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Abstract

While a real-world research program in mathematics may be guided by a motivating
question, the process of mathematical discovery is typically open-ended. Ideally,
exploration needed to answer the original question will reveal new structures,
patterns, and insights that are valuable in their own right. This contrasts with the
exam-style paradigm in which the machine learning community typically applies
Al to math. To maximize progress in mathematics using Al, we will need to go
beyond simple question answering. With this in mind, we explore the extent to
which narrow models trained to solve a fixed mathematical task learn broader
mathematical structure that can be extracted by a researcher or other Al system.
As a basic test case for this, we use the task of training a neural network to predict
a group operation (for example, performing modular arithmetic or composition
of permutations). We describe a suite of tests designed to assess whether the
model captures significant group-theoretic notions such as the identity element,
commutativity, or subgroups. Through extensive experimentation we find evidence
that models learn representations capable of capturing abstract algebraic properties.
For example, we find hints that models capture the commutativity of modular
arithmetic. We are also able to train linear classifiers that reliably distinguish
between elements of certain subgroups (even though no labels for these subgroups
are included in the data). On the other hand, we are unable to extract notions
such as the concept of the identity element. Together, our results suggest that in
some cases the representations of even small neural networks can be used to distill
interesting abstract structure from new mathematical objects.

1 Introduction

Deep learning-based systems are increasingly being used as a tool to accelerate research mathematics.
Though there is a growing body of work that aims for generalist Al scientists|Lu et al.| [2024]], Yamada
et al.|[2025] or program synthesis systems like AlphaEvolve Novikov et al.| [2025], Romera-Paredes
et al.| [2024], the majority of Al for math work still starts with a specific problem of interest and
then builds a system to learn a solution to this problem. This system may be a narrow model trained
exclusively on a task related to the problem Davies et al.|[2021] or it may be a more sophisticated
framework using foundation models like LLMs. What these set-ups have in common is that they
are often restricted to revealing solutions to the initial question. Real mathematics research on the
other hand is substantially more open-ended with the final output of a research program often varying
substantially from the initial motivating question.
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If the goal is to develop methodologies that enable more open-ended discovery, one potential solution
is to look more closely at effective narrow models. Might these already contain valuable insights that
were learned in the course of solving the original task? There are a range of case studies that provide
precedent for such a hypothesis. For instance, careful analysis of models trained to perform modular
arithmetic [Nanda et al.|[2023a]] or composition of permutations (Chughtai et al.[[2023]], Stander et al.
[2023]],|Wu et al.|[2024] have revealed sophisticated algorithms that depend on the representation
theory of the corresponding groups. Similarly, analysis of a graph neural network designed to perform
classification of the mutation equivalence class of a finite or affine type quiver was found to naturally
cluster instances in ways that align with human classification schemes |He et al.l

Motivated by this question, we explore the elementary case of a neural network trained to predict the
operation of a group G and ask to what extent we can detect basic group-theoretic concepts from
such a network. Notions we consider include commutativity, the identity, and subgroups, all core
concepts within group theory. We explore three approaches to detecting these concepts: (i) through
training dynamics where we look for changes in loss/accuracy that might correspond to a model
learning a new concept, (ii) differences in performance across subsets of input instances (for example,
a model that ‘understands’ the identity element e should always get the correct answer on questions
of the form g = e or e x g, even when it has never seen g before), and (iii) the structure of the internal
representations of the group.

We probe MLPs and transformers trained to perform the group operation for cyclic groups, symmetric
groups, and dihedral groups of varying sizes. Across these settings we find that concepts which offer
shortcuts in task computation and are relevant to many different instances (e.g., commutativity) can
be detected via several means, while other concepts (the identity element property) that are only
relevant to a minority of instances cannot be detected. More surprisingly, we find that we are able
to distinguish between pairs of elements (g1, g2) belonging to a subgroup H and pairs that do not
belong to H in the latent space of the model, even though the model was not trained with subgroup
labels.

All of this suggests that the mathematical world models learned by small neural networks (easily
accessible to even those with very restricted compute budgets) can contain interesting mathematical
insights available to those that are willing to put in the work to extract them. In summary our
contributions include the following.

* We describe a framework that uses finite groups and basic notions from group theory to better
understand whether narrowly trained neural networks have world models sufficiently rich for
open ended mathematical discovery.

* We evaluate a range of approaches to extract the fingerprints of concepts such as commutativity
or the notion of a subgroup from a neural network trained for a fixed task, confirming that
representation-based approaches that probe the hidden activations of a model are the most
promising.

* We give some intuitive rules of thumb for the types of structures that narrow models are likely to
learn, and those they are unlikely to learn.

2 Finite Groups and Their Associated Concepts

The notion of a group is a central concept in modern mathematics. A group is a set G along with a
binary operation * : G X G — G which satisfies the following axioms. (1) % is associative so that
forall g1, 92,93 € G, (g1 * 92) * g3 = g1 * (g2 * g3). (2) There is an identity element e € G such
that gxe = ex g = g forall g € G. (3) Each g € G has an inverse element g~ ! € G such that
grg t=e=glxg

Despite arising from only three simple axioms, groups exhibit amazingly rich structure ranging from
cyclic groups (familiar from modular arithmetic) to the monster, the largest sporadic group which has
order ~ 10°3. Careers have been spent studying groups and one product of this is a rich language
that captures the breadth of structure arising in this field. In this work we only scratch the surface of
this, asking whether we can recover the following notions from a neural network trained to perform
the binary operation x:

¢ Commutativity of the binary operation x: x is commutative if for all g1, g> € G, we have
g1 * g2 = g2 *gi.
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¢ The identity element: The element e is uniquely defined in G by the fact thatex g =g =g~*e
forall g € G.

¢ Subgroup structure: There may exist proper, non-trivial subsets H C G that are closed under x
and hence form groups in their own right. These subgroups form lattices under the containment
relationship.

We look at three different families of groups, which we describe here.

Cyclic groups, Z/pZ: Cyclic groups are familiar since they correspond to modular addition. We
can represent Z/pZ with the elements {0, 1,...,p — 1} and realize the binary operation as @ + b =
a+b mod p. Z/pZ is commutative and has order |Z/pZ| = p. The subgroups of Z/pZ are in
one-to-one correspondence with integers 1 < k < p such that k divides p. If k divides p, then we can
realize the corresponding subgroup as {0, &, 2k, ... }.

Symmetric groups, S,: The symmetric group S, is the set of all permutations of n elements
with the binary operation of composition of permutations. As such, the order of .S,, is nl. It is
not commutative. S,, has many subgroups but we will work with one of the most well-known, the
alternating (sub)group, which consists of all permutations of n which are even. The alternating group
has size n!/2.

Dihedral groups D,,: The dihedral group D,, can be realized as the set of rotations and reflections
that preserve the n-gon. It consists of 7 rotations and n reflections, making it a group of order 2n.
Subgroups of D,, include the subgroup of all n rotations.

3 How Can We Detect Whether a Model Has Learned a Mathematical
Concept?

Suppose f : G x G — G is a neural network that has been trained to perform the binary operation x
of a group. Thus, provided with g1, g2 € G, f predicts g1 x g2. We outline the three broad approaches
that we use to detect whether f has ‘learned’ algebraic concepts that characterize groups (at least, as
a human mathematician would describe them).

* Learning dynamics: Detailed analysis of neural network training has revealed that (at least in
simple problems), sudden drops in loss may correspond to a network gaining a specific capability .
Might we see similar changes in the loss curve when a network trained on a group binary operation
learns a concept like commutativity of x? Motivated by this idea, we explore whether changes in
accuracy or loss correlate with changes in model performance on specific subpopulations of the test
set which capture a certain concept. For example, one can imagine that a sudden drop in loss might
correspond to a model achieving high accuracy on instances of the form e x g or g % e, suggesting
that the model has learned the concept of the identity element.

* Generalization: Mathematical concepts are valuable precisely because they allow us to reason
broadly across instances we have not seen before. One may not have ever actually worked with the
numbers 2,483,402 and 5, 840, 202 but we can immediately say that 2, 483,402 + 5, 840,202 =
5,840,202 + 2,483, 402 based on mathematical concepts that we already understand. One way to
evaluate whether a model has learned a concept is to see whether the model can apply that concept
to an out-of-distribution example.

* Structure of Internal Representations: A model’s understanding of a concept may manifest as
structure in the hidden activations of the model. For example, a model may encode commutativity
by representing g; * g2 and g2 x g1 as more similar than arbitrary g; * g» and g3 * g4 even when
g1 * g2 = g3 x g4. This perspective aligns with the mechanistic interpretability paradigm.

3.1 Experimental details

In our experiments we use MLPs and transformers that are of a scale that is accessible to most
researchers but are sufficient to learn the group operation. Our MLPs consist of dense linear layers
interleaved with ReLU nonlinearities. Our transformers are decoder-only and use GeLU nonlinearities.
The task is framed as prediction and thus uses a standard cross-entropy loss function. All models
are trained using the Adam optimizer with varying learning rate values and weight decay on a single



136
137

139
140
141
142
143
144
145

146

147
148
149
150
151
152
153
154

155
156
157

158
159

160
161
162
163
164
165
166
167

168
169
170
171
172
173

174
175
176
177
178
179

180
181
182

Nvidia A100. In most experiments, we explore a wide range of hyperparameters. We provide the
hyperparameters that we use for the paper’s visualizations in Section |[A|in the Appendix.

Our experiments use a one-hot encoding of elements of G. For MLPs, we encode g; * go by
concatenating two length |G| vectors into a single 2|G|-dimensional input. Since the output prediction
is an element of G, the output dimension is |G|. For transformers we encode g; * g as a length 3
sequence, the first token corresponding to g; and the second token corresponding to g. The final
token, on which the transformer’s prediction is made, can be taken to correspond to ‘=". Thus,
the transformer operates on a vocabulary of size |G| + 1. In our experiments we work with the
cyclic groups Cg4, Ces7, C100, Cas6, Ca57, Cs08, Cs12, the symmetric groups Sy, S5, and Sg, and the
dihedral groups D30, D50, Dgo, Dlgo, and D240.

3.2 Commutativity

It is easy to see why knowing that a group is commutative can lead to more efficient computation. If
G is commutative, one immediately knows the value of gs x g1 once they know the value of g1 x go.
Beyond this, commutativity has deep consequences for the types of structural features that a group can
exhibit with commutative groups generally being much simpler. Our first set of experiments aim to
understand whether MLPs and transformers capture commutativity using the perspectives described
at the beginning of Section[3] Our work extends [Kvinge et al., which used the cosine similarity test
below to determine whether large language models have an internal notion of commutativity. We
begin by describing our experiments.

Symmetric consistency: As noted above, one sign that a model has internalized the notion of
commutativity would be that the model’s prediction of g; * go and g2 * g1 will tend to be the same,
regardless of correctness. The following quantities aim to measure this.

Let S be the full set of pairs (( 91, 92), (92, gl)) in the test set. The symmetric consistency is measured
by computing the fraction of pairs where f(g1,¢92) = f(g2,91)-

Consistency of f := i#{f(91792) = f(92,91) | (91,92), (92, 91) € S}

S|

Symmetric consistency values closer to 1 indicate that f makes more consistent predictions across
pairs (g1, g2) and (g2, g1). However, care is needed because this consistency statistic alone can be
maximized through better performance on the test set. In other words, any model that achieves 100%
accuracy on the test examples will have symmetric consistency equal to 1, even if it is simply a
look-up table. To mitigate this, we also measure equal value consistency which is the fraction of
times that f predicts f(g1,g2) = f(93,94) for (g1, 92), (93,94) € S such that g1 x go = g3 * g4. We
compare these over the course of training. Increases in symmetric consistency independent of equal
value consistency may be evidence of a learned concept of commutativity in the model.

Another way we can probe for commutativity is to look at how strongly symmetric consistency
holds on out-of-distribution examples that were not seen during training. We call this version out-of-
distribution (OOD) symmetric consistency. Here we choose some ¢’ € G and remove all examples
from Sy :={(¢’,9).(9,9') | g € G} from the training set. We then measure symmetric consistency
on Sy to see if the model can apply any learned notion of commutativity to elements of S;» which
feature the novel element g’

Cosine similarity: Commutativity means that, algebraically, we are allowed to treat g; x go and
g2 * g1 as equal. In the context of large language models, [Kvinge et al.| hypothesized that such an
understanding might manifest as the model constructing internal representations of g1 * g and g2 x g1
that are closer in hidden activation space. For a given input (g1, g2), denote by v’;h g an activation
vector corresponding to (g1, g2) extracted from the kth layer of f. The symmetric representational

similarity of f at layer k is

1
Symmetric representational similiarity of f := 5l Z Sim(vfjh gz,v;’gl). @)

As in the case of symmetric consistency, we also compute a version of (1)) where the sum is taken
over pairs (g1, g2), (g3, g4) where g1 * go = g3 * g4 to ensure trends that we see do not simply arise
because g1 x g2 = go * g1.

(91,92),(92,91)€S
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Figure 1: Plots of symmetric consistency vs. equal value consistency (Left) and OOD symmetric
consistency vs. (Right) for five transformers trained to perform modular arithmetic in C'og. Shaded
regions correspond to 95% confidence intervals.

Do models capture commutativity?: The only class of commutative groups that we explored were
cyclic groups, so we focus our analysis on this setting. We note that by design, transformers are better
adapted for capturing commutativity since the representations of the tokens corresponding to g; and
g2 In g1 * g9 are the same as the representations of the tokens corresponding to g; and go in g2 * g1
up to modification by positional encoding. On the other hand, the one-hot encodings of g; * g» and
g2 * g1 are orthogonal.

In general, over the course of training all models tend to have higher symmetric consistency than the
consistency of arbitrary g; *g2 and g3 x g4 of equal value (though this difference is comparatively small
in MLPs). We also found that many (but not all) training runs yielded non-trivial OOD symmetric
consistency values. This is seen in Figure[I]for five transformers trained to predict the binary operation
of the cyclic group C1. Finally, examining performant model’s internal representations also reveal
the fingerprints of commutativity with higher cosine similarity between pairs g; x g2 and g2 * g3
relative to pairs that simply have equal value. An illustration of this can be found in Figure [3]in the
Appendix.

Despite these hints of commutativity, we note that the signals described above remain weak with both
MLPs and transformers achieve OOD symmetric consistency that is substantially higher than chance
(1/|G)) but significantly less than 1 (this is apparent on the left in Figure .

C Transformers and MLPs appear to learn some notion of commutativity but it remains brittle. )

3.3 The identity

Once one has identified the identity element e in a group, computations involving e are trivial
for a human to perform. This is true even when one otherwise understands little else about the
group. As such it is interesting to try to understand whether a neural network trained to predict the
group operation also leverages the unique property that g x e = g. We introduce two approaches
to understand whether models learn the identity as a special and distinct element of the group like
humans do.

Identity accuracy: This simply involves tracking the accuracy on test examples of the form g x e
or e * g in the test set. We then compare this to the global test accuracy. Substantial increases in
identity accuracy relative to global accuracy may indicate a point in training where the model learns
the identity.

As with symmetric consistency, we can also probe the extent to which a model has a strong concept
of the identity element by testing whether it can generalize the properties of the identity to out of
distribution examples. To do this we hold out a subset of elements ¢}, g5, . .., g; € G so that none
of these elements appear in the training set. The OOD identity accuracy is then the accuracy of the
subset of the test set of the form g x g or g x g for 1 < j <+¢.
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Do models have a notion of the identity element?: In all our experiments, identity accuracy tracked
the overall accuracy of the model closely giving no hint of a point where the model learned a specific
prediction rule around the identity element. This is supported by results on OOD identity accuracy
where no models were able to reliably predict that g xe = g or e x g = g if they had not seen g during
training.

We were unable to surface any evidence that our neural networks recognize the identity as a
special element of the group using the proposed techniques above.

3.4 Subgroup structure

While understanding the identity element and commutativity offer obvious potential benefits for
more efficient computation, the benefits of being able to distinguish different subgroups seems less
clear. Nevertheless, analysis in works like McCracken et al.|[2025]] suggest that in some cases, the
structure of certain subgroups may play a role in computation (via for example, the Chinese remainder
theorem). Motivated by this, we propose the following tests to explore whether models learn to
identify the subgroups of a group.

Subgroup accuracy: Analogous to identity accuracy, we can also look at subgroup accuracy, the
accuracy on pairs of elements (h1, ho) belonging to the subgroup H. If we see significant changes in
subgroup accuracy relative to global accuracy, this may correspond to a point in training where f
‘learned” H.

Linear probing for subgroup membership: We can test whether f captures a distinct representation
of H by probing for subgroup membership on the hidden activations of f. More specifically, we
can collect representation Ug € R% corresponding to g; * g at layer k, label them by whether
g1, 92 € H, and then train a 11near probe to predict these labels.

Note that in this test we should expect different behavior based on the data representation of trans-
formers and MLPs. In the MLP case where input is a one-hot encoding of g; stacked on a one-hot
encoding of go, this task should be easy in input space since the probe just needs to learn the |H |
indices corresponding to elements of H in the first |G| dimensions, the |H| indices corresponding to
elements of H in the second |G| dimensions, and be able to perform an ‘and’ operation over these.
We expect this task to become more challenging as f transforms this initial representation of (g1, go)
when computing g; * go. In the case of transformers where the input is three tokens long: one token
for g1, one token for g5, and one token for ‘=" and we predict g; * go from the third token, the
task is impossible in input space (since the third token is the same for all input). It only becomes
tractable as information from the first and second tokens representing g; and g» are transferred onto
the third token via successive self-attention layers. In this situation if the representation of ‘=’ retains
information identifying the first argument as g; and the second argument as go, then it is possible that
the subgroup could be learned via the same procedure described for the MLPs.

To better calibrate probe accuracy, we compare to a random labeling of | H| elements of the group.

Do models see subgroups?: Unlike the process whereby a human might learn a group, first un-
derstanding a simpler subgroup and then building toward understanding the whole group, we find
that across groups, subgroups, architectures, and hyperparameters, subgroup accuracy tracks global
accuracy. This aligns with the behavior of identity accuracy seen in Section[3.3]

On the other hand, we find substantial evidence that performant models sometimes capture subgroup
structure within their internal representations which we can access via the linear probing. We probe
for several large subgroups of cyclic groups including the order 50 and order 20 subgroups generated
in C1g0, the subgroups generated by all rotations in D3y and Djgg (order 30 and 50 respectively),
and the order 60 alternating subgroup in S5. The accuracy of these probes, trained on both the true
subgroup labels (solid lines) and random labels (dashed lines) over the course of training (z-axis) and
at different layers (colors) are shown in Figure 2] for a transformer trained on S5 (left), and an MLP
trained on D3 (right).

We stress that probe performance is variable across runs. Sometimes models achieve high accuracy
predicting the group operation and yet their probe performance is close to guessing.
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Figure 2: Linear probe performance on a (Left) transformer trained to predict the binary of S5 and a
(Right) MLP trained to predict the binary operation on D3y. Solid lines are probe accuracy when
labels correspond to the alternating subgroup and rotation subgroup respectively, while the dashed
line corresponds to a probe trained on a random labeling of the group. In the right plot, shading
indicates 95% confidence intervals over three random initializations (transformer performance on S5
varied too much between random initializations to be useful in the case of the transformer). In the
case of the MLP, probing was performed after each ReLU layer, in the transformer it was performed
after each attention layer.

The shadows of subgroups can be discerned through linear probing of a model’s internal
representations.

4 Discussion

We find analysis of model internals to be the most effective approach to detecting mathematical
structure learned by a model. This aligns with current explainability paradigms such as mechanistic
interpretability. On the other hand, we found that most models displayed weak generalization with
learned mathematical structures decaying substantially when we move to out-of-distribution input
(e.g., models almost never predicted that e x ¢’ = ¢’ in cases where they had not seen ¢’ during
training). Similarly, the training dynamics associated with specific structures mostly tracked the
general progress of the model. For instance, subgroup and identity accuracy tracked the global
accuracy of the model closely. This highlights an important difference between the way that these
small neural networks learn a new group and the way that a human learns a new group. The human
will often start by trying to understand simpler patterns and components, progressively building
toward an understanding of the whole. On the other hand, either we have not found the simpler
building blocks that models learn or models simply learn everything ‘all at once’.

What mathematical structures tend to be captured by a small neural network? This is an
important question to answer as it helps us identify whether the small model paradigm will be useful
for a particular research program. Based on the successes and failures described above, we suggest
three intuitive rules of thumb to predict whether a given mathematical property X is likely to be
learned by a small model trained on a task Y.

¢ Encoding X allows the neural network to find a simpler solution applicable across many instances
for the task Y. As an example, encoding commutativity and the trivial nature of the identity
element can both lead to simpler solutions. But whereas commutativity applies to all instances,
the special property of the identity only applies to 2|G/| — 1 instances out of |G|.

» X fits into an existing probing framework. For example, we found it hard to investigate whether
models recognize the significance of the identity element because this property is challenging to
formulate within most model probing techniques, as it does not easily lend itself to basic analysis
techniques in latent space.
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Mathematical world models are sensitive to hyperparameter choice and initialization. This
may in part be due to the nature of small algorithmic problems. Like others, we have found that
the performance in these settings tends to be more sensitive to initial conditions and sources of
randomness in training than other small-scale tasks (e.g., CIFAR10, MNIST). But even among
training runs with identical hyperparameters (that converged) we found significant differences in the
mathematical structures we were able to extract. For example, one trend that we noticed when training
transformers on Sj is that when the model converged earlier (after 20 — 50 epochs) the alternating
subgroup was undetectable via linear probing but that when the model converged after training for
longer (> 100 epochs), the alternating subgroup was detectable. It may be that these mathematical
properties offer a window to fundamentally different solutions learned by a model. Overall, we
strongly recommend that when training models that will be used in downstream mathematical
exploration, many different hyperparameters and initializations should be explored.

5 Related work

This work presents a framework to understand whether narrow models trained to perform a single
algebraic task—predicting a group operation—Iearn group-theoretic notions. This adds to the growing
literature on world models of neural networks, which has focused largely on sequence models in
strategy game environments, and more recently LLMs [Mitchell [2023]], [Li et al.| [2022]], [Nanda
et al.|[2023b]], Rohekar et al.|[2025]], while the algebraic world models of narrow models trained on
mathematics tasks are much less explored.

Closest to our setting are mechanistic studies that reverse-engineer how small MLP and transformer
models learn group operations. |[Nanda et al.|[2023a], [Zhong et al.| [2023]], Chughtai et al.| [2023],
Stander et al.| [2023]], Wu et al.|[2024]], McCracken et al.| [[2025]]. These works have often found
that the learned algorithms use group-theoretic structure, although they sometimes differ in the
specific algorithms they reverse-engineer |(Chughtai et al.|[2023]], [Stander et al.| [2023]]. Our work is
complementary, asking whether we can extract evidence of abstract notions like commutativity or
subgroup structure, regardless of whether we can extract the precise algorithm used.

Our work is motivated by the potential to use Al systems for mathematical discovery. This is a rapidly
growing field, including using Al to generate proofs Yang et al.| [2024], discover counterexamples
Wagner [2021]], and find mathematical constructions |Charton et al.|[2024]], |/Alfarano et al.|[2024], [Yip
et al.| [2025]]. Some of this work trains a model to solve a task closely related to the problem, and then
relies on expert probing to extract mathematical insight Davies et al.|[2021]], He et al.| In contrast,
we take a step back to ask whether narrow models learn abstractions needed in order to gain useful
insights.

6 Limitations

This work uses the elementary setting of finite groups to explore the prospects for using machine
learning models to surface interesting mathematics that falls outside the task a model was designed to
solve. Given the set-up, we know in advance the kinds of structures we are looking for. As such, we
sidestep the main technical challenge in this research program. However, we hope that our results
which show that interesting structure does appear in models (particularly their latent space), will
support the idea that this is a worthwhile research direction that remains accessible to researchers
with medium to small computational resources.

7 Conclusion

In this paper we explore the question of whether neural networks trained on a simple mathematical
task, predicting the binary operation that defines a group, capture interesting structure not specified in
the task itself. Our results show that even small neural networks can learn interesting structure, in the
case of this paper the commutativity of the group operation or the existence of particular subgroups.
There are also important group properties, such as the existence of the identity, that we are not able
find. Despite our positive results, we see the most significant technical challenge in the widespread
use of this paradigm as being able to effectively extract insights from a model when one does not
already know what they are.
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Table 1: Summary of algebraic structure captured in small LLMs and MLPs trained to perform a
groups binary operation.

Name Type Captured structure
Commutativity
Symmetric consistency Learning dynamics Yes
OOD symmetric consistency Generalization Yes
Symmetric representational similarity =~ Representation structure ~ Yes
Identity
Identity accuracy Learning dynamics No
Identity generalization Generalization No
Subgroup structure
Subgroup accuracy Learning dynamics No
Hidden activation probing Representation structure  Yes
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4211 A Hyperparameters

4

2 We provide the hyperparameters used to generate the plots below.

413 * In order to generate the plots in Figures[T]and [3] we used decoder-only transformers with:
414 4 attention blocks and 4 MLP blocks, residual stream dimension 1, 000, 8 attention heads,
415 learning rate 0.0001, weight decay 0.001. We used 80% of all 10, 000 instances for training
416 and 20% for test.

417 * For Figure ] (left), we used 3 decoder-only transformers with: 4 attention blocks and 4 MLP
418 blocks, residual stream dimension 1,000, 8 attention heads, learning rate 0.0001, weight
419 decay 0.001. We used 80% of all 14, 400 instances for training and 20% for test.

420 * For Figure 2] (right), we used 3 MLPs of depth 2 and width 1, 000, learning rate 0.001, and
421 weight decay 0.0005. We used 80% of all 3, 600 instances for training and 20% for test.
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Figure 3: A plot of the symmetric representational similarity (solid lines) and equal value similarity
(dashed lines) at different blocks of a decoder only transformer trained on the group C1g9. Shading
corresponds to 95% confidence intervals over 5 random initializations.

TAG-DS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“TAG-DS Paper Checklist',
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.
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451 1. Claims

452 Question: Do the main claims made in the abstract and introduction accurately reflect the
453 paper’s contributions and scope?

454 Answer: [Yes]

455 Justification: The abstract and introduction accurately reflect the findings of the paper. The
456 main contributions are clearly stated in a bulleted list at the end of the introduction.

457 Guidelines:

458 * The answer NA means that the abstract and introduction do not include the claims
459 made in the paper.

460 * The abstract and/or introduction should clearly state the claims made, including the
461 contributions made in the paper and important assumptions and limitations. A No or
462 NA answer to this question will not be perceived well by the reviewers.

463 * The claims made should match theoretical and experimental results, and reflect how
464 much the results can be expected to generalize to other settings.

465 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
466 are not attained by the paper.

467 2. Limitations

468 Question: Does the paper discuss the limitations of the work performed by the authors?
469 Answer: [Yes]

470 Justification: The limitations of this work are discussed in a separate "Limitations" section
a7t (Section[6)).

472 Guidelines:

473 * The answer NA means that the paper has no limitation while the answer No means that
474 the paper has limitations, but those are not discussed in the paper.

475 * The authors are encouraged to create a separate "Limitations" section in their paper.
476 * The paper should point out any strong assumptions and how robust the results are to
477 violations of these assumptions (e.g., independence assumptions, noiseless settings,
478 model well-specification, asymptotic approximations only holding locally). The authors
479 should reflect on how these assumptions might be violated in practice and what the
480 implications would be.

481 * The authors should reflect on the scope of the claims made, e.g., if the approach was
482 only tested on a few datasets or with a few runs. In general, empirical results often
483 depend on implicit assumptions, which should be articulated.

484 * The authors should reflect on the factors that influence the performance of the approach.
485 For example, a facial recognition algorithm may perform poorly when image resolution
486 is low or images are taken in low lighting. Or a speech-to-text system might not be
487 used reliably to provide closed captions for online lectures because it fails to handle
488 technical jargon.

489 * The authors should discuss the computational efficiency of the proposed algorithms
490 and how they scale with dataset size.

491 * If applicable, the authors should discuss possible limitations of their approach to
492 address problems of privacy and fairness.

493 * While the authors might fear that complete honesty about limitations might be used by
494 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
495 limitations that aren’t acknowledged in the paper. The authors should use their best
496 judgment and recognize that individual actions in favor of transparency play an impor-
497 tant role in developing norms that preserve the integrity of the community. Reviewers
498 will be specifically instructed to not penalize honesty concerning limitations.

499 3. Theory assumptions and proofs

500 Question: For each theoretical result, does the paper provide the full set of assumptions and
501 a complete (and correct) proof?

502 Answer: [NA]
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Justification: This paper does not contain any theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of our experimental set up can be found in Section [3.1] with futher
details on our linear probing experiments in Section[3.4] We discuss potential challenges
in reproducing results in the Discussion (Section d)) and include the recommendation that
many different hyperparameters and initializations should be explored.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We intend to release our code available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Most of this information can be found in Section[3.1] As discussed in this
section, we experimented with a variety of hyperparameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures include a shaded region representing a 95% confidence interval. In the
case where this is not included, the figure caption gives an explanation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, this information can be found in Section [3.1] As mentioned in the
introduction, these experiments are accessible to researchers with small compute resources.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We adhere to the Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: There are many potential societal consequences of using Al to augment or
even automate mathematical discovery. We did not think any of these consequences needed
to be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new assets at this time, although we plan to
release our code upon acceptance.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not include crowdsourcing nor human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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765 * For initial submissions, do not include any information that would break anonymity (if

766 applicable), such as the institution conducting the review.

767 16. Declaration of LLM usage

768 Question: Does the paper describe the usage of LLMs if it is an important, original, or
769 non-standard component of the core methods in this research? Note that if the LLM is used
770 only for writing, editing, or formatting purposes and does not impact the core methodology,
77 scientific rigorousness, or originality of the research, declaration is not required.

772 Answer: [NA]

773 Justification: The core method development did not involve LLMs.

774 Guidelines:

775 * The answer NA means that the core method development in this research does not
776 involve LLMs as any important, original, or non-standard components.

777 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
778 for what should or should not be described.
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