The scale and gravity
vector are then roughly evaluated through the resolu-
tion of a linear system as equation 12 in [12]. The
SGBaTs constraints are finally added to the graph to
refine all θ in a single optimization.

• Incremental optimization: When a new odometry
pose and its associated IMU data are available, the

Figure 4: Graph structure after an odometry failure at time
instant tk. Here W0 is the fomer world coordinate frame
before odometry failure and W1 is the new one. Former
BgTs edges are still valid and are kept in the optimization.
However former SGBaTs edges have to be removed and a
prior on ba is added to the optimization.

graph is incrementally completed. First, new IMU data
are preintegrated and the TSIP between the previous
and the new odometry pose is estimated. Then con-
straints related to new inputs are added to the graph:
inter rotation, BgTs and SGBaTs, and a new graph op-
timization is launched to refine θ.

4.5. Robustness to odometry failure

In case of an odometry failure, a new arbitrary world
frame is set by the odometry (in case of no relocalisation
techniques). Since not all components of θ become obso-
lete, a complete reset of the initialization would lead to a
loss of information.

In the optimization graph, the former scale factor and
gravity vector direction estimated become obsolete as well
as all SGBaTs constraints. BgTs constraints are indepen-
dent of the choice of world coordinate frame and thus re-
main valid. Therefore, gyrometer bias and time shift esti-
mations are not affected by odometry failure. Concerning
accelerometer bias, since SGBaTs constraints have to be
removed from the graph, its former estimation is resumed
by marginalization and this information matrix is used as a
prior to next estimations.

The optimization continues using the new visual odom-
etry poses, by fixing the first rotation to remove gauge free-
dom, as depicted in Figure 4.

4.6. Stopping criterion

After each graph optimization, the uncertainty ΣZ of ini-
tialization parameters set Z = θ \ {Ri}i=1...N is obtained
by marginalization. A standard deviation σ is assigned to
every component of Z , representing the accuracy level de-
sired for this component. This enables to normalize ΣZ

into a unitless covariance Σstop = M−1
σ ΣZ M−1

σ with
Mσ = diag(στs , σbg

, σba
, σs, σWg). Therefore, all com-

ponents in Z are accurate enough when the biggest eigen
value of Σstop is inferior to 1.

We use στs = 1ms, σbg
= 0.0005rad.s−1, σba

=
0.01m.s−2, σs = 0.01 and σ

Wgdir
= 0.01rad in experi-

ments. Note that these values are too optimistic: this over-



confidence is probably due to ΣZ being inconsistent. In-
deed recent work on invariant filters [1] indicates that any
classical SLAM has an overconfident state estimate, so the
VSLAM we used as input is no exception to this statement.

5. Experiments

In this section, the accuracy and the robustness of the
proposed initialization is demonstrated.

First, the accuracy of the temporal calibration and the
initial IMU state estimated with the proposed initialization
is studied. Then, its impact on VISLAM peformance is
presented and compared with the initialization described in
[12]. Finaly, the robustness of the proposed initialization to
odometry failures is demonstrated.

We use g2o [8] to create and optimize the graph, with
custom edges and vertices implementations. Experiments
are perfomed on Visual-Inertial Datasets EuRoC MAV [2]
and TUM VI Benchmark [15]. The VISLAM algorithm
used to evaluate the proposed initialization is a non-linear
optimization based VISLAM similar to the one described
in [6].

5.1. Accuracy of time shift and IMU state estimation

Temporal calibration based on TSIP measurements is
evaluated by simulating time offsets on IMU data of the
V1 02 medium sequence. About fourty initializations, dis-
tributed on the whole sequence, have been performed for
every simulated time shift in range from -500ms to 500ms.
Results of time shift estimation are depicted in Figure 5.
The error of the estimated time shift is constantly under 1%
of the simulated value and less than 2ms in range [-100ms,
100ms]. Average error is under 0.5ms regardless of the time
shift value. We thus have a better temporal calibration than
the initialization proposed in [5], where estimations errors
lay between -3ms and 3ms for this sequence. The initial-
ization duration is below 9 seconds on average and does not
depend on the time shift value.

To demonstrate that IMU state and time shift have to
be estimated simultaneously, we compare in Figure 6 the
gyrometer bias estimation obtained by the initialization
method proposed in [12] that does not estimate time shift
with the one obtained by the proposed initialization. bg er-
ror is nearly linear with time shift, while with the proposed
initialization the error has an almost constant value around
2% of the bg norm. For the other IMU state parameters we
observe a similar behavior. This illustrates that IMU initial-
ization without temporal calibration fails to provide correct
estimation of the inital IMU state when time shift occurs.

5.2. Initialization impact on VISLAM performance

The performance of the proposed VISLAM initialization
is demonstrated on different public dataset. Results are re-
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Figure 5: Mean and standard deviation of time shift er-
ror and duration of the proposed VISLAM initialization for
each simulated time shift, on EuRoC MAV V1 02 medium
sequence [2].
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Figure 6: Mean of gyrometer bias error for each simulated
time shift on the EuRoC MAV V1 02 medium sequence [2]
estimated by the VISLAM initialization of [12] (red) and by
the one we propose (blue).

sumed in Table 1. Time shifts of 10, 20 and 30ms are sim-
ulated, and the proposed initialization is compared to [12]
by measuring the VISLAM final position error using dataset
ground truth: err = ‖pN−p0−R>0 RNRGT

0
>(pGT

N −pGT
0 )‖,

with p0 and pN being the first and last positions of the VIS-
LAM. The VISLAM localization accuracy obtained with
the proposed initialization is stable regardless of the time
shift value, whereas when using initialization of [12], it de-
teriorates with increasing time shift. On the four sequences
of Table 1, VISLAM average error is 1,05m using the pro-
posed initialization and 2.87m with the initialization of [12].

Our own sequence acquired with two camera FLIR
BlackFly S and an 6-axis SBG Ellipse-N IMU is also used
to evaluate the VISLAM accuracy with the proposed initial-
ization. Images of this sequence is illustrated in Figure 7.
The trajectory forms a rectangle of 25 meters wide and 55
meters long in the corridors of a building. The starting and
the ending positions are the same. The VISLAM localiza-
tion accuracy is measured as the distance between the last



Table 1: Evaluation of the VISLAM accuracy according to
the initialization algorithm for different simulated time shift
values

Sequence Time shift (ms) Final position error (m)
Proposed [12]

TUM Slides1
10 1.7190 4.5410
20 2.3075 7.7297
30 2.0917 5.3901

TUM Corridor1
10 1.3026 2.1867
20 1.3162 3.5366
30 1.3071 5.8845

EuRoC MH3
10 0.32065 0.11650
20 0.33221 0.70788
30 0.33981 2.2444

EuRoC MH5
10 0.53077 0.57704
20 0.53914 0.53983
30 0.54026 0.96565

estimated position and the first one. At the beginning of the
sequence, an april target is filmed to obtain a ground truth
of the time shift with Kalibr [14]. The time shift estimated
by Kalibr is 22.36ms whereas its estimation by our initial-
ization is 21.97ms. With our initialization, the VISLAM lo-
calization error is 0.23% of the trajectory length while with
the initialization of [12] it rises to 1.5%. The VISLAM lo-
calization that uses the proposed initialization is illlustrated
in Figure 7.

5.3. Initialization robustness

We here demonstrate the robustness of the pro-
posed VISLAM initialization to odometry failures on the
V1 03 difficult sequence with a simulated time shift of
50ms. On this sequence, the monocular VSLAM algo-
rithm crashes after 5 seconds and restarts seconds later. The
proposed initialization with and without handling odome-
try failures is launched. Gyrometer bias, gravity direction
and time shift estimation have converged before the VS-
LAM crash (τs = 49.91ms, bg error = 1.56% of the bg

norm), only the accelerometer bias estimation did not have
enough time to converge. Figure 8 shows the evolution of
the accelerometer bias error during both initialization. With
odometry failures handling, ba converges after 10 seconds
of the sequence whereas by restarting the initialization after
the VSLAM crash it takes more than 14 seconds. Adding a
prior on ba in the graph (Figure 4) allows continuity in the
VISLAM initialization if VSLAM failure occurs.

6. Conclusion
In this paper is presented an online incremental VIS-

LAM initialization that estimates both time shift and initial
IMU state in a single non-linear optimization. To this end
we introduced TSIP measurements: a new concept for tem-
poral interpolation of IMU preintegration. Experiments on
real data have demonstrated the precision and the robust-

Figure 7: Top: illustration of the sequence we acquired in
our building. Bottom : VISLAM localization and recon-
stuction that has been initialized with the proposed algo-
rithm described in Section 4.
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Figure 8: Evolution of the accelerometer bias error dur-
ing the proposed incremental initialization with (blue) and
without (red) handling odometry failures on the EuRoC
MAV V1 03 difficult sequence [2]. Without odometry fail-
ures handling the VISLAM initialization is restarted.

ness of the proposed initialization algorithm thus enabling
to improve VISLAM accuracy.

The TSIP measurement is a generic framework
that could be used in closed form initialization [3]
or for any sensors system including an IMU (e.g.
IMU/LIDAR).
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