
A Unified Framework for
Comparing Learning Algorithms

Harshay Shah∗

harshay@mit.edu
MIT

Sung Min Park∗

sp765@mit.edu
MIT

Andrew Ilyas∗
ailyas@mit.edu

MIT

Aleksander Mądry
madry@mit.edu

MIT

Abstract
Understanding model biases is crucial to understanding how models will perform
out-of-distribution (OOD). These biases often stem from particular design choices
(e.g., architecture or data augmentation). We propose a framework for (learn-
ing) algorithm comparisons, wherein the goal is to find similarities and differ-
ences between models trained with two different learning algorithms. We begin
by formalizing the goal of algorithm comparison as finding distinguishing fea-
ture transformations, input transformations that change the predictions of models
trained with one learning algorithm but not the other. We then present a two-stage
method for algorithm comparisons based on comparing how models use the train-
ing data, leveraging the recently proposed datamodel representations [IPE+22].
We demonstrate our framework through a case study comparing classifiers trained
on the WATERBIRDS [SKH+20] dataset with/without ImageNet pre-training.

1 Introduction

How models perform out-of-distribution (OOD) is shaped in part by the biases of these models.
These biases are often influenced by the particular design choices we make. For example, Hooker
et al. [HCC+19] find that model compression—a common design choice prior to deployment—
preserves test set accuracies but can significantly degrade OOD performance. In order to understand
how design choices—which together define a learning algorithm—impact model biases, we thus
need to be able to differentiate learning algorithms in a more fine-grained way than accuracy alone.

Motivated by this observation, we develop a unified framework for comparing learning algorithms.
Our proposed framework comprises (a) a precise, quantitative definition of learning algorithm com-
parison; and (b) a concrete methodology for comparing any two algorithms. For (a), we frame the
algorithm comparison problem as one of finding input transformations that distinguish the two algo-
rithms. This goal is different and more general than quantifying model similarity [DDS21; BNB21;
MRB18] or testing specific biases [HCK20]. For (b), we propose a two-stage method for comparing
algorithms in terms of how they use the training data.

In the first stage of this method, we leverage datamodel representations [IPE+22] to find weighted
combinations of training examples (which we call training directions) that have disparate impact on
test-time behavior of models across learning algorithms. In the second stage, we filter the subpopu-
lation of test examples that are most influenced by each identified training direction, then manually
inspect them to infer a shared feature (e.g., all images contain a human in the background). We then
tie this intuition back to our quantitative definition by designing a distinguishing feature transforma-
tion based on the shared feature (e.g., adding a human to the background).

We demonstrate our framework through a case study comparing classifiers first pre-trained on Ima-
geNet [DDS+09; RDS+15] then fine-tuned on WATERBIRDS [SKH+20] with classifiers trained from
scratch on WATERBIRDS. Our results demonstrate that ImageNet pre-training reduces dependence
of models on some spurious correlations (e.g., yellow color → landbird) but also introduces new
ones (e.g., human face in the background→ landbird).

Workshop on Distribution Shifts, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

2 Comparing learning algorithms

In this section, we describe our (learning) algorithm comparison framework. In Section 2.1, we
formalize algorithm comparison as the task of identifying distinguishing transformations. These are
functions that—when applied to test examples—significantly and consistently change the predic-
tions of one model class but not the other. In Section 2.2, we describe our method for identifying
distinguishing feature transformations by comparing how each model class uses the training data.

2.1 Formalizing algorithm comparisons via distinguishing transformations

The goal of algorithm comparison is to understand the ways in which two learning algorithms
(trained on the same data distribution) differ in the models they yield. More specifically, we are
interested in comparing the model classes induced by the two learning algorithms:

Definition 1 (Induced model class). Given an input space X , a label space Y , and a model space
M ⊂ X → Y , a learning algorithm A : (X × Y)∗ → M is a function mapping a set of input-
label pairs to a model. Fixing a data distribution D, the model class induced by algorithm A is the
distribution overM that results from applying A to randomly sampled datasets from D.

We adopt the perspective that model classes differ insofar as they use different features to make
predictions. To make this precise, we introduce the notion of distinguishing feature transformations:

Definition 2 (Distinguishing feature transformation). Let A1,A2 denote learning algorithms, S a
dataset of input-label pairs, andL a loss function.Suppose M1 and M2 are models trained on dataset
D using algorithms A1 and A2 respectively. Then, a (ϵ, δ)-distinguishing feature transformation of
M1 with respect to M2 is a function F : X → X such that for some label yc ∈ Y ,

Counterfactual effect of F on M1︷ ︸︸ ︷
E[L1(F (x), yc)− L1(x, yc)] ≥ δ and

Counterfactual effect of F on M2︷ ︸︸ ︷
E[L2(F (x), yc)− L2(x, yc)] ≤ ϵ,

where Li(x, y) = L(Mi(x), y), and the expectations above are taken over both inputs x and ran-
domness in the learning algorithm.

Intuitively, a distinguishing feature transformation is just a function F that, when applied to test data
points, significantly changes the predictions of one model class—but not the other—in a consistent
way. Definition 2 also immediately suggests a way to evaluate the effectiveness of a distinguishing
feature transformation. That is, given a hypothesis about how two algorithms differ (e.g., that models
trained with A1 are more sensitive to texture than those trained with A2), one can design a corre-
sponding transformation F (e.g., applying style transfer, as in [GRM+19]), and directly measure its
relative effect on the two model classes.

Since our goal is to qualitatively understand the differences in the biases of the model classes, we
look for distinguishing feature transformations that are informative, i.e., they (a) capture a feature
that naturally arises in the data distribution and (b) are semantically meaningful.

2.2 Identifying distinguishing feature transformations

We now describe our two-stage method for comparing learning algorithms based on how they use the
training data. We first identify training directions, or weighted combinations of training examples,
that impact test performance of models trained with one learning algorithm but not the other. Then,
we use a human-in-the-loop approach to extract semantically meaningful features and corresponding
transformations from these directions.

Stage I: An algorithm for finding distinguishing training directions. First, we find weighted
combinations of training examples that influence the predictions of models trained with one learn-
ing algorithm but not the other. Our algorithm leverages datamodel representations [IPE+22] and
comprises the following three steps:

1. Compute datamodels for each algorithm. Given training set S and learning algorithm A, a
datamodel (representation) for test example xi is a vector θi ∈ R|S|, where θij measures the extent

2

to which models trained with A depend 2 on the j-th training example to correctly classify example
xi. We compute two sets of datamodels—θ(1) and θ(2)—corresponding to model classes induced
by learning algorithms A1 and A2 respectively.

2. Compute residual datamodels. Next, we compute a residual datamodel for each test example
xi, which is the projection of the datamodel θ(1)i onto the null space of datamodel θ(2)i , i.e.,

θ
(1\2)
i = θ̂

(1)
i − ⟨θ̂

(1)
i , θ̂

(2)
i ⟩ θ̂

(2)
i

where θ̂i = θi/∥θi∥2 denotes the normalized version of datamodel θi. Intuitively, the residual
datamodels of algorithm A1 with respect to A2 correspond to the training directions that influence
A1 after “projecting away” the component that also influences A2.

3. Run principal component analysis. Finally, we use principal component analysis (PCA) to find
the highest-variance directions in the space of residual datamodels. That is, we run

{e(1\2)1 , . . . , e
(1\2)
ℓ } ← ℓ-PCA({θ(1\2)1 , . . . , θ

(1\2)
|T | })

to find the top ℓ principal components of the residual datamodels. Intuitively (deferring formal
analysis to Appendix B), we expect the returned principal components to be the most distinguishing
training directions across the test set.

Stage II: Human-in-the-loop analysis. With these distinguishing directions in hand, we use a
human-in-the-loop analysis to identify informative distinguishing features transformations in three
steps. First, given a principal component, we inspect the test examples whose residual datamodels
are most aligned with that component. We view these examples as representing subpopulations that
depend most heavily on the training direction. With this subpopulation, we then infer a distinguish-
ing feature by visual inspectionand if needed, additional analysis. Finally, we design a distinguishing
feature transformation to counterfactually verify the effect of the inferred feature on model behavior.

We illustrate our algorithm visually in the top half of Figure 1.

Figure 1: A visual summary of our two-stage approach to algorithm comparison. In the first stage
(top row) we use examples’ datamodel representations [IPE+22] to find so-called distinguishing
training directions—weighted combinations of training examples that impact the two algorithms
disparately across the test set. In the second stage (bottom row) we surface subpopulations that rely
on the identified directions, and use a human-in-the-loop to go from the identified distinguishing
training direction to a testable feature transformation.

2For readers familiar with influence functions [KL17; HRR+11], an intuitive (but not quite accurate) way
to interpret datamodel weight θij is as the influence of the j-th training example on test example xi. In Sec-
tion B.1, we discuss additional properties of datamodel representations that make them particularly well-suited
for algorithm comparison.

3

3 Applying the algorithm comparison framework

We now demonstrate our comparison framework through a case study comparing models trained
with and without pre-training.

Setup. We study the effect of ImageNet pre-training [DDS+09; KSL19] in the context of classifiers
trained on the WATERBIRDS dataset3 [SKH+20]. ImageNet pre-training significantly improves the
“worst group” accuracy on WATERBIRDS images where the background conflicts with the bird—but
how does it impact the fine-grained biases of the models? To study this, we compare two classes
of ResNet-50 models trained with the exact same settings modulo the use of ImageNet pre-training.
That is, we consider the following two learning algorithms, with additional details in Appendix C.2.

• Algorithm A1: Pre-training on ImageNet, followed by full-network finetuning on WATERBIRDS
data. Models trained this way attain 89.1% average accuracy and 63.6% worst-group accuracy.

• AlgorithmA2: Training from scratch on WATERBIRDS data. Corresponding models attain 63.9%
average accuracy and 5.7% worst-group accuracy on the test set.

Identifying distinguishing features. We compare algorithms A1 and A2 using our method
from Section 2. The first stage of this method finds the top l distinguishing training directions
{v1, ..., vl} ∈ R|S|. As we will show (in Appendix B), for a given training direction v, the fraction
of variance that v explains 4 in the datamodel representations {θ(i)x } captures the importance of the
corresponding combination of training examples to model predictions for algorithm Ai. Thus, we
would hope for training directions that distinguishA1 fromA2 to explain a high (resp., low) amount
of the variance in datamodel representations of algorithm A1 (resp., A2).

Figure 2 displays the identified distinguishing training directions. On the left, we can see that the
training directions distinguishingA1 fromA2 (in green) indeed explain a significant amount of vari-
ance in the datamodels of A1 but not in those of A2. Visualizing the subpopulations corresponding
to two of the distinguishing directions (Figure 2 right) suggests the following distinguishing features:

0 1 2 3 4 5 6
Explained Variance under Algorithm A1 (%)

(With ImageNet Pre-training)

0

1

2

3

4

5

6

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tP

re
-t

ra
in

in
g)

B

A

PCs of θ(1\2)

PCs of θ(2\1)

Line x=y A

B

Figure 2: Comparing Waterbirds models trained with and without ImageNet pre-training.
(Left) Each green (resp., red) point is a training direction (i.e., a vector v ∈ R|S| representing a
weighted combination of training examples) that distinguishes A1 from A2 (resp., A2 from A1) as
identified by the first stage of our framework. The x and y coordinates of each point represent the
importance of the training direction to models trained with A1 and A2 respectively. (Right) Test
examples most impacted by the distinguishing training directions annotated A and B. Direction A
seems to correspond to yellow birds and direction B to human faces in the background.

3Waterbirds is an image dataset of bird foregrounds pasted on landscape backgrounds, where the task is
to classify between “land birds” and “water birds” based on only the foreground, despite a strong spurious
correlation between background and foreground in the training set.

4The fraction of explained variance of a given vector v ∈ Rd in a set of vectors {θx ∈ Rd} is the empirical
variance of v⊤θx divided by the total amount of variance in {θx} (i.e., trace(Cov[θx])). In other words, this
measures what fraction of the total variation in {θx} is along the direction v.

4

Add Patch

Size 20px

Add Patch

Size 30px

Add Patch

Size 40px

20 30 40
Patch Size

−4

−2

0

2

4

6

8

10

12

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

Add Patch

Size 80px

Add Patch

Size 100px

Add Patch

Size 120px

80 100 120
Patch Size

−1

0

1

2

3

4

Pe
rc

en
tI

nc
re

as
e

in
Pr

(l
an

db
ir

d)

ImageNet Pre-training

With Without

Figure 3: Effect of ImageNet pre-training on WATERBIRDS classification. We use our frame-
work to identify two distinguishing features: (Left) Adding a yellow patch to images makes models
trained without (with) pre-training, on average, 9% more (2% less) confident in predicting “land-
bird.” (Right) Adding faces to image backgrounds makes models trained with (without) pre-training,
on average, 3% (0%) more confident in predicting “landbird.” In both cases, increasing the intensity
of feature transformations widens the gap in treatment effect between the two model classes.

Yellow color: Direction A surfaces a subpopulation of test images that contain yellow “landbird”
images. This leads us to hypothesize that models trained from scratch spuriously relies on the color
yellow to predict the class “landbird,” whereas ImageNet-pretrained models do not. Additional anal-
ysis supports this hypothesis, as training images that contain other yellow objects strongly influence
the predictions of models trained from scratch on this subpopulation (Appendix D). To test this
hypothesis, we design a feature transformation that adds a yellow square patch to images (Figure 3).

Human face: Direction B surfaces a subpopulation of “landbird” that have human faces in the back-
ground. This suggests that ImageNet pre-training introduces a spurious dependence on human faces
to predict the label “landbird.” Additional analysis supports this hypothesis, as training images
containing human face(s) strongly influence the predictions of ImageNet-pretrained models on this
subpopulation (see Appendix D). To test this hypothesis, we design a feature transformation that
inserts patches of human faces to WATERBIRDS image backgrounds (Figure 3).

Findings. In Figure 3, we compare the effect of the above feature transformations on models trained
with and without ImageNet pre-training. The results confirm both of our hypotheses. Adding a
yellow square patch with varying size (20/30/40 px) to test images increased P (“landbird”) by
4%/9%/12% for models trained from scratch but decreased P (“landbird”) for models pre-trained
on ImageNet. Similarly, adding a human face patch to image backgrounds increased P (“landbird”)
by 2%/3%/4% for pre-trained models, but did not significantly affect models trained from scratch.
Furthermore, increasing the intensity (i.e., patch size) of these feature transformations further widens
the gap in sensitivity between the two model classes. These differences verify that the feature trans-
formations we constructed can distinguish the two learning algorithms as according to Definition 2.
We defer additional analysis and details on feature transformations to Appendix E.

Connections to prior work. This case study pinpoints how pre-training can alter the importance
of different spurious correlations. In particular, our results show that ImageNet pre-training reduces
dependence on some spurious correlations (e.g., yellow color→ landbird) but also introduces new
ones (e.g., human face → landbird). Our findings thus shed light on two seemingly contradic-
tory phenomena: pre-training can simultaneously improve robustness to spurious features [GML22;
TLG+20] in target data as well as transfer new spurious correlations [SJI+22; NSZ20] from the
pre-training dataset.

4 Conclusion

We introduce a unified framework for fine-grained comparisons of any two learning algorithms.
Specifically, our framework compares models trained using two different algorithms in terms of how
the models rely on training data to make predictions. In our case study, we applied our framework
to pinpoint how pre-training can amplify or suppress specific spurious correlations.

5

References

[AGM+18] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and
Been Kim. “Sanity checks for saliency maps”. In: Neural Information Processing
Systems (NeurIPS). 2018.

[BNB21] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. “Revisiting Model Stitching
to Compare Neural Representations”. In: Neural Information Processing Systems
(NeurIPS). 2021.

[BWW+21] Manel Baradad Jurjo, Jonas Wulff, Tongzhou Wang, Phillip Isola, and Antonio Tor-
ralba. “Learning to see by looking at noise”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 2556–2569.

[CKM+21] Adrian Csiszarik, Peter Korosi-Szabo, Akos Matszangosz, Gergely Papp, and Daniel
Varga. “Similarity and Matching of Neural Network Representations”. In: Neural
Information Processing Systems (NeurIPS). 2021.

[CKM+22] Tianyu Cui, Yogesh Kumar, Pekka Marttinen, and Samuel Kaski. “Deconfounded
Representation Similarity for Comparison of Neural Networks”. In: Advances in Neu-
ral Information Processing Systems (NeurIPS). 2022.

[CLH+21] Zuohui Chen, Yao Lu, JinXuan Hu, Wen Yang, Qi Xuan, Zhen Wang, and Ziaoniu
Yang. “Revisit Similarity of Neural Network Representations From Graph Perspec-
tive”. In: arXiv preprint arXiv:2111.11165 (2021).

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database”. In: Computer Vision and Pattern Recogni-
tion (CVPR). 2009.

[DDS21] Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. “Grounding Representa-
tion Similarity with Statistical Testing”. In: Advances in Neural Information Process-
ing Systems (NeurIPS). 2021.

[DS22] Jean-Stanislas Denain and Jacob Steinhardt. “Auditing Visualizations: Trans-
parency Methods Struggle to Detect Anomalous Behavior”. In: arXiv preprint
arXiv:2206.13498 (2022).

[FZ20] Vitaly Feldman and Chiyuan Zhang. “What Neural Networks Memorize and Why:
Discovering the Long Tail via Influence Estimation”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). Vol. 33. 2020, pp. 2881–2891.

[GML22] Soumya Suvra Ghosal, Yifei Ming, and Yixuan Li. “Are Vision Transformers Robust
to Spurious Correlations?” In: arXiv preprint arXiv:2203.09125 (2022).

[GRM+19] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. “ImageNet-trained CNNs are biased towards tex-
ture; increasing shape bias improves accuracy and robustness.” In: International Con-
ference on Learning Representations (ICLR). 2019.

[HCC+19] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome.
“What Do Compressed Deep Neural Networks Forget? 1911.05248”. In: arXiv
preprint arXiv:1911.05248. 2019.

[HCK20] Katherine Hermann, Ting Chen, and Simon Kornblith. “The Origins and Prevalence
of Texture Bias in Convolutional Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems. 2020.

[HEK+18] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. “A bench-
mark for interpretability methods in deep neural networks”. In: arXiv preprint
arXiv:1806.10758 (2018).

[HRR+11] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions. Vol. 196. John Wiley &
Sons, 2011.

[IPE+22] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander
Madry. “Datamodels: Predicting Predictions from Training Data”. In: International
Conference on Machine Learning (ICML). 2022.

[KL17] Pang Wei Koh and Percy Liang. “Understanding Black-box Predictions via Influence
Functions”. In: International Conference on Machine Learning. 2017.

6

[KNL+19] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. “Sim-
ilarity of Neural Network Representations Revisited”. In: Proceedings of the 36th
International Conference on Machine Learning (ICML). 2019.

[KSL19] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do better imagenet models
transfer better?” In: computer vision and pattern recognition (CVPR). 2019.

[LIE+22] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman,
and Aleksander Madry. ffcv. https://github.com/libffcv/ffcv/. 2022.

[LL17] Scott Lundberg and Su-In Lee. “A unified approach to interpreting model predic-
tions”. In: Neural Information Processing Systems (NeurIPS). 2017.

[LYC+15] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. “Convergent
Learning: Do different neural networks learn the same representations?” In: Proceed-
ings of the 1st International Workshop on Feature Extraction: Modern Questions and
Challenges at NIPS 2015. 2015.

[MBG+22] Kristof Meding, Luca M. Schulze Buschoff, Robert Geirhos, and Felix A. Wichmann.
“Trivial or Impossible — dichotomous data difficulty masks model differences (on
ImageNet and beyond)”. In: International Conference on Learning Representations
(ICLR). 2022.

[MMS+19] Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht.
“Model similarity mitigates test set overuse”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019, pp. 9993–10002.

[MRB18] Ari Morcos, Maithra Raghu, and Samy Bengio. “Insights on representational similar-
ity in neural networks with canonical correlation”. In: Advances in Neural Informa-
tion Processing Systems 31 (2018).

[NRK21] Thao Nguyen, Maithra Raghu, and Simon Kornblith. “Do Wide and Deep Networks
Learn the Same Things? Uncovering How Neural Network Representations Vary
with Width and Depth”. In: International Conference on Learning Representations
(ICLR). 2021.

[NSZ20] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. “What is being transferred in
transfer learning?” In: Advances in neural information processing systems 33 (2020),
pp. 512–523.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge”. In: In-
ternational Journal of Computer Vision (IJCV). 2015.

[RGY+17] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. “SVCCA:
Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and
Interpretability”. In: Advances in Neural Information Processing Systems. 2017.

[RUK+21] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. “Do Vision Transformers See Like Convolutional Neural Networks?”
In: Neural Information Processing Systems (NeurIPS). 2021.

[SJI+22] Hadi Salman, Saachi Jain, Andrew Ilyas, Logan Engstrom, Eric Wong, and Alek-
sander Madry. “When does Bias Transfer in Transfer Learning?” In: arXiv preprint
arXiv:2207.02842. 2022.

[SJN21] Harshay Shah, Prateek Jain, and Praneeth Netrapalli. “Do Input Gradients Highlight
Discriminative Features?” In: Advances in Neural Information Processing Systems
34 (2021).

[SKH+20] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. “Distri-
butionally Robust Neural Networks for Group Shifts: On the Importance of Regu-
larization for Worst-Case Generalization”. In: International Conference on Learning
Representations. 2020.

[TLG+20] Lifu Tu, Garima Lalwani, Spandana Gella, and He He. “An empirical study on robust-
ness to spurious correlations using pre-trained language models”. In: Transactions of
the Association for Computational Linguistics 8 (2020), pp. 621–633.

[WBS+20] John Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James
Glass. “Similarity Analysis of Contextual Word Representation Models”. In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguis-
tics. 2020.

7

https://github.com/libffcv/ffcv/

[WBW+11] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
“The caltech-ucsd birds-200-2011 dataset”. In: (2011).

[WWZ+22] Junpeng Wang, Liang Wang, Yan Zheng, Chin-Chia Michael Yeh, and Shubham Jain
andWei Zhang. “Learning-From-Disagreement: A Model Comparison and Visual An-
alytics Framework”. In: arXiv preprint arXiv:2201.07849 (2022).

[YYF+22] Kaiyu Yang, Jacqueline H Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky. “A study
of face obfuscation in imagenet”. In: International Conference on Machine Learning.
PMLR. 2022, pp. 25313–25330.

[ZGK+21] Ruiqi Zhong, Dhruba Ghosh, Dan Klein, and Jacob Steinhardt. “Are Larger Pre-
trained Language Models Uniformly Better? Comparing Performance at the Instance
Level”. In: Findings of the Association for Computational Linguistics (Findings of
ACL). 2021.

[ZLK+17] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
“Places: A 10 million image database for scene recognition”. In: IEEE transactions
on pattern analysis and machine intelligence. 2017.

8

Appendices
A Related work 10

B Algorithm analysis 12
B.1 A primer on datamodel representations . 12
B.2 Residual datamodels . 13
B.3 Finding global trends with PCA . 13

C Experimental Setup 14
C.1 Dataset . 14
C.2 Models, learning algorithms, and hyperparameters 14
C.3 Datamodels . 14
C.4 Feature transformations . 15
C.5 Training infrastructure . 15

D Additional human-in-the-loop analysis 17
D.1 Tools for Inferring distinguishing features from PCA subpopulations 17
D.2 Case study: ImageNet pre-training . 18

E Additional evaluation of distinguishing feature transformations 20

F Miscellaneous results 21
F.1 Aggregate metric for algorithm comparison . 21
F.2 Explained variance of residual datamodel principal components 22
F.3 Subpopulations surfaced by principal components of residual datamodels 23

9

A Related work

We place our work into context with existing approaches to model and algorithm comparison in
machine learning.

In particular, we compare and contrast our approach to algorithm comparison with approaches to the
related problem of model comparison, where one tries to characterize the difference between two
(usually fixed) machine learning models. For simple models (e.g., sparse linear), we can directly
compare models in parameter space. However, distances between more complex models such as
deep neural networks are much less meaningful. To this end, a long line of work has sought to
design methods for characterizing the differences between models:

Representation-based comparison. A popular approach (particularly in the context of deep
learning) is to compare models using their internal representations. Since the coordinates of
these representations do not have a consistent interpretation, representation-based model compar-
ison typically studies the degree to which different models’ representations can be aligned. Meth-
ods based this approach include canonical correlation analysis (CCA) and variants [RGY+17;
MRB18; CKM+22], centered kernel alignment (CKA) [KNL+19], graph-based methods [LYC+15;
CLH+21], and model stitching [CKM+21; BNB21]. Prior works have used these methods to com-
pare wide and deep neural networks [NRK21]; vision transformers and convolutional networks
[RUK+21]; pre-trained and trained-from-scratch models [NSZ20]; and different language models
[WBS+20]. Though they are often useful, prior work shows that representation-based similarity
measures are not always statistically reliable for testing functional differences in models [DDS21].
Our approach to algorithm comparison differs from these methods in both objective and implemen-
tation:

• Learning algorithms rather than fixed models: Rather than focusing on a single fixed model, our
objective in this paper is to compare the class of models that result from a given learning algorithm.
In particular, we aim to find only differences that arise from algorithmic design choices, and
not those that arise from the (sometimes significant) variability in training across random seeds
[ZGK+21].

• Feature-based rather than similarity-based: Methods such as CCA and CKA focus on outputting
a single score that reflects the overall similarity between two models. On the other hand, the goal
of our framework is to find fine-grained differences in model behavior. Still, in Appendix F.1 we
show that we can also use our method for more global comparisons, for instance by computing
the average cosine similarity of the datamodel vectors.

• Model-agnostic: Our framework is agnostic to type of model used and thus allows one to easily
compare models across learning algorithms—our method extends even to learning algorithms that
do not have explicit representations (e.g., decision trees and kernel methods).

Example-level comparisons. An alternative method for comparing models is to compare their
predictions directly. For example, Zhong et al. [ZGK+21] compare predictions of small and large
language models (on a per-example level) to find that larger models are not uniformly better across
example. Similarly, Mania et al. [MMS+19] study the agreement between models, i.e., how often
they output the same prediction on a per-example level. In another vein, Meding et al. [MBG+22]
show that after removing impossible or trivial examples from test sets, different models exhibit more
variations in their predictions. Our framework also studies instance-level predictions, but ultimately
connects the results back to human-interpretable distinguishing features.

Comparing feature attributions. Finally, another line of work compares models in terms of how
they use features at test time. In the presence of a known set of features one can compute feature im-
portances (e.g., using SHAP [LL17]) and compare them across models [WWZ+22]. In cases where
we do not have access to high-level features, we can use instance-level explanation methods such
as saliency maps to highlight different parts of the input, but these methods generally do not help
at distinguishing models [DS22]. Furthermore, multiple evaluation metrics [AGM+18; HEK+18;
SJN21] indicate that common instance-specific feature attribution methods can fail at accurately
highlighting features learned by the model.

10

Prior work on pre-training. Our case study pinpoints how pre-training can alter the importance
of different spurious correlations. In particular, our results show that ImageNet pre-training reduces
dependence on some spurious correlations (e.g., yellow color→ landbird) but also introduces new
ones (e.g., human face → landbird). Our findings thus shed light on two seemingly contradic-
tory phenomena: pre-training can simultaneously improve robustness to spurious features [GML22;
TLG+20] in target data as well as transfer new spurious correlations [SJI+22; NSZ20] from the
pre-training dataset.

11

B Algorithm analysis

In the main paper, we applied our comparison framework to identify feature transformations that
distinguished three pairs of learning algorithms. Here, we describe in more detail the algorithmic
stage of that framework, i.e., the stage whose purpose is to find distinguishing training directions.
To this end, we walk through each of the three steps of the algorithm presented in Section 2.2 and
provide intuition for how they identify distinguishing training directions.

B.1 A primer on datamodel representations

The first step in our method is to compute datamodel vectors θ(i)j ∈ R|S|, one for each test input xj .
Each datamodel vector encodes the importance of individual training examples S to model’s loss
at input xj when trained with learning algorithm Ai. More specifically, each vector corresponds to
the solution to a specific regression problem—these regression problems (explained below) form the
basis of our analysis.

Setting up the regression problem. Let us fix a single learning algorithm A (being A1 or A2).
For a given training set S = {x1, . . . , xd}, a test input x, and subset S′ ⊂ S of the training set we
define the model output function as:

f(x, S′) = the loss after training a model on S′ and evaluating on x.

For example, f(x, S′) can encode training a deep neural network on the subset S′, then computing
the network’s correct-class margin on the input x. For a fixed x, the corresponding regression
problem is to predict the model output f(x, S′) given a subset S′.

Datamodels. Ilyas et al. [IPE+22] show that—for deep neural networks trained on standard image
classification tasks—we can solve the regression problem above with a simple linear predictor. More
specifically, they showed that

E[f(x, S′)] ≈ θx · 1S′ , (1)

where θx is a (learned) parameter vector (called the datamodel for x), and 1S′ ∈ {0, 1}|S| is a binary
indicator vector of the set S′, encoding whether each example of S is included in S′, i.e.,

(1S′)i =

{
1 if xi ∈ S′

0 otherwise.

In this way, datamodels consistitute linear approximations of model output functions.

Datamodels as a representation space. While each datamodel is specific to an individual test
input, we can treat a collection of datamodels as embeddings or representations of test inputs {xj}j
into a common |S|-dimensional space. By comparing the representations, we can analyze the struc-
ture of the data—as used by the specific learning algorithm under study. Furthermore, these repre-
sentations have a number of properties that make them useful for algorithm comparisons:

(a) Consistent basis: A datamodel representation for a fixed train set S always has the same basis:
coordinate i corresponds to the importance of the i-th training example. This consistency makes
datamodels a convenient medium for algorithm comparisons, as representations are automatically
aligned across different learning algorithms, and even across models that lack explicit representa-
tions (e.g., decision trees).

(b) Predictiveness: Datamodel vectors are causally predictive of model behavior. That is, as Ilyas
et al. [IPE+22] show, we can use them to predict the counterfactual impact of removing or adding
different training examples on model output for a given test example. As a result, any trends we
find across the datamodel representations come with a precise quantitative interpretation in terms
of model outputs (to which we will come back to later in thise section).

(c) Density: Datamodel representations also have a high effective dimensionality: that is, one needs
thousands of components to explain significant fraction of variance, for instance, on CIFAR-10
[IPE+22].5 This suggests that datamodel representations encode fine-grained information about

5This is in stark contrast to “standard” representations derived from the penultimate layer of a trained model,
which tend to have effective dimensions that are much lower, typically equal to number of classes minus one.

12

how each learning algorithm uses the training data, making them useful for uncovering subtle
differences in model behavior.

B.2 Residual datamodels

In Step 2 of our algorithm, using the two sets of datamodels {θ(1)} and {θ(2)}, we compute the
residual datamodel vectors:

θ
(1\2)
i = θ

(1)
i − ⟨θ

(1)
i , θ

(2)
i ⟩ θ

(2)
i ,

(Note that this operation only makes sense because the two sets of datamodels live in the same
vector space—see property (a) above.) As we demonstrate, they correspond to datamodels for a
certain residual model output function that we define below.

Recall that our overarching goal is to find training directions that that strongly influence models
trained with learning algorithmA1 but notA2 (or vice-versa) when classifying x. More specifically,
we want to find training directions u that strongly influences f (1)(x, S), while ignoring directions
that also influence f (2)(x, S). In other words, what we care about is the “residual” of f (1) after
removing the part that is correlated6 with f (2). To capture this, consider the residual model output
function of A1 relative to A2:

f (1\2)(x, S) := f (1)(x, S)− ρf(1)f(2) · f (2)(x, S)

where ρf(1)f(2) is the correlation between two model output functions (across varying S). It turns
out that the datamodel for the residual output function is given precisely by the residual datamodel
defined in Step 2 of our algorithm: the projection of one (normalized) datamodel representation
into the nullspace of the other representation. That is, residual datamodels correspond to a linear
approximation of the residual model output:

E[f (1\2)(x, S)] ≈ θ(1\2) · 1S

In summary, Step 2 of our procedure reduces understanding the differences in learning algorithms
A1 and A2 to analyzing their residual model outputs via residual datamodels. The residual data-
models highlight directions that influence learning algorithm A1 after projecting away directions
that also influence learning algorithm A2.

B.3 Finding global trends with PCA

The output of Step 2 of our procedure is two set of residual datamodels—one set looking at the
residual of A1 with respect toA2, and vice versa. These residual datamodels capture directions that
each algorithm is most sensitive to, though still on a per-example level. On the other hand, our goal
is to find directions that each algorithm is most sensitive to on an aggregate level (as in Definition
2). We now show how the final step in our procedure, computing PCA on the residual datamodel
representations, achieves this goal.

For a given input x with datamodel θ, and for a training direction u ∈ R|S|, we can estimate the
example’s sensitivity to u as [(θ ·u)]2—that is, the (estimated) effect on f(x, S) of upweighting and
downweighting the training samples according to u. Since our goal is to find a direction that the
residual model output function f (1\2) is most sensitive in aggregate, our objective is

arg max
u∈Sn−1

Ex∈T [(θ
(1\2)
x · u)2].

The direction that maximizes this objective is exactly the dominant principal component of the set
of residual datamodels! Similarly, the top k principal components correspond to directions that
algorithm A1 is most sensitive to after accounting for A2.

In summary, Step 3 of our procedure finds directions that strongly influence only one learning algo-
rithm by examining directions of highest explained variance of the residual datamodel vectors.

6Over the distribution of S.

13

C Experimental Setup

In this section, we outline the experimental setup—datasets, models, training algorithms, hyperpa-
rameters, and datamodels—used for our case study in Section 3.

C.1 Dataset

The Waterbirds dataset [SKH+20] consists of bird images taken from the CUB dataset [WBW+11]
and pasted on backgrounds from the Places dataset [ZLK+17]. The task here is to classify “wa-
terbirds” and “landbirds” in the presence of spurious correlated “land” and “water” backgrounds in
the training data. Sagawa et al. [SKH+20] introduce Waterbirds as a benchmark to evaluate models
under subpopulation shifts induced by spurious correlations. In our case study, we compare how
models trained from scratch on Waterbirds data differ from ImageNet-pretrained models that are
fine-tuned on Waterbirds data.

Summary statistics of the WATERBIRDS dataset are outlined in Table 1.

Table 1: Summary statistics of dataset
Dataset Classes Size (Train/Test) Input Dimensions

Waterbirds 2 4,795/5,794 3× 224× 224

C.2 Models, learning algorithms, and hyperparameters

We use the standard ResNet50 architecture from the torchvision library. We train models using
SGD with momentum 0.9 and weight decay 0.0001 for a maximum of 50 epochs (and stop early if
the training loss drops below 0.01). For model selection, we choose the model checkpoint that has
the maximum average accuracy on the validation dataset. As in Sagawa et al. [SKH+20], we do not
use data augmentation. In our case study on pre-training, we consider ImageNet pre-trained models
from torchvision. We consider models trained using the following algorithms:

• Algorithm A1 (ImageNet pre-training): Models pre-trained on ImageNet are fully fine-tuned
on Waterbirds data with a fixed SGD learning rate 0.005 and batch size 64. On average, models
attain 89.1% (non-adjusted) average test accuracy and 63.9% worst-group test accuracy.

• AlgorithmA2 (Training from scratch): Models are trained from scratch (i.e., random initializa-
tion) on Waterbirds data with SGD: initial learning rate 0.01, batch size 64, and a linear learning
rate schedule (0.2× every 15 epochs). On average, models attain 63.6% average test accuracy and
5.7% worst-group test accuracy.

C.3 Datamodels

Now, we provide additional details on datamodels which, we recall, are used in the first stage of our
algorithm comparison framework (see Section 2).

Estimating linear datamodels. Recall from Appendix B that the datamodel vector for exam-
ple xj , θ(i)j ∈ R|S|, encodes the importance of individual training examples S to model’s loss at
example xj when trained with algorithm Ai. Concretely, given test example xj and training set
S = {x1, . . . , xd}, the datamodel θj is a sparse linear model (or surrogate function) trained on the
following regression task: For a training subset S′ ⊂ S, can we predict the correct-class margin
fA(xj ;S

′) of a model trained on S′ with algorithm A? This task can be naturally formulated as
the following supervised learning problem: Given a training set {(Si, fA(x;Si))}mi=1 of size m, the
datamodel θj (for example xj) is the solution to the following problem:

θj = min
w∈R|S|

1

m

m∑
i=1

(
w⊤1Si

− fA(xj ;Si)
)2

+ λ∥w∥1, (2)

where 1Si
is a boolean vector that indicates whether examples in the training dataset x ∈ S belong

to the training subset Si. Note that each datamodel training point (Si, fA(xj , Si)) is obtained by (a)

14

training a model f (e.g., ResNet9) on a subset of data Si (e.g., randomly subsampled CIFAR data)
and (b) evaluating the trained model’s output on example xj . Ilyas et al. [IPE+22] demonstrate that
linear datamodels can accurately predict outputs of deep image classifiers.

Datamodel estimation hyperparameters. Recall that our algorithm comparison framework
in Section 2 involves estimating two sets of datamodels {θ(1)} and {θ(2)} for learning algorithms
A1 and A2 respectively. In our case study, we estimate two datamodels, θ(1)i and θ

(2)
i for every

example xi in the test dataset. Estimating these datamodels entail three design choices:

• Sampling scheme for train subsets: Like in Ilyas et al. [IPE+22], we use α-random subsets of
the training data, where α denotes the subsampling fraction; we set α = 50% as it maximizes
sample efficiency (or model reuse) for empirical influence estimation [FZ20], which is equivalent
to a variant of linear datamodels [IPE+22].

• Sample size for datamodel estimation: Recall that a datamodel training set of size m corre-
sponds to training m models (e.g., m ResNet18 models on CIFAR-10) on independently sampled
train subsets (or masks). We estimate datamodels on WATERBIRDS 50k samples (or models) per
learning algorithm; we make a validation split using 10% of these samples.

• ℓ1 sparsity regularization: We use cross-validation to select the sparsity regularization parameter
λ. Specifically, for each datamodel, we evaluate the MSE on a validation split to search over
k = 50 logarithmically spaced values for λ along the regularization path. As in [IPE+22], we
then re-compute the datamodel on the entire dataset with the optimal λ value and all m training
examples.

C.4 Feature transformations

As discussed in Section 2, we counterfactually verify distinguishing features (inferred via human-
in-the-loop analysis) by evaluating whether feature transformations change model behavior as hy-
pothesized. Here, we describe the feature transformations used in Section 3 in more detail7.

Designing feature transformations. We design feature transformations that modify examples
by adding a specific patch. We vary the intensity of patch-based transformations via patch size
k.Additional details specific to each feature transformation in our case study:

• Yellow feature. We add a k × k square yellow patch to the input.
• Human face feature. We add a k × k image of a human face to the input. To avoid occlusion

with objects in the image foreground, we add the human face patch to the background. We make
a bank of roughly 300 human faces using ImageNet face annotations [YYF+22] by (a) cropping
out human faces from ImageNet validation examples and (b) manually removing mislabeled, low-
resolution, and unclear human face images.

Evaluating feature transformations. As shown in Section 3, given two learning algorithms A1

andA2, we evaluate whether a feature transformation F changes predictions of models trained with
A1 andA2 as hypothesized. To evaluate the counterfactual effect of transformation F on model M ,
we evaluate the extent to which applying F to input examples x increases the confidence of models
in a particular class y. In our experiments, we estimate this counterfactual effect by averaging over
all test examples and over 500 models trained with each learning algorithm.

C.5 Training infrastructure

Data loading. We use FFCV8 [LIE+22], which removes the data loading bottleneck for smaller
models, gives a 3-4× improvement in throughput (i.e., number of models a day per GPU).

Datamodels regression. In addition to FFCV, we use the fast-l1 package9—a SAGA-based
GPU solver for ℓ1-regularized regression—to parallelise datamodel estimation.

7The code for these feature transformations is available at anonymized-url.
8Webpage: http://ffcv.io
9Github repository: https://github.com/MadryLab/fast_l1

15

anonymized-url
http://ffcv.io
https://github.com/MadryLab/fast_l1

Computing resources. We train our models on a cluster of machines, each with 9 NVIDIA A100
or V100 GPUs and 96 CPU cores. We also use half-precision to increase training speed.

16

D Additional human-in-the-loop analysis

As outlined in Section 2, the second stage of our framework applies human-in-the-loop analysis to
infer distinguishing feature transformations from training directions extracted via PCA on residual
datamodels. In this section, we present additional human-in-the-loop analysis in order to substantiate
the distinguishing features inferred in our case study.

D.1 Tools for Inferring distinguishing features from PCA subpopulations

In this section, we outline additional human-in-the-loop tools that we use to analyze subpopulations
surfaced by principal components (PCs) of residual datamodels.

• Class-specific visual inspection. As shown in Section 3, the subpopulation of test examples
whose datamodels have maximum projection onto PCs of residual datamodels largely belong
to same class. So, a simple-yet-effective way to identify subpopulation-specific distinguishing
feature(s) is to just visually contrast the surfaced subpopulation from a set of randomly sampled
examples that belong to the same class.

• Relative influence of training examples. Given a subset of test examples S′ ⊂ S, can we identify
a set of training examples T ′ ⊂ T that strongly influence predictions on S′ when models are
trained with algorithmA1 but not when trained withA2? Given datamodel representations {θ(1)i }
for A1 and {θ(1)i } for A2, we apply a two-step heuristic approach identify training examples with
high influence on A1 relative to A2:
– First, given learning algorithm Ai and test subset S′, we estimate the aggregate (positive or

negative) influence of training example xk on subset S by taking the absolute sum over the
corresponding datamodel weights:

∑
j∈S′ |θ(i)jk |.

– Then, we take the absolute difference between the aggregate influence estimates of training
example xk using θ(1) and θ(2). This difference measures the relative influence of training
example xk on predictions of test subset S when models are trained with algorithm A1 instead
of algorithm A2.

In our analysis, we (a) identify training examples that have top-most relative influence estimates
and then (b) visually contrast the subsets of test examples (one for each learning algorithm) that
are most influenced by these training examples.

17

D.2 Case study: ImageNet pre-training

Our case study on WATERBIRDS data shows that ImageNet pre-training reduces dependence on
the “yellow color” feature, but introduces dependence the “human face” feature. We support these
findings with relative influence analysis in Figure 4 and additional visual inspection in Figure 5.

Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(a) “Yellow color” feature
Subset of examples in training data

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Algorithm A1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Al
go

rit
hm

 A
2

Subset influence on test data

Most influenced examples in test data (Learning algorithm A1) Most influenced examples in test data (Learning algorithm A2)

(b) “Human face” feature
Figure 4: Relative influence of training data on WATERBIRDS subpopulations. Panel (a): Train-
ing images with yellow objects in the background have high relative influence on the “yellow color”
test subpopulation (see Figure 2). These images strongly influence model predictions on test images
that have yellow birds / objects (bottom row) only when models are trained from scratch (algorithm
A2). Panel (b): Training images that contain human faces in the background have high relative
influence on the “human face” test subpopulation (see Figure 2). These images strongly influence
model predictions on test images (in bottom row) with human face(s) only when models are pre-
trained on ImageNet (algorithm A1).

18

Subpopulation surfaced via direction A (human face) Random sample of test images in class landbird

Subpopulation surfaced via direction B (yellow color) Random sample of test images in class landbird

Figure 5: Class-specific visual inspection of WATERBIRDS subpopulations. (Top) In contrast to
random “landbird” images, the “human face” subpopulation surfaces landbirds with human face(s)
in the background. (Bottom) Unlike random “landbird” images, the “yellow color” subpopulation
surfaces images with yellow birds or yellow objects in the background.

19

E Additional evaluation of distinguishing feature transformations

Distinguishing feature transformations, which we recall from Section 2, are functions that, when
applied to data points, change the predictions of one model class—but not the other—in a consistent
way. In our case study, we design distinguishing feature transformations that counterfactually verify
features that are identified via human-in-the-loop analysis. Our findings in Section 3 use feature
transformations to quantitatively measure the relative effect of the identified features on models
trained with different learning algorithms. In this section, we present additional findings on feature
transformations for each case study:

In Section 3, we showed that fine-tuning ImageNet-pretrained ResNet50 models on WATERBIRDS
data instead of training from scratch alters the relative importance of two spurious features: “yellow
color” and “human face”. In Figure 6, we show that both feature transformations alter the predictions
of ImageNet-pretrained ResNet18 and ImageNet-pretrained ResNet50 models in a similar way.

10.0 20.0 30.0 40.0
Patch Size

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of yellow color feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(a) “Yellow color” feature

80 100 120
Patch Size

0

2

4

6

Pe
rc

en
t I

nc
re

as
e

in
 P

r(l
an

db
ird

)

Effect of human face feature transformation on Waterbirds models

Learning Algorithm
ImageNet-pretrained ResNet18
ImageNet-pretrained ResNet50
Randomly initialized ResNet50

(b) “Human face” feature

Figure 6: Additional evaluation of WATERBIRDS feature transformations. The top and bot-
tom row evaluate the effect of “yellow color” and “human face” feature transformations on models
trained with and without ImageNet pre-training. In both cases, unlike ResNet50 models trained
from scratch, ImageNet-pretrained ResNet18 and ResNet50 models are sensitive to the “human
face” transformation but not to the “yellow color” transformation.

20

F Miscellaneous results

F.1 Aggregate metric for algorithm comparison

As discussed in Appendix A, we can repurpose our framework as a similarity metric that quanti-
fies the similarity of models trained with different learning algorithms in a more global manner. A
straightforward approach to output a similarity score (or distribution) is to compute the cosine sim-
ilarity of datamodel vectors. More concretely, let θ(1)i and θ

(2)
i denote the datamodels of example

xi with respect to models trained using learning algorithms A1 and A2. Then, the cosine similarity
between θ

(1)
i and θ

(2)
i measures the extent to which models trained with A1 and A2 depend on the

same set of training examples to make predictions on example xi.

We apply this metric to our WATERBIRDS case study. Figure 7 plots the distribution of cosine
similarity of datamodels for multiple learning algorithms over all test examples. The plot shows
that ImageNet-pretrained ResNet50 models are, on average, more similar to ImageNet-pretrained
ResNet18 models than to ResNet50 models pretrained on synthetically generated data [BWW+21]
and models trained from scratch.

0.0 0.2 0.4 0.6 0.8
Cosine similarity between datamodel vectors

0.00

0.02

0.04

0.06

0.08

0.10

Fr
ac

tio
n

Cosine similarity w.r.t ImageNet-pretrained ResNet50
Learning algorithms (average cosine similarity)

ResNet18 pretrained on ImageNet (0.56)
ResNet50 pretrained on synthetic data [Baradad et al., 2021] (0.25)
ResNet50 trained from scratch (0.12)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine similarity between datamodel vectors

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fr
ac

tio
n

Cosine similarity w.r.t ResNet9 w/ high SGD noise
Learning algorithms (average cosine similarity)

Width-0.5x ResNet9 w/ high SGD noise (0.76)
ResNet9 w/ low SGD noise (0.59)

Figure 7: Datamodel cosine similarity. We use cosine similarity between two datamodel vectors as
an aggregate metric to quantify the similarity of models trained with different learning algorithms.
For WATERBIRDS classifiers, datamodels of ImageNet-pretrained ResNet50 and ResNet18 models
are more similar to each other than to models pretrained on synthetically generated data and models
trained from scratch.

21

F.2 Explained variance of residual datamodel principal components

Recall from Appendix B that the fraction of variance in datamodel representations {θ(i)x } explained
by training direction v signifies the importance of the direction (or, combination of training exam-
ples) to predictions of models trained with algorithm Ai. In our case study in Section 3, we show
that the top 5 − 6 principal components (PCs) of residual datamodels θ(1\2) correspond to training
directions that have high explained w.r.t. datamodels of algorithm A1 but not A2, and vice versa.
Figure 8 shows that the top-100 PCs of residual datamodel θ(1\2) (resp., θ(2\1)) have more (resp.,
less) explained variance on datamodel θ(1) than on datamodel θ(2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Explained Variance under Algorithm A1 (%)

(With Augmentation)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tA

ug
m

en
ta

ti
on

)

Living17 / Data augmentation

PCs of q(1\2)

PCs of q(2\1)

Line x=y

0 1 2 3 4 5 6
Explained Variance under Algorithm A1 (%)

(With ImageNet Pre-training)

0

1

2

3

4

5

6

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(W
ith

ou
tP

re
-t

ra
in

in
g)

Waterbirds / Pretraining

PCs of q(1\2)

PCs of q(2\1)

Line x=y

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Explained Variance under Algorithm A1 (%)

(High SGD Noise)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ex
pl

ai
ne

d
V

ar
ia

nc
e

un
de

r
A

lg
or

it
hm

A
2

(%
)

(L
ow

SG
D

N
oi

se
)

CIFAR10 / SGD hyperparameters

PCs of q(1\2)

PCs of q(2\1)

Line x=y

Figure 8: Explained variance of residual datamodels’ principal components. Highlighted in
green (resp. red), the top-100 PCs of residual datamodel θ(1\2) (resp. θ(2\1)) explain a larger (resp.
smaller) fraction of datamodel variance under algorithm A1 than under algorithm A2.

22

F.3 Subpopulations surfaced by principal components of residual datamodels

As outlined in Section 2, the human-in-the-loop stage of our framework involves extracting test data
subpopulations from principal components (PCs) of residual datamodels. Specifically, these sub-
populations correspond to test examples whose residual datamodel representations have the most
positive (top-k) and most negative (bottom-k) projection onto a given PC. Here, we show that the
top-k and bottom-k subpopulations corresponding to the top few PCs of residual datamodels con-
sidered in Section 3 surface test examples with qualitatively similar properties.

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 9: Top four PC subpopulations of WATERBIRDS residual datamodel θ(1\2), where learning
algorithms A1 and A2 correspond to training models with and without ImageNet pre-training re-
spectively. Our case study in Section 3 analyzes PC #3 (direction A).

23

Principal component #1 | Top-k subpopulation Principal component #1 | Bottom-k subpopulation

Principal component #2 | Top-k subpopulation Principal component #2 | Bottom-k subpopulation

Principal component #3 | Top-k subpopulation Principal component #3 | Bottom-k subpopulation

Principal component #4 | Top-k subpopulation Principal component #4 | Bottom-k subpopulation

Figure 10: Top four PC subpopulations of WATERBIRDS residual datamodel θ(2\1), where learning
algorithms A1 and A2 correspond to training models with and without ImageNet pre-training re-
spectively. Our case study in Section 3 analyzes PC #3 (direction B).

24

	Introduction
	Comparing learning algorithms
	Formalizing algorithm comparisons via distinguishing transformations
	Identifying distinguishing feature transformations

	Applying the algorithm comparison framework
	Conclusion
	Appendix
	
	Related work
	Algorithm analysis
	A primer on datamodel representations
	Residual datamodels
	Finding global trends with PCA

	Experimental Setup
	Dataset
	Models, learning algorithms, and hyperparameters
	Datamodels
	Feature transformations
	Training infrastructure

	Additional human-in-the-loop analysis
	Tools for Inferring distinguishing features from PCA subpopulations
	Case study: ImageNet pre-training

	Additional evaluation of distinguishing feature transformations
	Miscellaneous results
	Aggregate metric for algorithm comparison
	Explained variance of residual datamodel principal components
	Subpopulations surfaced by principal components of residual datamodels

