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Abstract. All-in-one image restoration aims to handle multiple degra-
dation types using one model. This paper proposes a simple pipeline
for all-in-one blind image restoration to Restore Anything with Masks
(RAM). We focus on the image content by utilizing Mask Image Mod-
eling to extract intrinsic image information rather than distinguishing
degradation types like other methods. Our pipeline consists of two stages:
masked image pre-training and fine-tuning with mask attribute conduc-
tance. We design a straightforward masking pre-training approach specif-
ically tailored for all-in-one image restoration. This approach enhances
networks to prioritize the extraction of image content priors from various
degradations, resulting in a more balanced performance across different
restoration tasks and achieving stronger overall results. To bridge the
gap of input integrity while preserving learned image priors as much as
possible, we selectively fine-tuned a small portion of the layers. Specifi-
cally, the importance of each layer is ranked by the proposed Mask At-
tribute Conductance (MLAC), and the layers with higher contributions
are selected for finetuning. Extensive experiments demonstrate that our
method achieves state-of-the-art performance. Our code and model will
be released at |https://github.com/Dragonisss/RAM.

Keywords: Image Restoration - All-in-One - Mask Image Modeling

1 Introduction

Image restoration involves the restoration of low-quality images affected by var-
ious degradation, typically arising from adverse environmental conditions (e.g.,
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rain, haze, low-light), hardware-related issues (e.g., noise and blur), and post-
processing artifacts (e.g., JPEG compression). Image restoration serves not only
to enhance the visual appeal of images but also contributes to practical applica-
tion scenarios such as autonomous driving and surveillance.

Modern techniques in this field
mainly focus on learning fixed patterns

formed during the degradation process, AirNet WTAPE = PromptlR ® RAM-PromptIR
Dehaze

i.e., degradation priors. Some works 29|
30L61] utilize task-specific priors to solve
a certain degradation problem, while an- Derain Dejpeg
other research line [3128[39,/48| 56| tries
to design a general network architecture
that can effectively learn each degra-
dation pattern. Nevertheless, the above
methods only enable the network to learn
a single degradation, resulting in an im-
balanced situation when dealing with
multiple types of degradation.

Denoise LLIE

Motion-Deblur Kernel-Deblur

To tackle the problem stated above,
all-in-one methods have emerged, aim- Fig.1: Our RAM achieves more bal-
ing to handle multiple degradations us- anced and more powerful performance
ing one model. Most of these approaches than the state-of-the-art methods (Air-
tend to utilize explicit priors (e.g., Air- Net 21, TAPE !31]’ PromptIR 42]) for
Net [21]) or introduce an extra module all-in-one blind image restoration.
(e.g., PromptIR [42]) to discern image
degradation patterns, thereby assisting
the model in performing the restoration. However, these methods place their
emphasis on distinguishing degradation types in images rather than the image
content, leading to lower scalability and fuzzy decision boundaries when more
degradation types are involved. We argue that the essence of image restoration is
to extract intrinsic image information from corrupted images rather than elim-
inate degradation patterns, i.e., learning image prior rather than degradation
prior. It is worth noting that TAPE [31] similarly suggests that understand-
ing normal image nature aids restoration by introducing a natural image prior.
Nevertheless, TAPE utilizes the model output as the optimization target, which
causes the model to amplify its own errors and learn the image prior with bias.

In this paper, we focus on tackling how to extract intrinsic image in-
formation from diverse corrupted images. Some attempts [2}/6] by Mask
Image Modeling (MIM) in low-level vision have caught our attention. As a pre-
training strategy, MIM has been widely validated for its effectiveness in high-level
tasks, thanks to its generic representation of images. Simultaneously, the model
also learns the distribution of natural images, which encompasses the intrinsic
information we aim to extract from the images. Built on MIM, we propose a sim-
ple pipeline for all-in-one blind image restoration that Restores Anything with
Masks (RAM), which includes two stages: the mask pre-training stage and the
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fine-tuning stage with Mask Attribute Conductance (MAC). In the pre-training
stage, we randomly mask corrupted images at the pixel-wise level and force the
network to predict the clear one corresponding to the masked pixels, extract-
ing inherent image information from corrupted images. In the fine-tuning stage,
we focus on overcoming the input integrity gap caused by changing masked in-
put during pre-training into the whole image during inference while preserving
learned prior as much as possible.

Specifically, we first evaluated the importance of each network layer in ad-
dressing this gap by the proposed MAC. Following that, we chose the top k%
most critical layers for fine-tuning while keeping the rest of the network lay-
ers frozen. We demonstrate that after a brief fine-tuning period (even if only
10% layers are tuned), the model can achieve a highly satisfactory performance
level, surpassing models trained using traditional pair-wise training. Addition-
ally, our pipeline can be plug-and-play used in any network without introducing
additional computational overhead.

The contributions of this work are as follows:

— We discuss the challenge of adopting MIM in low-level vision and propose a
MIM-based pre-training strategy tailored to all-in-one blind image restora-
tion, which allows the restoration networks to effectively learn inherent image
information while guaranteeing reconstruction results.

— We proposed Mask Attribute Conductance to evaluate the importance of
each layer in addressing the input integrity gap so that a very small portion
(e.g. 10%) of critical layers are tuned to bridge this gap while preserving the
image prior learned by MIM.

— Our proposed RAM provides a fresh perspective to achieve more balanced
and powerful all-in-one blind image restoration, which focuses on extract-
ing inherent image information from corrupted images. Our pipeline can
be applied to any image restoration network without introducing additional
computational overhead.

2 Related Work

2.1 Image Restoration for Multi Degradations

While neural networks have demonstrated impressive performance in single degra-
dation image restoration |[8}|12}|13,17,122,23,/29,/30L[50%|61], recent works have
shifted their focus towards addressing the more challenging domain of multi-
degradation image restoration. A group of methods [3,/28,/39,48,/56] aims at de-
signing a general architecture that can effectively learn each degradation pattern.
SwinIR [28] employs a window attention mechanism to convert global attention
into a localized approach, effectively reducing computational overhead. In addi-
tion, the U-shaped transformer-based methods [48}/56| are employed to extract
multi-scale features and reduce computational overhead. However, these meth-
ods have to train individually on each restoration task. Several methods |1}24]
leverage multiple input and output heads to empower the network to restore
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Fig. 2: The illumination of our overall pipeline. 1) Pre-training the model with mask
image pre-training method tailored to low-level vision. We randomly mask degraded
images at the pixel level with a 50% masking ratio and reconstruct the clean images.
2) The Fine-tuning stage is followed to overcome the input integrity gap caused by
changing masked input during pre-training into the whole image during inference. We
analyze the importance of each network layer for resolving the input integrity gap
according to the proposed MAC and rank them in descending order. The top k% of
network layers are selected for fine-tuning on the complete image.

various types of degraded images. Nonetheless, this kind of approach may lead
to the diminished scalability of the model. Recently, several subsequent meth-
ods have been proposed to employ a unified network
to address multiple restoration issues. Most of these methods put emphasis on
learning how to distinguish different types of degradations and restore corrupted
images. Typically, AirNet first proposed an all-in-one image restoration task.
The method initially pretrains a degradation classifier based on contrastive learn-
ing and subsequently utilizes it to assist in all-in-one image restoration. Promp-
tIR has introduced a learnable prompt-based module. Instead of constraining
the degradation category, it enables the model to autonomously learn features
that are advantageous to its performance by using an adaptive prompt. Our
RAM takes a fresh perspective that focuses on extracting common content in-
formation from corrupted images, without any extra design to distinguish degra-
dations, which helps us achieve balance and powerful performance when more
degradation types are taken into consideration.

2.2 Mask Image Modeling

Inspired by Mask Language Modeling [18[43], Mask Image Modeling (MIM) |14,
is introduced as a pretraining approach to learn general representations in
high-level vision. MAE effectively utilizes MIM for predicting hidden tokens,
demonstrating strong performance and generalization across various downstream
tasks. SimMIM proposed a general masked image modeling method based
on Swin-ViT . Painter [47] unifies multiple tasks under image-to-image trans-
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lation and leverages MIM pretraining. In recent years, there have been efforts to
incorporate MIM into the realm of low-level vision to enhance model generaliza-
tion. Among them, [2] and [6] are the most closely aligned with our focus. [2] em-
ploys the MIM model to enhance the model’s generalization for denoising tasks
but has not explored its potential in multi-task scenarios. [6] utilizes MIM for
pre-training the model encoder to introduce generative prior and subsequently
employs the decoder for restoration. However, it does not fully harness the po-
tential of MIM. Our proposed RAM utilizes MIM to unify the optimization
objective for various image restoration tasks into reconstructing intrinsic image
information. This allows the network to learn restoration functions more bal-
anced and effectively. Moreover, to preserve the image priors learned by MIM,
we designed a fine-tuning strategy based on MAC analysis (in Sec. . This en-
ables us to achieve comparable performance by fine-tuning only a small portion
(e.g. 10%) of layers, fully tapping into the potential of MIM.

2.3 Gradient-based Attribution

Gradient-based attribution methods [5,{11,44H46./51] are often used to clarify how
hidden units (or inputs) impact the output of networks. One commonly used ap-
proach is Integrated Gradients (IG) [45./46], which accumulates gradients along a
linear path from the baseline input to the target input in the pixel/feature space.
After that, IntInf [19] and layer conductance [5] alter IG to attribute neuron im-
portance along the same path. In our work, we expect to find the key layers that
can effectively overcome the distribution shift between training data and infer-
ence data. We propose Mask Attribute Conductance (MAC) based on the layer
conductance and accumulated MAC of each layer along the Mask Attribute Path
(MAP). MAC can represent the layer’s importance along the MAP. In this way,
we can fine-tune the top k% critical layers of the pre-trained network, preserving
to a great extent the image priors learned during pretraining.

3 Methodology

In this section, we start with discussing the challenges of using MIM in low-level
vision tasks (Sec. . Following that, we present our pipeline for all-in-one blind
image restoration, which contains two parts: pre-training with MIM (Sec. [3.2))
and fine-tuning with Mask Attribute Conductance (MAC) Analysis (Sec.

3.1 Rethinking MIM in Low-Level Vision

MIM is a process that randomly masks certain parts of an image and extracts
features from the remaining visible parts to reconstruct the entire image. It al-
lows models to acquire a generic representation of images and thus achieve good
pre-training, which is verified in many high-level tasks [14}/52]. Moreover, the
models also learn the distribution of natural images during the image recon-
struction, i.e. MIM pre-training. This incidental acquisition of prior knowledge
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Fig. 3: Mask Image Modeling reconstruction with different patch sizes. We pre-trained
with different patch sizes and visualized the mask inputs (left), and the corresponding
MIM reconstructions (right).

is instrumental in tasks like image restoration. Despite these advantages, apply-
ing MIM in pretraining a model for low-level vision tasks is still under-explored,
primarily due to the challenges that must be addressed in the process.

Firstly, the main purpose of vanilla MIM is not high-quality reconstruction
but good feature extraction for high-level tasks. Therefore, it masks a wider range
of images to gather semantic information but not pixel-level content, reflected
in token-level masking and a high mask ratio. CSFormer [6] directly adopts
this strategy on low-level vision pre-training. However, some studies verify that
semantic information is not as important for image restoration as it is in pattern
recognition tasks . Moreover, high-degree masking leads to producing
detail-deficient results, as shown in Fig. [3] which is harmful to low-level tasks.

Secondly, the training objective of MIM is to reconstruct the masked input
images, so it can only produce results with the same domain as the input image.
However, we hope the model gains the ability to bridge low-quality domain to
high-quality domain, i.e. recover clean content from degraded input. Therefore, it
is necessary to introduce paired data when pre-training image restoration models
by MIM (see the experiment in Sec. for details). Chen et al. [2] demonstrate
that pair-wise MIM training enhances the generalization performance over dif-
ferent types of noisy images. In this paper, we take a step forward to explore the
effectiveness of MIM on multiple degradations with larger variance.

3.2 Pretraining with MIM

Based on the above analysis, we design a MIM pre-training paradigm tailored
for low-level vision.

Masking. During the pre-training stage, we randomly mask the pixels of de-
graded images (mask images in a 1 x 1 patch size) with a 50% mask ratio. We
found that fine-grained masked patches and balanced mask ratio are beneficial
to image restoration, which can be demonstrated in Sec. [£.3]

Besides, since our MIM pre-training has a similar target to subsequent low-
level tasks, we do not need to change the decoder like MAE does but just
fine-tune it.
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Fig. 4: The effect of MIM reconstruction with different input integrity on kernel de-
blurring (orange border) and denoising (blue border). We also visualize the color dis-
tributions of reconstructions in various tasks above. It shows that the distribution of
the reconstruction results obtained using the twin-masks method as input is closer to
the real images (ground truth) compared to the results obtained using the whole input.

Reconstruction target. Following the Bert and MAE , we choose L1
loss to supervise the masked part. The training objective can be written as:

arg;ninE[llM(I — f(M(1a), 0))Il], (1)

where {I, I} represents a pair of clean image and degraded image, f(-, ) denotes
a network with parameters 6, M(-) is a random binary masking operation and

M() =1=M().

3.3 Finetuning with Mask Attribute Conductance Analysis

Observation. During pre-training, the network learns rich content priors. How-
ever, the incompleteness of the masked input prevents the direct use of the
pre-trained model for inference, as it would result in a distribution shift in the
outputs. As shown in Fig. [ We start by feeding the entire image into a pre-
trained model, leading to a color-distorted result. Next, we use a pair of com-
plementary masks, referred to as twin-masks, to individually mask the image.
Subsequently, we input both of these complementarily masked images into the
network. By combining the pixel values predicted by each image, we generate
a higher-quality image. This observation indicates that the hindrance to using
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mask pre-trained model directly for inference lies in input incompleteness rather
than the model’s inability to learn the restoration function.

Building upon this insight, we explore the possibility of minimizing the in-
fluence of disparities in data input formats via model fine-tuning. To maintain
the learned priors, it is essential to retain pre-trained parameters as extensively
as possible while employing the fewest but most effective layers for fine-tuning.
To tackle this, we introduce the concept of mask attribution conductance, which
quantifies the importance of each layer concerning the fine-tuning objective. We
then identify the top-k% most critical layers for fine-tuning.

Preliminary. Before giving the definition of Mask Attribute Conductance (MAC),
we briefly recall the definition of integrate gradient [45] (IG) and neuron con-
ductance [5] (Cond). Considering a linear path v(a) = 2’ 4+ a(x — z’) from base
input &’ to target input x, we can attribute output change F(x) — F'(2') to i-th
dimension of input/feature z; (e.g. a pixel) by calculating its integrate gradient,
which formally as below:

1Gi(2) = (s — ) - / OF (2/ +80;E”3 =) 4o 2)

0

We can also attribute output change to a specific neuron y by improving IG,
which involves calculating the conductance. The conductance [5]| of the hidden
neuron y along the v(«) is:

LOF(2' + a(z — ') Oy
Yy — A .
Cond?(z) := E (x; — ;) /0 3y oz, da

N YOF(y(e) Oy
= ;/0 787; -%da,

Note that (z; — 2}) = W Certainly, we can broaden Eq. (3|) to com-

K3
pute conductance when integrating along any given path « : [s,t] — P:

OF(Xi(a)) Oy
Y(p) - .
GeneralCond” () : EZ / da, (4)

(3)

where X : R — R™ is the function of the path from z’ to z, which satisfies
X(s) =a', X(t) = . [s,t] represent the domain of the path function X."
Finetuning with MAC. To find effective layers to finetune, we propose Mask
Attribute Conductance (MAC) to evaluate how effective each layer is in over-
coming the gap of input integrity. Considering such a nonlinear path « : [0,1] —
P, from zero input z’ to whole input z, which path function X™ satisfies:

T, a <o

X%”(a;m){ ' ()

x;, else

where i refers to the index of pixels, a; € (0,1] is a set of parameters that
indicate when each pixel gets masked. We define this path as a Mask Attribute
Path (MAP). Apparently, X" (0) = 2’ and X™(1) = x.
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Fig. 5: Illumination of (a) X{" in Eq. and (b) X/™ in Eq. @

However, X™ is not differentiable, making it an invalid attribute path func-
tion. To solve this problem, we use a group of sigmoid-like functions X™ to
approximate X™:

(6)

We can see that X™ is very close to X™ when § is suﬂimently large (as
depicted in Fig. |5 ' And for each X , it will change sharply from z} to x; when
« is in the neighborhood of «;.

Here, we can give a definition of MAC as below:

MACY (2 Z/ 8F (@) ayd
dy Oa
NZ/ OF (X" (a;0)) Oy do.
o

In fact, a partial path is also available to attribute from a masked input .,
with any mask ratio r to whole input x:

MACY(z Z / OF(XMasas) Oy, (8)

(7)

Oa

In practice, we use N-steps discretization to approximate the integral form
of Eq. 7 which follows [44]:

MACY zzf’F (X7 (s 0) .

1M (j + ].)T' 1 j?"
H(Fy (X)) = B ()))-
We compute the MAC of each layer of pre-trained networks, rank them in

descending order based on their MAC values, and pick top-k% layers for fine-
tuning. The networks are initialized by pre-trained weight and only top-k% layers
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Table 1: Quantitative comparison on seven challenging image restoration tasks, in-
cluding dehazing, deraining, denoising, motion deblurring, low-light image enhance-
ment (LLIE), kernel deblurring, and JPEG artifact removal. boldface and underlined
indicate the best and second-best results, respectively.

Method SOTS Rain13k-Test BSD68 GoPro ‘ LoL LSDIR-Blur [26] LSDIR-Jpeg Average
PSNR1/SSIMT PSNR1/SSIMT PSNRt/SSIMt PSNR1/SSIMT PSNR1/SSIMt PSNR1/SSIMT PSNR1/SSINT |PSNR1/SSIMT
Restormer [56] | 22.80/0.9172  27.05/0.8469  30.95/0.8657 27.46/0.8407 23.65/0.8458  19.60/0.3658  30.46/0.9141 | 26.01/0.8007
MPRNet [39] 25.36/0.8068  29.83/0.8317  25.90/0.7949 22.29/0.8170  25.68/0.8281  28.96/0.8865 | 26.18/0.8445
NAFNet 24.65/0.7877  30.37/0.8540 25.53/0.7909  21.50/0.8104 09/0.8955 | 26.57/0.8566
DL [7] . 19.56/0.6508  16.15/0.5861  17.63/0.5862  19.26/0.7777 X 19.55/0.6965 | 18.75/0.6877
TAPE 25.14/0.9319  23.66/0.7818  30.11/0.8354 25.97/0.7962 18.95/0.7632  24.26/0.7654  29.28/0.8965 | 25.34/0.8243
AirNet 21.66/0.8366  20.21/0.6402  27.99/0.7250  23.36/0.7503 16.65/0.6708  23.84/0.7358  24.36/0.8020 | 22.58/0.7372
SwinlR 27.29/0.9622  25.32/0.8258  30.65/0.8540 26.61/0.8125 18.66/0.8048  27.82/0.8839  30.13/0.9071 | 26.64/0.8643
RAM-SwinIR | 28.47/0.9680  26.31/0.8486  30.83/0.8611 26.89/0.8200 21.62/0.8291  26.66/0.8514  30.22/0.9096 | 27.28/0.8698
PromptIR 28.70/0.9659  27.46/0.8585  30.84/0.8625 27.71/0.8565 21.19/0.8356 31.01/0.9385  30.30/0.9117 | 28.17/0.8899
RAM-PromptIR|29.64/0.9695 28.47/0.8751 30.86/0.8624 28.02/0.8592 24.46/0.8581 20.57/0.9179  30.33/0.9119 |28.76/0.8935

Restormer SwinIR RAM-SwinIR (Ours)
DL TAPE AirNet PromptIR RAM-PromptIR(Ours) GT

Fig. 6: Dehaze visual comparison on SOTS dataset. Zoom in for details.

will be fine-tuned. More implementation details can be found in the supplemen-
tary material.

4 Experiment

4.1 Experiments Settings

Datasets and Metrics. We combine datasets from various restoration tasks
to form the training set, following . For high-cost tasks that degradations
are difficult to synthesize, we leverage existing paired datasets, including RE-
SIDE for dehazing, Rain13k @, for deraining, GoPro for
motion deblurring, and LOL-v2 for low-light image enhancement (LLIE). For
low-cost tasks that degradations are easy to synthesize (e.g. noise, kernel blur,
and JPEG artifact), we generate corrupted images on the LSDIR dataset
during the training process, which involves generating Gaussian noise with ran-
dom variation o € (0, 50], creating gaussian blurred images with a blur kernel
of size k = 15 and random o € [0.1,3.1], and introducing JPEG artifacts with a
random quality parameter ¢ € [20, 90].

For evaluation, we use SOTS-outdoor for dehazing, Rain13k-Test (the
combination of Rain100L , Rain100H Test100 , Test1200 and
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Table 2: Quantitative Gaussian denoising results at different noise levels on BSD68
and Urbanl00 datasets in terms of PSNR.

Method BSD68 38| Urban100 |15]
=150 =250 =50 Averagc‘a =15 0 = 25 0 = 50 Average
NAFNet |3] 33.22 30.59 27.30 30.37 | 32.67 30.21 26.97 29.92

MPRNet [39] 32.73 30.11 26.65 29.83 | 32.06 29.46 25.77 29.10
Restormer [56| 33.79 31.17 27.90 30.95 | 33.83 31.40 27.99 31.07

DL |7] 16.04 16.20 16.19 16.15 | 19.17 19.11 18.47 18.92
TAPE |31] 33.10 30.37 26.86 30.11 | 32.59 29.93 26.19 29.57
AirNet |21] 31.63 28.83 23.52 27.99 | 29.79 26.90 21.35 26.01
SwinIR 28] 33.53 30.89 27.54 30.65 | 33.50 30.99 27.37 30.62

RAM-SwinIR 33.65 31.06 27.77 30.82 | 33.82 31.43 27.94 31.07
performance gains|(10.12) (10.17) (10.23) (10.17) |(10.32) (10.44) (10.57) (10.45)

PromptIR [42] 33.67 31.06 27.80 30.84 | 33.56 31.08 27.64 30.76
RAM-PromptIR | 33.70 31.08 27.79 30.86 | 33.70 31.30 27.92 30.97
performance gains|(10.03) (10.02) ({0.01) (10.02) [(10.14) (10.22) (10.28) (10.21)

Test2800 [10]) for deraining, GoPro for motion deblurring, LOL [49] for low-
light enhancement, BSD68 [38] for denoising, LSDIR-val for kernel deblurring
and jpeg artifact removal. Furthermore, We conducted evaluations including
denoising tests with variances of 15, 25, and 50, deblurring tests at k = 15 and
o = 2.0, and JPEG artifact removal tests at g = 50.

Implementation Details. We apply our proposed RAM to SwinIR [28| and
PromptIR [42]. The input size for RAM-SwinIR is 64, while for RAM-PromptIR
it is 128. During the pre-training phase, we use the Adam optimizer to train
RAM-SwinIR and RAM-PromptIR for 300 epochs, with the learning rate de-
caying from le-4 to 6e-5 following a cosine schedule. In the fine-tuning phase, we
use the Adam optimizer to fine-tune the network layers obtained from the MAC
analysis of RAM-SwinIR and RAM-PromptIR for 40 epochs, with the learn-
ing rate decaying from 2e-4 to le-7 following a cosine schedule. The batch sizes
for RAM-SwinIR and RAM-PromptIR during the pre-training and fine-tuning
phases are (12,4) and (4,4), respectively.

4.2 Comparisons

To validate the gain capability and effectiveness of our RAM, we apply the pro-
posed RAM to SwinIR (a general image restoration method) and PromptIR
(an all-in-one image restoration method). Four general architecture-based im-
age restoration methods [3}28,/39,56] and four all-in-one methods [7,/21}/31}/42]
are considered for comparison. We ensure that the number of supervised pixels
employed by all other methods equals that used during the pre-training stage.
As illustrated in Tab. [1} our approach achieves the best or comparable per-
formance on each task. On the average score across seven different tasks, our
method with PromptIR [42]| achieves 0.59dB performance gains compared to
the second-best algorithm. Besides, the SwinlR equipped with RAM also yields
2.40% improvement on PSNR. Specifically, our RAM has significant benefits
for dehazing and low-light enhancement. Tab. [2 shows the Quantitative denois-
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DL  TAPE AirNet PromptIR RAM-PromptIR(Ours) GT

Fig. 8: Motion deblur visual comparison on GoPro dataset. Zoom in for details.

ing result at different noise levels. Both RAM-SwinIR and RAM-PromptIR get
higher performance than the origin versions.

Fig. [6}Fig. show the qualitative results of various methods on different
datasets. In Fig. @ our method achieves better dehazing effects (right region)
and exposure correction (sky). In the deraining task (Fig.[7} our method better
removes rain streaks and restores textures in the occluded regions. In terms of
denoising (Fig. E[) and deblurring (Fig. , we achieve clearer results with fewer
artifacts. We also demonstrate better color correction (the purple blanket on the
left) and exposure correction in low-light image enhancement tasks (Fig. . For
simplicity, the qualitative effects of kernel deblurring and JPEG artifact removal
will be presented in the supplementary material.

4.3 Ablation Study

In this section, we conduct an ablative study on the masking ratio, mask patch
size, pre-training strategy, fine-tuning strategy, and fine-tuning ratio to demon-
strate the effectiveness of our MIM pre-training and fine-tuning strategy.

Table 3: Ablative results on masking ratios.

Masking ratio ‘ 20% 40% 50% 60% 80%

PSNR?1 27.28 27.21 27.28 27.26 27.08
SSIMT 0.8663 0.8683 0.8698 0.8694 0.8642




Restore Anything with Masks 13

Table 5: Ablative results of different

Table 4: Ablative results of different . .
fine-tuning strategies.

pre-training strategies.

RAM-SwinlR PSNR SSIM
RAM-SwinlR | PSNRT  SSIMt Wi | T i
i random 26.86 0.8535
pre-trained w/ gt 26.62  0.8580
‘ . IG [45] 26.92 0.8554
pre-trained w/ paired data | 27.28  0.8698
MAC (Ours) 27.28 0.8698

Patch size & masking ratio are two essential hyper-parameters that deter-

mine the continuity and area of the masking of an image. In high-level tasks,

MAE |14] masks 75% of an image with 16 x 16 patch size. However, it can corrupt
the local details of images, which is not suitable for image restoration.

We first find the best

choice of patch size by pre-

training SwinIR [28] on 1 x 1,

Table 6: Ablative results in terms of the 4 x 4, and 8 x 8, as shown

PSNR on fine-tuning ratios. We compared jj Fig. @ Since the atten-

the performance in restoring images with unseen

noises (Out-of-Distribution Denoising) and known

degraded images (In-Distribution). In this case, the

settings of In-Distribution are the same as Tab.

tion layers of SwinlR treat an
8 x 8 patch as a token, the
4 x 4 pre-training produces
heavy artifacts. Besides, the

Out-of-Distribution Denoising In-Distribution results generated by 8% 8 pre-

Method Possion Pepper Speckle Average‘ Average training are highly missing de-
SwinIR [28] 12.83 10.00 20.86 14.56 26.64 tails, e.g. the texture of the
RAM-SwinIR oy | 13.67 19.23 21.07 17.99 27.28 polar bear’s paws. In contrast
RAM-SwinTRogy | 13.27 10.09 20.68 17.68 27.35 : . ’
RAM-SwinlRsgy | 12.75 1651 20.36  16.54 27.38 the model pre-trained with 1 x
RAM-SwinTRyopy;| 12.47 1531 20.01 15.93 27.54 1 patch size, which is also our

final choice, achieves a satis-
factory reconstruction and re-
moves most of the rain streaks.
Then, we adjust the masking ratio from 20% to 80%. As we can see in Tab.
the model pre-trained with 50% achieves the highest performance. Moreover, the
performance is significantly dropped from 27.28dB to 27.08dB in terms of PSNR
when we continue to increase the masking ratio, which also demonstrates our
opinion that a high masking ratio is harmful to image restoration.
Pre-trained with paired data. Tab. 4| compares the results of using paired
data for mask image pretraining (our pretraining strategy) with those using only
ground truth for mask image pretraining. It shows that pre-trained with paired
data is necessary for our RAM. Pretraining the model on high-quality images
does not effectively enable learning for image restoration tasks. It still requires
paired data to guide the model in the learning process.
Fine-tuning strategy. To verify the effectiveness of our fine-tuning strategy, we
fine-tune 10% of the network layers selected through MAC analysis, IG [45], and
uniform sampling, respectively, and the results are shown in Tab. [5| Compared
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Fig. 9: Denoising visual comparison on CBSD68 dataset. Zoom in for details.
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Fig. 10: LLIE visual comparison on LOL dataset. Zoom in for details.

to IG, we have improved by 0.36 dB in PSNR and 1.6% in SSIM, which indicates
that our selection strategy is superior to IG.

Fine-tune ratio. We conduct the ablation experiment to compare the network’s
performances with different fine-tune ratios in Tab. [f] We found that using our
finetune strategy, a pre-trained network could achieve comparable performance
by fine-tuning only a few layers (e.g. 10%). At the same time, we need to fine-
tune almost all network parameters to get the best performance on given tasks.
Performance vs Generalization capability. We found a trade-off between
in-distribution performance and out-of-distribution generalization in Tab. [5] We
found that the more layers fine-tuned, the less generalization capability to tackle
the out-of-distribution tasks. With our fine-tuning method, the model can have
stronger generalization while maintaining comparable performance.

5 Conclusion

This paper presents RAM, a pipeline for extracting intrinsic image information
from corrupted images using Mask Image Modeling (MIM) pre-training. We de-
sign a MIM pre-training strategy tailored for image restoration and a fine-tuning
algorithm to handle the transition from masked to complete images. By analyz-
ing layer importance with MAC, we achieve high performance with minimal
parameter tuning. Extensive experiments demonstrate that our RAM can bring
boosts to various architectures and achieve state-of-the-art performance, moving
towards a unified solution for all-in-one image restoration.
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A Addtional Details

This section primarily provides additional implementation details not covered in
the main text, including low-cost degradation synthesis (in Appendix [A.1]) and
details of mask attribute conductance (MAC) analysis (in Appendix [A.2)).

A.1 Low-Cost degradation synthesis

Low-cost degradation refers to degradations that can be easily synthesized. In
our experimental setup, three types of low-cost degradations were involved: noise,
kernel blur, and JPEG artifact. We obtained paired data for these three degra-
dations through online synthesis during the training time. Here, we provide ad-
ditional details on the specific synthesis process for each type of degradation.
Gaussian Noise. We randomly sample gaussian noise N from the gaussian
distribution A/ (0, 02). Subsequently, we add this Gaussian noise N to the original
image I to obtain a noisy image In. To ensure data correctness, we truncate
values that fall outside the data range:

In = Clip(I + N) (1)

Here Clip(+) involves truncating data to the minimum or maximum value when
it falls below the minimum or exceeds the maximum.

Kernel Blur. We employ a gaussian blur approach [16] to synthesize kernel-blur
degradation. By specifying the kernel size k£ and standard deviation o, we obtain

*A part of this work is done during Chu-Jie Qin’s internship at Samsung.
tChongyi Li is the corresponding author.
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Table 1: Quantitative comparison on Rainl13k-Test, which consists of Rain100L ,
Rain100H [53], Test100 [59], Test1200 [58], and Test2800 [10]. Boldface and underlined
indicate the best and second-best results, respectively.

Rain100L Rain100H Test100 Test1200 Test2800 Average
PSNR#/SSIM{ PSNR1/SSIMt PSNR1/SSIM+ PSNR+/SSIM{ PSNR1/SSIMT | PSNR1/SSIMt

NAFNet 25.83/0.8509  19.02/0.6141  22.46/0.7729  27.90/0.8383  28.02/0.8624 | 24.65/0.7877

Method

MPRNet 25.34/0.8381  21.92/0.7062 22.51/0.7742  28.24/0.8383  28.78/0.8770 | 25.36/0.8068
Restormer [56 28.49/0.8887 25.98/0.8326 22.58/0.7598  28.13/0.8464  30.06/0.9069 | 27.05/0.8469
DL 20.59/0.7453  13.62/0.3649  18.79/0.6251  21.84/0.7474  22.93/0.7712 | 19.56/0.6508
TAPE 23.67/0.8135  17.22/0.6135  22.22/0.7750  27.56/0.8413  27.61/0.8665 | 23.66/0.7818
AirNet 19.66,/0.6697  14.32/0.3957  20.70/0.6595  23.37/0.7400  23.02/0.7359 | 20.21/0.6402

SwinIR 23.85/0.8216  21.88/0.7579  23.19/0.7903  28.28/0.8608  29.43/0.8983 | 25.32/0.8258
RAM-SwinIR | 26.08/0.8718 23.61/0.7931 23.47/0.8085 28.56/0.8663 29.84/0.9033 | 26.31/0.8486

PromptIR 26.83/0.8609  25.29/0.8181  24.70/0.8254  29.59/0.8746  30.89/0.9135 | 27.46/0.8585
RAM-PromptIR| 28.12/0.8855 26.36/0.8314 25.61/0.8510 30.99,/0.8915 31.29/0.9163 |28.47/0.8751

b By B B B By
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Fig. 1: JPEG artifact removal comparison on LSDIR dataset. Zoom in for details.

a Gaussian blur filter G. Subsequently, convolving this filter with the original
image generates the kernel-blurred image Ip:

Ig=1+G (2)

Here, k is set to 15 and o is randomly sampled in [0.1,3.1] for training.

JPEG Artifact. JPEG artifacts, also known as JPEG compression artifacts,
are blocky distortions that occur when an image is compressed using the lossy
JPEG format. The severity of JPEG artifacts varies based on the quality ¢ of the
JPEG compression applied. Therefore, we randomly applied JPEG compression
to the images at different qualities (sampled in [20,90]), resulting in corrupted
images I;with varying degrees of compression artifacts:

I; = JPEG(I:q) (3)

A.2 Detials of MAC Analysis

MAC analysis is a gradient-based attribution method used to measure the
sensitivity of various network layers to the change from masked input to whole
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Fig. 2: Kernel deblur comparison on LSDIR dataset. Zoom in for details.
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Fig. 3: Derain comparison on Rain13k-Test dataset. Zoom in for details.

input. We believe that network layers more sensitive to this change should un-
dergo fine-tuning. In the main text of our paper, we refer to this sensitivity as
layer importance. Considering that gradient-based attribution methods are sel-
dom applied in the low-level domain, we provide additional explanations and
specific implementation details.

Mask Attribute Path. Methods based on integrated gradient
attribution often require specifying an integration path, which describes the
process of input changes. For example, Integrated Gradients (IG) aims to
attribute the impact of the original input, defining a linear path (which we refer
to y(«) in our paper) from an all-black image to the input image. In this paper,
we aim to attribute the impact of changes from masked input to whole input.
Therefore, we define a differentiable path that gradually reduces the masking
rate along the path, i.e. mask attribute path.
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Fig. 4: Importance of each layer in RAM-SwinIR.

Details of MAC. For ease of explanation, we will copy Eq.(8) from the main
text in our paper as follows:

LR (Xm(a; oy 0
MAC!() ~ Y /1 - (a;(,)) 2% da. )
K3

We adopt the expression from previous gradient-based attribution methods [5)
, describing y as a hidden neuron. This expression might not be sufficiently
clear. Certainly, y can be understood as the intermediate output obtained through
hidden neurons, i.e. F,(z). Therefore, it can be understood as the gradient of
the network through a specific unit, which can be a neuron, a layer, or even an
activation function.
Hyperparameters. From Eq.(6) and Eq.(9) in the paper, the hyperparameters
to be determined include {c;}, 6, 7, and N. In practice, {«; } represents a shuffled
arrangement of H x W equidistant points from [0, 1], where §, r, and N are set
to be 10000, 0.5, and 200 respectively.
Sampling. To more accurately evaluate the MAC of each network layer, we
uniformly sampled several images containing different types of degradation for
attribution analysis. More precisely, for each degradation in our settings, we
randomly sampled 10 images and computed the mean across all samples.
Statistical result for MAC. Fig. [f] displays the heat maps of the importance
of each layer in RAM-SwinIR using IG and MAC methods. Generally, the im-
portance of the layer decreases with depth. In detail, MAC highlights the last
conv layer of each transformer block, while IG doesn’t. It makes sense to adjust
features at the end of each block to solve the distribution shift caused by input
integrity.

B Additional Results

B.1 More quantitative results

Deraining. Tab. [I] shows the detailed results on Rainl3-Test datasets, which
is collected from Rain100L , Rain100H , Test100 , Test1200 , and
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Fig. 5: Dehaze visual comparison on SOTS \ dataset. Zoom in for details.
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Fig. 6: Low light enhancement visual comparison on LOL dataset. Zoom in for
details.

Test2800 . In Tab.1 of the main text of our paper, the results for the Rainl13k-
Test column are also the average values obtained from the results of these five
sub-test sets. It can be observed that SwinIR and PromptIR equipped with our
RAM show performance improvements on almost all the deraining test sets.
Furthermore, they achieved average improvements of 0.99dB and 1.01dB, re-
spectively on these five datasets.

B.2 More qualitative results

Kernel Deblurring & JPEG Artifact Removal. Fig. [I] and Fig. [2| are the
results for JPEG artifact removal and kernel deblurring, respectively, as men-
tioned in the main text. While achieving state-of-the-art performance on all
other degradations, our performance on kernel-blurred images can also reach
comparable performance.

More Results. We provide more visual comparison on several restoration tasks
in Fig.[3] to Fig. [8] The visual results indicate that our model significantly out-
performs other methods in color correction and texture restoration.



Restore Anything with Masks 23

Restormer

RAM-PromptIR(Ours)

AirNet PromptIR

Fig. 7: Motion Deblur visual comparison on GoPro dataset. Zoom in for details.
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Fig. 8: Denoising visual comparison on CBSD68 dataset. Zoom in for details.
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