Diffusion Policies Creating a Trust Region for
Offline Reinforcement Learning

Tianyu Chen Zhendong Wang Mingyuan Zhou
The University of Texas at Austin
{tianyuchen, zhendong.wangl}@utexas.edu
mingyuan.zhou@mccombs.utexas.edu

Abstract

Offline reinforcement learning (RL) leverages pre-collected datasets to train op-
timal policies. Diffusion Q-Learning (DQL), introducing diffusion models as
a powerful and expressive policy class, significantly boosts the performance of
offline RL. However, its reliance on iterative denoising sampling to generate ac-
tions slows down both training and inference. While several recent attempts have
tried to accelerate diffusion-QL, the improvement in training and/or inference
speed often results in degraded performance. In this paper, we introduce a dual
policy approach, Diffusion Trusted Q-Learning (DTQL), which comprises a diffu-
sion policy for pure behavior cloning and a practical one-step policy. We bridge
the two polices by a newly introduced diffusion trust region loss. The diffusion
policy maintains expressiveness, while the trust region loss directs the one-step
policy to explore freely and seek modes within the region defined by the diffu-
sion policy. DTQL eliminates the need for iterative denoising sampling during
both training and inference, making it remarkably computationally efficient. We
evaluate its effectiveness and algorithmic characteristics against popular Kullback—
Leibler divergence-based distillation methods in 2D bandit scenarios and gym
tasks. We then show that DTQL could not only outperform other methods on
the majority of the DARL benchmark tasks but also demonstrate efficiency in
training and inference speeds. The PyTorch implementation is available at https:
//github.com/TianyuCodings/Diffusion_Trusted_Q_Learning.

1 Introduction

Reinforcement learning (RL) centers on developing a policy to make sequential decisions by inter-
acting with an environment, aiming to maximize the total rewards accumulated over a trajectory
[Wiering and Van Otterlol 2012, |Li, 2017]. Offline RL addresses these challenges by enabling the
training of an RL policy from fixed datasets of previously collected data, without further interactions
with the environment [Lange et al., 2012} [Fu et al., 2020]]. This approach leverages large-scale
historical data, mitigating the risks and costs associated with live environment exploration. However,
offline RL introduces its own set of challenges, primarily related to the distribution shift between the
data on which the policy was trained and the data it encounters during evaluation [[Fujimoto et al.|
2019]]. Additionally, the limited expressive power of policies that may not adequately capture the
multimodal nature of action behaviors is also a concern.

To mitigate distribution shifts, popular approaches include weighted regression, such as IQL
[Kostrikov et al., 2021]] and AWAC [Nair et al., 2020], aimed at extracting viable policies from
historical data. Alternatively, behavior-regularized policy optimization techniques are employed to
constrain the divergence between the learned and in-sample policies during training [Wu et al., 2019].
Notable examples of this strategy include TD3-BC [Fujimoto and Gul 2021]], CQL [Kumar et al.,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/TianyuCodings/Diffusion_Trusted_Q_Learning
https://github.com/TianyuCodings/Diffusion_Trusted_Q_Learning

2020]], and BEAR [Kumar et al.,|2019]. These methods primarily utilize either Gaussian or determin-
istic policies, which have faced criticism for their limited expressiveness. Recent advancements have
incorporated generative models to enhance policy representation. Variational Autoencoders (VAEs)
[Kingma and Welling| [2013]] and Generative Adversarial Networks (GANs) [|[Goodfellow et al., 2020]
have been introduced into the offline RL domain, leading to the development of algorithms such as
BCQ [Fujimoto et al.;,2019] and GAN-Joint [[Yang et al.| 2022]]. Moreover, diffusion models have
recently emerged as the most prevalent tools for achieving expressive policy frameworks [Janner|
et al.|, 2022, |Wang et al.| 2022a, |Chen et al.,|2023| [Hansen-Estruch et al., 2023 |Chen et al., [2022]],
demonstrating state-of-the-art performance on the D4RL benchmarks. Diffusion Q-Learning (DQL)
[Wang et al.l[2022a]] applies these policies for behavior regularization, while algorithms such as IDQL
[Hansen-Estruch et al.| [2023]] leverage diffusion-based policies for policy extraction.

However, optimizing diffusion policies for rewards in RL is computationally expensive due to the
need for iteratively denoising to generate actions during both training and inference. Recently,
distillation has become a popular technique for reducing the computational costs of diffusion models,
e.g., score distillation sampling (SDS) [Poole et al.,[2022]] and variational score distillation (VSD)
[Wang et al., 2024]] in 3D generation, and Diff-Instruct [Luo et al., 2024], Distribution Matching
Distillation [[Yin et al.,|2023]], and Score identity Distillation (SiD) [Zhou et al.| 2024] in 2D. These
advancements distill the iterative denoising process of diffusion models into a one-step generator.
SRPO [Chen et al., [2023]] employs SDS [Poole et al.|[2022] in the offline RL field by incorporating a
Kullback-Leibler (KL) divergence-based behavior regularization loss to reduce training and inference
costs. Another related work, IDQL [Hansen-Estruch et al., 2023]], selects action candidates from
a diffusion behavior-cloning policy and requires a 5-step iterative denoising process to generate
multiple candidate actions (ranging from 32 to 128) during inference, which remains computationally
demanding. Unlike previous approaches, our paper introduces a diffusion trust region loss that moves
away from focusing on distribution matching; instead, it emphasizes establishing a safe, in-sample
behavior region. We then simultaneously train dual policies: a diffusion policy for pure behavior
cloning and a one-step policy for actual deployment. The one-step policy is optimized based on two
objectives: the diffusion trust region loss, which ensures safe policy exploration, and the maximization
of the Q-value function, guiding the policy to generate actions in high-reward regions. We elucidate
the differences between our diffusion trust region loss and KL-based behavior distillation in Section 3]
empirically and theoretically. Our method consistently outperforms KL-based behavior distillation
approaches. We provide more discussions on related work in Appendix [A]

In summary, we propose DTQL with a diffusion trust region loss. DTQL achieves new state-of-
the-art results in majority of D4RL [Fu et al.,[2020]] benchmark tasks and demonstrates significant
improvements in training and inference time efficiency over DQL [Wang et al., 2022a] and related
diffusion-based methods.

2 Diffusion Trusted Q-Learning

Below, we first introduce the preliminaries of offline RL and basics of diffusion policies for our
modeling. We then propose a new diffusion trust region loss which inherently avoids exploring
out-of-distribution actions and hence enables safe and free policy exploration. Finally, we introduce
our algorithm Diffusion Trusted Q-Learning (DTQL), which is efficient and well-performed.

2.1 Preliminaries

In RL, the environment is typically defined within the context of a Markov Decision Process (MDP).
An MDP is characterized by the tuple M = {S, A, po(s),p(s'|s,a),r(s,a), v}, where S denotes
the state space, A represents the action space, po(s) is the initial state distribution, p(s’|s, a) is
the transition kernel, (s, a) is the reward function, and ~ is the discount factor. The objective is
to learn a policy mp(als), parameterized by 6, that maximizes the cumulative discounted reward
E >0 v'7(ss, ar)]. In the offline setting, instead of interacting with the environment, the agent
relies solely on a static dataset D = {s, a,r, s’} collected by a behavior policy /i4(a|s). This dataset
is the only source of information for the agents.

2.2 Diffusion Policy

Diffusion models are powerful generative tools that operate by defining a forward diffusion process to
gradually perturb a data distribution into a noise distribution. This model is then employed to reverse
the diffusion process, generating data samples from pure noise. While training diffusion models is
computationally inexpensive, inference is often costly due to the need for iterative refinement-based
sequential denoising. In this paper, we only train a diffusion model and avoid using it for inference,
thus significantly reducing both training and inference times.

The forward process involves initially sampling a(from an unknown data distribution p(x), followed
by the addition of Gaussian noise to ¢, denoted by @;. The transition kernel ¢;(x;|x) is given by
T = ok + o€, where o, and o are predefined, and e represents random Gaussian noise.

The objective function of the diffusion model aims to train a predictor for denoising noisy samples
back to clean samples, represented by the optimization problem:

m(gn Bt wo.enn(0,1) [W(H)]| 1 (24, 1) — To|3])]

where w(t) is a weighted function dependent only on ¢. In offline RL, since our training data is
state-action pairs, we train a diffusion policy using a conditional diffusion model as follows:

L(9) = Et,emn (0.1 (a0,5)~D[w(1) | g (ar, t]s) — aol|3] 2
where a, s are the action and state samples from offline datasets D, and a; = a;ag+ €. Following
previous work [[Chen et al., 2023} [Hansen-Estruch et al., {2023} Wang et al.,2022a], x(a, t|s) can be
considered an effective behavior-cloning policy.

The ELBO Objective The diffusion denoising loss is intrinsically connected with the evidence
lower bound (ELBO). It has been demonstrated in prior studies [Ho et al.| 2020} Song et al., 2021},
Kingma et al., 2021} [Kingma and Gaol [2024] that the ELBO for continuous-time diffusion models
can be simplified to the following expression (adopted in our setting):

1
logp(ag|s) > ELBO(ag|s) = _§Et~1/{(0,1),e~/\/(0,l) [w(t)||pe(ar, t|s) —aoll3] +¢, (3)

2
— %, and the signal-to-noise ratio SNR(¢) = =%, ¢ is a constant
t

where a; = azag+oie, w(t) =
not relevant to ¢. Since we always assume that the SNR(#) is strictly monotonically decreasing in ¢,
thus w(t) > 0. The validity of the ELBO is maintained regardless of the schedule of «; and 0.

Kingma and Gao| [2024] generalized this theorem stating that if the weighting function w(t) =

—u(t) %‘fﬂ, where v(t) is monotonic increasing function of ¢, then this weighted diffusion denoising

loss is equivalent to the ELBO as defined in Equation [3| The details of how to train the diffusion
policy, including the weight and noise schedules, will be discussed in Section[4.3]

2.3 Diffusion Trust Region Loss

We found that optimizing diffusion denoising loss from the data perspective with a fixed diffusion
model can intrinsically disencourage out-of-distribution sampling and lead to mode seeking. For any
given s and a fixed diffusion model 14, the loss is to find the optimal generation function 7g(-|s) that
can minimize the diffusion-based trust region (TR) loss:

L1r(0) = Et enn(0,1),5~Da0~mo (1) [W(E) [113 (@0 + 0v, t]5) — aoll3], 4)
where 7y (als) is a one-step generation policy, such as a Gaussian policy.

Theorem 1. If policy 14 satisfies the ELBO condition of Equation then the Diffusion Trust Region
Loss aims to maximize the lower bound of the distribution mode max log p(aq|s) for any given s.
ao

Proof. For any given state s
max log p(aols) > mgxx]EagNﬂe(_‘s) [log p(ag|s)] > m;lx]anm(.‘s) [ELBO(ag|s)]

1
= min §Et~u(o,1),ENN(O,I),agwe(.\s) [w(t)||pe(cwag + ore, t|s) — agll3] + ¢

Then, during training, we consider all states s in D. Thus, by taking the expectation over s ~ D on
both sides and setting ¢ ~ U/(0, 1), we derive the loss described in Equation@ O

By definition of the mode of a probability distribution, we know minimizing the loss given by
Equation 4 aims to maximize the lower bound of the mode of a probability. Unlike other diffusion
models that generate various modalities by optimizing ¢ to learn the data distribution, our method
specifically aims to generate actions (data) that reside in the high-density region of the data manifold
specified by j14 through optimizing 6. Thus, the loss effectively creates a trust region defined by the
diffusion-based behavior-cloning policy, within which the one-step policy 7y can move freely. If the
generated action deviates significantly from this trust region, it will be heavily penalized.

Remark 1. For any given s, assuming that our training set consists of a finite number of samples
{a},...,al}, this implies that p(x|s) is represented by a mixture of Dirac delta distributions:

pals) = 2 3oz aj)

This indicates that all actions a}y appearing in the training set have a uniform probability mass.
Therefore, the generated action ag can be any one of the actions in {a}, ... ,ap} to minimize Lzg(0)
in Equation W] since all of them are modes of the data distribution.

Remark 2. This loss is also closely connected with Diffusion-GAN [Wang et al., 2022b|] and EB-GAN
[Zhao et al.} [2016|], where the discriminator loss is considered as:

D(ag|s) = ||Dec(Enc(as)|s) — asl3

In our model, the process of adding noise, aag + o€, functions as an encoder, and ji4(+|s) acts as
a decoder. Thus, this loss can also be considered as a discriminator loss, which determines whether
the generated action agy resembles the training dataset.

Remark 3. By Theorem |l| the trust region can be defined using the conditional log-likelihood.
Specifically, for a given state s, the trust region for an action is defined as the set {a | logp(a | s) >
threshold}, where the conditional log-likelihood is approximated by the diffusion loss. The threshold
can be adjusted by tuning the hyperparameter o during the optimization of the final loss (Eq.).

This approach makes the generated action ay appear similar to in-sample actions and penalizes those
that differ, thereby effectuating behavior regularization. Thus, a visualization of the toy examples
(Figure [I)) can help better understand how this loss behaves. The generated action ag will incur a
small diffusion loss when it resembles a true in-sample action and a high diffusion loss if it deviates
significantly from the true in-sample action.

Data t=0.02 t=0.1 t=1 =10 t =380
=z
e e 8 9o @ —— z
c =
e o @ o o 5 88 8
2
g
Ee o 8 & @ R - -
o
§5e o o 0o FTYTYTY
2 . " 508
2 o 0 0 c
— @
~ . %]
c \
3 o N "
@ 7 % #
5 1: %
& : J] - -
5 \ g
] /
< — g

Action Dimension 1 Action Dimension 1 Action Dimension 1 Action Dimension 1 Action Dimension 1 Action Dimension 1

Figure 1: Diffusion trust region loss. The first column shows how the training behavior dataset looks.
Columns 2-6 display the diffusion trust region loss on different actions with varying magnitudes of
Gaussian noise. We can observe that the trust regions captured by the diffusion model at a given ¢ are
consistent with the high-density regions of the noisy data at that specific ¢t. For example, when ¢ is
small, the diffusion loss is minimal where the true action lies, and high in all other locations.

2.4 Diffusion Trusted Q-Learning

We motivate our final algorithm from DQL [Wang et al., 2022a]], which utilizes a diffusion model as an
expressive policy to facilitate accurate policy regularization, ensuring that exploration remains within
a safe region. Q-learning is implemented by maximizing the Q-value function at actions sampled from

the diffusion policy. However, sampling actions from diffusion models can be time-consuming, and
computing gradients of the Q-value function while backpropagating through all diffusion timesteps
may result in a vanishing gradient problem, especially when the number of timesteps is substantial.

Building on this, we introduce a dual-policy approach, Diffusion Trusted Q-Learning (DTQL): a
diffusion policy for pure behavior cloning and a one-step policy for actual depolyment. We bridge
the two policies through our newly introduced diffusion trust region loss, detailed in Section[2.3]
The diffusion policy ensures that behavior cloning remains expressive, while the trust region loss
enables the one-step policy to explore freely and seek modes within the region designated by the
diffusion policy. The trust region loss is optimized efficiently through each diffusion timestep without
requiring the inference of the diffusion policy. DTQL not only maintains an expressive exploration
region but also facilitates efficient optimization. We further discuss the mode-seeking behavior of the
diffusion trust region loss in Section 3] Next, we delve into the specifics of our algorithm.

Policy Learning. Diffusion inference is not required during training or evaluation in our algorithm;
therefore, we utilize an unlimited number of timesteps and construct the diffusion policy j4 in a
continuous-time setting, based on the schedule outlined in EDM [Karras et al.} 2022]. Further details
are provided in Section The diffusion policy p, can be efficiently optimized by minimizing £(¢)
as described in Equation (2)). Furthermore, we can instantiate one typical one-step policy 7y (a|s) in
two cases, Gaussian mg(a|s) = N (ug(s), o9 (s)) or Implicit ag = my(s, &), ~ N (0, I). Then, we
optimize Ty by minimizing the introduced diffusion trust region loss and typical Q-value function
maximization, as follows.

‘CTK'(G) =« ETR(H) - Eser,angrg(a\s) [Qn(sa a@)]a (5)
where L1g(6) serves primarily as a behavior-regularization term, and maximizing the Q-value
function enables the model to preferentially sample actions associated with higher values. Here we
use the double Q-learning trick [Hasselt, | 2010] where Q,,(s, ag) = min(Qy, (s, as), @y, (s, ag)). If
a Gaussian policy is used, an additional negative log likelihood (NLL) term, —E; q~p[log mg(als)],
should be introduced to preserve the policy’s entropy and encourage exploration during training. This
aspect is particularly crucial for diverse and sparse reward RL tasks. The empirical results of the NLL
term will be discussed in Section 4.4

Q-Learning. We utilize Implicit Q-Learning (IQL) to train a Q function by maintaining two
Q-functions (Q,,,@y,) and one value function Vj;, following the methodology outlined in IQL
[Kostrikov et al.l [2021].

The loss function for the value function V, is defined as:

Ly (7/}) = IE‘I(s,a,ND) [L72— (min(Qni (37 a)7 Qn; (57 a)) - Vz/)(s))]) (6)
where 7 is a quantile in [0, 1], and L7 (u) = |7 — 1(u < 0)|u?. When 7 = 0.5, LT simplifies to the
Lo loss. When 7 > 0.5, Ly, encourages the learning of the 7 quantile values of Q.

The loss function for updating the Q-functions, (),,,, is given by:

Lo(i) = E(s,a.s~p) [[I7(s,a) +7 % Vip(s') = Q. (s, 0)P] ™
where v denotes the discount factor. This setup aims to minimize the error between the predicted
Q-values and the target values derived from the value function V,;, and the rewards. We summarize
our algorithm in Algorithm [T}

3 Comparison of Different Mode-Seeking Behavior Regularizations

Another approach to accelerate training and inference in diffusion-based policy learning involves
utilizing distillation techniques. Methods such as SDS [Poole et al.,2022]], VSD [Wang et al., [2024],
Dift-Instruct [Luo et al.;,[2024]], and DMD [[Yin et al.;, 2023] illustrate this strategy. These papers share
a common theme: using a trained diffusion model alongside another diffusion network to minimize
the KL divergence between the two models. In our experimental setup, this strategy is employed for
behavior regularization by

pfake(a'0|5):| @®)

L 0)=D . . =E.. s~D,mg(s 1
(0(0) = Dra 019160 15)] = Ear.)000) 108 25020

where 7y (s,) is instantiated as a one-step implicit policy.

Algorithm 1 Diffusion Trusted Q-Llearning

Initialize policy network g, f14, critic networks @, and),,, and target networks @),» and Q,;,
value function Vy,
for each iteration do
Sample transition mini-batch B = {(s¢, as, ¢, 8¢41)} ~ D .
1. Q-value function learning: Update Q,,,, @, and Vi, by Lo and Ly (Egs. |§|and |Z[)
2. Diffusion Policy learning: Update p4 by £(¢) (Eq. [2).
3. Diffusion Trust Region Policy learning: agy ~ WQ(GB), Update 79 by L(6) (Eq.[5).
4. Update target networks: n, = pn} + (1 — p)n; fori = {1,2}.
end for

As we do not have access to the log densities of the fake [——————_—— y ;
and true conditional distributions of actions, the loss itself 7 =~ T © 7 \
cannot be calculated directly. However, we are able to ~ $ & T s @« ﬁ\\
compute the gradients. The gradient of 1og prea (as|s) can "lr' % oo / -
be estimated by the diffusion model j14(-|s), and the gradi- | £ _L,_l s a -7 4
ent of 10g prake (@p|s) can also be estimated by a diffusion |} = © T=# L

model trained from fake action data ag. For more details, b-o.meod S ———
please refer to Appendix[C] ® Training Data ® Generation

KL divergence is employed in this context with the goal of Fjgure 2: QGreen p()ints represent the
capturing multiple modalities of the data distribution. We datasets we trained on. Red points are
evaluated this loss function using a 2D toy task to gain a generated by 7, trained using Ly . This
deeper understanding of its capability to capture multiple demonstrates that the KL loss encour-
modalities of the dataset, as illustrated in Figure @ ages the generation process to cover mul-

We further investigate the differences between our trust tiPle modalities of the dataset.

region loss, L1r, and the KL-based behavior distillation

loss within the context of policy improvement. As illustrated in Figure [T} Lrr ensures that the
generated action ag remains within the action manifold of the in-sample dataset. Coupled with the
gradient of the Q-function, this allows actions to move freely within the in-sample data manifold
while gravitating toward high-reward regions, which correspond to the single modality present in the
dataset.

Conversely, Ly, () seeks to align the distribution of 7y (+|s) with that of 114 (-|s), thereby encouraging
coverage of multiple modalities, unlike £1r. Covering a wide range of modalities is particularly
beneficial in image generation, where diversity among generated images is essential. However, this
characteristic is less advantageous in reinforcement learning (RL) contexts, where typically a single,
highest-reward action is optimal for a given state. Additionally, maximizing the Q function often
results in a more deterministic policy by favoring the highest-reward paths, potentially discarding
alternative actions. From this perspective, L1r demonstrates a stronger mode-seeking capability
compared to Lgp .

To visualize how these two different behavior losses work with policy improvement, we use 2D
bandit scenarios. We designed a scenario shown in Figure [3} for additional settings, please refer to
Appendix [F]] In the designed 25 Gaussian setting, all four corners have the same high reward. L1
encourages the policy to randomly select one high reward mode without promoting covering all of
them. In contrast, Lk tries to cover all high-density and high-reward regions and, as a byproduct,
introduces artifacts that appear as data connecting these high-density regions. This could partially
be due to the smoothness constraint of neural networks. The same situation occurs in a Swiss roll
dataset where the high reward region is the center of the data; Ltr adheres closely to the high reward
region, while Ly includes some suboptimal reward regions.

In addition to testing on 2D bandit scenarios, we also evaluated the performance of two losses on
the Mujoco Gym Medium task. Consistent with our previous findings, the behavior-regularization
loss L1r () consistently outperformed Lxp () in terms of achieving higher rewards. The results are
presented in Table[3] and the training curves are depicted in Figure[8]in Appendix[F2]

Trust Region KL Trust Region

= . High
awr 15' - .‘ e 2 hf‘/ ;
ax - N ® %
PE eSS Lsene N %
¥ ® 8 &5 ssess E
em s e 000 \ - / 5
LY e JL.&'\ /
s W () s, T m—" Low
(a) 25 Guassian example with four (b) Swiss roll example with center
corner have equally highest reward. have highest reward.

Figure 3: We tested the differential impact of Ltr and Lk, on behavior regularization, using a
trained Q-function for policy improvement. Red points represent actions generated from the one-step
policy .

Connection and Difference with SDS and SRPO SDS was first proposed in DreamFusion [Poole
et al.| 2022] for 3D generation, using the gradient of the loss form (adopted in our setting):

0z
VoLsps = B ae |w(t)(ep(2i, t]s) — E)aT)t)
where z; = a,ag + o€ and €4 is the noise-prediction diffusion model. This loss is utilized by SRPO
[Chen et al.| 2023]] in offline RL.

Considering the gradient of L1g(#) in Equation EL and acknowledging the equivalence between
noise-prediction and data-prediction diffusion models with only a modification in the weight function
w(t), we can reformulate the loss in noise-prediction form by:

L1r(0) = Ersclw'(t)|eg (2, t]s) — €lf3] (10)
Oey (21, t|s) Oz

VoLrr(0) =2E; 5. [w’(t)(£¢(zt,t|s) — 6)7% 11

The primary distinction between the gradient of our method, as shown in Equation[T1] and that of
SDS/SRPO, detailed in Equationlgl lies in the inclusion of a Jacobian term, %ﬁ. This Jacobian
term, identified as the score gradient in SiD by [Zhou et al.| [2024]], is notably absent from most
theoretical discussions and was deliberately omitted in previous works, with DreamFusion [Poole
et al.| 2022]] and SiD being the sole exceptions.

DreamFusion reported that the gradient depicted in Equation[TT]fails to produce realistic 3D samples.
Similarly, SiD observed its inadequacy in generating realistic images. These findings align with our
Theorem [T} which demonstrates that this gradient primarily targets the mode and does not sufficiently
account for diversity— an essential factor in both 3D and image generation.

In high-dimensional generative models, modes often differ significantly from typical image samples,
as discussed by [Nalisnick et al| [2018]. DreamFusion observed that the gradient from Equation 9]
which is based on a KL loss, effectively promotes diversity. However, while diversity is crucial in
image and 3D generation, it might be of lesser importance in offline RL. Consequently, SRPO’s use
of the SDS gradient, which is tailored for diverse generation, may result in suboptimal performance
compared to our diffusion trust region loss. This assertion is supported by empirical results on the
D4RL datasets, as discussed in Section@

4 Experiments

In this section, we evaluate our method using the popular D4RL benchmark [Fu et al.| 2020]. We
further compare our training and inference efficiency against other baseline methods. Additionally,
an ablation study on the negative log likelihood (NLL) term and one-step policy choice is presented.
Details regarding the training of the diffusion model and its structural components are also discussed.

Table 1: The performance of Our methods and SOTA baselines on D4ARL Gym, AntMaze, Adroit,
and Kitchen tasks. Results for our methods correspond to the mean and standard errors of normalized
scores over 50 random rollouts (5 independently trained models and 10 trajectories per model) for
Gym tasks, which generally exhibit low variance in performance, and over 500 random rollouts
(5 independently trained models and 100 trajectories per model) for the other tasks. Our method
outperforms all prior methods by a clear margin on most of domains. The normalized scores is
recorded by the end of training phase. Numbers within 5 % of the maximum in every individual task

are highlighted.

Gym BC Onestep RL TD3+BC DT CQL IQL DQL IDQL SRPO Ours
halfcheetah-medium-v2 42.6 48.4 48.3 42.6 44.0 474 51.1 51.0 60.4 57.9+£0.13
hopper-medium-v2 52.9 59.6 59.3 67.6 58.5 66.3 90.5 65.4 95.5 99.6+0.87
walker2d-medium-v2 75.6 81.8 83.7 74.0 72.5 783 87.0 82.5 84.4 89.4+0.13
halfcheetah-medium-replay-v2 36.3 38.1 44.6 36.0 452 442 478 459 514 50.9+0.11
hopper-medium-replay-v2 18.1 97.5 60.9 82.7 95.0 947 101.3 92.1 101.2 100.0£0.13
walker2d-medium-replay-v2 26.0 49.5 81.8 66.6 772 739 955 85.1 84.6 88.5+2.16
halfcheetah-medium-expert-v2 ~ 55.2 93.4 90.7 86.8 91.6 86.7 96.8 959 92.2 92.74+0.2
hopper-medium-expert-v2 52.5 103.3 98.0 107.6 105.8 915 1111 108.6 100.1 109.3 +1.49
walker2d-medium-expert-v2 101.9 113.0 110.1 107.1 1094 109.6 110.1 1127 114.0 110 + 0.07
Gym Average 51.9 76.1 75.3 74.7 71.6 770 88.0 82.1 87.1 88.7
Antmaze BC Onestep RL TD3+BC DT CQL IQL DQL IDQL SRPO Ours
antmaze-umaze-v0 54.6 64.3 78.6 59.2 74.0 875 934 940 90.8 94.84+1.00
antmaze-umaze-diverse-v0 45.6 60.7 71.4 53.0 84.0 622 66.2 80.2 59.0 78.8+1.83
antmaze-medium-play-v0 0.0 10.6 0.0 0.0 61.2 712 766 84.5 73.0 79.6 £ 1.8
antmaze-medium-diverse-v0 0.0 3.0 0.2 0.0 53.7 70.0 78.6 84.8 65.2 822+ 1.71
antmaze-large-play-v0 0.0 0.0 0.0 0.0 15.8 39.6 464 63.5 38.8 52.04+2.23
antmaze-large-diverse-v0 0.0 0.0 0.0 0.0 14.9 475 566 679 33.8 54.0+2.23
Antmaze Average 16.7 20.9 27.3 18.7 50.6 63.0 696 791 30.1 73.6
Adroit Tasks BC BCQ BEAR BRAC-p BRAC-v REM CQL IQL DQL Ours
pen-human-v1 25.8 68.9 -1.0 8.1 0.6 5.4 352 715 72.8 64.14+2.97
pen-cloned-v1 38.3 44.0 26.5 1.6 -2.5 -1.0 0 272 37.3 57.3 81.3+ 3.04
Adroit Average 32.1 56.5 12.8 49 -1.0 22 31.2 54.4 65.1 72.7
Kitchen Tasks BC BCQ BEAR BRAC-p BRAC-v AWR CQL IQL DQL Ours
kitchen-complete-v0 33.8 8.1 0.0 0.0 0.0 0.0 43.8 62.5 84.0 80.8+1.06
kitchen-partial-vO 33.8 18.9 13.1 0.0 0.0 154 49.8 46.3 60.5 74.4+0.25
kitchen-mixed-v0 475 8.1 472 0.0 0.0 10.6 51.0 51.0 62.6 60.240.59
Kitchen Average 38.4 11.7 20.1 0.0 0.0 8.7 482 53.3 69.0 71.8

Hyperparameters In D4RL benchmarks, for all Antmaze tasks, we incorporate an NLL term,
while for other tasks, this term is omitted. Additionally, we adjust the parameter « for different tasks.
Details on hyperparameters and implementation are provided in Appendices[D]and[E]

4.1 D4RL Performance

In Table|l| we evaluate the D4RL performance of our method against other offline algorithms. Our
selected benchmarks include conventional methods such as TD3+BC [Fujimoto and Gul, 2021]] and
IQL [Kostrikov et al., 2021]], along with newer diffusion-based models like Diffusion QL (DQL)
[Wang et al.,|2022al], IDQL [Hansen-Estruch et al.,|2023]], and SRPO [Chen et al.| 2023|.

In the D4RL datasets, our method (DTQL) outperformed all conventional and other diffusion-based
offline RL methods, including DQL and SRPO, across all tasks. Moreover, it is 10 times more
efficient in inference than DQL and IDQL; and 5 times more efficient in total training wall time
compared with IDQL (see Section4.2)).

Remark 4. We would like to highlight that the SRPO method [Chen et al.| 2023|] reported results on
Antmaze using the “-v2” version, which differs from the “-v0” version employed by prior methods
such as DQL [Wang et al.| |2022a] and IDQL [Hansen-Estruch et al.| |2023|], to which it was
compared. This version discrepancy, not explicitly stated in their paper, is evident upon inspection of
SRPO'’s official codebase[ﬂ The variation between the -v2” and -v0” datasets significantly impacts
algorithm performance. To ensure a fair comparison, we utilize the “-v0” environments consistent
with established baselines. We employed the official SRPO code on Antemze-v0 and maintained
identical hyperparameters used for Antmaze-v2. Additionally, we conducted experiments with our

'Refer to line 7 at https://github.com/thu-ml/SRP0/blob/main/utils.py, commit b006412

https://github.com/thu-ml/SRPO/blob/main/utils.py

Table 2: Training and Inference time required for different algorithms in D4RL antmaze-umaze-v0
tasks. Every single experiment is conducted with the same PyTorch backend and run on a single
RTX-A5000 GPU.

antmaze-umaze-v(DQL IDQL SRPO Ours
Training time (s per 1k steps) 2413 17.57 2471 21.83
Inference time (s per trajectory) 3.03 3.04 0.22 0.35
Training epochs 1000 3000 1000 500
Total training time (hours) 6.70 14.64 9.42 3.33

algorithm on the Antmaze-v2 environment using the same hyperparameters as in the Antmaze-v0
setup but extended the training epochs, as detailed in Table[6]in Appendix|[F]

4.2 Computational Efficiency

We further examine the training and inference performance relative to other diffusion-based offline
RL methods. An overview of this performance, using antmaze-umaze-v0 as a benchmark, is presented
in Table[2} Our method requires less training time per epoch than DQL and SRPO, yet more than
IDQL. However, while IDQL necessitates 3000 epochs, DTQL operates efficiently with only 500
epochs, considerably reducing the overall training duration.

As depicted in Figure [] the extended training time per epoch for our method results from the
requirement to train an additional one-step policy, a step not needed by IDQL. Although SRPO also
incorporates a one-step policy, our method achieves greater efficiency in training the diffusion policy.
Unlike SRPO, which requires several ResNet blocks for effective performance, our approach utilizes
only a 4-layer MLP, further curtailing the training time. Additional details on total training wall time
are provided in Appendix [F4]

For inference time, our method performs compa-
rably to SRPO, as both utilize a one-step policy. 35 s
The slightly higher inference time results from Do oy | erence Time
our use of a stochastic policy, which requires re- | = one-step policy

sampling after each forward pass of the neural

network. Additionally, we employ the stochastic
max Q trick, similar to that used in DQL |Wang
et al.| [2022a]]. However, our method achieves
a tenfold increase in inference speed over DQL
and IDQL, which require 5-step iterative denois-
ing to generate actions. All experiments were
performed on a server equipped with eight RTX-
A5000 GPUs, each with 24GB of memory.

25| 2413 24.71

21.83

Training Time (seconds/ 1K gradient steps)
Inference Time (seconds/ trajectory)

DQL SRPO

IDQL

DTQL

Remark 5. For total training time, SRPO trains
1000 epochs for the one-step policy while train-
ing 1500 epochs for the diffusion policy and Q
Sfunction. DTQL requires 50 epochs of pretrain-

Figure 4: Training time required for different al-
gorithms in D4RL antmaze-umaze-vO tasks. All
experiments are conducted with the same PyTorch
backend and the same computing hardware setup.

ing. Implement details are in Appendix[D]

4.3 Diffusion Training Schedule

For training the diffusion policy as described in Equation [2]and the diffusion trust region loss in
Equation 4] we utilize the diffusion weight and noise schedule outlined in EDM [Karras et all 2022].
Although EDM does not satisfy the ELBO condition stipulated in Equation [3}—a fact established
in [Kingma and Gaol [2024]—we adopted it due to its demonstrated enhancements in perceptual
generation quality, as evidenced by metrics such as the Fréchet Inception Distance (FID) and Inception
Score in the field of image generation. Kingma and Gaol|[2024]] also attempted to modify the EDM
weight schedule to be monotonically increasing, but this did not lead to better FID for image
generation. Thus, we retain EDM as our continuous training schedule. For completeness, the details
of the EDM schedule are discussed in Appendix [B]

antmaze-umaze-v0 antmaze-umaze-v0 antmaze-large-diverse-v0 ,,. antmaze-large-diverse-v0

S P
‘ [/ \] \
o]
B 120+
o]

Gaussian Policy Entropy

Average Episodic N-Reward
Average Episodic N-Reward
Gayssian Policy Entropy

[' \ — without NLLterm |~~~
150 =N 160 with NLL term
 Trained E;;gchs R ’ " Trained Epochs o Tr:inedepozr;]s oo * frained Epdchs
(a) Reward Curve (b) Entropy Curve (c) Reward Curve (d) Entropy Curve

Figure 5: Rewards and Gaussian policy entropy during training are recorded and illustrated in the
figures. The blue line represents training without the addition of an NLL term, while the orange line
indicates training with the NLL term included.

4.4 Ablation Studies

One-step Policy Choice We chose to use a Gaussian policy for all our experiments instead of an
implicit or deterministic policy because the Gaussian policy is flexible and provides a convenient
way to control entropy when needed. When there is no need to maintain entropy, the Gaussian policy
quickly degenerates to a deterministic policy, where the variance approaches zero, as indicated in

Figures [5b|and [5d]

Negative Log Likelihood Term As mentioned in Section 2.4 we incorporate an NLL term
—Es,o~p[log 7(als)] into the loss function in Equation [5|to maintain exploration and policy entropy
during training when using a Gaussian policy. We conducted an ablation study to assess its impact on
the final rewards and the of the Gaussian policy, taking antmaze-umaze-v0 and antmaze-large-diverse-
v0 as examples. As observed in Figure[3] for the less complex task antmaze-umaze-v0, adding the
NLL term does not significantly enhance the final score but does stabilize the training process (see
Figure [3_51) However, for more complex tasks like antmaze-large-diverse-v0, the addition of the NLL
term markedly increases the final score. We attribute this improvement to the ability of the NLL
term to maintain high entropy during training, thus preserving exploration capabilities, as shown in

Figures [5b| and [5d]

5 Conclusion and Limitation

In this work, we present DTQL, which comprises a diffusion policy for pure behavior cloning and a
practical one-step policy. The diffusion policy maintains expressiveness, while the diffusion trust
region loss introduced in this paper directs the one-step policy to explore freely and seek modes
within the safe region defined by the diffusion policy. This training pipeline eliminates the need for
iterative denoising sampling during both training and inference, making it remarkably computationally
efficient. Moreover, DTQL achieves state-of-the-art performance across the majority of tasks in the
D4RL benchmark. Some limitations of DTQL include the potential for improvement in its benchmark
performance. Additionally, some design aspects of the one-step policy could benefit from further
investigation. Currently, our experiments are primarily conducted in an offline setting. It would be
interesting to explore how this method can be extended to an online setting or adapted to handle more
complex inputs, such as images. Additionally, rather than focusing solely on point estimation of
rewards, it would be beneficial to estimate the distribution of rewards, as recommended by previous
studies in distributional reinforcement learning [Bellemare et al., 2017, [Barth-Maron et al.| [2018] [Yue
et al.,[2020].

Acknowledgments
The authors acknowledge the support of NSF-IIS 2212418 and NIH-R37 CA271186.
References

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic

10

policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449—458. PMLR, 2017.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. arXiv preprint arXiv:2310.07297, 2023.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pages 158—-168. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pages 2052-2062. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMAQ: Expected-
max Q-learning operator for simple yet effective offline and online RL. In International Conference
on Machine Learning, pages 3682-3691. PMLR, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
IDQL: Implicit Q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Hado Hasselt. Double Q-learning. Advances in neural information processing systems, 23, 2010.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the ELBO with simple data
augmentation. Advances in Neural Information Processing Systems, 36, 2024.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696-21707, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
Q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. Advances in neural information processing systems,
32,2019.

11

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pages 45—73. Springer, 2012.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775-5787, 2022.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
Instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. DreamFusion: Text-to-3D using 2D
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Conor Durkan, Tain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in neural information processing systems, 34:1415-1428,
2021.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022a.

Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Diffusion-
GAN: Training GANs with diffusion. arXiv preprint arXiv:2206.02262, 2022b.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Pro-
lificDreamer: High-fidelity and diverse text-to-3D generation with variational score distillation.
Advances in Neural Information Processing Systems, 36, 2024.

Marco A Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12(3):729, 2012.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Shentao Yang, Zhendong Wang, Huangjie Zheng, Yihao Feng, and Mingyuan Zhou. A behavior
regularized implicit policy for offline reinforcement learning. arXiv preprint arXiv:2202.09673,
2022.

Tianwei Yin, Michaé&l Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. arXiv preprint
arXiv:2311.18828, 2023.

12

Yuguang Yue, Zhendong Wang, and Mingyuan Zhou. Implicit distributional reinforcement learning.
Advances in Neural Information Processing Systems, 33:7135-7147, 2020.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126, 2016.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024. URL https://openreview,
net/forum?id=QhqQJqeOWq.

13

https://openreview.net/forum?id=QhqQJqe0Wq
https://openreview.net/forum?id=QhqQJqe0Wq

Supplementary Material: Diffusion Policies Creating a
Trust Region for Offline Reinforcement Learning

A Related Work

Expressive Generative Models for Behavior Cloning Behavior cloning refers to the task of
learning the behavior policy that was used to collect static datasets. Generative models are often
employed for behavior cloning due to their expressive power. For instance, EMaQ [Ghasemipour
et al.,|2021]] uses an auto-regressive model for behavior cloning. BCQ [Fujimoto et al.|[2019] utilizes
a Conditional Variational Autoencoder (VAE), while |[Florence et al.|[2022] employ energy-based
models. GAN-Joint [Yang et al., 2022] leverages GANSs, and several studies [Wang et al.| [2022a),
Janner et al, 2022, [Pearce et al.| [2023]] utilize diffusion models for behavior cloning. Diffusion
models have demonstrated strong performance due to their ability to capture multimodal distributions.
However, they may suffer from increased training and inference times because of the iterative
denoising process required for sampling.

Efficiency Improvement in Diffusion-Based RL Methods. Several studies aim to accelerate
the training of diffusion models in offline RL settings. One approach involves using specialized
diffusion ODE solvers, such as the DDIM solver [[Song et al.| |2020a]] or the DPM-solver [Lu et al.|
2022]], to speed up iterative sampling. Another strategy is to avoid iterative denoising during training
or inference. EDP [Kang et al.| [2024] and IDQL [Hansen-Estruch et al. |2023]] both focus on
avoiding iterative sampling during training. EDP adopts an approximate diffusion sampling scheme
to minimize the required sampling steps, although it still requires iterative denoising during inference.
IDQL accelerates the training process by only training a behavior cloning policy without denoising
sampling. However, it requires iterative sampling during inference by selecting from a batch of
candidate generated actions. SRPO [Chen et al.l2023]] employs score distillation methods to avoid
iterative denoising in both training and inference.

Distillation Methods. Distillation methods for diffusion models have been proposed to enable
one-step generation of images or 3D objects. Examples of such methods include SDS [Poole et al.,
2022]], VSD [Wang et al.l 2024], Diff Instruct [Luo et al.,|2024]], and DMD [Yin et al., 2023]]. The
core idea of these methods is to minimize the KL divergence between a pre-trained diffusion model
and a target one-step generation model. SiD [Zhou et al.| [2024] uses a different divergence metric but
shares the same goal of mimicking the distribution learned by a pre-trained diffusion model. The
distillation strategy can also be applied in the offline RL field to accelerate training and inference.
However, directly adopting these methods may result in suboptimal performance.

B Diffusion Schedule

This diffusion training schedule is the same for training the behavior-cloning policy in Equation 2]
and the diffusion trust region loss in Equation 4]

Noise Schedule We illustrate the EDM diffusion training schedule in our setting. First, we need
to define some prespecified parameters: ggya = 0.5, Omin = 0.002, omax = 80. The noise schedule
is defined by a; = aya + o4&, where € ~ N (0, I). We set a; = 1 and o, = t. The variable log(t)
follows a logistic distribution with location parameter log oq,, and scale parameter 0.5. The original
EDM paper samples log(t) from A/(—1.2,1.22), but this difference does not significantly affect
our algorithm.

Denoiser The denoiser ji4 is defined as:

Hqﬁ(ah t‘s) = Cskip(a')at + Cout(U)FqS(Cin(O')atv Cnoise(0)|s)7

14

where ¢ = 0; =t and F; represents the raw neural network layer. We also define:
2

Cei (O’) _ O data c t(U) _ 0 - Odata
P 0?4 0% Vo + ok,
1 1
in = 5, 9 > Cnois =-1 .
ul0) = oz Gune(o) = 1 108(0)
Weight Schedule The final loss is given by:
2
1
Eo.a,s,e /\(U)Cgm(ff) ‘Fqb(cin(a) (a+€), cnoise(0)[8) — (@ — cuip(0) - (a+€)))
Cout(a) 2
where \(0) = 02#(0)

C Details in KL Behavior Regularization

Here we introduce how we implement KL divergence regularization. The idea is similar to previous
KL-based distillation methods [Wang et al., [2024, [Luo et al., 2024, |Yin et al.,|2023], but adapted to
our setting. Our loss function is defined as:

pfake(aels):| (12)

Lx1.(0) =D . . =E.. ~Dor 1
kL(0) ke [7o(|3)HN¢()] e~N(0,I),s~D,mp(s,€) [og Prea(ag]3)

The gradient of Lk; () is given by:
VO»CKL(Q) = Es,s,a(g:ﬂ-g(s,s) [(Sfake(0'9|s) - Sreal(a9|3)) VOT‘—O]

where Sreal(@g|S) = Vg, 108 Prea(@p|s) and sgxe(@g|S) = Va,heta 108 Prake(@g|s). By using the
Score-ODE given in [Song et al.,[2020b]], we can estimate S (ap|s) and spxe(ag|s) with a diffusion
model. Let ag; = oag + o€, the real score can be estimated by:

agt — & Qg t|s
sreal(a07t7t‘s) = — ¢ t/;-d;(ty |)
t

where (14 is the pre-trained diffusion behavior cloning model that learns the true data distribution.
Similarly, we can estimate the fake score by:

agt — Q& ag. tls
Sfake(a07t7t‘s) - — t t:;l‘g(b |)
t

where pi¢ is trained using fake data:

L&) = lne(as.i,t|s) — aq|l3
which is trained with generated fake action data.
Thus, the gradient of L (#) can be expressed as:

VQEKL(G) = Es,s,ae,ag,t [wtat (Sfake(afé,ta t|3) - Sreal(a9,t7 t‘s)) V97T'9]

where w; = and A is the dimension of the action space.

9t A
a [[pg(ae,tt)—aoll

The algorithm for KL regularization is shown below:

D Implementation Details

Diffusion Policy We build our policy as an MLP-based conditional diffusion model. The model
itself is an action prediction model. We model /14 and fi¢ as 4-layer MLPs with Mish activations,
using 256 hidden units for all networks. The input to j4 and p is the concatenation of the noisy
action vector, the current state vector, and the sinusoidal positional embedding of timestep ¢. The
output of p14 and ¢ is the predicted action at diffusion timestep ¢.

15

Algorithm 2 KL Regularization

Initialize policy network g, ftg, e
for each iteration do
Sample transition mini-batch B = {(s;, a¢, 74, 8¢41)} ~ D
Diffusion Policy Learning: Update p by L(¢)
end for
Initialize policy and fake score network: 6 < ¢, £ < ¢
for each iteration do
Sample transition mini-batch B = {(s¢, at, r+, St+1)} ~ D, generate ag
Random timestep and add noise: Choose ¢, ap, = aag + o€
with_no_grad():
pred_fake_action = pe(aq,,t|s)
pred_real_action = pg(ag,,t|s)

weighting_factor = abs(ag — pred_real_action).mean(keepdim=True)
_ pred_fake_action—pred_real_action
grad - weighting_factor

loss = 0.5 x mse_loss(ag, stopgrad(ag — grad))

Update my by loss

Diffusion Fake Policy Learning: Update (¢ by £(&)
end for

Q and V Networks We build two Q networks and a V network with the same MLP setting as our
diffusion policy. Each network comprises 4-layer MLPs with Mish activations and 256 hidden units.

Stochastic Max Q Trick Similar to DQL Wang et al.| [2022a], during inference, we generate [NV
candidate actions and then randomly select an action according to exp(Q(a, s)). Here, N is fixed at
1024 and remains unchanged across different tasks.

One-Step Policy We build a Gaussian policy using 3-layer MLPs with ReLU activations, utilizing
256 hidden units. After sampling an action, we apply a tanh activation to ensure the action lies between
[—1, 1]. If an implicit policy is instantiated, its structure is the same as that of the diffusion policy.

Pretrain In our implementation, we pretrain the diffusion policy .4 and the Q function @),, for 50
epochs to ensure they can better guide 7y. Then, pi4,)y, and g are concurrently trained for the
epochs specified in Table[d] We found that introducing a pretrain schedule does not significantly
influence the final performance. Our ablation study on the Gym Medium Task revealed that while
pretraining yields slightly better results, the final rewards are largely similar. Therefore, we maintain
a 50-epoch pretrain for all our tasks. The results are shown in Table 3]

Table 3: The performance with and without pretraining on D4RL Gym tasks.

Environment Pretrain No Pretrain
halfcheetah-medium-v2 57.9 57.5
hopper-medium-v2 99.6 87.6
walker2d-medium-v2 89.4 88.7

16

E Hyperparamaters

Table 4: Hyperparameters for D4RL benchmarks. One epoch represents 1k steps, and the optimizer

used is Adam.

Gym o 7 NLL Term Pretrain Epochs Training Epochs Learning Rate Lr decay
halfcheetah-medium-v2 1 0.7 False 50 1000 3x 1074 False
halfcheetah-medium-replay-v2 5 0.7 False 50 1000 3x 1074 False
halfcheetah-medium-expert-v2 50 0.7 False 50 1000 3x 1074 False
hopper-medium-v2 5 0.7 False 50 1000 1x 1074 True
hopper-medium-replay-v2 5 0.7 False 50 1000 3x107% False
hopper-medium-expert-v2 20 0.7 False 50 1000 3x 1074 False
walker2d-medium-v2 5 0.7 False 50 1000 3x 1074 True
walker2d-medium-replay-v2 5 0.7 False 50 1000 3x 1074 True
walker2d-medium-expert-v2 5 0.7 False 50 1000 3x 1074 True
antmaze-umaze-v0Q 1 0.9 True 50 500 3x 1074 False
antmaze-umaze-diverse-v0 1 0.9 True 50 500 3x107° True
antmaze-medium-play-v0 1 0.9 True 50 400 3x 1074 False
antmaze-medium-diverse-v0 1 0.9 True 50 400 3x 1074 False
antmaze-large-play-v0 1 0.9 True 50 350 3x 1074 False
antmaze-large-diverse-v0 05 09 True 50 300 3x 1074 False
antmaze-umaze-v2 1 0.9 True 50 500 3x 1074 False
antmaze-umaze-diverse-v2 1 0.9 True 50 500 3x107° True
antmaze-medium-play-v2 1 0.9 True 50 500 3x 1074 False
antmaze-medium-diverse-v2 1 0.9 True 50 500 3x 1074 False
antmaze-large-play-v2 1 0.9 True 50 500 3x 1074 False
antmaze-large-diverse-v2 0.5 09 True 50 500 3x 1074 False
pen-human-v1 1500 0.9 False 50 300 3x107° True
pen-cloned-v1 1500 0.7 False 50 200 1x107° False
kitchen-complete-v0 200 0.7 False 50 500 1x 1074 True
kitchen-partial-v0 100 0.7 False 50 1000 1x 1074 True
kitchen-mixed-v0 200 0.7 False 50 500 3x 1074 True

17

F Additional Experiments

F.1 Complete 2D Toy Experiments

We also conducted some 2D bandit experiments with different reward scenarios. In Figure [6] red
points are generated by the one-step policy 7.

In the first column, where the four corners have the same high reward, Lx; tends to encourage
exploration of all these high-reward regions, resulting in some suboptimal reward actions. In
contrast, Ltr generates actions that randomly select one of the high-reward regions, thereby avoiding
suboptimal actions. The same situation occurs in the fourth and fifth columns of Figure[6] where Lk;.
covers some suboptimal regions while Ltr adheres closely to the highest reward regions.

However, when the data have only one mode with the highest reward, such as in the second and third
columns of Figure[6] both Lk; and Lt guide the policy to generate high-reward actions.

% @ @ R B B B ML B BN BN BN
e ¢ & B aldsedh e e
S¢ P oEs BSOS &S 8
Iopseo nases ons e -
reve s vanebeve s
PrTTERe Lo 2 S IR di IR A I 2
LOed LR B S L ST R 2R 2
T esees L AR B BN BN RS B s = B
}...,:.:i-\ * P SES OB SGEGS
, /b e e sibewe s

Figure 6: 2D Bandit toy examples, where the behavior regularization is conducted by L1g and Lgp,
in different behavior data and reward scenarios. The first row uses behavior regularization by LR,
and the second row uses Lki.. Yellow indicates the highest reward, and dark blue indicates the lowest
reward.

F.2 Comparison with KL behavior Regularization in Gym Tasks

In addition to testing on 2D bandit scenarios, we also evaluated the performance of two losses Lxr.
and Lr on the Mujoco Gym Medium task. The behavior regularization loss L1g(6) consistently
outperformed Lkp (#) in terms of achieving higher rewards. The results are presented in Table|5| and
the training curves are depicted in Figure 8]

Table 5: The performance of L1r(#) and Lk (6) on DARL Gym tasks. Results correspond to
the mean of normalized scores over 50 random rollouts (5 independently trained models and 10
trajectories per model).

Environment L1r(0) Lxi(0)
halfcheetah-medium-v2 57.9 24.1
hopper-medium-v2 99.6 15.0
walker2d-medium-v2 89.4 34

F.3 Comparison with SRPO on Antmaze-v2 Datasets

Since SRPO uses Antmaze-v2 for their D4RL benchmarks, we also conducted experiments on
Antmaze-v2 using our algorithm, with the same hyperparameters as those used in Antmaze-vQ
but with more training epochs. Hyperparameters details can be found in Table] The results for
Antmaze-v2 from SRPO are taken directly from their paper.

18

halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2

KL

)
° o °
© © ® g
2 = 2
[0} D a0 Q
., x x
z z Zw
Lo Q e o
8" 3 2
@8 2 D 4
Q 5 Q 4 [=%
i) w i)
o Method S o
10 , 2
I —— DTQL © » ©
g g g
< < <

200 800 1000 200 800 1000 200 800 1000

Trained Epochs Trained Epochs Trained Epochs

Figure 8: Training curves comparing policy learning with diffusion trust region loss and KL loss
across three Gym medium tasks demonstrate that diffusion trust region regularization (DTQL)
consistently outperforms KL-based behavior regularization in policy learning.

The results for Antmaze-v2 are shown in Table @ Our observations indicate that, on average, our
method achieves a higher score and exhibits significant performance improvements in complex
Antmaze tasks, such as antmaze-medium-diverse, antmaze-large-play, and antmaze-large-diverse.

Table 6: The performance of Our methods and SOTA baselines on D4RL AntMaze-v2 tasks. Results
for DTQL correspond to the mean and standard errors of normalized scores over 500 random rollouts.

Antmaze SRPO Ours
antmaze-umaze-v2 97.1 92.6+1.24
antmaze-umaze-diverse-v2 82.1 74.4+£1.95
antmaze-medium-play-v2 80.7 76+1.91
antmaze-medium-diverse-v2 75.0 80.6:1.77
antmaze-large-play-v2 53.6 59.2+2.19
antmaze-large-diverse-v2 53.6 62+2.17
Average 73.6 74.1

19

F.4 Overall Training and Inference Time

In Table [/} we show the total training and inference wall time recorded on 8 RTX-A5000 GPU
servers, which include all training epochs specified in Table |4|and the entire evaluation process. For
evaluation, we test 10 trajectories for gym tasks and 100 trajectories for all other tasks.

Table 7: Total training and inference wall time for D4RL benchmarks

Tasks Overall Training and Inference Time Training Epochs
halfcheetah-medium-v2 5.1h 1000
halfcheetah-medium-replay-v2 5.1h 1000
halfcheetah-medium-expert-v2 5.5h 1000
hopper-medium-v2 5.0h 1000
hopper-medium-replay-v2 5.4h 1000
hopper-medium-expert-v2 5.2h 1000
walker2d-medium-v2 4.9h 1000
walker2d-medium-replay-v2 4.9h 1000
walker2d-medium-expert-v2 4.9h 1000
antmaze-umaze-v0 3.3h 500
antmaze-umaze-diverse-vQ 4.0h 500
antmaze-medium-play-v0 3.1h 400
antmaze-medium-diverse-v0 3.2h 400
antmaze-large-play-v0 2.3h 350
antmaze-large-diverse-v0 2.6h 300
antmaze-umaze-v2 3.3h 500
antmaze-umaze-diverse-v2 3.1h 500
antmaze-medium-play-v2 3.1h 500
antmaze-medium-diverse-v2 3.1h 500
antmaze-large-play-v2 3.3h 500
antmaze-large-diverse-v2 3.3h 500
pen-human-v1 1.4h 300
pen-cloned-v1 0.6h 200
kitchen-complete-v0 3.0h 500
kitchen-partial-v0 6.1h 1000
kitchen-mixed-v0 3.0h 500

20

G Training Curves

halfcheetah-medium-v2 hopper-medium-v2 walker2d-medium-v2

Average Episodic N-Reward
Average Episodic N-Reward
Average Episodic N-Reward

g

20 w0 w00 w00 1000 B 00 o w0 w00 1000 o 2 «
Trained Epochs Trained Epochs

0 0 o0
Trained Epochs

800 1

halfcheetah-medium-replay-v2 hopper-medium-replay-v2 walker2d-medium-replay-v2

Average Episodic N-Reward
Average Episodic N-Reward
Average Episodic N-Reward

0 w0 w we o w wo w00 w o w wo w o
Trained Epochs Trained Epochs Trained Epochs
halfcheetah-medium-expert-v2 hopper-medium-expert-v2 walker2d-medium-expert-v2

Average Episodic N-Reward
Average Episodic N-Reward
Average Episodic N-Reward

0 200 800 1000 0 200 800 1000 o 200 800 1000

0 a0 0 o0 0 o0
Trained Epochs Trained Epochs Trained Epochs

antmaze-umaze-diverse-v0 antmaze-umaze-v0 antmaze-medium-play-v0

Average Episodic N-Reward
Average Episodic N-Reward
Average Episodic N-Reward

4 500

20 F P 20 F 100 20 F
Trained Epochs Trained Epochs Trained Epochs

antmaze-medium-diverse-v0 antmaze-large-play-v0 antmaze-large-diverse-v0

Average Episodic N-Reward
Average Episodic N-Reward
- 3 8 8 & 8

Average Episodic N-Reward

5 10 150 200 250 300 350 400 5 10 15 200 250 300 30 o 50 100 150 200 250 3

Trained Epochs Trained Epochs Trained Epochs

Figure 9: Training curves. Rewards evaluated after every 50 epochs.

21

Average Episodic N-Reward Average Episodic N-Reward

Average Episodic N-Reward

antmaze-umaze-v2

Average Episodic N-Reward

100 00 500

20 o
Trained Epochs

antmaze-medium-diverse-v2

Average Episodic N-Reward

400 500

o 30
Trained Epochs
kitchen-complete-v0

Average Episodic N-Reward

100 400 500

20 00
Trained Epochs

pen-human-v1

Average Episodic N-Reward

0 50 100 150 200

Trained Epochs

antmaze-umaze-diverse-v2

100 00

0 F
Trained Epochs

antmaze-large-play-v2

40

00 w00
Trained Epochs
kitchen-partial-v0

200 a00

0 600
Trained Epochs

Average Episodic N-Reward

250 300 0

antmaze-medium-play-v2

eward

Average Episodic N-R

500 o 100 400 500

0 00
Trained Epochs

antmaze-large-diverse-v2

Average Episodic N-Reward

400 500

0 w0
Trained Epochs
kitchen-mixed-v0

Average Episodic N-Reward

1000

100 E

200 00
Trained Epochs

400 500

pen-cloned-v1

75 100 125 150 175 200

Trained Epochs

Figure 10: Training curves. Rewards evaluated after every 50 epochs.

22

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our contribution is accurately reflected in abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It has been discuss in Section[3l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23

Justification: All theorems are proven in main text or by reference.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithms are given in Algorithm[T]and Appendix [C] Implement details
are discuss in Appendix [D]and hyperparameters are discussed in [E]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]

Justification: The code has already been published in https://github.com/
TianyuCodings/Diffusion_Trusted_Q_Learning,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Expriments details are all contained in Appendices [Bto[F]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard error is provided in Table [T] and also plotted in training curves,
Appendix [G]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

25

https://github.com/TianyuCodings/Diffusion_Trusted_Q_Learning
https://github.com/TianyuCodings/Diffusion_Trusted_Q_Learning
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computer resources have been discussed in Section[4.2]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are using simulation dataset D4RL which has no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We are using D4RL datasets and it is explicitly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The primary new asset is the code of our algorithm. It is not published yet, but
will be made public once the paper is accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects are involved in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Diffusion Trusted Q-Learning
	Preliminaries
	Diffusion Policy
	Diffusion Trust Region Loss
	Diffusion Trusted Q-Learning

	Comparison of Different Mode-Seeking Behavior Regularizations
	Experiments
	D4RL Performance
	Computational Efficiency
	Diffusion Training Schedule
	Ablation Studies

	Conclusion and Limitation
	Related Work
	Diffusion Schedule
	Details in KL Behavior Regularization
	Implementation Details
	Hyperparamaters
	Additional Experiments
	Complete 2D Toy Experiments
	Comparison with KL behavior Regularization in Gym Tasks
	Comparison with SRPO on Antmaze-v2 Datasets
	Overall Training and Inference Time

	Training Curves

