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Abstract

Paramagnetic Rim Lesions (PRLs) are an emerging biomarker of chronic active inflam-
mation in Multiple Sclerosis (MS) but their visual identification on susceptibility-sensitive
MRI remains challenging and time-intensive. Due to the scarcity of PRLs, existing au-
tomated methods rely on patch-based classification, where a lesion-centered 3D patch is
classified as PRL or non-PRL. However, MS lesions often occur in clusters, so a single patch
may contain multiple types of lesions. Moreover, this approach requires prior extraction
of lesion-centered patches which complicates the reconstruction of whole-brain predictions.
To overcome this, we propose an end-to-end, whole-brain pipeline that generates patches on
the fly and directly delineates PRLs within them, eliminating the need for lesion-centered
extraction and enabling more precise and user-friendly automated PRL detection.

Keywords: Multiple Sclerosis, Chronic Active Lesions, Paramagnetic Rim Lesions, Seg-
mentation, Magnetic Resonance Imaging, Quantitative Susceptibility Mapping.

1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system
marked by demyelinating lesions visible on T2-FLAIR MRI. Paramagnetic rim lesions
(PRL), identified by iron-enriched rims on susceptibility-sensitive MRI (Bagnato et al.,
2024), are emerging as key biomarkers of the disease and are expected to become part of
standard clinical assessments according to 2024 revision of the McDonald criteria (Montal-
ban, 2024). However, manual PRL identification is labor-intensive and impractical for clin-
ical use. Deep learning models have been proposed for PRL detection using lesion-centered
3D patch classification (Barquero et al., 2020; Zhang et al., 2022), but struggle with clustered
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Figure 1: Cluster of multilabel lesions. (A) T2-FLAIR image showing lesions as hyperin-
tense spots; (B) Corresponding QSM image highlighting the hyperintense rims
of two confluent PRLs; (C) Expert annotation map. White indicates PRL, red
indicates non-PRL.

lesions (c.f. Figure 1) and requires extensive pre- and post-processing. Whole-brain segmen-
tation offers an interesting alternative (Wynen et al., 2024) but has shown limited perfor-
mance due to small datasets. To address these issues, we propose a fully automated patch-
based semantic segmentation method that directly delineates PRLs and non-PRLs, improv-
ing precision and eliminating the need for pre-computing lesion-centered inputs in a low-data
setting. The code for our method is available at: https://github.com/zinelya/PRLseg.

2. Participants and proposed method

Data We used a subset of preprocessed imaging data from a longitudinal in-house database,
including 20 patients with relapsing-remitting multiple sclerosis (RRMS) recruited from
the neurology clinic at the Centre Hospitalier Universitaire de Sherbrooke, Canada. Each
patient underwent five MRI sessions over 5–6 months, with 4-week intervals. All scans
were acquired on a 3T scanner and include T2-FLAIR and Quantitative Susceptibility
Mapping (QSM) images reconstructed from multi-echo GRE sequences. Detailed acquisition
parameters are available in Appendix A. Lesions, without PRL status, were segmented using
the NeuroRx 1 machine learning tool and uniquely labeled with Scilpy 2. FLAIR and lesion
masks were rigidly registered to QSM magnitude images. The paramagnetic status of each
lesion was assessed by a neurology resident trained in PRL recognition. Of 1,123 segmented
lesions, 73 were identified as PRLs. Ratings were done for all lesions in the first session
and for new lesions in later sessions, with the assumption that PRLs in session 1 were still
paramagnetic in subsequent sessions due to short scanning intervals and the chronic nature
of PRLs. A subject-wise stratified split of 12, 4 and 4 subjects for training, validation
and testing, was used to prevent data leakage across timepoints and ensure a balanced
distribution of PRLs across sets.
Method Our method performs patch-wise lesion segmentation from T2-FLAIR and QSM
images. We input 32 × 32 × 32 patches of coregistered T2-FLAIR and QSM to a neural
network architecture and output two binary masks representing non-PRL and PRL lesions
respectively. As lesion masking is part of the MS clinical routine, we also explore adding

1. https://neurorx.com/en
2. https://www.github.com/scilus/scilpy
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Patch-Based PRL Segmentation

Figure 2: Comparative example from the test set. A) FLAIR image. B) QSM image. C)
Expert annotations. D) Aggregated segmentation output from the UNet. White
indicates PRL, red indicates non-PRL.

the binary lesion mask as input. During training, per epoch, three patches per subject are
generated at random, centered around a voxel in the ground-truth lesion mask. We explore
using a 3D UNet (Ronneberger et al., 2015) and a 3D UNETR (Hatamizadeh et al., 2022)
to perform our segmentation (c.f. section 3). At inference, patches are extracted using
grid sampling and processed independently. Predictions are aggregated to reconstruct the
whole-brain output.

3. Experiment and results

To evaluate the accuracy of our proposed method, we train and validate our method on
our in-house dataset. Networks are trained for 3000 epochs using a learning rate of 1e− 4.
We report the global F1 score, along with Dice scores specific to PRL and non-PRL classes
on the testset.

Model F1 Dice PRL Dice non-PRL

UNet 0.4976 ±0.0830 0.2573 ±0.2457 0.2502 ±0.1772
UNETR 0.3890 ±0.0929 0.3260 ±0.2744 0.0353 ±0.0416
UNetlesion 0.4603 ±0.0881 0.4223 ±0.2989 0.0528 ±0.0500
UNETRlesion 0.3271 ±0.0854 0.3268 ±0.2606 0.0112 ±0.0136

Table 1: Performance comparison of different 3D models on lesion segmentation.

As we can observe from Table 1, although the final Dice scores are quite low, the UNet
architecture clearly outperforms UNETR. Interestingly, including the lesion mask as part
of the input does not seem to improve the final segmentation.

4. Discussion, conclusion and future works

Our work highlights the challenges of PRL segmentation due to the scarcity of data and
unreliable data annotation. As shown in Figure 2, while it includes spurious erroneous
voxels, the predicted lesion masks seem to be more in line with the FLAIR hyperintensities
than the ground-truth. For instance, the model segments the large lesion into distinct PRL
and non-PRL regions. Future work should focus on larger, multi-rater annotated datasets
that also explore the use of other susceptibility-sensitive modalities.
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Patch-Based PRL Segmentation

3D T2 FLAIR 3D mGRE

Resolution (mm) 0.74 × 0.74 × 0.56 0.79 × 0.79 ×0.8
Repetition time (TR, ms) 4800 35.39
Inversion Recovery Time (TI, ms) 1650 -
Number of echoes 4 4
Echo time (TE, ms) 340 TE1 = 4.96, ∆TE = 9
Flip angle (°) 40 17
Scan time 4’33” 4’36”

Table 2: MRI acquisition protocol on a 3T Philips Ingenia scanner.
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