
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LATE CHUNKING: CONTEXTUAL CHUNK EMBED-
DINGS USING LONG-CONTEXT EMBEDDING MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many use cases require retrieving smaller portions of text, and dense vector-based
retrieval systems often perform better with shorter text segments, as the semantics
are less likely to be “over-compressed” in the embeddings. Consequently, practi-
tioners often split text documents into smaller chunks and encode them separately.
However, chunk embeddings created in this way can lose contextual information
from surrounding chunks, resulting in sub-optimal representations. In this paper,
we introduce a novel method called “late chunking”, which leverages long con-
text embedding models to first embed all tokens of the long text, with chunking
applied after the transformer model and just before mean pooling - hence the term
“late” in its naming. The resulting chunk embeddings capture the full contextual
information, leading to superior results across various retrieval tasks. The method
is generic enough to be applied to a wide range of long-context embedding models
and works without additional training. To further increase the effectiveness of late
chunking, we propose a dedicated fine-tuning approach for embedding models.

1 INTRODUCTION

Neural information retrieval (IR) relies on text embedding models (Reimers & Gurevych, 2019) that
are primarily based on the transformer architecture (Devlin et al., 2019) and have been pre-trained
using very large text corpora. These models capture important elements of texts’ semantics in the
form of dense vectors whose spatial relations - particularly cosine distance - are good proxies for
text similarity and relevancy. For many neural IR use cases like the well-known RAG (Retrieval
Augmented Generation) approach (Lewis et al., 2020), applications require splitting documents into
limited-size text chunks, and storing them and their vector embeddings in a database. At run-time,
neural IR techniques are used to retrieve chunks of text relevant to a user’s requests, which are,
in the case of RAG, presented to an LLM as a basis for synthesizing a response. Furthermore,
many other applications require processing small text segments (Salton et al., 1993; Demszky et al.,
2020), and therefore rely on chunking, e.g., to quickly navigate a user to the relevant passage in a
document Callan (1994).

Moreover, while long context embedding models can improve retrieval performance on long texts
(Günther et al., 2023), they still perform better on short texts (Zhou et al., 2024). As a result, chunk-
ing generally improves retrieval, even with models that support long contexts. (See Appendix A.1.)
However, long-distance semantic dependencies – when the relevant information to interpret one
chunk of text is located in one or more other chunks – reduce the effectiveness of this search strat-
egy. Figure 1 displays a Wikipedia article1 that is split into chunks of sentences. One can see that
phrases like “its” and “the city” referencing “Berlin” which is mentioned only in the first sentence,
e.g., it is harder for the embedding model to link it to the respective entity to produce a high-quality
representation.

To overcome this limitation, we introduce a novel technique called late chunking. This method
leverages the long text embedding capabilities of recently published open source models (Günther
et al., 2023; Nussbaum et al., 2024) to, first, encode all tokens of an entire document with their full
in-document context into a sequence of token embeddings, and then break this sequence up into
chunks, which receive embeddings via mean pooling of their token embeddings. This way, chunk
embeddings include relevant semantic information derived from their place in the whole text.

1https://en.wikipedia.org/wiki/Berlin (Access 09-30-2024)

1

https://en.wikipedia.org/wiki/Berlin

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Berlin[a] is the capital and largest city of Germany, both by area and by population.
[11] Its more than 3.85 million inhabitants[12] make it the European Union's most
populous city, as measured by population within city limits.[13] The city is also one of
the states of Germany, and is the third smallest state in the country in terms of area.
Berlin is surrounded by the state of Brandenburg, and Brandenburg's capital Potsdam
is nearby. The urban area of Berlin has a population of over 4.5 million and is
therefore the most populous urban area in Germany.[5][14] The Berlin-Brandenburg
capital region has around 6.2 million inhabitants and is Germany's second-largest
metropolitan region after the Rhine-Ruhr region, and the sixth-biggest metropolitan
region by GDP in the European Union.[15]

Berlin[a] is the capital and largest city of Germany, both by area and by population.
[11]

Its more than 3.85 million inhabitants[12] make it the European Union's most
populous city, as measured by population within city limits.[13]

The city is also one of the states of Germany, and is the third smallest state in the
country in terms of area.

Figure 1: An illustration of the lost context problem. A Wikipedia article about Berlin is split into
chunks. One can see that phrases like “its” and “the city” reference “Berlin,” which is mentioned
only in the first sentence. This makes it harder for the embedding model to link these references to
the correct entity, thereby producing a lower-quality vector representation.

Table 1: Comparing the embedding of the term “Berlin” to various sentences from the article about
Berlin using cosine similarity. The column “Sim. naive” shows the similarity values between the
query embedding of “Berlin” and the embeddings using naive chunking, while “Sim. late” repre-
sents the results with the late chunking method.

Text Sim. Naive Sim. Late

Berlin is the capital and largest city of Germany, both by area and by
population. 0.8486 0.8495

Its more than 3.85 million inhabitants make it the European Union’s
most populous city, as measured by population within city limits. 0.7084 0.8249

The city is also one of the states of Germany, and is the third smallest
state in the country in terms of area. 0.7535 0.8498

As an example of how late chunking works, we encode the texts in Figure 1 with a long-context
embedding model, jina-embeddings-v2-small, using both naive and late chunking meth-
ods. We then calculate the similarity of the resulting embeddings to the embedding of the word
“Berlin”. Table 1 shows that, with naive chunking, texts that do not contain the word “Berlin” have
low similarity scores, even though both sentences, in context, refer to the city of Berlin. With late
chunking, you can see that the similarity scores are much higher. The late chunking strategy has
encoded “Berlin” into the embeddings of “Its” and “the city” because it sees them in their context
before chunking the text.

Late chunking is an architectural change that can be implemented in any long-context text embed-
ding model that uses mean pooling with any chunking technique and does not require additional
model training. It leads to superior results compared to naive chunking across a wide range of re-
trieval benchmarks. To demonstrate the replicability of our results, we are publishing the code via
GitHub 2. In particular, we make the following contributions:

• Late Chunking: We describe our novel late chunking technique in Section 3 and demon-
strate that it leads to superior results compared to naive chunking across a wide range of
retrieval benchmarks.

• Extended Algorithm for Long Documents: For encoding long documents with more
tokens than long-context embedding models can handle, we propose a long late chunking
approach (see Section 3.1) and prove its effectiveness in Section 4.3.

2Link omitted for anonymization

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Training for Late Chunking: While late chunking does not require additional training, we
propose a novel training method to further enhance retrieval accuracy when using it (see
Section 3.2). We conduct an evaluation to show its advantage over comparable contrastive
training in Section 4.4.

• Comprehensive Evaluation: We conduct a comprehensive empirical evaluation to identify
scenarios where late chunking performs superior to naive chunking and scenarios where the
standard method yields comparable or superior results (see Sections 4.1 and 4.2).

2 RELATED WORK

Most modern text embedding models are trained on transformer-based architectures (Devlin et al.,
2019) using the training method proposed by Reimers & Gurevych (2019). In general, the model is
equipped with a pooling operator which converts the token embeddings produced by the transformer
into a single vector representation. Mean pooling is especially popular, as Reimers & Gurevych
(2019) conduct experiments in which mean pooling shows the best performance among other meth-
ods. While the original transformer uses absolute positional encodings, methods that encode relative
positions like AliBi (Press et al., 2022) and RoPE (Su et al., 2024) allow effective training of em-
bedding models with larger context lengths (Günther et al., 2023; Nussbaum et al., 2024).

To address the limited context length and overcome practical issues of handling embeddings of long
texts, chunking text before embedding it has become common practice. While simple chunking
methods use a fixed token length (Lewis et al., 2020) or split text into units like sentences or para-
graphs, more sophisticated methods like semantic chunking (Kamradt, 2024) use the similarity of
embedding vectors of neighboring sentences to find optimal spans for chunking.

To prevent the problem of missing context information various approaches have been proposed that
augment the text of the chunks. For instance, practitioners divide text into overlapping chunks (Saf-
jan, 2023), meaning that the end of one chunk shares some tokens with the beginning of the next
chunk. During the development of this paper, a blog post (Anthropic, 2024) introduced an alterna-
tive approach for producing contextualized chunk embeddings using an additional large language
model (LLM). The LLM receives as input the whole document and the target chunk to produce text
for augmenting the chunk text with relevant context information before passing it to the embedding
model. This is however computationally more expensive, as LLMs are typically much larger than
embedding models or even require paid access to LLM APIs. Similarly, Luo et al. (2024) extract
propositions for each paragraph using an additional language model. However, each paragraph is
processed independently, which might result in losing context across paragraphs. Moreover, this ap-
proach cannot be used with any technique for segmenting the text (e.g. fixed-size, sentence-based,
semantic chunking, ...) but is restricted to the texts produced by the language model.

Another branch of research proposes embedding models that encode and index an embedding for
each token. Models like ColBERT (Khattab & Zaharia, 2020; Jha et al., 2024) use a method called
“late interaction”, which compares each token embedding of the query with each token embedding
of the document and can compute more accurate relevance scores in this way. However, in contrast
to our proposed late chunking method, this leads to more computational effort during the vector
search.

Furthermore, Chen et al. (2024) aims to produce contextualized embedding representations by train-
ing an embedding model specifically to produce contextualized embedding representations of sen-
tences.

3 METHOD

Late chunking is a strategy for taking advantage of the difference in size between the long context
input windows of recent embedding models and the relatively small size of optimal text chunks
for most applications. These models support much longer input texts, for example, 8192 tokens
for jina-embeddings-v2-small – roughly ten pages of standard text – while optimal chunk
sizes are typically much smaller, e.g., the size of a paragraph. The reasons can be manifold, one
being that LLMs get more inefficient when providing longer context, and a single short embedding
vector only has a limited capacity to represent information.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Chunk

Embedding
model

Long document

Chunk embedding

Chunk2 ChunkNChunk1

Embedding
model

Long document

Chunk1
embedding

Chunk2 ChunkNChunk1

Chunk2
embedding

ChunkN
embedding

Token
emb

Token
emb

Token
emb

Token
emb

Token
emb

Token
emb

Token
emb

Pooling Pooling Pooling
Pooling

i.i.d. embeddings

N

Naive chunking LATE chunking

conditional embeddings

Figure 2: Overview of the naive chunking strategy (left) and the late chunking strategy (right). In
late chunking, the transformer processes the entire text first, allowing chunk embeddings to capture
context from the whole text, unlike the naive approach which first splits the text into sub-strings
which are passed as independent units to the model.

The naive chunking approach (left side in Figure 2) chunks texts before processing them, using sen-
tences or paragraphs, and then applies an embedding model to the resulting chunks. Contrastively,
late chunking, as described in Algorithm 1, first tokenizes the entire text, or the largest part of it
possible (line 2), and applies the transformer part from the embedding model on it (line 3). This
generates a sequence of vector representations ϑ1, . . . , ϑm for each token that encompass textual in-
formation from the entire text. To generate a single embedding for a text, many embedding models
apply mean pooling to these token representations to output a single vector. Late chunking instead
applies mean pooling to smaller segments of this sequence of token vectors, producing embeddings
for each chunk that take into account the entire text. It is important to highlight that late chunking
still requires boundary cues that are derived from the chunks determined by a chunking algorithm,
but these cues are used only after obtaining the token-level-embeddings - hence the term late in its
naming. Chunking algorithms usually chunk text into sequences of characters. For late chunking,
boundary cues corresponding to a sequence of tokens are necessary. Accordingly, Lines 5-13 of the
algorithm translate the chunk definition into boundary cues that are used by the pooling step in the
lines14-16.

3.1 LONG LATE CHUNKING

Although many embedding models offer a high enough context length to encode a large amount of
text at once, the context length might still not be sufficient to encode very large documents in one
step. Moreover, the memory required for the encoding increases exponentially with an increasing
number of tokens so that encoding all tokens at once becomes infeasible. To solve this problem,
we propose using long late chunking as described in Algorithm 2. Thereby, the text is split into
larger macro chunks of lmax tokens that encompass multiple smaller chunks. Each macro chunk is
processed separately by the LateChunking method. To avoid missing context, macro chunks are
augmented with a certain number of tokens ω that overlap with the next chunks. Those additional
tokens serve as supplementary context information during late chunking.

3.2 TRAINING METHOD

While late chunking works without further training, models that are trained with mean pooling to
create a single embedding representation of a longer text might not be well-suited to encode chunks
of token embeddings containing additional information from surrounding tokens. Therefore, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Late Chunking
Inputs: Text T , Chunking Strategy S
Outputs: Chunk Embeddings e1, . . . , en

1: (c1, . . . , cn)← Chunker(T, S)
2: (τ1, . . . , τm), (o1, . . . , om)← Tokenizer(T) ▷ τi is a token ID, oi its character length
3: (ϑ1, . . . , ϑm)← Model(τ1, . . . , τm) ▷ Calculate token embeddings ϑ1, . . . , ϑm

4: ochunk ← 0, j ← 1, cuestart ← 1, cues ← []

5: for i ∈ {1, . . . ,m} do ▷ For each token
6: ochunk ← ochunk + oi
7: if ochunk ≥ |cj | then ▷ When the current chunk size is reached, save positions
8: cueend ← i
9: cues ← cues ⊕ (cuestart , cueend)

10: j ← (j + 1), cuestart ← (i+ 1)
11: ochunk ← 0
12: end if
13: end for

14: for (cuestart , cueend)i ∈ cues do ▷ Pool token embeddings according to cue positions
15: ei ←

(∑cueend

j=cuestart
ϑj

)
/((cueend + 1)− cuestart)

16: end for

Algorithm 2 Long Late Chunking
Inputs: Text T , Chunking Strategy S, Maximum Token Length lmax , Overlap Length ω

Outputs: Chunk Embeddings E = (e1, e2, . . . , en)

1: (c1, . . . , cn)← Chunker(T, S)

2: (τ1, τ2, . . . , τm), (o1, o2, . . . , om)← Tokenizer(T) ▷ τi is a token ID, oi its character length

3: if m < lmax then ▷ If the number of tokens is already small, do regular late chunking
4: return LateChunking(T , S)
5: end if

6: iend ← 1, embeddings← []

7: while iend < m do
8: istart ← max(iend − ω, 1) ▷ Update token positions with overlap
9: iend ← min(istart + lmax ,m)

10: (ϑistart , . . . , ϑiend
)← Model(τistart , . . . , τiend) ▷ Calculate token embeddings

11: if istart = 1 then
12: embeddings← embeddings⊕ (ϑistart , . . . , ϑiend)

13: else
14: embeddings← embeddings⊕ (ϑistart+ω, . . . , ϑiend)

15: end if
16: end while

17: Carry out steps 4 to 16 of Algorithm 1 with augmented token embeddings ϑ1, . . . , ϑm.

propose a modified text embedding training method, which uses a technique that we call “span

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

pooling” to train the model to encode specifically the relevant information contained in an annotated
text span into its token embeddings.

Training Data: To conduct the training, we prepare training data which consist of tuples
(q, d, ⟨start , end⟩) of two text values: a query q and a relevant document d, with additional an-
notation of the relevant span in the document ⟨start , end⟩ that contains the answer.

Training Process: The fine-tuning procedure itself follows the pair training stage described in
Günther et al. (2023), where the model is trained on text pairs using the InfoNCE loss function
(van den Oord et al., 2018) which is defined on a batch B = ((x1, y1), . . . , (xk, yk)) of k pairs and
the cosine similarity function s:

LNCE(B) := −
∑

(xi,yi)∈B

ln
es(xi,yi)/τ

k∑
i′=1

es(xi,yi′)/τ

(1)

Here, the query vectors xi are obtained by applying the embedding model to the query text qi in the
usual way. For the document embeddings yi, the set of token embeddings ϑi,1, . . . , ϑi,n is obtained
by applying the model on the documents di, and executing the mean pooling operation only to the
token embeddings within the span ⟨start , end⟩, hence the term “span pooling”.

As proposed by Günther et al. (2023), we use a bi-directional version of the loss Lpairs, where
B† = ((y1, x1), . . . , (yk, xk)) is obtained from B by swapping the order of pairs:

Lpairs(B) := LNCE(B) + LNCE(B
†) (2)

A description of the datasets, hyperparameters of the training and the evaluation results can be found
in Section 4.4.

4 EVALUATION

First, we evaluate late chunking on a variety of models, chunking methods, and retrieval datasets to
show its effectiveness in Section 4.1. Section 4.2 investigate the influence of the chunking size and
also identifies scenarios where late chunking works optimally, as well as limitations of the method.
The long late chunking method is evaluated on datasets with long documents in Section 4.3. The
proposed span pooling method for training is evaluated in Section 4.4. Finally, we also conduct a
small-scale evaluation to compare late chunking to the LLM-based contextual embedding technique
in Section 4.5.

4.1 EVALUATION ON RETRIEVAL TASKS

To test the effectiveness of late chunking, we apply our technique to the smaller retrieval tasks of the
BeIR benchmark (Thakur et al., 2021). We restrict the evaluation on the smaller datasets, as splitting
documents into smaller chunks increases the computational effort of the evaluation, which makes a
comprehensive evaluation on different models, tasks, and chunking techniques infeasible.

Those retrieval tasks consist of a query set, a corpus of text documents, and a QRels file that stores
information about the IDs of documents that are relevant for each query. To identify the relevant
documents of a query, one can chunk the documents, encode and store them into an embedding
index, and determine for each query embedding the chunks corresponding to the k-nearest-neighbors
(kNN) of their normalized vector representations. As each chunk corresponds to a document, one
can convert the kNN ranking of chunks into a kNN ranking of documents (for documents occurring
multiple times in the ranking, only the first occurrence is retained). After that, one can compare
the resulting ranking with the ranking corresponding to the ground-truth QRels file and calculate
retrieval metrics like nDCG@10.

We run this evaluation for the BeIR datasets with naive chunking, our novel late chunking method,
and also report the score obtained without chunking. Both naive chunking and late chunking are
evaluated with different chunking techniques, we use:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of different chunking methods on retrieval tasks. Scores
are reported as nDCG@10 [%] Models: jina-embeddings-v2-small (J2s),
jina-embeddings-v3(J3), nomic-embed-text-v1 (Nom).

SciFact NFCorpus FiQA TRECCOVID AVG
J2s J3 Nom J2s J3 Nom J2s J3 Nom J2s J3 Nom

Fixed-Size Boundaries (256 Tokens per Chunk)

Naive 64.2 71.8 70.7 23.5 35.6 35.3 33.3 46.3 37.0 63.4 73.0 72.9 52.2
Late 66.1 73.2 70.6 30.0 36.7 35.3 33.8 47.6 38.3 64.7 77.2 75.0 54.0

Sentence Boundaries (5 Sentences per Chunk)

Naive 64.7 71.4 71.3 28.3 35.8 34.7 30.4 43.7 35.1 66.5 72.4 74.2 52.4
Late 65.2 73.2 71.4 30.0 36.6 35.5 33.9 48.0 37.7 66.6 76.5 76.8 54.3

Semantic Sentence Boundaries

Naive 64.3 71.2 70.4 27.4 36.1 35.3 30.3 44.0 34.8 66.2 74.7 74.3 52.4
Late 65.0 72.4 70.5 29.3 36.6 35.3 33.7 47.6 36.9 66.3 76.2 76.1 53.8

• Fixed-Size Boundaries: Each chunk has the same number of tokens (256 in this experi-
ment).

• Sentence Boundaries: Each chunk has the same number of sentences (5 in this experi-
ment).

• Semantic Sentence Boundaries: Each chunk corresponds to multiple sentences. Sen-
tences with high embedding similarity (we use jina-embeddings-v2-small-en) are com-
bined in the same chunk. We use the semantic chunking implementation from llama-index3

with the default parameters.

We evaluate three embedding models: jina-embeddings-v2-small (Günther et al., 2023),
jina-embeddings-v3 (Sturua et al., 2024), and nomic-embed-text-v1 (Nussbaum et al.,
2024).

Dealing with Non-Context Tokens: Not all tokens correspond to characters in the original string.
For instance, the tokenizers of all models add a [CLS] token at the beginning and append a [SEP] to-
ken at the end of the text. Additionally, jina-embeddings-v3 and nomic-embed-text-v1
prepend an instruction to the string for distinguishing queries and documents. During late chunk-
ing, we include all embeddings of prepended tokens in the mean pooling of the first chunk and all
embeddings of appended tokens to the last chunk.

We present the evaluation results in Table 2. When comparing the results for the different chunking
methods, we observe that replacing naive methods with their late chunking counterparts almost al-
ways yields better performance. Averaging results across three models and four datasets, we find a
3.63% relative improvement (1.9% absolute) from naive chunking with sentence boundaries to late
chunking using sentence boundaries, a 3.46% improvement (1.8% absolute) from naive chunking
to late chunking using fixed-size boundaries, and a 2.70% improvement (1.5% absolute) from naive
chunking to late chunking when using semantic sentence boundaries. In all experiments the chunks
are non-overlapping, however, additional results demonstrated in appendix A.2 show that overlap-
ping the chunks generally neither improves nor harms the retrieval performance. These findings
demonstrate that the late chunking technique effectively and consistently enhances overall perfor-
mance.

4.2 INFLUENCE OF THE CHUNKING SIZE

The following experiment investigates the influence of the chunk size on the performance of naive
and late chunking. For this case, we mainly evaluate the model on retrieval tasks with long doc-

3https://docs.llamaindex.ai/en/stable/examples/node_parsers/semantic_
chunking/

7

https://docs.llamaindex.ai/en/stable/examples/node_parsers/semantic_chunking/
https://docs.llamaindex.ai/en/stable/examples/node_parsers/semantic_chunking/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Retrieval Results with Different Chunk Sizes

Figure 4: Retrieval Results with Long Late Chunking for Different Chunk Sizes

uments. While most retrieval tasks contain relatively short texts, we only select the NFCorpus
dataset from BeIR (which contains comparable long text documents) and also use the datasets from
the LongEmbed benchmark (Zhu et al., 2024), which contains retrieval datasets constructed from
reading comprehension benchmarks as well as synthetic datasets of long documents. As many doc-
uments are longer than 8192 tokens, we truncate the texts at 8192 tokens before the evaluation. We
use the chunking method with fixed-size boundaries with different numbers of tokens and evaluate
naive and late chunking with jina-embeddings-v2-small using the same retrieval evaluation
method as described in Section 4.1. The results in Figure 3 show that late chunking performs bet-
ter than naive chunking, specifically for small chunk sizes. For NFCorpus, late chunking performs
consistently better, while for some of the reading comprehension tasks, naive chunking works better
when using large chunks. This may be due to some of the reading comprehension datasets requiring
finding a specific sentence or phrase embedded into a relatively unrelated textual context instead of
finding a whole document. Specifically, the two synthetic datasets Needle-8192 and Passkey-8192
are constructed by placing short relevant information into a document of unrelated text. In this case,
late chunking is not useful, as the additional context from the document is totally irrelevant.

4.3 EVALUATION OF LONG LATE CHUNKING

To evaluate long late chunking, we select three of the non-synthetic reading comprehension datasets,
as none of the BeIR datasets contain a significant amount of text values with more than 8192 tokens.
We use the same evaluation method as described in Section 4.2 but do not truncate this time. Figure 4
shows that late chunking with the long late chunking method achieves superior results in comparison
to naive chunking. Compared to the experiment of Section 4.2, the nDCG scores are higher, as

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Evaluation results (nDCG@10 [%]) on chunked evaluation tasks when training with span
pooling and mean pooling, with a fixed chunk size of 64 tokens and late chunking during inference.

Model Pooling (During Training Data Sci- Narrative- NF- TREC FiQA
Training) Fact QA Corpus -COV

J3 Span-Based TriviaQA&FEVER 72.61 44.01 36.80 77.59 48.22
TriviaQA 72.28 44.94 36.69 77.39 47.99

J3 Mean TriviaQA&FEVER 72.59 43.83 36.77 77.21 47.40
TriviaQA 72.56 44.86 36.78 77.36 47.35

J2s Span-Based TriviaQA&FEVER 65.20 47.29 29.96 65.18 34.52
TriviaQA 65.43 47.76 30.04 64.95 34.29

J2s Mean TriviaQA&FEVER 64.77 47.31 29.70 64.73 33.87
TriviaQA 65.18 47.45 29.76 64.86 33.82

truncation in the last experiment could lead to information loss. Long late chunking solves this
problem.

4.4 EVALUATION OF TRAINING METHOD

Table 3 captures the results from our training experiments. The experiments include running
both span-based and regular mean pooling training methods on the jina-embeddings-v3 and
jina-embeddings-v2-small-en long context embedding models in order to see whether the
proposed training method achieves performance gains in combination with late chunking. To evalu-
ate the models after the training we use the same procedure as in Section 4.1. For chunking, we used
fixed-size boundaries (64 tokens). For the jina-embeddings-v3 model, we fine-tune only the
retrieval adapters, following the same hyperparameter settings of Sturua et al. (2024), however with
an increased batch size of 512 and training for only 500 steps. The hyperparameters for the fine-
tuning of jina-embeddings-v2-small-en model are analogous to those detailed in Günther
et al. (2023).

For the span-based training method, we prepare two datasets into the format described in Section 3.2
and make these publicly available on HuggingFace 4. These two datasets are FEVER (Thorne et al.,
2018) and TriviaQA (Joshi et al., 2017), which are well-suited for this experiment as they contain
annotations of where the relevant text can be found in the documents respectively. In the FEVER
dataset, these spans take the shape of sentence number annotations, while for TriviaQA the annota-
tions are usually a name, place, or date in the form of a short phrase. For FEVER, we only include
pairs where the document provides supporting evidence for the claim. When multiple spans are
annotated in these datasets, we select only the span, which occurs earliest in the document.

Across the datasets and models, span pooling and mean pooling during training deliver relatively
similar results, with span pooling consistently achieving a small improvement. The training dataset
selection also has a small effect on the performance, thus resulting in slightly higher results for
NarrativeQA when only training on TriviaQA, which is likely due to an overlap of domain and
phrasing of query-document pairs of the task and training data.

While the span pooling method for training shows promise, the training dataset diversity is quite
limited, as both training datasets are sourced from Wikipedia documents. The summed dataset
encompasses only ∼470k pairs in total for training, which may additionally limit the potential per-
formance gains. It may be possible to achieve higher performance with a larger quantity and more
diverse set of training data.

4.5 COMPARISON TO CONTEXTUAL EMBEDDING

We conduct a small-scale experiment to compare late chunking to the LLM-based contextual
embedding approach published in a blog post by Anthropic (2024) mentioned in the related

4Link omitted for anonymization

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Cosine similarity scores using naive chunking, late chunking, and contextual embedding.

Chunk Similarity Similarity Similarity
Late Chunking Contextual Embedding Naive Chunking

The recent SEC filing provided insights
into ACME Corp’s performance for Q2
2023.

0.8305 0.8069 0.8505

It highlighted a 3% revenue growth
over the previous quarter. 0.8516 0.8590 0.6343

The company, which had a revenue
of $314 million in the prior quarter,
showed steady progress.

0.8424 0.8546 0.6169

They attributed this growth to strategic
initiatives and operational efficiencies. 0.7997 0.8234 0.5191

The report emphasized the company’s
resilience and ability to navigate market
challenges, reflecting positively on their
financial health and future prospects.

0.8022 0.8061 0.6007

work Section 2. Given the chunks obtained from a fictional financial document shown in Ta-
ble 4 and the query “What is ACME Corp’s revenue growth for Q2 2023?”, the goal is to
identify the relevant chunk. The relevant chunk in this example, “It highlighted a 3% revenue
growth over the previous quarter.”, however, misses the company’s name, which is necessary
to determine its relevancy. We implement the method described in the blog post that uses the
claude-3-haiku-20240307 model to select relevant contextual information from the whole
text and add it to the beginning of each text chunk. Then, we encode the query and the augmented
chunks with jinaai/jina-embeddings-v2-small-en to calculate their cosine similarity.
Table 4 captures the similarity values and compares them to those obtained from the chunks with
late and naive chunking. One can see that both the contextual embedding method and late chunking
produce the highest similarity value for the relevant chunk. In contrast, native chunking leads to a
much smaller similarity score that is lower than the similarity to other chunks. Furthermore, one
can see that contextual embedding and late chunking produce similarity scores that are close to each
other across all chunks, with late chunking having the advantage that it does not require using an
additional large language model.

5 CONCLUSION

In this paper, we present a novel approach for encoding text chunks with embedding models called
late chunking. We demonstrate how it can resolve context dependency problems and show that it
improves text embeddings across a wide range of retrieval tasks. For handling situations in which
the maximum context length of the model is not sufficient, we present a long late chunking approach
to effectively solve this problem. Late chunking requires no additional training and is applicable to
a wide range of embedding models. Furthermore, we demonstrate that additional training with a
custom method can further enhance its performance on retrieval tasks.

REFERENCES

Anthropic. Introducing Contextual Retrieval, 2024. URL https://www.anthropic.com/
news/contextual-retrieval. Accessed: 2024-09-29.

James P Callan. Passage-level evidence in document retrieval. In SIGIR’94: Proceedings of the
Seventeenth Annual International ACM-SIGIR Conference on Research and Development in In-
formation Retrieval, organised by Dublin City University, pp. 302–310. Springer, 1994.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. Dense X retrieval: What retrieval granularity should we use? In Proceedings of

10

https://www.anthropic.com/news/contextual-retrieval
https://www.anthropic.com/news/contextual-retrieval

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 15159–15177.
Association for Computational Linguistics, 2024.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. Goemotions: A dataset of fine-grained emotions. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 4040–4054, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-
mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, et al. Jina Em-
beddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents. arXiv preprint
arXiv:2310.19923, 2023. URL http://arxiv.org/abs/2310.19923.

Rohan Jha, Bo Wang, Michael Günther, Saba Sturua, Mohammad Kalim Akram, and Han Xiao.
Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever. arXiv preprint
arXiv:2408.16672, 2024. URL http://arxiv.org/abs/2408.16672.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A Large Scale Dis-
tantly Supervised Challenge Dataset for Reading Comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1601–1611, 2017.

Greg Kamradt. 5 Levels of Text Splitting. https://github.com/
FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/
LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb, 2024. Ac-
cessed: 2024-09-06.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage Search via Contextual-
ized Late Interaction over BERT. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pp. 39–48, 2020.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-Augmented Gener-
ation for Knowledge-Intensive NLP Tasks. Advances in Neural Information Processing Systems,
33:9459–9474, 2020.

Kun Luo, Zheng Liu, Shitao Xiao, Tong Zhou, Yubo Chen, Jun Zhao, and Kang Liu. Landmark
embedding: A chunking-free embedding method for retrieval augmented long-context large lan-
guage models. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3268–3281. Association for Computational Linguistics,
2024.

Zach Nussbaum, John X Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic Embed: Training
a Reproducible Long Context Text Embedder. arXiv preprint arXiv:2402.01613, 2024. URL
http://arxiv.org/abs/arXiv:2402.01613.

Ofir Press, Noah Smith, and Mike Lewis. Train Short, Test Long: Attention with Linear Biases
Enables Input Length Extrapolation. In International Conference on Learning Representations,
2022.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 3982–3992, 2019.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/2310.19923
http://arxiv.org/abs/2408.16672
https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb
https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb
https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/tutorials/LevelsOfTextSplitting/5_Levels_Of_Text_Splitting.ipynb
http://arxiv.org/abs/arXiv:2402.01613

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Krystian Safjan. From Fixed-Size to NLP Chunking - A Deep Dive into Text Chunking Techniques.
Krystian’s Safjan Blog, 2023.

Gerard Salton, James Allan, and Chris Buckley. Approaches to passage retrieval in full text in-
formation systems. In Proceedings of the 16th annual international ACM SIGIR conference on
Research and development in information retrieval, pp. 49–58, 1993.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-
v3: Multilingual Embeddings with Task LoRA. arXiv preprint arXiv:2409.10173, 2024. URL
http://arxiv.org/abs/2409.10173.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding. Neurocomputing, 568:127063, 2024.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. BEIR: A
Heterogeneous Benchmark for Zero-Shot Evaluation of Information Retrieval Models. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=wCu6T5xFjeJ.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: A Large-
Scale Dataset for Fact Extraction and VERification. In NAACL-HLT, 2018.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Predic-
tive Coding. CoRR, abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

Yuqi Zhou, Sunhao Dai, Zhanshuo Cao, Xiao Zhang, and Jun Xu. Length-induced embedding
collapse in transformer-based models. arXiv preprint arXiv:2410.24200, 2024.

Dawei Zhu, Liang Wang, Nan Yang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li.
LongEmbed: Extending Embedding Models for Long Context Retrieval. arXiv preprint
arXiv:2404.12096, 2024.

12

http://arxiv.org/abs/2409.10173
https://openreview.net/forum?id=wCu6T5xFjeJ
http://arxiv.org/abs/1807.03748

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATIONS OF LONG-CONTEXT EMBEDDING MODELS

Table 5: Influence of truncation and chunk size on retrieval with long texts. Truncation is done
before chunking.
Model: jina-embeddings-v2-small, naive (not late) chunking with fixed-size strategy.

NarrativeQA Dataset
Max. Length (Trucation) Chunk-Size Chunking nDCG@10

192 192 × 20.26
8192 8192 × 32.73
8192 128 ✓ 46.28
8192 512 ✓ 47.63

2WikiMultiHopQA Dataset
Max. Length (Trucation) Chunk-Size Chunking nDCG@10

192 192 × 48.86
8192 8192 × 70.32
8192 128 ✓ 91.36
8192 512 ✓ 86.3

SummScreenFD Dataset
Max. Length (Trucation) Chunk-Size Chunking nDCG@10

192 192 × 52.89
8192 8192 × 91.24
8192 128 ✓ 88.21
8192 512 ✓ 89.71

QMSum Dataset
Max. Length (Trucation) Chunk-Size Chunking nDCG@10

192 192 × 14.45
8192 8192 × 36.81
8192 128 ✓ 47.99
8192 512 ✓ 48.34

To investigate whether chunking is beneficial for retrieval tasks when all texts are smaller than the
maximum input token length of the model, we truncate texts to a fixed length and apply chunking
afterwards. We then evaluate the retrieval performance with the same setup as in Section 4.1, us-
ing the jina-embeddings-v2-small model and applying all the non-synthetic retrieval tasks
from the LongEmbed benchmark (Zhu et al., 2024). We use fixed-size chunking (see Section 4.1)
with chunk sizes of 128 and 512 tokens. Table 5 demonstrates that retrieval with chunking signif-
icantly outperforms retrieval without chunking. The average relative improvement from chunking
with 512 tokens is +24.47%. Only on the SummScreenFD task did retrieval without chunking
perform slightly better. Furthermore, truncating at 8192 tokens generally performs better than trun-
cating at 192 tokens, indicating that long-text embedding models still provide an advantage over
embedding models with short context lengths.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 RETRIEVAL WITH OVERLAPPING CHUNKS

Table 6: Comparison of using Overlapping or Non-Overlapping Chunks.
Model: jina-embeddings-v2-small. the fixed-size strategy (256 tokens), optional overlap
(16 tokens). Scores are in nDCG@10 [%]

Dataset Naive Chunking Late Chunking
w/ Overlap w/o Overlap w/ Overlap w/o Overlap

SciFact 64.2 61.7 66.1 65.9
NFCorpus 23.5 22.8 30.0 30.5
FiQA 33.3 32.8 33.8 34.0
TRECCOVID 63.4 64.5 64.7 64.9

In practice, engineers often construct overlapping chunks to prevent the loss of context at the
chunk boundaries (Safjan, 2023). To analyze whether this improves retrieval performance with
jina-embeddings-v2-small and the evaluation setup from Section 4.1, we ran the BeIR
benchmark tasks using fixed-size chunking (256 tokens) both with and without an overlap of 16
tokens. The results in Table 6 do not show a clear advantage of using overlaps. The nDCG@10
scores are relatively similar regardless.

14

	Introduction
	Related Work
	Method
	Long Late Chunking
	Training Method

	Evaluation
	Evaluation on Retrieval Tasks
	Influence of the Chunking Size
	Evaluation of Long Late Chunking
	Evaluation of Training Method
	Comparison to Contextual Embedding

	Conclusion
	Appendix
	Limitations of Long-Context Embedding Models
	Retrieval with Overlapping Chunks

