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Abstract

While a real-world research program in mathematics may be guided by a motivating1

question, the process of mathematical discovery is typically open-ended. Ideally,2

exploration needed to answer the original question will reveal new structures,3

patterns, and insights that are valuable in their own right. This contrasts with the4

exam-style paradigm in which the machine learning community typically applies5

AI to math. To maximize progress in mathematics using AI, we will need to go6

beyond simple question answering. With this in mind, we explore the extent to7

which narrow models trained to solve a fixed mathematical task learn broader8

mathematical structure that can be extracted by a researcher or other AI system.9

As a basic test case for this, we use the task of training a neural network to predict10

a group operation (for example, performing modular arithmetic or composition11

of permutations). We describe a suite of tests designed to assess whether the12

model captures significant group-theoretic notions such as the identity element,13

commutativity, or subgroups. Through extensive experimentation we find evidence14

that models learn representations capable of capturing abstract algebraic properties.15

For example, we find hints that models capture the commutativity of modular16

arithmetic. We are also able to train linear classifiers that reliably distinguish17

between elements of certain subgroups (even though no labels for these subgroups18

are included in the data). On the other hand, we are unable to extract notions19

such as the concept of the identity element. Together, our results suggest that in20

some cases the representations of even small neural networks can be used to distill21

interesting abstract structure from new mathematical objects.22

1 Introduction23

Deep learning-based systems are increasingly being used as a tool to accelerate research mathematics.24

Though there is a growing body of work that aims for generalist AI scientists Lu et al. [2024], Yamada25

et al. [2025] or program synthesis systems like AlphaEvolve Novikov et al. [2025], Romera-Paredes26

et al. [2024], the majority of AI for math work still starts with a specific problem of interest and27

then builds a system to learn a solution to this problem. This system may be a narrow model trained28

exclusively on a task related to the problem Davies et al. [2021] or it may be a more sophisticated29

framework using foundation models like LLMs. What these set-ups have in common is that they30

are often restricted to revealing solutions to the initial question. Real mathematics research on the31

other hand is substantially more open-ended with the final output of a research program often varying32

substantially from the initial motivating question.33
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If the goal is to develop methodologies that enable more open-ended discovery, one potential solution34

is to look more closely at effective narrow models. Might these already contain valuable insights that35

were learned in the course of solving the original task? There are a range of case studies that provide36

precedent for such a hypothesis. For instance, careful analysis of models trained to perform modular37

arithmetic Nanda et al. [2023a] or composition of permutations Chughtai et al. [2023], Stander et al.38

[2023], Wu et al. [2024] have revealed sophisticated algorithms that depend on the representation39

theory of the corresponding groups. Similarly, analysis of a graph neural network designed to perform40

classification of the mutation equivalence class of a finite or affine type quiver was found to naturally41

cluster instances in ways that align with human classification schemes He et al..42

Motivated by this question, we explore the elementary case of a neural network trained to predict the43

operation of a group G and ask to what extent we can detect basic group-theoretic concepts from44

such a network. Notions we consider include commutativity, the identity, and subgroups, all core45

concepts within group theory. We explore three approaches to detecting these concepts: (i) through46

training dynamics where we look for changes in loss/accuracy that might correspond to a model47

learning a new concept, (ii) differences in performance across subsets of input instances (for example,48

a model that ‘understands’ the identity element e should always get the correct answer on questions49

of the form g ⋆ e or e ⋆ g, even when it has never seen g before), and (iii) the structure of the internal50

representations of the group.51

We probe MLPs and transformers trained to perform the group operation for cyclic groups, symmetric52

groups, and dihedral groups of varying sizes. Across these settings we find that concepts which offer53

shortcuts in task computation and are relevant to many different instances (e.g., commutativity) can54

be detected via several means, while other concepts (the identity element property) that are only55

relevant to a minority of instances cannot be detected. More surprisingly, we find that we are able56

to distinguish between pairs of elements (g1, g2) belonging to a subgroup H and pairs that do not57

belong to H in the latent space of the model, even though the model was not trained with subgroup58

labels.59

All of this suggests that the mathematical world models learned by small neural networks (easily60

accessible to even those with very restricted compute budgets) can contain interesting mathematical61

insights available to those that are willing to put in the work to extract them. In summary our62

contributions include the following.63

• We describe a framework that uses finite groups and basic notions from group theory to better64

understand whether narrowly trained neural networks have world models sufficiently rich for65

open ended mathematical discovery.66

• We evaluate a range of approaches to extract the fingerprints of concepts such as commutativity67

or the notion of a subgroup from a neural network trained for a fixed task, confirming that68

representation-based approaches that probe the hidden activations of a model are the most69

promising.70

• We give some intuitive rules of thumb for the types of structures that narrow models are likely to71

learn, and those they are unlikely to learn.72

2 Finite Groups and Their Associated Concepts73

The notion of a group is a central concept in modern mathematics. A group is a set G along with a74

binary operation ⋆ : G×G → G which satisfies the following axioms. (1) ⋆ is associative so that75

for all g1, g2, g3 ∈ G, (g1 ⋆ g2) ⋆ g3 = g1 ⋆ (g2 ⋆ g3). (2) There is an identity element e ∈ G such76

that g ⋆ e = e ⋆ g = g for all g ∈ G. (3) Each g ∈ G has an inverse element g−1 ∈ G such that77

g ⋆ g−1 = e = g−1 ⋆ g.78

Despite arising from only three simple axioms, groups exhibit amazingly rich structure ranging from79

cyclic groups (familiar from modular arithmetic) to the monster, the largest sporadic group which has80

order ≈ 1053. Careers have been spent studying groups and one product of this is a rich language81

that captures the breadth of structure arising in this field. In this work we only scratch the surface of82

this, asking whether we can recover the following notions from a neural network trained to perform83

the binary operation ⋆:84

• Commutativity of the binary operation ⋆: ⋆ is commutative if for all g1, g2 ∈ G, we have85

g1 ⋆ g2 = g2 ⋆ g1.86
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• The identity element: The element e is uniquely defined in G by the fact that e ⋆ g = g = g ⋆ e87

for all g ∈ G.88

• Subgroup structure: There may exist proper, non-trivial subsets H ⊆ G that are closed under ⋆89

and hence form groups in their own right. These subgroups form lattices under the containment90

relationship.91

We look at three different families of groups, which we describe here.92

Cyclic groups, Z/pZ: Cyclic groups are familiar since they correspond to modular addition. We93

can represent Z/pZ with the elements {0, 1, . . . , p− 1} and realize the binary operation as a+ b =94

a+ b mod p. Z/pZ is commutative and has order |Z/pZ| = p. The subgroups of Z/pZ are in95

one-to-one correspondence with integers 1 ≤ k ≤ p such that k divides p. If k divides p, then we can96

realize the corresponding subgroup as {0, k, 2k, . . . }.97

Symmetric groups, Sn: The symmetric group Sn is the set of all permutations of n elements98

with the binary operation of composition of permutations. As such, the order of Sn is n!. It is99

not commutative. Sn has many subgroups but we will work with one of the most well-known, the100

alternating (sub)group, which consists of all permutations of n which are even. The alternating group101

has size n!/2.102

Dihedral groups Dn: The dihedral group Dn can be realized as the set of rotations and reflections103

that preserve the n-gon. It consists of n rotations and n reflections, making it a group of order 2n.104

Subgroups of Dn include the subgroup of all n rotations.105

3 How Can We Detect Whether a Model Has Learned a Mathematical106

Concept?107

Suppose f : G×G → G is a neural network that has been trained to perform the binary operation ⋆108

of a group. Thus, provided with g1, g2 ∈ G, f predicts g1 ⋆ g2. We outline the three broad approaches109

that we use to detect whether f has ‘learned’ algebraic concepts that characterize groups (at least, as110

a human mathematician would describe them).111

• Learning dynamics: Detailed analysis of neural network training has revealed that (at least in112

simple problems), sudden drops in loss may correspond to a network gaining a specific capability .113

Might we see similar changes in the loss curve when a network trained on a group binary operation114

learns a concept like commutativity of ⋆? Motivated by this idea, we explore whether changes in115

accuracy or loss correlate with changes in model performance on specific subpopulations of the test116

set which capture a certain concept. For example, one can imagine that a sudden drop in loss might117

correspond to a model achieving high accuracy on instances of the form e ⋆ g or g ⋆ e, suggesting118

that the model has learned the concept of the identity element.119

• Generalization: Mathematical concepts are valuable precisely because they allow us to reason120

broadly across instances we have not seen before. One may not have ever actually worked with the121

numbers 2, 483, 402 and 5, 840, 202 but we can immediately say that 2, 483, 402 + 5, 840, 202 =122

5, 840, 202 + 2, 483, 402 based on mathematical concepts that we already understand. One way to123

evaluate whether a model has learned a concept is to see whether the model can apply that concept124

to an out-of-distribution example.125

• Structure of Internal Representations: A model’s understanding of a concept may manifest as126

structure in the hidden activations of the model. For example, a model may encode commutativity127

by representing g1 ⋆ g2 and g2 ⋆ g1 as more similar than arbitrary g1 ⋆ g2 and g3 ⋆ g4 even when128

g1 ⋆ g2 = g3 ⋆ g4. This perspective aligns with the mechanistic interpretability paradigm.129

3.1 Experimental details130

In our experiments we use MLPs and transformers that are of a scale that is accessible to most131

researchers but are sufficient to learn the group operation. Our MLPs consist of dense linear layers132

interleaved with ReLU nonlinearities. Our transformers are decoder-only and use GeLU nonlinearities.133

The task is framed as prediction and thus uses a standard cross-entropy loss function. All models134

are trained using the Adam optimizer with varying learning rate values and weight decay on a single135
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Nvidia A100. In most experiments, we explore a wide range of hyperparameters. We provide the136

hyperparameters that we use for the paper’s visualizations in Section A in the Appendix.137

Our experiments use a one-hot encoding of elements of G. For MLPs, we encode g1 ⋆ g2 by138

concatenating two length |G| vectors into a single 2|G|-dimensional input. Since the output prediction139

is an element of G, the output dimension is |G|. For transformers we encode g1 ⋆ g2 as a length 3140

sequence, the first token corresponding to g1 and the second token corresponding to g2. The final141

token, on which the transformer’s prediction is made, can be taken to correspond to ‘=’. Thus,142

the transformer operates on a vocabulary of size |G| + 1. In our experiments we work with the143

cyclic groups C64, C67, C100, C256, C257, C508, C512, the symmetric groups S4, S5, and S6, and the144

dihedral groups D30, D50, D60, D120, and D240.145

3.2 Commutativity146

It is easy to see why knowing that a group is commutative can lead to more efficient computation. If147

G is commutative, one immediately knows the value of g2 ⋆ g1 once they know the value of g1 ⋆ g2.148

Beyond this, commutativity has deep consequences for the types of structural features that a group can149

exhibit with commutative groups generally being much simpler. Our first set of experiments aim to150

understand whether MLPs and transformers capture commutativity using the perspectives described151

at the beginning of Section 3. Our work extends Kvinge et al., which used the cosine similarity test152

below to determine whether large language models have an internal notion of commutativity. We153

begin by describing our experiments.154

Symmetric consistency: As noted above, one sign that a model has internalized the notion of155

commutativity would be that the model’s prediction of g1 ⋆ g2 and g2 ⋆ g1 will tend to be the same,156

regardless of correctness. The following quantities aim to measure this.157

Let S be the full set of pairs
(
(g1, g2), (g2, g1)

)
in the test set. The symmetric consistency is measured158

by computing the fraction of pairs where f(g1, g2) = f(g2, g1).159

Consistency of f :=
1

|S|
#{f(g1, g2) = f(g2, g1) | (g1, g2), (g2, g1) ∈ S}.

Symmetric consistency values closer to 1 indicate that f makes more consistent predictions across160

pairs (g1, g2) and (g2, g1). However, care is needed because this consistency statistic alone can be161

maximized through better performance on the test set. In other words, any model that achieves 100%162

accuracy on the test examples will have symmetric consistency equal to 1, even if it is simply a163

look-up table. To mitigate this, we also measure equal value consistency which is the fraction of164

times that f predicts f(g1, g2) = f(g3, g4) for (g1, g2), (g3, g4) ∈ S such that g1 ⋆ g2 = g3 ⋆ g4. We165

compare these over the course of training. Increases in symmetric consistency independent of equal166

value consistency may be evidence of a learned concept of commutativity in the model.167

Another way we can probe for commutativity is to look at how strongly symmetric consistency168

holds on out-of-distribution examples that were not seen during training. We call this version out-of-169

distribution (OOD) symmetric consistency. Here we choose some g′ ∈ G and remove all examples170

from Sg′ := {(g′, g),(g, g′) | g ∈ G} from the training set. We then measure symmetric consistency171

on Sg′ to see if the model can apply any learned notion of commutativity to elements of Sg′ which172

feature the novel element g′.173

Cosine similarity: Commutativity means that, algebraically, we are allowed to treat g1 ⋆ g2 and174

g2 ⋆ g1 as equal. In the context of large language models, Kvinge et al. hypothesized that such an175

understanding might manifest as the model constructing internal representations of g1 ⋆ g2 and g2 ⋆ g1176

that are closer in hidden activation space. For a given input (g1, g2), denote by vkg1,g2 an activation177

vector corresponding to (g1, g2) extracted from the kth layer of f . The symmetric representational178

similarity of f at layer k is179

Symmetric representational similiarity of f :=
1

|S|
∑

(g1,g2),(g2,g1)∈S

Sim(vkg1,g2 , v
k
g2,g1). (1)

As in the case of symmetric consistency, we also compute a version of (1) where the sum is taken180

over pairs (g1, g2), (g3, g4) where g1 ⋆ g2 = g3 ⋆ g4 to ensure trends that we see do not simply arise181

because g1 ⋆ g2 = g2 ⋆ g1.182
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Figure 1: Plots of symmetric consistency vs. equal value consistency (Left) and OOD symmetric
consistency vs. (Right) for five transformers trained to perform modular arithmetic in C100. Shaded
regions correspond to 95% confidence intervals.

Do models capture commutativity?: The only class of commutative groups that we explored were183

cyclic groups, so we focus our analysis on this setting. We note that by design, transformers are better184

adapted for capturing commutativity since the representations of the tokens corresponding to g1 and185

g2 in g1 ⋆ g2 are the same as the representations of the tokens corresponding to g1 and g2 in g2 ⋆ g1186

up to modification by positional encoding. On the other hand, the one-hot encodings of g1 ⋆ g2 and187

g2 ⋆ g1 are orthogonal.188

In general, over the course of training all models tend to have higher symmetric consistency than the189

consistency of arbitrary g1⋆g2 and g3⋆g4 of equal value (though this difference is comparatively small190

in MLPs). We also found that many (but not all) training runs yielded non-trivial OOD symmetric191

consistency values. This is seen in Figure 1 for five transformers trained to predict the binary operation192

of the cyclic group C100. Finally, examining performant model’s internal representations also reveal193

the fingerprints of commutativity with higher cosine similarity between pairs g1 ⋆ g2 and g2 ⋆ g1194

relative to pairs that simply have equal value. An illustration of this can be found in Figure 3 in the195

Appendix.196

Despite these hints of commutativity, we note that the signals described above remain weak with both197

MLPs and transformers achieve OOD symmetric consistency that is substantially higher than chance198

(1/|G|) but significantly less than 1 (this is apparent on the left in Figure 1).199

Transformers and MLPs appear to learn some notion of commutativity but it remains brittle.
200

3.3 The identity201

Once one has identified the identity element e in a group, computations involving e are trivial202

for a human to perform. This is true even when one otherwise understands little else about the203

group. As such it is interesting to try to understand whether a neural network trained to predict the204

group operation also leverages the unique property that g ⋆ e = g. We introduce two approaches205

to understand whether models learn the identity as a special and distinct element of the group like206

humans do.207

Identity accuracy: This simply involves tracking the accuracy on test examples of the form g ⋆ e208

or e ⋆ g in the test set. We then compare this to the global test accuracy. Substantial increases in209

identity accuracy relative to global accuracy may indicate a point in training where the model learns210

the identity.211

As with symmetric consistency, we can also probe the extent to which a model has a strong concept212

of the identity element by testing whether it can generalize the properties of the identity to out of213

distribution examples. To do this we hold out a subset of elements g′1, g
′
2, . . . , g

′
t ∈ G so that none214

of these elements appear in the training set. The OOD identity accuracy is then the accuracy of the215

subset of the test set of the form g′j ⋆ g or g ⋆ g′j for 1 ≤ j ≤ t.216
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Do models have a notion of the identity element?: In all our experiments, identity accuracy tracked217

the overall accuracy of the model closely giving no hint of a point where the model learned a specific218

prediction rule around the identity element. This is supported by results on OOD identity accuracy219

where no models were able to reliably predict that g ⋆ e = g or e ⋆ g = g if they had not seen g during220

training.221

We were unable to surface any evidence that our neural networks recognize the identity as a
special element of the group using the proposed techniques above.

222

3.4 Subgroup structure223

While understanding the identity element and commutativity offer obvious potential benefits for224

more efficient computation, the benefits of being able to distinguish different subgroups seems less225

clear. Nevertheless, analysis in works like McCracken et al. [2025] suggest that in some cases, the226

structure of certain subgroups may play a role in computation (via for example, the Chinese remainder227

theorem). Motivated by this, we propose the following tests to explore whether models learn to228

identify the subgroups of a group.229

Subgroup accuracy: Analogous to identity accuracy, we can also look at subgroup accuracy, the230

accuracy on pairs of elements (h1, h2) belonging to the subgroup H . If we see significant changes in231

subgroup accuracy relative to global accuracy, this may correspond to a point in training where f232

‘learned’ H .233

Linear probing for subgroup membership: We can test whether f captures a distinct representation234

of H by probing for subgroup membership on the hidden activations of f . More specifically, we235

can collect representation vkg1,gk ∈ Rdk corresponding to g1 ⋆ g2 at layer k, label them by whether236

g1, g2 ∈ H , and then train a linear probe to predict these labels.237

Note that in this test we should expect different behavior based on the data representation of trans-238

formers and MLPs. In the MLP case where input is a one-hot encoding of g1 stacked on a one-hot239

encoding of g2, this task should be easy in input space since the probe just needs to learn the |H|240

indices corresponding to elements of H in the first |G| dimensions, the |H| indices corresponding to241

elements of H in the second |G| dimensions, and be able to perform an ‘and’ operation over these.242

We expect this task to become more challenging as f transforms this initial representation of (g1, g2)243

when computing g1 ⋆ g2. In the case of transformers where the input is three tokens long: one token244

for g1, one token for g2, and one token for ‘=’ and we predict g1 ⋆ g2 from the third token, the245

task is impossible in input space (since the third token is the same for all input). It only becomes246

tractable as information from the first and second tokens representing g1 and g2 are transferred onto247

the third token via successive self-attention layers. In this situation if the representation of ‘=’ retains248

information identifying the first argument as g1 and the second argument as g2, then it is possible that249

the subgroup could be learned via the same procedure described for the MLPs.250

To better calibrate probe accuracy, we compare to a random labeling of |H| elements of the group.251

Do models see subgroups?: Unlike the process whereby a human might learn a group, first un-252

derstanding a simpler subgroup and then building toward understanding the whole group, we find253

that across groups, subgroups, architectures, and hyperparameters, subgroup accuracy tracks global254

accuracy. This aligns with the behavior of identity accuracy seen in Section 3.3.255

On the other hand, we find substantial evidence that performant models sometimes capture subgroup256

structure within their internal representations which we can access via the linear probing. We probe257

for several large subgroups of cyclic groups including the order 50 and order 20 subgroups generated258

in C100, the subgroups generated by all rotations in D30 and D50 (order 30 and 50 respectively),259

and the order 60 alternating subgroup in S5. The accuracy of these probes, trained on both the true260

subgroup labels (solid lines) and random labels (dashed lines) over the course of training (x-axis) and261

at different layers (colors) are shown in Figure 2 for a transformer trained on S5 (left), and an MLP262

trained on D30 (right).263

We stress that probe performance is variable across runs. Sometimes models achieve high accuracy264

predicting the group operation and yet their probe performance is close to guessing.265
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Figure 2: Linear probe performance on a (Left) transformer trained to predict the binary of S5 and a
(Right) MLP trained to predict the binary operation on D30. Solid lines are probe accuracy when
labels correspond to the alternating subgroup and rotation subgroup respectively, while the dashed
line corresponds to a probe trained on a random labeling of the group. In the right plot, shading
indicates 95% confidence intervals over three random initializations (transformer performance on S5

varied too much between random initializations to be useful in the case of the transformer). In the
case of the MLP, probing was performed after each ReLU layer, in the transformer it was performed
after each attention layer.

The shadows of subgroups can be discerned through linear probing of a model’s internal
representations.

266

4 Discussion267

We find analysis of model internals to be the most effective approach to detecting mathematical268

structure learned by a model. This aligns with current explainability paradigms such as mechanistic269

interpretability. On the other hand, we found that most models displayed weak generalization with270

learned mathematical structures decaying substantially when we move to out-of-distribution input271

(e.g., models almost never predicted that e ⋆ g′ = g′ in cases where they had not seen g′ during272

training). Similarly, the training dynamics associated with specific structures mostly tracked the273

general progress of the model. For instance, subgroup and identity accuracy tracked the global274

accuracy of the model closely. This highlights an important difference between the way that these275

small neural networks learn a new group and the way that a human learns a new group. The human276

will often start by trying to understand simpler patterns and components, progressively building277

toward an understanding of the whole. On the other hand, either we have not found the simpler278

building blocks that models learn or models simply learn everything ‘all at once’.279

What mathematical structures tend to be captured by a small neural network? This is an280

important question to answer as it helps us identify whether the small model paradigm will be useful281

for a particular research program. Based on the successes and failures described above, we suggest282

three intuitive rules of thumb to predict whether a given mathematical property X is likely to be283

learned by a small model trained on a task Y .284

• Encoding X allows the neural network to find a simpler solution applicable across many instances285

for the task Y . As an example, encoding commutativity and the trivial nature of the identity286

element can both lead to simpler solutions. But whereas commutativity applies to all instances,287

the special property of the identity only applies to 2|G| − 1 instances out of |G|2.288

• X fits into an existing probing framework. For example, we found it hard to investigate whether289

models recognize the significance of the identity element because this property is challenging to290

formulate within most model probing techniques, as it does not easily lend itself to basic analysis291

techniques in latent space.292
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Mathematical world models are sensitive to hyperparameter choice and initialization. This293

may in part be due to the nature of small algorithmic problems. Like others, we have found that294

the performance in these settings tends to be more sensitive to initial conditions and sources of295

randomness in training than other small-scale tasks (e.g., CIFAR10, MNIST). But even among296

training runs with identical hyperparameters (that converged) we found significant differences in the297

mathematical structures we were able to extract. For example, one trend that we noticed when training298

transformers on S5 is that when the model converged earlier (after 20− 50 epochs) the alternating299

subgroup was undetectable via linear probing but that when the model converged after training for300

longer (> 100 epochs), the alternating subgroup was detectable. It may be that these mathematical301

properties offer a window to fundamentally different solutions learned by a model. Overall, we302

strongly recommend that when training models that will be used in downstream mathematical303

exploration, many different hyperparameters and initializations should be explored.304

5 Related work305

This work presents a framework to understand whether narrow models trained to perform a single306

algebraic task—predicting a group operation—learn group-theoretic notions. This adds to the growing307

literature on world models of neural networks, which has focused largely on sequence models in308

strategy game environments, and more recently LLMs Mitchell [2023], Li et al. [2022], Nanda309

et al. [2023b], Rohekar et al. [2025], while the algebraic world models of narrow models trained on310

mathematics tasks are much less explored.311

Closest to our setting are mechanistic studies that reverse-engineer how small MLP and transformer312

models learn group operations. Nanda et al. [2023a], Zhong et al. [2023], Chughtai et al. [2023],313

Stander et al. [2023], Wu et al. [2024], McCracken et al. [2025]. These works have often found314

that the learned algorithms use group-theoretic structure, although they sometimes differ in the315

specific algorithms they reverse-engineer Chughtai et al. [2023], Stander et al. [2023]. Our work is316

complementary, asking whether we can extract evidence of abstract notions like commutativity or317

subgroup structure, regardless of whether we can extract the precise algorithm used.318

Our work is motivated by the potential to use AI systems for mathematical discovery. This is a rapidly319

growing field, including using AI to generate proofs Yang et al. [2024], discover counterexamples320

Wagner [2021], and find mathematical constructions Charton et al. [2024], Alfarano et al. [2024], Yip321

et al. [2025]. Some of this work trains a model to solve a task closely related to the problem, and then322

relies on expert probing to extract mathematical insight Davies et al. [2021], He et al.. In contrast,323

we take a step back to ask whether narrow models learn abstractions needed in order to gain useful324

insights.325

6 Limitations326

This work uses the elementary setting of finite groups to explore the prospects for using machine327

learning models to surface interesting mathematics that falls outside the task a model was designed to328

solve. Given the set-up, we know in advance the kinds of structures we are looking for. As such, we329

sidestep the main technical challenge in this research program. However, we hope that our results330

which show that interesting structure does appear in models (particularly their latent space), will331

support the idea that this is a worthwhile research direction that remains accessible to researchers332

with medium to small computational resources.333

7 Conclusion334

In this paper we explore the question of whether neural networks trained on a simple mathematical335

task, predicting the binary operation that defines a group, capture interesting structure not specified in336

the task itself. Our results show that even small neural networks can learn interesting structure, in the337

case of this paper the commutativity of the group operation or the existence of particular subgroups.338

There are also important group properties, such as the existence of the identity, that we are not able339

find. Despite our positive results, we see the most significant technical challenge in the widespread340

use of this paradigm as being able to effectively extract insights from a model when one does not341

already know what they are.342
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Table 1: Summary of algebraic structure captured in small LLMs and MLPs trained to perform a
groups binary operation.

Name Type Captured structure

Commutativity
Symmetric consistency Learning dynamics Yes
OOD symmetric consistency Generalization Yes
Symmetric representational similarity Representation structure Yes

Identity
Identity accuracy Learning dynamics No
Identity generalization Generalization No

Subgroup structure
Subgroup accuracy Learning dynamics No
Hidden activation probing Representation structure Yes
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A Hyperparameters411

We provide the hyperparameters used to generate the plots below.412

• In order to generate the plots in Figures 1 and 3 we used decoder-only transformers with:413

4 attention blocks and 4 MLP blocks, residual stream dimension 1, 000, 8 attention heads,414

learning rate 0.0001, weight decay 0.001. We used 80% of all 10, 000 instances for training415

and 20% for test.416

• For Figure 2 (left), we used 3 decoder-only transformers with: 4 attention blocks and 4 MLP417

blocks, residual stream dimension 1, 000, 8 attention heads, learning rate 0.0001, weight418

decay 0.001. We used 80% of all 14, 400 instances for training and 20% for test.419

• For Figure 2 (right), we used 3 MLPs of depth 2 and width 1, 000, learning rate 0.001, and420

weight decay 0.0005. We used 80% of all 3, 600 instances for training and 20% for test.421
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Figure 3: A plot of the symmetric representational similarity (solid lines) and equal value similarity
(dashed lines) at different blocks of a decoder only transformer trained on the group C100. Shading
corresponds to 95% confidence intervals over 5 random initializations.

TAG-DS Paper Checklist422

The checklist is designed to encourage best practices for responsible machine learning research,423

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove424

the checklist: The papers not including the checklist will be desk rejected. The checklist should425

follow the references and follow the (optional) supplemental material. The checklist does NOT count426

towards the page limit.427

Please read the checklist guidelines carefully for information on how to answer these questions. For428

each question in the checklist:429

• You should answer [Yes] , [No] , or [NA] .430

• [NA] means either that the question is Not Applicable for that particular paper or the431

relevant information is Not Available.432

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).433

The checklist answers are an integral part of your paper submission. They are visible to the434

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it435

(after eventual revisions) with the final version of your paper, and its final version will be published436

with the paper.437

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.438

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a439

proper justification is given (e.g., "error bars are not reported because it would be too computationally440

expensive" or "we were unable to find the license for the dataset we used"). In general, answering441

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we442

acknowledge that the true answer is often more nuanced, so please just use your best judgment and443

write a justification to elaborate. All supporting evidence can appear either in the main paper or the444

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification445

please point to the section(s) where related material for the question can be found.446

IMPORTANT, please:447

• Delete this instruction block, but keep the section heading “TAG-DS Paper Checklist",448

• Keep the checklist subsection headings, questions/answers and guidelines below.449

• Do not modify the questions and only use the provided macros for your answers.450
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1. Claims451

Question: Do the main claims made in the abstract and introduction accurately reflect the452

paper’s contributions and scope?453

Answer: [Yes]454

Justification: The abstract and introduction accurately reflect the findings of the paper. The455

main contributions are clearly stated in a bulleted list at the end of the introduction.456

Guidelines:457

• The answer NA means that the abstract and introduction do not include the claims458

made in the paper.459

• The abstract and/or introduction should clearly state the claims made, including the460

contributions made in the paper and important assumptions and limitations. A No or461

NA answer to this question will not be perceived well by the reviewers.462

• The claims made should match theoretical and experimental results, and reflect how463

much the results can be expected to generalize to other settings.464

• It is fine to include aspirational goals as motivation as long as it is clear that these goals465

are not attained by the paper.466

2. Limitations467

Question: Does the paper discuss the limitations of the work performed by the authors?468

Answer: [Yes]469

Justification: The limitations of this work are discussed in a separate "Limitations" section470

(Section 6).471

Guidelines:472

• The answer NA means that the paper has no limitation while the answer No means that473

the paper has limitations, but those are not discussed in the paper.474

• The authors are encouraged to create a separate "Limitations" section in their paper.475

• The paper should point out any strong assumptions and how robust the results are to476

violations of these assumptions (e.g., independence assumptions, noiseless settings,477

model well-specification, asymptotic approximations only holding locally). The authors478

should reflect on how these assumptions might be violated in practice and what the479

implications would be.480

• The authors should reflect on the scope of the claims made, e.g., if the approach was481

only tested on a few datasets or with a few runs. In general, empirical results often482

depend on implicit assumptions, which should be articulated.483

• The authors should reflect on the factors that influence the performance of the approach.484

For example, a facial recognition algorithm may perform poorly when image resolution485

is low or images are taken in low lighting. Or a speech-to-text system might not be486

used reliably to provide closed captions for online lectures because it fails to handle487

technical jargon.488

• The authors should discuss the computational efficiency of the proposed algorithms489

and how they scale with dataset size.490

• If applicable, the authors should discuss possible limitations of their approach to491

address problems of privacy and fairness.492

• While the authors might fear that complete honesty about limitations might be used by493

reviewers as grounds for rejection, a worse outcome might be that reviewers discover494

limitations that aren’t acknowledged in the paper. The authors should use their best495

judgment and recognize that individual actions in favor of transparency play an impor-496

tant role in developing norms that preserve the integrity of the community. Reviewers497

will be specifically instructed to not penalize honesty concerning limitations.498

3. Theory assumptions and proofs499

Question: For each theoretical result, does the paper provide the full set of assumptions and500

a complete (and correct) proof?501

Answer: [NA]502
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Justification: This paper does not contain any theoretical results.503

Guidelines:504

• The answer NA means that the paper does not include theoretical results.505

• All the theorems, formulas, and proofs in the paper should be numbered and cross-506

referenced.507

• All assumptions should be clearly stated or referenced in the statement of any theorems.508

• The proofs can either appear in the main paper or the supplemental material, but if509

they appear in the supplemental material, the authors are encouraged to provide a short510

proof sketch to provide intuition.511

• Inversely, any informal proof provided in the core of the paper should be complemented512

by formal proofs provided in appendix or supplemental material.513

• Theorems and Lemmas that the proof relies upon should be properly referenced.514

4. Experimental result reproducibility515

Question: Does the paper fully disclose all the information needed to reproduce the main ex-516

perimental results of the paper to the extent that it affects the main claims and/or conclusions517

of the paper (regardless of whether the code and data are provided or not)?518

Answer: [Yes]519

Justification: The details of our experimental set up can be found in Section 3.1, with futher520

details on our linear probing experiments in Section 3.4. We discuss potential challenges521

in reproducing results in the Discussion (Section 4) and include the recommendation that522

many different hyperparameters and initializations should be explored.523

Guidelines:524

• The answer NA means that the paper does not include experiments.525

• If the paper includes experiments, a No answer to this question will not be perceived526

well by the reviewers: Making the paper reproducible is important, regardless of527

whether the code and data are provided or not.528

• If the contribution is a dataset and/or model, the authors should describe the steps taken529

to make their results reproducible or verifiable.530

• Depending on the contribution, reproducibility can be accomplished in various ways.531

For example, if the contribution is a novel architecture, describing the architecture fully532

might suffice, or if the contribution is a specific model and empirical evaluation, it may533

be necessary to either make it possible for others to replicate the model with the same534

dataset, or provide access to the model. In general. releasing code and data is often535

one good way to accomplish this, but reproducibility can also be provided via detailed536

instructions for how to replicate the results, access to a hosted model (e.g., in the case537

of a large language model), releasing of a model checkpoint, or other means that are538

appropriate to the research performed.539

• While NeurIPS does not require releasing code, the conference does require all submis-540

sions to provide some reasonable avenue for reproducibility, which may depend on the541

nature of the contribution. For example542

(a) If the contribution is primarily a new algorithm, the paper should make it clear how543

to reproduce that algorithm.544

(b) If the contribution is primarily a new model architecture, the paper should describe545

the architecture clearly and fully.546

(c) If the contribution is a new model (e.g., a large language model), then there should547

either be a way to access this model for reproducing the results or a way to reproduce548

the model (e.g., with an open-source dataset or instructions for how to construct549

the dataset).550

(d) We recognize that reproducibility may be tricky in some cases, in which case551

authors are welcome to describe the particular way they provide for reproducibility.552

In the case of closed-source models, it may be that access to the model is limited in553

some way (e.g., to registered users), but it should be possible for other researchers554

to have some path to reproducing or verifying the results.555

5. Open access to data and code556
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Question: Does the paper provide open access to the data and code, with sufficient instruc-557

tions to faithfully reproduce the main experimental results, as described in supplemental558

material?559

Answer: [No]560

Justification: We intend to release our code available upon acceptance.561

Guidelines:562

• The answer NA means that paper does not include experiments requiring code.563

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/564

public/guides/CodeSubmissionPolicy) for more details.565

• While we encourage the release of code and data, we understand that this might not be566

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not567

including code, unless this is central to the contribution (e.g., for a new open-source568

benchmark).569

• The instructions should contain the exact command and environment needed to run to570

reproduce the results. See the NeurIPS code and data submission guidelines (https:571

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.572

• The authors should provide instructions on data access and preparation, including how573

to access the raw data, preprocessed data, intermediate data, and generated data, etc.574

• The authors should provide scripts to reproduce all experimental results for the new575

proposed method and baselines. If only a subset of experiments are reproducible, they576

should state which ones are omitted from the script and why.577

• At submission time, to preserve anonymity, the authors should release anonymized578

versions (if applicable).579

• Providing as much information as possible in supplemental material (appended to the580

paper) is recommended, but including URLs to data and code is permitted.581

6. Experimental setting/details582

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-583

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the584

results?585

Answer: [Yes]586

Justification: Most of this information can be found in Section 3.1. As discussed in this587

section, we experimented with a variety of hyperparameters.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• The experimental setting should be presented in the core of the paper to a level of detail591

that is necessary to appreciate the results and make sense of them.592

• The full details can be provided either with the code, in appendix, or as supplemental593

material.594

7. Experiment statistical significance595

Question: Does the paper report error bars suitably and correctly defined or other appropriate596

information about the statistical significance of the experiments?597

Answer: [Yes]598

Justification: Figures include a shaded region representing a 95% confidence interval. In the599

case where this is not included, the figure caption gives an explanation.600

Guidelines:601

• The answer NA means that the paper does not include experiments.602

• The authors should answer "Yes" if the results are accompanied by error bars, confi-603

dence intervals, or statistical significance tests, at least for the experiments that support604

the main claims of the paper.605

• The factors of variability that the error bars are capturing should be clearly stated (for606

example, train/test split, initialization, random drawing of some parameter, or overall607

run with given experimental conditions).608

14

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,609

call to a library function, bootstrap, etc.)610

• The assumptions made should be given (e.g., Normally distributed errors).611

• It should be clear whether the error bar is the standard deviation or the standard error612

of the mean.613

• It is OK to report 1-sigma error bars, but one should state it. The authors should614

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis615

of Normality of errors is not verified.616

• For asymmetric distributions, the authors should be careful not to show in tables or617

figures symmetric error bars that would yield results that are out of range (e.g. negative618

error rates).619

• If error bars are reported in tables or plots, The authors should explain in the text how620

they were calculated and reference the corresponding figures or tables in the text.621

8. Experiments compute resources622

Question: For each experiment, does the paper provide sufficient information on the com-623

puter resources (type of compute workers, memory, time of execution) needed to reproduce624

the experiments?625

Answer: [Yes]626

Justification: Yes, this information can be found in Section 3.1. As mentioned in the627

introduction, these experiments are accessible to researchers with small compute resources.628

Guidelines:629

• The answer NA means that the paper does not include experiments.630

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,631

or cloud provider, including relevant memory and storage.632

• The paper should provide the amount of compute required for each of the individual633

experimental runs as well as estimate the total compute.634

• The paper should disclose whether the full research project required more compute635

than the experiments reported in the paper (e.g., preliminary or failed experiments that636

didn’t make it into the paper).637

9. Code of ethics638

Question: Does the research conducted in the paper conform, in every respect, with the639

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?640

Answer: [Yes]641

Justification: We adhere to the Code of Ethics.642

Guidelines:643

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.644

• If the authors answer No, they should explain the special circumstances that require a645

deviation from the Code of Ethics.646

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-647

eration due to laws or regulations in their jurisdiction).648

10. Broader impacts649

Question: Does the paper discuss both potential positive societal impacts and negative650

societal impacts of the work performed?651

Answer: [No]652

Justification: There are many potential societal consequences of using AI to augment or653

even automate mathematical discovery. We did not think any of these consequences needed654

to be specifically highlighted here.655

Guidelines:656

• The answer NA means that there is no societal impact of the work performed.657

• If the authors answer NA or No, they should explain why their work has no societal658

impact or why the paper does not address societal impact.659
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• Examples of negative societal impacts include potential malicious or unintended uses660

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations661

(e.g., deployment of technologies that could make decisions that unfairly impact specific662

groups), privacy considerations, and security considerations.663

• The conference expects that many papers will be foundational research and not tied664

to particular applications, let alone deployments. However, if there is a direct path to665

any negative applications, the authors should point it out. For example, it is legitimate666

to point out that an improvement in the quality of generative models could be used to667

generate deepfakes for disinformation. On the other hand, it is not needed to point out668

that a generic algorithm for optimizing neural networks could enable people to train669

models that generate Deepfakes faster.670

• The authors should consider possible harms that could arise when the technology is671

being used as intended and functioning correctly, harms that could arise when the672

technology is being used as intended but gives incorrect results, and harms following673

from (intentional or unintentional) misuse of the technology.674

• If there are negative societal impacts, the authors could also discuss possible mitigation675

strategies (e.g., gated release of models, providing defenses in addition to attacks,676

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from677

feedback over time, improving the efficiency and accessibility of ML).678

11. Safeguards679

Question: Does the paper describe safeguards that have been put in place for responsible680

release of data or models that have a high risk for misuse (e.g., pretrained language models,681

image generators, or scraped datasets)?682

Answer: [NA]683

Justification: The paper poses no such risks.684

Guidelines:685

• The answer NA means that the paper poses no such risks.686

• Released models that have a high risk for misuse or dual-use should be released with687

necessary safeguards to allow for controlled use of the model, for example by requiring688

that users adhere to usage guidelines or restrictions to access the model or implementing689

safety filters.690

• Datasets that have been scraped from the Internet could pose safety risks. The authors691

should describe how they avoided releasing unsafe images.692

• We recognize that providing effective safeguards is challenging, and many papers do693

not require this, but we encourage authors to take this into account and make a best694

faith effort.695

12. Licenses for existing assets696

Question: Are the creators or original owners of assets (e.g., code, data, models), used in697

the paper, properly credited and are the license and terms of use explicitly mentioned and698

properly respected?699

Answer: [NA]700

Justification: This paper does not use existing assets.701

Guidelines:702

• The answer NA means that the paper does not use existing assets.703

• The authors should cite the original paper that produced the code package or dataset.704

• The authors should state which version of the asset is used and, if possible, include a705

URL.706

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.707

• For scraped data from a particular source (e.g., website), the copyright and terms of708

service of that source should be provided.709

• If assets are released, the license, copyright information, and terms of use in the710

package should be provided. For popular datasets, paperswithcode.com/datasets711

has curated licenses for some datasets. Their licensing guide can help determine the712

license of a dataset.713
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• For existing datasets that are re-packaged, both the original license and the license of714

the derived asset (if it has changed) should be provided.715

• If this information is not available online, the authors are encouraged to reach out to716

the asset’s creators.717

13. New assets718

Question: Are new assets introduced in the paper well documented and is the documentation719

provided alongside the assets?720

Answer: [NA]721

Justification: The paper does not release any new assets at this time, although we plan to722

release our code upon acceptance.723

Guidelines:724

• The answer NA means that the paper does not release new assets.725

• Researchers should communicate the details of the dataset/code/model as part of their726

submissions via structured templates. This includes details about training, license,727

limitations, etc.728

• The paper should discuss whether and how consent was obtained from people whose729

asset is used.730

• At submission time, remember to anonymize your assets (if applicable). You can either731

create an anonymized URL or include an anonymized zip file.732

14. Crowdsourcing and research with human subjects733

Question: For crowdsourcing experiments and research with human subjects, does the paper734

include the full text of instructions given to participants and screenshots, if applicable, as735

well as details about compensation (if any)?736

Answer: [NA]737

Justification: Our paper does not include crowdsourcing nor human subjects.738

Guidelines:739

• The answer NA means that the paper does not involve crowdsourcing nor research with740

human subjects.741

• Including this information in the supplemental material is fine, but if the main contribu-742

tion of the paper involves human subjects, then as much detail as possible should be743

included in the main paper.744

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,745

or other labor should be paid at least the minimum wage in the country of the data746

collector.747

15. Institutional review board (IRB) approvals or equivalent for research with human748

subjects749

Question: Does the paper describe potential risks incurred by study participants, whether750

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)751

approvals (or an equivalent approval/review based on the requirements of your country or752

institution) were obtained?753

Answer: [NA]754

Justification: Our paper does not involve crowdsourcing nor research with human subjects.755

Guidelines:756

• The answer NA means that the paper does not involve crowdsourcing nor research with757

human subjects.758

• Depending on the country in which research is conducted, IRB approval (or equivalent)759

may be required for any human subjects research. If you obtained IRB approval, you760

should clearly state this in the paper.761

• We recognize that the procedures for this may vary significantly between institutions762

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the763

guidelines for their institution.764
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• For initial submissions, do not include any information that would break anonymity (if765

applicable), such as the institution conducting the review.766

16. Declaration of LLM usage767

Question: Does the paper describe the usage of LLMs if it is an important, original, or768

non-standard component of the core methods in this research? Note that if the LLM is used769

only for writing, editing, or formatting purposes and does not impact the core methodology,770

scientific rigorousness, or originality of the research, declaration is not required.771

Answer: [NA]772

Justification: The core method development did not involve LLMs.773

Guidelines:774

• The answer NA means that the core method development in this research does not775

involve LLMs as any important, original, or non-standard components.776

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)777

for what should or should not be described.778

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Finite Groups and Their Associated Concepts
	How Can We Detect Whether a Model Has Learned a Mathematical Concept?
	Experimental details
	Commutativity
	The identity
	Subgroup structure

	Discussion
	Related work
	Limitations
	Conclusion
	Hyperparameters

