TA-GATES: An Encoding Scheme for Neural
Network Architectures

Xuefei Ning'?'* Zixuan Zhou'* Junbo Zhao! Tianchen Zhao'! Yiping Deng?

Changcheng Tang? Shuang Liang3 Huazhong Yang! Yu Wang! f

Department of Electronic Engineering, Tsinghua University®
TCS Lab, Huawei?
Novauto Technology Co. Ltd.3

Abstract

Neural architecture search tries to shift the manual design of neural network (NN)
architectures to algorithmic design. In these cases, the NN architecture itself
can be viewed as data and needs to be modeled. A better modeling could help
explore novel architectures automatically and open the black box of automated
architecture design. To this end, this work proposes a new encoding scheme for
neural architectures, the Training-Analogous Graph-based ArchiTecture Encoding
Scheme (TA-GATES). TA-GATES encodes an NN architecture in a way that is
analogous to its training. Extensive experiments demonstrate that the flexibility and
discriminative power of TA-GATES lead to better modeling of NN architectures.
We expect our methodology of explicitly modeling the NN training process to
benefit broader automated deep learning systems. The code is available at https:
//github.com/walkerning/aw_nas.

1 Introduction

The past decade has witnessed tremendous advances of deep learning (DL) methods using neural
networks (NNs). One of the key driving forces behind NN’s widespread applications is the clever
design of NN architectures that are both effective and efficient [15, 37, 111} [13]. Nevertheless, long-
tail distributed tasks and platforms in the real world pose challenges to the scalability of manual
architecture design workflows. One pathway to tackle these challenges is to construct Automated
Deep Learning (AutoDL) systems [38, 32} 9] that can decide on factors in all aspects of NN training
and inference in an automated and algorithmic way. Neural Architecture Search (NAS) [57, 18} 46] is
a subfield of AutoDL that focuses on automated architecture exploration.

As NAS shifts up the architecture design level from manual design to algorithmic design, NN
architectures themselves can be viewed as data and need to be modeled. For example, predictor-based
NAS [27, 23] 142} 20] constructs a performance predictor consisting of an architecture encoding
scheme and a prediction head, and uses its predictions for unseen architectures to guide architecture
sampling. A better architecture encoding scheme enables more accurate predictions, and thereby
enable us to explore the space more efficiently by only sampling promising architectures [23} 27, 143]].
Moreover, an encoding scheme can also be used to improve the widely-used parameter-sharing
evaluation [53]] or help open the black box of automated architecture design [33[]. To this end, our
work aims at designing a better encoding scheme for NN architectures.

State-of-the-art (SOTA) encoding schemes [54,127]] of NN architectures are graph-based ones that view
an architecture as a directed acyclic graph (DAG) of computations. As shown in Fig.|l|and described

*Equal contribution.
TCorresponding to: foxdoraame @gmail.com, yu-wang @tsinghua.edu.cn

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/walkerning/aw_nas
https://github.com/walkerning/aw_nas

Architecture Arch Embedding Image Feature

input = _(Information Flow Based) ' output — input NN output
(o eo-0- Architecture Encoder [mmm} —‘ Architecture H
(Arch-A) (Arch-A)
s m P N Conv
Conv 3x3 — ey i TR — Y 3G _,‘ ‘_, 3x3 NN
[E =]
Conv 1x1
i Current Arch Encoding Scheme Different Ops Need Different
[Emm | . X . . Ops Across Ops Across
Same Type of Op, Same Embedding Different Encodings " & h Parameters /
Max Pool Positions Archs Functions
0 (Arch-B) (Arch-B)
Operation
type-wise N e
R / \ Conv Conv
E_@# _@_ﬁi —B8--8— —
4 [) = 4
Virtual t t
Information OP Embedding Params

Figure 1: Motivation illustration. Left: State-of-the-art information flow based encoders (architecture
as input, architecture encoding as output) [54} [27]. In their encoding process, all Conv3x3 share
the embedding in O, no matter which architecture or which position the operation is in. Right: NN
architecture (data as input, feature as output). Conv3x3 operations across positions (e.g., the two
Conv3x3 in Arch-A) and across architectures (e.g., the first Conv3x3 in Arch-A and Arch-B) obtain
different parameters through NN training represent different functions. For example, different from a
plain Conv3x3, a Conv3x3 with a surrounding skip connection represents a residual function.

in Sec. these encoding schemes map each type of computation or operation (e.g., MaxPool,
Conv3x3) to the same embedding, and the operation type-wise embeddings O are trainable parameters
of the encoder. And their encoding process of an architecture DAG could be seen as a mimicking
of how the architecture handles real data. More concretely, in the real NN forward propagation, the
images are put at the input node, flow through the architecture, get processed by each operation,
and output feature maps at the final output node. While in the encoding process of GATES [27],
analogically, the input node embedding flows through the architecture DAG, gets multiplied by
the embedding corresponding to each operation, and outputs the architecture encoding at the final
output node. This encoding process mimicking the NN forward propagation is shown to outperform
non-graph-based encoding schemes [23} 42, 20, 47] and vanilla GCN-based schemes [35, [10].

However, these two schemes neglect an important characteristic of NN architectures: an architecture
is not a DAG with fixed computations (e.g., sin, cos, MaxPool), but a DAG with trainable operations
(i.e., parameterized operations, e.g., Conv3x3). That is to say, operations of the same type (e.g.,
two Conv3x3) can represent different functions since they obtain different parameters through NN
training. When encoding an architecture, the SOTA encodings [54, 27]] make all operations of the
same type across different locations and architectures use the same embedding, which does not take
account of this characteristic of architectures. Fig. [T illustrates that we need a scheme that can give
contextualized embeddings for operations according to their architectural context.

To realize this, we base our design on the fundamental idea that an NN architecture not only depicts
the computations in a forward propagation, but also implies its learning dynamics. In view of this,
we propose an intuitive method, Training-Analogous Graph-based ArchiTecture Encoding Scheme
(TA-GATES). During the encoding process of an architecture, TA-GATES mimics the learning
dynamics of its parameterized operations. This training-analogous modeling enables TA-GATES to
better encode NN architectures. We summarize the contributions of this paper as follows.

e We propose TA-GATES, a novel encoding scheme for NN architectures with analogous
modeling of the NN training process. To encode an architecture DAG, TA-GATES conducts
an iterative process of forward and backward passes on the DAG for several time steps,
and uses the forward output at the final time step as the architecture encoding. In each
time step, TA-GATES updates the embeddings of parameterized operations. This encoding
process that iteratively updates the operation embeddings could be seen as a mimicking of
the architecture training process that iteratively updates the operation parameters. In this
way, operations get contextualized embeddings according to their architectural context.

e To further improve the discriminative power of TA-GATES (see Sec. [3.2), we propose
symmetry-breaking techniques for operation embeddings at the beginning of the encoding
process (before the iterative time steps). This technique could be seen as a mimicking of the
random parameter initialization in the actual architecture training process.

o We apply TA-GATES for performance prediction in various architecture benchmarks. Exper-
iments show that TA-GATES consistently surpasses baseline schemes across search spaces,
for different tasks (ranking, regression, anytime prediction) and under different settings.

2 Related Work

Automated Deep Learning. In the complex pipeline to build DL models, there are many steps and
components that require substantial expert knowledge. The need to design DL models for vast tasks
and platforms has aroused research interests in AutoDL. NAS [8}46] is proposed to automatically
design the NN architecture. As for other training-time design choices, hyper-parameter optimization
(HPO) [38] is a long-standing topic that dates back to 1990s [56]. AutoAug [3} 4] aims at designing
data augmentation. And AutoLoss methods [18}|17]] automate the design of loss functions.

Architecture Benchmarks. Topological architecture search spaces can be classified into the
operation-on-node (OON) ones and the operation-on-edge (OOE) ones. Architectures in OON
or OOE spaces have operations on their nodes or edges, respectively. Researchers have established
many benchmarks for the ease of comparing NAS methods [51} 52,7} 130,136, 50]]. Benchmarks on
OON spaces include NAS-Bench-101 (NB101) [51], NAS-Bench-1Shotl [52]]. And as for OOE
spaces, NAS-Bench-201 (NB201) [7] is a benchmark on a small search space of one cell architec-
ture. NDS ENAS [30] and NAS-Bench-301 (NB301) [36] provide benchmarks on larger search
spaces [29] 21]] of two cell architecture (i.e., the normal and reduce cells).

Predictor-based NAS. A NAS method consists of two components: (1) The evaluation strategy
gives out the performance of an architecture, e.g., by training on the training dataset to get its parame-
ters and then testing on the validation dataset [57]]. (2) The search strategy samples architectures to
evaluate and explores new architectures according to the feedback of the evaluation strategy.

To improve the exploration efficiency in the large space, the predictor-based search strategy [27, 23}
42, 120]] trains an approximate performance predictor of architectures using some pairs of architecture
and ground-truth (GT) performance, and uses its prediction scores of unseen architectures to guide
architecture sampling. An accurate predictor helps sample architectures more likely to be well-
performing and improves NAS results. Lots of efforts have been devoted to developing the architecture
encoding scheme, as it is essential for the predictor’s generalization ability to unseen architectures.

Architecture Encoding Schemes. Existing encoding schemes of NN architectures include non-
graph-based ones and graph-based ones. Non-graph-based schemes convert the computational DAG
into a sequence [23}142, 201147, 22,135, 144] or image [47], and apply XGBoost, Multi-Layer Perceptron
(MLP), Long Short-Term Memory (LSTM), or Convolutional Neural Network (CNN). They do not
explicitly use the graph topology, and have notable weakness such as improper isomorphism handling.

As for graph-based schemes, there are attempts [35.[10] to apply plain graph convolutional networks
(GCNss) [14] to encode architectures. As plain GCNs cannot be applied to OOE spaces directly, to
encode architectures in OOE spaces, these methods either adopt the line-graph conversion trick [35}
435]] or propose ad-hoc solutions [[10]] to convert architectures into OON graphs. NASBOWL [33]]
proposes to use the WL graph kernel with multiple iterations in the Gaussian Process surrogate. These
schemes are not dedicatedly designed for NN architectures. SOTA graph-based schemes, D-VAE [54]
and GATES [27], view an NN architecture as a computational DAG and follow its “information flow”
to encode it. Their analogous modeling of the NN forward propagation provides better encoding.

Another related work, CATE [49]], proposes a transformer-based encoder. The motivation behind
CATE’s transformer design is to capture “deep contextualized information” of operations. They use
reachability-masked attention to aggregate operation embeddings and get contextualized operation
embeddings. In this work, we propose a more intrinsical way to get contextualized operation
embeddings, which can also enable more potentials such as anytime prediction.

3 Training-Analogous GATES

State-of-the-art encoding schemes [54} 27]] view an NN architecture as a computational DAG on
which the information flows and gets processed. We refer to them as the information flow-based
schemes. As shown in Fig. [T (left), in their encoding process, a piece of virtual information (a
trainable encoder parameter E in Alg.[I) is used as the input node embedding of the architecture
DAG. Then, this information flows along the DAG, and when the information arrives at an operation,
the information is transformed according to the embedding of that operation as shown in Equ.[A2]
and Equ. Finally, the information at the output node is adopted as the architecture embedding
(see also Sec.[A.T). Their encoding process of an architecture is analogous to its data processing.

We notice that they neglect an important characteristic of NN architectures: An NN architecture is
not a DAG with fixed computations, but a DAG with trainable operations. These trainable operations
are parametrized, and their parameters are obtained through a training process, which implies that
two operations of the same type with different parameters represent different functions.

As discussed in Fig. [T, neglecting this characteristic can result in improper modeling of operations
and architectures. Is there an intrinsical way to solve this issue? Based on the fundamental idea that
an NN architecture not only depicts the computations in the forward propagation but also implies the
learning dynamics, TA-GATES encodes architectures by mimicking their training process.

In the following, Sec. first describes the encoding process of TA-GATES. Then, we elaborate on
our proposed “symmetry-breaking” technique in Sec.[3.2] And Sec.[3.3]describes how the explicit
modeling of the training process can empower the anytime performance prediction task.

3.1 Iterative Encoding in Analogy to Iterative Parameter Training

We give out the encoding process of TA-GATES in Alg. [T (Line 1-10) and an illustration in Fig.[2
(upper). The learnable parameters and modules of TA-GATES and notations are also summarized in
the first two sections in Alg.[I. We break down the encoding process as follows. First, we get the
initial operation embedding embg; = GetEmbedding(O, op) € RM*? for all M operations in the
DAG according to their operation types (Line 1). Note that O € RN>*% i5 an operation type-wise
embedding matrix, where each row corresponds to one operation type. At this point, operations of

the same type have the same embeddings in embgg. Then, we apply SymmetryBreaking on embg;i to
get embég) (Line 2), which will be discussed in detail in Sec.

Then, as shown in Fig. 2] (upper left), we conduct an iterative process of forward and backward passes
on the DAG « for T time steps, in which the operation embeddings emb,,, get iteratively updated.
This process can be seen as mimicking the iterative parameter updates of the architecture in actual
training. In each time step ¢, we first compute the information flow based GCNs on the architecture
DAG a (Line 4-5). Specifically, we use a global trainable parameter E as the input information of
the architecture DAG (i.e., feed E into the input node of a), and call the InfoPropagation procedure
with the current operation embedding emb(()t_l). InfoPropagation is described in Sec. and
implemented following [27, |54]]. After the forward GCN pass, we convert the output information

of the forward pass f(t) [N] by applying FBConvert (an MLP) to get b [N]. Then b [N] is used

info info info
as the input information of the backward GCN pass in Line 7. Note that bi(lff)o [N] is fed into the
output node of a, i.e., the input node of a”'. We call the two GCN passes in Line 5/7 the forward and
backward passes as they propagate on the DAG a and its transposed DAG a”', respectively.

After the forward and backward GCN pass in the ¢-th time step, TA-GATES computes the operation
embedding updates using the propagated information in the forward and backward passes (Line
8). Specifically, GetOpEmbUpdate concatenates the operation embedding from the last time step

emb!~V) and the propagated information f-(t))

op info’ “info
feed it into an MLP, and get the operation embedding updates 6(*). Then, 5 is updated onto the
operation embeddings to get emb(();? (Line 9). And the updated operation embeddings emb(()f,) will be
used in the following time step ¢ + 1.

in the forward and backward passes as the input,

After T time steps, the output of the T'-th forward InfoPropagation pass (i.e., the node embedding at
the output node) fig;) [N] is used as the architecture encoding.

Algorithm 1 The Encoding Process of TA-GATES

Learnable Parameter or Modules of TA-GATES:
E’: the input information
W/ W?: the parameters of forward and backward GCNs (see Sec. |A.1)
O € RNo*do: the embeddings of N, types of operations
FBConvert: an MLP module to convert the forward pass’ output to the backward pass’ input
GetOpEmbUpdate: an MLP module to get updates of operation embeddings
InfoPropagation: the information flow based GCN computation (see Sec. [A.T))
SymmetryBreaking: symmetry breaking using parameter-level zero-cost metrics (see Equ. [I)
Other Notations:
T': the number of time steps
N': the number of nodes in a cell architecture
M the number of operations in a cell
N,: the number of operation choices in the search space (the subscript o denotes operation)
d,: the dimension of operation embeddings (the subscript o denotes operation)

emb(?' the operation embeddings at time step ¢

flfffz)[, bl(rff)o[]: the information of the n-th node in the forward or backward pass at time step ¢
(n = 1 denotes the input node, n = N denotes the output node)
s: a scale of operation embeddings’ updates, set to 0.1 in all experiments except ablation studies

Input:
a: a DAG denoting the NN architecture, a” denotes its transposed DAG with all edges reversed
op € {0,---, N,}™: the operation indexes in a

Encoding Process:

1: embg, = GetEmbedding(O, op)
2: emb(()g) = SymmetryBreaking(embgg)
3:fort=1,.---,T do

s fON=E
5: lgltfz) [2: N]= InfoPropagatlon(flfﬁl[l]; a, embg;_l), W)
6 b [N]= FBConvert(FIND)
7: bl(lff)o[—1]= InfoPropagatlon(bl(nf)o [N];a emb D why)
g 0 = GetOpEmbUpdate([emb (t=1) | f sz) | bl(rff)o D
9: emb((,t) = embff‘l) + 5 x 60
10: end for.
Output: flm)[N mm[|}i=1,... if doing anytime performance prediction)

Analogy to NN training. The analogy between the training process and the TA-GATES’s T'-step
iterative encoding process of an NN architecture is illustrated in Fig. [2] (upper). In each time step
of TA-GATES, the forward and backward GCN passes (InfoPropagation) correspond to the NN
forward and backward propagation, GetOpEmbUpdate correspond to the gradient calculation w.r.t.
parameters, and the updates of operation embeddings correspond to parameter updates.

Improving the modeling flexibility. The analogous modeling of NN training adds to the flexibility
and discriminability of encoding, as it makes the embedding of each operation adaptive to the overall
architecture (i.e., contextualized embedding). Thus, two operations with different architectural
contexts can get distinguishable embeddings, even if they are of the same type (e.g., the 0-1/0-2
Conv3x3 in Fig. [2 (upper)), which is more reasonable considering that they represent different
functions in the actual NN. In this way, both the operation and architecture encodings become more
discriminative, bringing benefits to their downstream usage, i.e., architecture encoding for improving
predictor-based NAS and operation encoding for improving parameter-sharing evaluation [535]].

Training of TA-GATES. We have described the encoding process (i.e., the inference) of TA-
GATES. As for the training of TA-GATES’s parameters (listed in the 1st section in Alg.[I), we
construct a performance predictor consisting of TA-GATES and an MLP head, input the architectures,

and use their GT performances as the labels for the predictor outputs MLP(fmfo [N]) (see Sec. .

Feature

. Dataset .
BECWE Architecture D = Architecture
Information Encoding Arch Embedding Training H

\
Forward Pass on a

- mo
i-0

o e~ |

Forward Propagation

/”\\
!
Architecture \

|
1
1
I
|
1
1
I
I
|
1
I
1
|
1
1
1
|
1

Info Loss
° CO:V = FB;ven .\/ ,\\\,
op El:r?:ea;fﬂng? [conu33 | Update @
g @ params
N fctwerdrassont T Mmestepr)y N _ T LTI ORI T -
Tx Time Steps Many Iterations
C;n; ~ o Symmetry Breaking C;xr;v _ e
/' - ™~) L)
o— o—

/ _*Q/ (Arch A) / __0/ (Arch A)

Introduce I
E li Different Arch E ' Zero-Cost | Different Arch
Info Equivalent Encoding Info '\ Metrics Different Encoding
C Ce
\ LEB-+ o \/ nO
(o] | o- o-
O (rchy) Q/ (Arch B)

Figure 2: Upper: The analogy between the training (Right) of an NN architecture with 4 nodes
(0/1/2/3 circles) and the TA-GATES’s iterative encoding process (Left). Lower: A single forward
pass in the encoding process without (Left) / with (Right) the symmetry-breaking technique.

3.2 Symmetry Breaking in Analogy to Random Parameter Initialization

The iterative encoding process can distinguish operations with different architectural contexts, even if
they are of the same type. However, solely with the iterative encoding process, we cannot distinguish
operations with fully symmetric architectural contexts and thus fail to discriminate some architectures.

As shown in Fig. 2] (lower left), the two architectures are apparently different, and the upper one
has a larger capacity. However, their information-based encodings are indistinguishable.
As the three Conv3x3 in Arch-A/Arch-B have the same embeddings, and the operation between
node 1 and 2 in Arch-B is a skip connection, node 1 and 2 in Arch-A and Arch-B all have the same

information fmfo, l(lff)o Therefore, the final architecture encoding of Arch-A and Arch-B is the same.
Even if TA-GATES iteratively updates the operation embeddings in the architecture encoding process,
the embeddings of these Con3x3 operations remain the same across all time steps if their initial
embeddings at time step 0 are the same, since they have exactly the same paths to the input and output

nodes (i.e., at fully symmetrical positions).

So, how to enable the encoding scheme to distinguish operations with fully symmetric architectural
contexts? Actually, the reason why the Conv3x3s and the architectures in Fig. [2] (lower left) are not
equivalent in NN training is that the random parameter initialization breaks the symmetry of the two
Conv3x3 when the training begins. Based on this analysis, we propose to apply symmetry breaking to
the initial operation embeddings emb (SymmetryBreakmg in Alg. Lme 2) to enable TA-GATES
to distinguish symmetric operations. We propose three types of symmetry-breaking techniques:

1. Using random noises: The most straightforward way is to add random noises onto emb(o)

2. Using zero-cost saliency metrics: Instead of directly injecting randomness into operation em-
beddings, we can inject randomness into NN parameters and aggregate some metrics of parame-
ters in each operation to refine its embedding. We propose to aggregate parameter-wise saliency
metrics to break the symmetry of operation embeddings. Specifically, SymmetryBreaking
in the encoding process of an architecture first randomly initializes the parameters of the
architecture. Then, for each operation, we calculate and aggregate five per-parameter saliency
metrics as a 5-dim vector Z € RM*5 including grad_norm, snip [16]], grasp [41]], plain [25],

and synflow [40]. And the initial operation embedding embgg) € RM*do s refined as
emb()) = embl + 8 x MLP*(Z), (1)

where the MLP? maps from R to R%, and 3 is a fixed scale.

3. Using zero-cost saliency metrics in every time step: We also experiment with a variant of
the 2nd technique: Instead of adding a symmetry-breaking vector onto the initial operation

embedding embg;, we concatenate Z onto emb(();) in all time steps.

Note that though the last two techniques aggregate parameter-level metrics, they only use randomly
initialized parameters and do not require actual parameter training. Borrowing the terminology
from zero-cost pruning and NAS [40, [1, [24] 19} [26], we refer to them as “zero-cost symmetry-
breaking techniques”. As illustrated in Fig. 2 (lower right), the encoding with symmetry breaking
can differentiate the two operations at symmetric positions in Arch-A, and thereby the architectures
Arch-A and Arch-B.

3.3 Anytime Performance Training and Prediction

Besides improving the discriminative power of architecture encoding, the explicit modeling of NN
training brings other interesting possibilities (see more discussions in Sec. [6). This work explores
using TA-GATES to empower anytime performance training and prediction. The meaning of the
anytime prediction task is two-fold: (1) Training using performances at other epochs might help
improve the prediction of final performances, as these supervisory signals bring more information
without inducing additional training costs. (2) The task of predicting multiple performances across
epochs has its applications, such as providing inspections into the learning dynamics, or making
surrogate benchmarks [50].

The basic strategy to amend existing encoders for anytime prediction is to make it output multiple
scores as the predicted performances for multiple epochs. And as it comes to TA-GATES, we have a
more natural choice to use output scores of different time steps as the predicted performances, as each
time step in TA-GATES corresponds to a checkpoint in the NN training process. We’ll demonstrate
that this natural fit of TA-GATES indeed boosts the predictive power for anytime performances.

3.4 Summary

To summarize, TA-GATES has three key steps in analogy with steps in NN training: (1) Zero-cost
symmetry breaking of operation embeddings corresponds to the random initialization of parameters.
(2) Forward and backward passes of GCN correspond to the forward and backward propagation of the
NN architecture. (3) The updates of operation embeddings correspond to the updates of parameters.

Thanks to the analogous modeling of NN training, TA-GATES has higher flexibility and better
discriminative power, and also brings interesting possibilities (see also Sec.[6). For example, TA-
GATES provides a more natural and stronger solution. for the anytime performance prediction.

4 Experiments

We compare the predictive power of TA-GATES with baseline encoding schemes on four search
spaces, including NB101 [51}52]], NB201 [[7], NB301 [36], and ENAS [29]]. Specifically, we use the
performances provided by NAS benchmarks as the ground-truth (GT), and split the GT architecture-
performance pairs into training and test splits. After training the predictor with (a subset of) the
training split, we measure the predictor fitness on the test split.

Following previous work on architecture encoding, we adopt Kendall’s Tau (KD) [34] as the main
measure. We also use other measures, including Precision@K (P@K) [27 mean squared average
error (MSE), and the Pearson coefficient of linear correlation (LC). We use the MSE regression loss
to train predictors in anytime training and use the pairwise hinge ranking loss in all other experiments.
Detailed experimental settings and runtime information can be found in Sec. [B|and Sec. and
ablation studies can be found in Sec.[C.3.

3Precision@K: The proportion of true top-K architectures in the predicted top-K architectures.

Table 1: Kendall’s Tau of using different encoders on NB101, NB201, NB301 and NDS ENAS. The
average result of 9 experiments are reported, and the standard deviation is in the subscript.

Proportions of 7290 training samples

Encoder
1% 5% 10% 50% 100%
MLP [42] 0.39370.0302) 0.53180.0185y 0.5703(0.0167y 0.6225¢0.0078) 0.63070.0069)
LSTM [42] 0.5476(0.0341)y 0.5876(0.0245y 0.6040¢00154y 0.619600142) 0.6131(0,0185)

NB101 GCN (global node) [35] 0.3668(().()5(,3) 0.5973(()_()233) 0.6927(().()1()& 0.7520(()_()075) 0.7689(().0033)
NASBOWL [33] 0.5850(0.0232y 0.6416(0.0241) 0.6536(00193y 0.6833(0.0022) 0.6872(0.0000)

SemiNAS [22] 0.527300s89 0.605500001 0.595300219) 0.604000285 0.60430,0170)
XGBoost [44] 0.45 17(0‘0470) 0.5987(()‘0365) 0.5680(0‘0125) 0.5677(()‘0077) 0.61 75(0‘0000)
GATES [27] 0.6321.0251) 0.7493000166y 0.7690(0.0077y 0.79990.0071) 0.81190.0071)
TA-GATES 0.6686(0.0338) 0-7744((),()21 1) 0-7839(0.0063) 0.8133(040053) 0.8217(0.0057)
Encoder Proportions of 7813 training samples

0.1% 0.5% 1% 5% 10%
MLP [42] 0.0162.0859) 0.0863(0.0s56) 0.1756(0.0332) 0.3885(0.0237) 0.5492(0.0092)
NB201 LSTM [42] 0.1935¢.1806y 0.50790.0715y 0.5691(0.0110) 0.669000.0189) 0.73950.0061)

Line—Graph GCN [35] 0.2461 0.1549) 0.311 3()1)626) 0.40800_()369) 0.546 1()A()1 38) 0.60950,()164>
NASBOWL [33] 0.4980(0.0408) 0.66740.0077y 0.5912¢0.0874y 0.72590.0008y 0.7625(0.0083)

XGBoost [44] 0.0706(0‘1233) 03719(0‘0560) 0.4178(0‘0233) 0.6412(()‘0053) 0.7084(0‘0123)
GATES [27] 0.43090.1062) 0.670200254) 0.757190169) 0.85830.0019) 0.8823¢ 0024)
TA-GATES 0.5382(0.0478) 0.6707(040256) 0.7731(0.0249) 0.8660(040060) 0.8890(0.0049)
Encoder Proportions of 5896 training samples
0.5% 1% 5% 10% 50%
NB301 MLP [42] 0.27500.0722y 0.40180.0209) 0.5373(0.0093) 0.56870.0060) 0.62490.0021)
LSTM [23] 0.5161(0.0446) 0.56890.0218y 0.68930.0047y 0.71440.0032) 0.75720.0019)
GCN [10] 0.0951 (003500 0.12800.0441) 0.2673(0.0061) 0.28350.0059) 0.31790.0013)
XGBoost [44] 0.2725(0‘0395) 0.3059(()‘0235) 0.33 13(0‘012(» 0.3227(()‘0217) 0.3461(0‘0034)
GATES [27] 0.5616¢0.0251y 0.60640.0275) 0.6916¢00112) 0.71800.0067y 0.7595(0.0027)
TA-GATES 0.5728(0.0307) 0.6351(040133) 0.7123(0.0037) 0.7331(04007 1 0.7685(0.0066)
Encoder Proportions of 500 training samples
5.0% 10.0% 25.0% 50.0% 100.0%
ENAS MLP [42] 0.16070.0518) 0.2264(0.0470) 0.3543(0.0139) 0.3858(0.0000) 0.41410.0036)
LSTM [23] 0.259%4 00573y 0.340600.0370) 0.4509¢0.0175) 0.48750.0133) 0.5517(0.0048)
GCN [10] 0.2301¢0.0023y 0.3140¢00151) 0.33670.0080) 0.35080.0108) 0.3715¢0.0041)
GATES [27] 0.34000.0417y 0.4286(0.0104y 0.5274(0.0245) 0.5971 00128y 0.646700119)
TA-GATES 0.3458(0'0383) 0.4407(0‘0104) 0.5485(0}025 1) 0.6324(0‘0123) 0.6683(0'0()76)

4.1 Comparison with Baseline Encoders

Table [T shows the Kendal’s Tau on test set using different encoders. Different columns show the
results of training using different numbers of architectures. For example, a proportion of 1% on
NB101 means that 1% x7290=72 architectures are used for predictor training. The comparison of
P@K is shown in Fig.[3| We can see that TA-GATES achieves superior ranking quality consistently.
We also conduct architecture search experiments using TA-GATES and discuss the results in Sec.[C.2]

4.2 Comparison of Symmetry-Breaking Techniques

As shown in Table [2, except for two exceptions when there are only a few training architectures
(39/29 training architectures on NB201/NB301), the “Add” symmetry-breaking technique brings
improvements on TA-GATES without symmetry breaking (“None”), and achieves the best results.
Therefore, we use the “Add” symmetry-breaking technique without explicit statements.

4.3 Anytime Performance Training and Prediction

Intuitively, the analogous encoding process of TA-GATES has a natural fit for the anytime performance
prediction task. We use MSE training loss to train encoders, and show the KDs and regression
measures (LC and MSE) in Table [3, Table Table and Table We can see that
TA-GATES significantly boost the anytime prediction performances.

1.0 1.0 1.0
0.8 08 0.8
g g g 5o 7
@ @06 e 3 %° 8% — e
3 5 3 5
@ 904 LSTM o4 LSTM Qo4 LSTM
e e —— GCN e —— GCN e / —— GCN
0.2 — GATES 0.2 —— GATES 0.2 —— GATES
—— TA-GATES —— TA-GATES —— TA-GATES —— TA-GATES
0.0 0.0 0.0 0.0
0 1.4k 29k 4.3k 5.8k 7.2k 0 1.6k 3.1k 4.7k 6.2k 7.8k 0 10.2k 20.4k 30.6k 40.8k 51.0k 0 09k 1.8k 2.7k 3.6k 4.5k
(a) NB101 (b) NB201 (c) NB301 (d) NDS-ENAS

Figure 3: Precision@K comparison on the validation split of four benchmarks. X-axis: K; Y-axis:
Precision. The training proportion is 5% on NB101, NB201, and NB301, and 50% on NDS ENAS.

Table 2: Kendall’s Tau of using different symmetry-breaking techniques. “None” indicates TA-
GATES without symmetry breaking. “Random”, “Add”, “Concat” refer to TA-GATES with the three
symmetry-breaking techniques described in Sec. [3.2] respectively.

NB101 (7290 training) NB201 (7812 training) NB301 (5896 training)
1% 5% 10% 50% 0.5% 1% 5% 10% 0.5% 1% 5% 10%

GATES 0.6321 0.7493 0.7690 0.7999 0.6702 0.7571 0.8583 0.8823 0.5616 0.6064 0.6916 0.7180
None 0.6510 0.7581 0.7704 0.8070 0.6838 0.7667 0.8623 0.8866 0.5735 0.6182 0.7020 0.7280
Random 0.6425 0.7612 0.7711 0.8020 0.6777 0.7688 0.8634 0.8836 0.5735 0.6207 0.7034 0.7257
Concat 0.6585 0.7689 0.7819 0.8086 0.6847 0.7708 0.8632 0.8856 0.5659 0.6230 0.7048 0.7261
Add 0.6686 0.7744 0.7839 0.8133 0.6707 0.7731 0.8660 0.8890 0.5728 0.6351 0.7123 0.7331

Method

Table 3: Kendall’s Tau of anytime training and prediction. Upper/Lower: Kendall’s Tau with the
half GT accuracy in the middle of training / the final GT accuracy. Baselines: “Single-” means to
only use one supervisory signal to train a predictor. “Multi-" refers to basic strategy described in
Sec.[3.3} The predictor outputs multiple scores and is trained with multiple supervisory signals.

KD with the half accuracy ‘ NB101 (7290 training) NB201 (7812 training) NB301 (5896 training)
Encoder Training | 1% 5% 10% 50% 0.5% 1% 5% 10% 0.5% 1% 5% 10%

Single-GATES half 03636 0.3473 03147 04796 0.5882 0.6654 0.7317 0.7732 0.2028 0.2106 0.2807 0.3347
Multi-LSTM half+final | 0.0123 0.0659 0.0723 0.0518 0.3189 0.3797 0.4771 0.5285 0.1914 0.1464 0.1132 0.1187
Multi-GATES ~ half+final | 0.2862 0.2912 0.2883 0.1413 0.5827 0.6574 0.7168 0.7745 0.1635 0.1654 0.1481 0.1263
TA-GATES half+final | 0.3921 0.4615 0.4805 0.5674 0.6297 0.7110 0.7827 0.8140 0.2345 0.2322 0.3092 0.4249

KD with the final accuracy \ NB101 (7290 training) NB201 (7812 training) NB301 (5896 training)
Encoder Training | 1% 5% 10% 50% 0.5% 1% 5% 10% 0.5% 1% 5% 10%
Single-GATES final 0.3856 0.3820 0.5034 0.5903 0.4914 0.6915 0.7237 0.7806 0.1557 0.1549 0.1954 0.2432

Multi-LSTM half+final | -0.0372 0.1028 0.2191 0.1473 04166 0.4795 0.5491 0.6062 0.2046 0.2153 0.2283 0.2318
Multi-GATES half+final | 0.3455 0.3341 0.3370 0.1818 0.6145 0.6902 0.7306 0.7989 0.1190 0.1209 0.1025 0.0868
TA-GATES half+final | 0.5463 0.5850 0.5950 0.6477 0.6648 0.7363 0.8213 0.8624 0.1963 0.2944 0.2928 0.4178

On one hand, TA-GATES enables the predictor to benefit from multiple supervisory signals by
capturing the learning speed of architectures. Fig. [ATT]shows that a small architecture Arch-1-A
learns faster (higher half accuracy) but ends at a low final accuracy, and a larger architecture Arch-1-B
learns slower (lower half accuracy) but ends at a higher accuracy. TA-GATES can correctly predict
the relative order of these two architectures both at the end or in the middle of the training process.
In contrast, without explicit modeling of the learning dynamics, Multi-GATES tends to give out the
same relative order for the half and final accuracies, and thus fails to make correct comparisons.

On the other hand, directly training baseline encoders with half and final accuracies simultaneously
even leads to performance degradation. We observe a “trade-off” phenomenon where the prediction
fitness for the half and final accuracy have opposite trends. See Sec.[C.5 for detailed analyses.

Note that although our anytime training experiments use 2-step TA-GATES (T=2, t=1 for half and t=2
for final) and use the GT accuracies of two training epochs (half and final) for training, TA-GATES
can be easily extended to anytime training with more time steps and more supervisory signals.

5 Conclusions

Neural architectures are data-processing DAGs with trainable operations. According to this nature,
this work dedicatedly designs a Training-Analogous Graph-based ArchiTecture Encoding Scheme

(TA-GATES) for encoding NN architectures. The encoding process of TA-GATES mimics not only
how the information is propagated and processed by operations during the NN inference process, but
also the learning dynamics of operations during the NN training process. In this way, every operation
becomes distinguishable, i.e., gets “contextualized” embeddings according to its architectural context.
Extensive experiments in various search spaces show that TA-GATES consistently improves the
performance predictions. We also show how the explicit modeling of NN training in TA-GATES
empowers the anytime performance prediction task.

6 Broader Applications, Limitations, and Future Directions

Here we discuss two applications that can potentially benefit from the “training-analogous” encoding
methodology and one future extension direction of TA-GATES.

TA-GATES as the learning curve extrapolator for early-stop NAS. Besides predicting the any-
time learning curve from an architecture description, TA-GATES also has the potential to be used
as a black-box and learnable extrapolator of partial learning curves. An extrapolator can be handy
for accelerating AutoML, where some NN training processes can be early stopped according to the
extrapolated estimation at targeting epochs.

The existing extrapolator [6]] assumes the NN learning curve can be described by some parametric
function families. And during the training process of an architecture, they fit the function family
parameters using the validation performances of the early learning curve, and then extrapolate to get
the estimations at targeting epochs. Different from existing extrapolators, TA-GATES can take the
architecture description as input. That is to say, during the extrapolation, instead of solely relying on
the early learning curve, this learnable extrapolator can utilize the learning curve knowledge of other
architectures, and thereby has the potential to make better extrapolations in a data-driven way.

TA-GATES as the joint encoder for other DL factors in AutoML. As TA-GATES explicitly
mimics the NN training process, it is easy to extend TA-GATES to model other training-time factors
besides the architecture in an elegant way. Thus, we expect TA-GATES to find its wide application in
joint AutoDL systems, not restricting to NAS.

Here list some possibilities of integrating other factors into TA-GATES: (1) Training-time auxiliary
towers [39] or architectural reparametrization [5] can be seen as introducing additional nodes and
edges in the GCN passes when ¢t < 7', while still using the inference-time architecture when ¢t = T'.
(2) Different data augmentation can be modeled as different conversions of E. (3) Different loss
functions can be modeled as different FBConvert. (4) The influence of training hyper-parameters can
be modeled by incorporating them into appropriate places in the encoding process. For example, the
learning rate schedule is analogous to a schedule of s. In a word, the methodology of TA-GATES (i.e.,
analogous black-box modeling of the NN training process) can empower joint AutoDL systems by
combining information regarding both the inference-time and training-time factors in an intrinsic way.
TA-GATES could be used in joint AutoDL systems to help explore the inference-time architecture
(NAS), the training-time architecture, the data augmentation (AutoAug), the loss function parameters
(AutoLoss), hyper-parameters (HPO), and other factors in the complex DL pipeline.

Enabling TA-GATES to conduct cross-space comparisons. Although TA-GATES can be applied
for different search spaces, it’s still limited to in-space comparisons. This is because TA-GATES
(1) takes the cell DAG instead of the overall architecture DAG as the input and (2) encodes only
the variable choices defined by the space instead of all operation properties. Applying the training-
analogous methodology of TA-GATES to develop a universal cross-space predictor [12] is an
interesting future work, which can bridge the gap between zero-cost predictors (can conduct cross-
space comparisons, non-satisfying predictions) and data-driven but space-specific predictors (cannot
conduct cross-space comparisons, have stronger predictive power).

Acknowledgements
This work was supported by National Natural Science Foundation of China (No. U19B20109,

62171313, 61832007), Beijing National Research Center for Information Science and Technology
(BNRist), Tsinghua EE Xilinx AI Research Fund, and Beijing Innovation Center for Future Chips.

10

References

[1] Mohamed S. Abdelfattah, Abhinav Mehrotra, L.ukasz Dudziak, and Nicholas D. Lane. Zero-
Cost Proxies for Lightweight NAS. In International Conference on Learning Representations
(ICLR), 2021.

[2] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective. In International Conference on Learning
Representations (ICLR), 2020.

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. In IEEE International Conference on Computer
Vision (ICCV), pages 113-123, 2019.

[4] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 702-703, 2020.

[5] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.
Repvgg: Making vgg-style convnets great again. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 13733-13742, 2021.

[6] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of learning curves. In
International Joint Conference on Artificial Intelligence (IJCAI), 2015.

[7] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In International Conference on Learning Representations (ICLR), 2020.

[8] Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. Neural architecture search: A survey.
Journal of Machine Learning Research (JMLR), 20(55):1-21, 2019.

[9] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1487-1495,
2017.

[10] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen, Peilin Zhao, and Junzhou Huang. Nat:
Neural architecture transformer for accurate and compact architectures. In Annual Conference
on Neural Information Processing Systems (NeurlPS), pages 735-747, 2019.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

[12] Daniel Hesslow and Iacopo Poli. Contrastive embeddings for neural architectures. arXiv
preprint arXiv:2102.04208, 2021.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Annual Conference on Neural Information Processing Systems
(NIPS), volume 25, 2012.

[16] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning

based on connection sensitivity. In International Conference on Learning Representations
(ICLR), 2019.

11

[17] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu, Junjie Yan, and Wanli Ouyang.
Am-Ifs: Automl for loss function search. In IEEE International Conference on Computer Vision
(ICCV), pages 8410-8419, 2019.

[18] Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, and Jifeng Dai. Auto seg-
loss: Searching metric surrogates for semantic segmentation. In International Conference on
Learning Representations (ICLR), 2020.

[19] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-nas: A zero-shot nas for high-performance deep image recognition. In IEEE International
Conference on Computer Vision (ICCV), pages 347-356, 2021.

[20] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
European Conference on Computer Vision (ECCV), pages 19-34, 2018.

[21] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[22] Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised
neural architecture search. Annual Conference on Neural Information Processing Systems
(NeurIPS), 33:10547-10557, 2020.

[23] Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture opti-
mization. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
7816-7827. Curran Associates, Inc., 2018.

[24] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search
without training. In International Conference on Machine Learning (ICML), 2021.

[25] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Annual Conference on Neural Information Processing
Systems (NIPS), pages 107-115, 1989.

[26] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang,
and Yu Wang. Evaluating efficient performance estimators of neural architectures. In Annual
Conference on Neural Information Processing Systems (NeurlPS), volume 34, pages 12265—
12277, 2021.

[27] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. In European Conference on
Computer Vision (ECCV), pages 189-204, 2020.

[28] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yong Guo, Peilin Zhao, Junzhou Huang, and
Mingkui Tan. Disturbance-immune weight sharing for neural architecture search. Neural
Networks, 144:553-564, 2021.

[29] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning (ICML), pages
4095-4104. PMLR, 2018.

[30] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollar. On network
design spaces for visual recognition. In IEEE International Conference on Computer Vision
(ICCV), pages 1882-1890, 2019.

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In AAAI Conference on Artificial Intelligence, volume 33,
pages 4780-4789, 2019.

[32] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning

algorithms from scratch. In International Conference on Machine Learning (ICML), pages
8007-8019. PMLR, 2020.

12

[33] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural ar-
chitecture search via bayesian optimisation with weisfeiler-lehman kernels. In International
Conference on Learning Representations (ICLR), 2021.

[34] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall’s tau. Journal of
the American Statistical Association, 63(324):1379-1389, 1968.

[35] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. Annual Conference
on Neural Information Processing Systems (NeurIPS), 33, 2020.

[36] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter.
Nas-bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777, 2020.

[37] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[38] Jasper Snoek, Hugo Larohelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Annual Conference on Neural Information Processing Systems (NIPS), 25,
2012.

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-9, 2015.

[40] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural net-
works without any data by iteratively conserving synaptic flow. Annual Conference on Neural
Information Processing Systems (NeurlPS), 33, 2020.

[41] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR),
2020.

[42] Linnan Wang, Yiyang Zhao, Yuu Jinnai, and Rodrigo Fonseca. Alphax: exploring neu-
ral architectures with deep neural networks and monte carlo tree search. arXiv preprint
arXiv:1805.07440, 2018.

[43] Colin White, Willie Neiswanger, Sam Nolen, and Yash Savani. A study on encodings for neural
architecture search. Annual Conference on Neural Information Processing Systems (NeurIPS),
33:20309-20319, 2020.

[44] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful are performance
predictors in neural architecture search? Annual Conference on Neural Information Processing
Systems (NeurIPS), 34:28454-28469, 2021.

[45] Wikipedia contributors. Line graph — Wikipedia, the free encyclopedia, 2004. [Online;
accessed 22-July-2004].

[46] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Lanfei Wang, Zhengsu Chen,
An Xiao, Jianlong Chang, Xiaopeng Zhang, and Qi Tian. Weight-sharing neural architecture
search: A battle to shrink the optimization gap. ACM Computing Surveys, 54(9), oct 2021.

[47] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling Jui, Chunjing Xu, and Chang Xu.
Renas: Relativistic evaluation of neural architecture search. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4411-4420, 2021.

[48] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations (ICLR), 2019.

[49] Shen Yan, Kaigiang Song, Fei Liu, and Mi Zhang. Cate: Computation-aware neural architecture
encoding with transformers. In International Conference on Machine Learning (ICML), pages
11670-11681. PMLR, 2021.

13

[50] Shen Yan, Colin White, Yash Savani, and Frank Hutter. Nas-bench-x11 and the power of
learning curves. Annual Conference on Neural Information Processing Systems (NeurlPS), 34,
2021.

[51] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In International Conference
on Machine Learning (ICML), pages 7105-7114. PMLR, 2019.

[52] Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shotl: Benchmarking and dissecting
one-shot neural architecture search. In International Conference on Learning Representations
(ICLR), 2019.

[53] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. In International Conference on Learning Representations (ICLR), 2019.

[54] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: a varia-
tional autoencoder for directed acyclic graphs. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 1588—1600, 2019.

[55] Zixuan Zhou, Xuefei Ning, Yi Cai, Jiashu Han, Yiping Deng, Yuhan Dong, Huazhong Yang,
and Yu Wang. Close: Curriculum learning on the sharing extent towards better one-shot nas. In
European Conference on Computer Vision (ECCV), 2022.

[56] Marc-André Zoller and Marco F Huber. Benchmark and survey of automated machine learning
frameworks. Journal of Artificial Intelligence Research, 70:409-472, 2021.

[57] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017.

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697-8710, 2018.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUg, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	Training-Analogous GATES
	Iterative Encoding in Analogy to Iterative Parameter Training
	Symmetry Breaking in Analogy to Random Parameter Initialization
	Anytime Performance Training and Prediction
	Summary

	Experiments
	Comparison with Baseline Encoders
	Comparison of Symmetry-Breaking Techniques
	Anytime Performance Training and Prediction

	Conclusions
	Broader Applications, Limitations, and Future Directions
	Implementation Details and Discussions on TA-GATES
	Implementation of the Information Flow Based GCN
	Implementation of TA-GATES
	Training of TA-GATES

	Experimental Settings
	Benchmark Split and Experiment Seeds
	Training of Encoders
	Construction of Encoders

	Additional Experiments and Results
	More Comparison Results with Baseline Encoders
	Architectures Search Using TA-GATES
	Ablation Studies
	Inspection Into Different Time Steps of TA-GATES
	Inspection Into the Anytime Performance Prediction Task
	Additional Results of Anytime Training And Prediction - Regression Measures and the ENAS Search Space

