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Abstract

Multiple Sequence Alignments (MSAs) provide fundamental information about
protein evolutionary trajectories and play crucial roles in downstream tasks such as
augmentation and family-based design . However, constructing high-quality MSAs
requires significant computational resources to query natural protein databases,
and traditional techniques fail to provide relevant data for proteins with limited
evolutionary information. While deep learning approaches have shown promise
in MSA construction and augmentation, they fail to capture rich distributional
information while preserving permutation invariance. MSAFlow addresses these
limitations using a Statistical Flow Matching model conditioned on compressed
latent MSA representations to generate sequences that would likely belong to the
target MSA. This approach captures distributional information while augmenting
shallow MSAs and maintaining permutation invariance. Experiments confirm that
MSAFlow generates MSAs with performance comparable to traditional methods
on family-based design tasks. The model outperforms existing machine learning
augmentation tools while achieving very low inference time and memory efficiency
despite being lightweight and trained on smaller datasets. MSAFlow enables
family-based protein design for enzymes and synthetic MSA generation through
latent diffusion. Extensive ablation studies validate the effectiveness of model
design components. Overall, MSAFlow provides a robust and efficient framework
for MSA representation and integration in downstream applications.

1 Introduction

Multiple Sequence Alignments (MSAs) provide fundamental information about protein evolutionary
trajectories and play crucial roles in downstream tasks such as augmentation and family-based design.
MSAs represent collections of homologous proteins that delineate the evolutionary history of a single
query sequence, enabling models to identify conserved regions and detect evolutionary couplings.
Moreover, MSAs carry significant information about functional sites within the query sequence;
for instance, comparing sequences across a family of enzymes can reveal conserved active site
residues. However, constructing high-quality MSAs requires significant computational resources
to query natural protein databases. While traditional statistical search methods such as HHBlits
[L], MMSeqgs [2], and JackHMMER [3]] can accurately identify evolutionarily-related sequences,
they incur significant computational costs and traditional techniques fail to provide relevant data for
proteins with limited evolutionary information.

This challenge has been partially addressed by Dense Homology Retriever (DHR) [4], which leverages
pretrained embeddings from protein language models to identify homologous sequences more
efficiently and with greater sensitivity. Several other models, including MSAGenerator [S], MSAGPT
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Figure 1: General framework of MSAFlow. Our approach supports three complementary pathways:
(1) zero-shot generation from a single sequence using ESM2 embeddings, (2) few-shot augmentation
of shallow MSAs, and (3) family-based design given MSAs embedded through the AF3 MSA Module
and reconstructed through MSAFlow Decoder. All pathways leverage the latent flow-matching and
decoder architecture to generate augmented or compressed MSAs, enabling both the enhancement of
limited evolutionary information and the efficient representation of deep alignments.

[6]], and EvoDiff [7]], have subsequently emerged, employing autoregressive or discrete diffusion
frameworks to model the joint distribution of multiple sequences in MSAs. While deep learning
approaches have shown promise in MSA construction and augmentation, they fail to capture rich
distributional information while preserving permutation invariance.

However, these methods typically utilize 2D positional encodings to represent row-wise and column-
wise information present in MSAs. These approaches fail in critical aspects: they are substantially
memory-intensive due to the O(N?) space complexity of self-attention operations, further exacer-
bated by the 2D nature of MSAs, and they lack permutation invariance, naively prioritizing certain
sequences without employing permutation-invariant aggregation techniques. Furthermore, current
MSA generation models rely solely on existing MSA sequence information for generation, limiting
their effectiveness in shallow MSA enhancement.

To address these limitations, we introduce MSAFlow, which addresses these limitations using a
Statistical Flow Matching [8] (SFM) model conditioned on compressed latent MSA representations
to generate sequences that would likely belong to the target MSA. The MSAFlow framework first
employs the AlphaFold3 [9] (AF3) MSAModule to generate a latent MSA embedding, which
aggregates protein MSA information into its corresponding pair representation. We further compress
this representation into a single-sequence representation through mean pooling across the second
dimension. This embedding subsequently serves as conditional information for the Statistical Flow
Matching model trained to reconstruct sequences from the original MSA. This approach captures
distributional information while augmenting shallow MSAs and maintaining permutation invariance
during reconstruction while enabling latent flow matching on the MSA embedding itself.

Experimental results demonstrate that MSAFlow generates MSAs with performance comparable to
traditional methods on family-based design tasks. The model outperforms existing machine learning
augmentation tools while achieving very low inference time and memory efficiency despite being
lightweight and trained on smaller datasets. We evaluate MSAFlow on its ability to reconstruct
MSAs from compressed latent representations, testing both the expressivity of the embeddings and
the model’s capacity to interpolate across the entire evolutionary space of proteins. Additionally,
we utilize MSAFlow to augment existing shallow MSAs and generate synthetic MSAs for single
sequences with limited evolutionary data to enhance structure prediction. MSAFlow enables family-
based protein design for enzymes and synthetic MSA generation through latent diffusion, providing a
robust and efficient framework for MSA representation and integration in downstream applications.
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2 Preliminaries

Multiple Sequence Alignments (MSAs) are mathematically represented as S = {s1, $2, ..., Sar}
where each sequence s; € A" consists of amino acids and gaps from alphabet A, aligned to a
reference sequence sgr of length L. Despite containing hundreds to thousands of sequences, we
hypothesize that the functional and evolutionary information within an MSA can be compressed into
a continuous latent representation that captures the essential characteristics of the protein family.

This compression necessitates a permutation-invariant encoding method to avoid bias from sequence
ordering. Formally, we seek an encoder hy : S — R such that hy(S) = hy(m(S)) for any
permutation 7 of the sequences in S. We leverage the AlphaFold3 (AF3) MSAModule architecture,
which provides a computationally efficient framework for embedding evolutionary information [9].
The AF3 MSAModule processes an MSA by computing a position-wise outer product for each

sequence s; with the reference sequence, resulting in pairwise representations P; € REXEXhpr,
These representations are averaged across all sequences:
M
1
P, avg — M E P (D
i=1

The averaged representation is then processed through multiple triangle self-attention blocks to
produce a refined pair representation Prefined € REXLXH WWe utilize Protenix [10], a pretrained
variant of AF3, to generate these embeddings for MSAs from the OpenFold dataset [[11]. The resulting
pair representation serves as our compressed MSA embedding m = hy(S) € REXEXH,

3 Method

3.1 Flow-matching based autoencoder for MSA representation
3.1.1 Probabilistic Framework

We view our model as a conditional generator over the sequence distribution of a protein family. Given
an MSA S and its embedding m = h,(S), the decoder aims to reconstruct sequences consistent with

the family. Let S = {$1,...,8n} be n sequences drawn uniformly without replacement from S. We
model
po(S [m) = [ pa(si [ m), ©)
i=1

which is permutation-invariant by construction. The decoder py(s | m) represents the probability of
sampling a sequence s compatible with m.

3.1.2 Statistical Flow Matching for MSA sequence decoding

To instantiate py(s | m) for discrete (categorical) sequences, we adopt Statistical Flow Matching
(SFM) [12], which learns a continuous Riemannian flow over the statistical manifold of categorical
distributions equipped with Fisher-Rao metric. Concretely, each sequence in the MSA is treated as a
sample of the target distribution. We operate in the probability simplex AM/*Z | where each position
in the sequence is represented by a one-hot categorical distribution y over amino acids.

Following SFM, we construct flow paths along geodesics on the positive orthant of the unit sphere
by applying the mapping: 7 : © = 7(u) = \/f. SFM demonstrated that such a mapping to the
unit sphere preserves the metric, which coincides with the canonical spherical geometry. Therefore,
we can operate on the unit sphere with the standard spherical geometry. Mathematically, given a
sequence s; from the MSA and its corresponding categorical representation x; = 7 (1) (e.g., one-hot
encoding) and the noise representation xo = 7(uo), the time-dependent interpolation follows:

Ty = exp,, (t- log,,, (1)) 3)
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where exp and log are the spherical exponential and logarithm maps on the manifold, respectively,
and can be calculated in closed form as

u o
exp, (u) = z cos [|ul|2 + el sin [|ul|2, 4

arccos({x,y))
1- <I7 y>2

After transforming back to the simplex with yi; = 7~ (), the interpolation in Equation [3]traces the
geodesic between po and i with respect to the Fisher information metric, ensuring we follow the
shortest path on the statistical manifold. The corresponding vector field for this mapped geodesic
flow is given by:

log,.(y) = (y—z —(z,y —x)x), ©)

log,, (z1)

11 (6)

up (4|0, v1) =
Instead of an unconditional model, our MSAFlow decoder employs a conditional parameterization

where vy (x|, t) is trained to approximate the vector field conditioning on the MSA embedding
m = h¢, (8 )Z

Lsem () = Eitf0,1],5,~8 pio~rm-posis~ma5(ss) LIve(@em, t) — w(ay|zo, 21)||7] @)

where 7, denotes the pushward of applying the mapping 7, x; is obtained via the geodesic inter-
polation, and §(s;) represents the categorical distribution corresponding to sequence s; (typically a
one-hot encoding) in an MSA. During sampling, we first follow the learned marginal vector field
on the sphere to obtain x1, then discrete generations of MSAs can be sampled from the categorical
distribution p11 = 71 (z1).

3.1.3 Model Architecture and Implementation

We implement the vector field model

vg using a modified conditional Dif- Lxtxh Lxh

fusion Transformer (DiT) architec- _ | compressed

ture. Since the output of the AF3 reprezz:qra“on | Mean pooling_ reprg‘s:gaﬁon
MSAModule is the pair representa-

tion of dimension L x L x H, we first —I

compress it along the second dimen-

sion through mean pooling to obtain N A o
a sequence-level representation of di- Module Poslionwise
mension L x H:

L
1
Mg =7 Y. € RV (8)
j=1

MSA Query
5] seguence

Statistical Flow
Matching
(DiT decoder)

This compressed representation serves
as conditional information for the DiT
model, which consists of 12 trans-
former blocks with a hidden dimen-
sion of 768, totaling approximately
130M parameters. The architecture
incorporates sinusoidal time embed-
dings for the diffusion timestep ¢, to-
ken embeddings for each amino acid
position, conditional embeddings from the compressed MSA representation, and multi-headed self-
attention blocks with adaptive layer normalization. Notably, the MSA embedding conditioning is
applied per-residue through a position-wise AdaLLN to achieve residue-level control. At inference
time, we sample sequences by starting with random noise z7 ~ Uniform(.4) and iteratively applying:

LxNx27 Lx27

Predicted vector field

Figure 2: DiT architecture for MSAFlow decoder.

Ti—ar = Ty — vg(Te|m, t) - At )

for timesteps t = 1,1 — At, 1 — 2At¢, ..., 0, where At is a small step size (typically 0.01). At¢ =0,
we obtain the final sequence by taking the argmax over the amino acid probabilities at each position.



145

146
147
148

149

150
151
152

153

154
155
156
157
158

159

160

161
162
163

164
165

166

167
168

169
170
171
172
173

174
175
176
177
178
179

180
181
182
183
184
185
186

187
188

3.2 Conditional latent flow matching for MSA embedding generation

While our decoder model generates sequences from MSA embeddings, we also develop a comple-
mentary approach to generate synthetic MSA embeddings themselves. This enables us to create
artificial MSAs for proteins with limited evolutionary data (e.g., de novo proteins and antibodies).

3.2.1 Problem Formulation

Let 21 = hy(S) € RE*H be the compressed MSA embedding for a reference sequence sy, and let
e = gy(srer) € R be its ESM embedding. We aim to learn a conditional generative model py(z1]e)
that can produce plausible MSA embeddings given only the reference sequence embedding.

3.2.2 Latent Flow Matching

We train a conditional rectified flow that maps a standard Gaussian zo ~ N (0, I) to the distribution
of MSA embeddings p(z | ¢) conditioned on the ESM embedding e. We use a straight-line path
zt = (1 —1t) z1 +t 2o from target z1 (the ground-truth MSA embedding) to noise zy, whose reference
velocity is the constant field u}(z¢; 20, 21) = 29 — z1. A time-dependent, conditional velocity
vg(zt, e, t) is learned by least-squares flow matching:

2
Lrrm = Etra0,1], 20~ (0,1), 2 || V6 (265 €, 1) — (20 — 21) ][5

which provides a simple, stable objective without explicit score estimation.

3.2.3 Generative Sampling Process

At inference, we draw zo ~ N (0, I) and integrate the learned conditional velocity backward from
t=1 to t=0 with an explicit Euler solver. By default we use the deterministic probability-flow ODE
(T=0); optionally, we add isotropic noise with temperature 7' € [0, 1] to trade fidelity for diversity:

it = 2t —vg(zg,e,t) At + TV Ate, e~ N(0,1).

Empirically, smaller T' (e.g., 7'<0.5) improves alignment to e, while larger 7" increases sample
diversity. Full SDE variants and discretization details follow [13] and are deferred to the Appendix.

3.24 End-to-End MSA Generation Pipeline

Our complete framework enables two complementary paths for MSA generation (as shown in Figure
1), each tailored to specific protein scenarios:

MSA Compression and Reconstruction: For deep MSAs with abundant evolutionary information,
we first compress the multidimensional sequence information through the AF3 MSAModule into
a compact latent representation. This compressed embedding effectively captures the evolutionary
and functional signals present in the original MSA. We then use our SFM decoder to selectively
reconstruct sequences, maintaining the key evolutionary characteristics while reducing redundancy.

Zero-shot MSA Generation: For orphan or de novo proteins with limited evolutionary data, we
first generate the ESM embedding of the single available sequence. Our latent diffusion model then
transforms this single-sequence representation into a synthetic MSA embedding that emulates the
evolutionary diversity typically found in natural protein families. Finally, we decode multiple diverse
sequences from this embedding using our SFM decoder, effectively bootstrapping evolutionary
information where none previously existed.

Family-based Design: To perform family-based design for enzymes, we first gather all sequences
belonging to the enzyme class of a given query. These sequences are compressed into a latent
representation using the MSAModule distilled from AF3. Our SFM decoder then generates new
sequences conditioned on this latent embedding, effectively producing candidates that are highly
likely to belong to the original enzyme class. Because the generated sequences may include gaps, we
can support both variable-length and fixed-length design: gaps can be ignored when constructing the
final sequence, enabling flexible design strategies.

This approach combines both MSA compression and generation capabilities in a unified framework.
For data-rich scenarios, our method enables efficient information extraction from deep MSAs while
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preserving their evolutionary signals. For data-limited proteins, it allows the creation of synthetic
alignments that capture potential evolutionary diversity. The integration of these complementary
pathways addresses a fundamental limitation in protein analysis by extending evolutionary context to
proteins that previously lacked sufficient homologous sequences, potentially improving downstream
structure prediction, functional annotation tasks, and family-based design ability.

4 Experiments

4.1 Benchmarking MSA Autoencoding

We evaluate the reconstruction ability of our model on 50 proteins released by CAMEO on May 10,
2025, where the ground truth MSA is generated using the same procedure as described in [10]. We
then compute the embedding for each MSA via the AF3 MSAModule, and generate 32 sequences
given each latent MSA representation. We find that the relatively shallow MSAs generated by our
model through this method come close to matching the deep, ground-truth MSAs in terms of pLDDT
(87.8 vs. 91.6) and TM-scores (0.83 vs. 0.89) while only consuming 6.5% of the overall bits required
to represent a deep MSA (this is for an average sequence length of 365 and number of alignments
being more than 7,000 from the CAMEQO dataset. We perform conditional generation given an
embedding of 16-bit floats with an average size of 365 x 128 from the CAMEOQO dataset).
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Figure 3: pLDDT and TM-scores for AF3 predictions of proteins from CAMEO with no MSA, the
MSAFlow-based reconstructed MSA (32 sequences), a randomly subsampled 32-sequence MSA,
and the ground truth deep MSA (approximately 7k sequences).

Furthermore, when attempting to build synthetic MSA embedding (i.e. MSAs generated via our
latent diffusion model), we find that our decoder is able to reconstruct some signal from the generated
MSA latents, achieving much higher quality than wihout using an MSA altogether, although the
structure prediction accuracy remains worse than using the ground truth embedding itself. Another
noteworthy point is that our model effectively compresses the heavy signal of full-depth evolutionary
information encoded in thousands of aligned sequences into a single, fixed-size latent tensor that can
be dynamically decoded into a range of sequences that remain evolutionarily related to the query. As
a result, we keep almost all of the functional signal that matters for folding accuracy.

4.2 Augmenting shallow and single-sequence MSAs

We further evaluate our model on a dataset of sequences with limited evolutionary information
derived from MSAGPT [6], which includes 200 proteins from CAMEO [14], CASP14, CASP15, and
PDB [[15] with either few or no sequences in their MSA (few-shot and zero-shot cases, respectively).
For the zero-shot case, we embed the query sequence with ESM and use it as conditioning for our
latent diffusion model, which generates a synthetic MSA embedding for the reference sequence.
We generate embeddings over 10 different seeds and use low temperature sampling during the SDE
forward pass for higher fidelity reconstructions, as detailed in [16]. We then decode 32 sequences
from each of the 10 synthetic MSA embeddings and report the best pLDDT and TM-scores. We find
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that our model significantly improves upon prior state-of-the-art MSA augmentation tools, which
also seemed to yield poorer results when evaluated with AF3.

Table 1: The accuracy of MSAFlow-generated multiple sequence alignments compared to other
state-of-the-art methods, as evaluated by AlphaFold3 protein structure prediction performance on a
naturally scarce MSA dataset curated from CAMEO, PDB, and CASP.

pLDDT TM-score
Zero-shot  Few-shot  Zero-shot Few-shot
No/Shallow MSA 73.1 70.8 0.55 0.58
EvoDiff (650M) 67.7 67.5 0.49 0.55
MSAGPT (3B) 71.6 70.3 0.53 0.58
MSAFlow (Ours,130M) 75.2 70.4 0.62 0.60

For the few-shot augmentation case, we use our latent flow matching model to generate synthetic
embeddings for each sequence over 5 different seeds, and decode 32 sequences from each MSA
embedding. We then decode 64 sequences from the ground-truth shallow MSA embedding and
extract the 16 most diverse sequences across all generations, following [6]. We concatenate our
generated sequences with the original shallow MSA and find that our model improves upon structure
prediction accuracy for such cases.

4.3 Case Studies on de novo and intrinsically disordered proteins

We show that MSAFlow markedly improves structure prediction for notoriously difficult proteins by
generating high-quality synthetic MSAs. We focus on three challenging cases from a sparse MSA
dataset:

» 8B4K: the N-terminal domain of Rfal complexed with a phosphorylated Ddc2 peptide—only
133 residues, with scarce evolutionary relatives.

* 8GIS8: a Rosetta-designed four-helix bundle with rigid backbone constraints, extraordinary
thermal stability (7},, > 90°C), and NMR-validated topology (backbone RMSD =1.11 A).

* 8OKH: the crystal structure of Bdellovibrio bacteriovorus Bd1399.

MSAFlow’s synthetic MSAs significantly outperform both MSA-free predictions and those using
MSAGPT, which lacks sufficiently precise coevolutionary signals. This highlights MSAFlow’s
strengths in addressing two key failure modes: (i) limited sequence homology and (ii) intrinsically
flexible or disordered regions—by synthesizing information-rich, high-fidelity MSAs in latent space
that modern folding models require.

4.4 Family-based Protein Design

To better demonstrate the strength of MSAFlow on few-shot generation and generalization to other
downstream applications than AF3 prediction, we now provide new results on family-based enzyme
design. Our experiments demonstrate clear and significant advantages of MSAFlow, particularly
for EC classes with limited sequences. Following ProfileBFN [17], we generate sequences in a
single shot using our model, for enzymes with less than 20 sequences in their corresponding EC
class, using the sequences from the EC class as an MSA. We then use CLEAN [[18] to determine
their EC number, and compute the accuracy (i.e. how many generated designs match the ground
truth EC number) and the uniqueness across all generated designs. We report the accuracy X
uniqueness score as done by ProfileBFN, the current SOTA for this task. MSAFlow exhibits SOTA
performance on family-based enzyme design in both fixed and variable length settings. Notably,
ProfileBFN is confined to fixed-length generation, whereas MSAFlow learns a meaningful homology
distribution that guides the placement of gaps, which effectively enables variable-length design with
unprecedented success rate.
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Figure 4: Visualization of improved structure prediction for zero-shot augmentation on de novo
and disordered proteins with MSAFlow decoded synthetic MSAs, as compared to MSAs generated
with MSAGPT. Blue represents predictions with an MSAFlow-generated MSA and represents
predictions with an MSAGPT-generated MSA. Red indicates the ground truth structure.

Q15165 QI15BH7 P13280 P57298

MSA Depth 15 12 13 15
# of Generated Sequences 1000 100 100 100
EvoDiff 1.39% 0% 80% 5%

Accuracy x Uniqueness (Fixed) ProfileBFEN | 42.67% 89% 100% 82%
MSAFlow | 83.10% 84% 100 % 95 %

EvoDiff - 0% 0% 0%
Accuracy x Uniqueness (Variable) | MSAGPT - 35.59% 37.5% 24.98%
MSAFlow - 92% 92% 84 %

Table 2: Performance comparison of MSAFlow with baseline methods on family-based enzyme
design task across different EC classes.

5 Conclusion

MSAFlow integrates statistical flow matching with latent space optimization to enable bidirectional
manipulation of multiple sequence alignments. By combining AlphaFold3-inspired permutation-
equivariant embeddings with diffusion-based generation, it uniquely achieves both evolutionary
signal compression and biologically plausible augmentation of sparse alignments. Comprehensive
benchmarking across three critical applications—Ilatent space reconstruction fidelity, shallow MSA
augmentation for protein structure prediction, and synthetic alignment generation for underrepresented
proteins—demonstrates MSAFlow’s superiority, achieving state-of-the-art performance with only
130M parameters. MSAFlow’s ability to generate evolutionarily coherent sequence ensembles creates
new opportunities for designing orphan proteins and tackling de novo structure prediction challenges.
Importantly, our framework also enables family-based design, where latent representations distilled
from enzyme or protein families can guide the generation of sequences that remain faithful to family-
level constraints while still exploring novel sequence diversity. Overall, MSAFlow advances both
computational efficiency and conceptual modeling of protein sequence spaces through flow-based
generation, paving the way for conditional protein engineering, resource-efficient applications, and
family-level design of functional proteins.
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A Additional results

A.1 Zero-shot Prediction Comparison with ESMFold

Table 3: The accuracy of MSAFlow-generated multiple sequence alignments compared to ESMFold,
evaluated on zero-shot protein structure prediction performance on a naturally scarce MSA dataset
curated from CAMEOQO, PDB, and CASP.

TM-score
Zero-shot  Few-shot
No/Shallow MSA 0.55 0.58
EvoDiff (650M) 0.49 0.55
MSAGPT (3B) 0.53 0.58
MSAFlow (Ours,130M) 0.62 0.60
ESMFold 0.58 NA

We further compared MSAFlow with ESMFold and other MSA generation models according to
the TM-score after folding. The protein structure prediction research based on MSAFlow has
demonstrated substantial results. Through evaluation on a naturally scarce MSA dataset, the results
show that MSAFlow (applying only 130M parameters) achieved the optimal TM-scores in both
zero-shot and few-shot scenarios, with scores of 0.62 and 0.60 respectively. In comparison, ESMFold
scored 0.58 in zero-shot testing, while competing models such as EvoDiff (650M parameters)
and MSAGPT (3B parameters) performed less effectively than MSAFlow. These results indicate
MSAFlow’s precise modeling in MSA generation and its computational efficiency.

A.2 Additional Case Studies

To further validate the robustness of MSAFlow’s zero-shot predictions, we provide more cases for
comparison. From the table ] we can observe that MSAFlow achieves improvement on cases with
different structural patterns as well as different families.

PDB ID Length Description GT MSAGPT MSAFlow
6NWS8 A 27 Scorpion venom toxin 0.39 0.40 0.53
6WKK_X 280 Phage capsid 0.28 0.27 0.55
7EQB_B 80 Central spindle assembly  0.65 0.58 0.71
7QRR_L 153 Noumeavirus 0.31 0.61 0.83
7Z0L_A 151 Cas 7-11 regulator 0.33 0.34 0.67

Table 4: Performance comparison of MSAFlow with baseline methods on clinically relevant proteins
showing TM-Score improvements across different structural patterns and protein families.

A.3 Inference Speed and Memory Cost

In order to demonstrate that MSAFlow exhibits notable improvements in sampling efficiency com-
pared to other MSA-based generative models, We benchmark MSAFlow against existing tools,
attempting to generate 100 sequences conditioned on an existing MSA with 6 sequences on an
NVIDIA A40 GPU, and observe the following:

Latency Per Sequence Memory Consumption
MSAFlow 1.02s 5.8 GiB
ProfileBFN 8.49s 7.7 GiB
MSAGPT 62.46s 41.6 GiB
EvoDiff 478.24s 4.0 GiB

Table 5: Sampling efficiency comparison of MSAFlow with baseline methods showing latency per
sequence and memory consumption on NVIDIA A40 GPU for generating 100 sequences conditioned
on an MSA with 6 sequences.
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We find that MSAFlow has better sampling efficiency, both in terms of speed and memory. We can
attribute this to the fact that our model only has to deal with LxH embedding of the MSA, rather
than carry the quadratic cost of representing an MSA in the ambient space. The result shows that
MSAFlow has the potential to be a highly light-weight and accurate MSA designer.

Moreover, our pipeline utilizes outputs from tools like MMseqs and HMMER for Multiple Sequence
Alignment (MSA) reconstruction. A key advantage of this approach is its ability to generate high-
quality MSAs even when these standard homology search methods fail to find sufficient homologous
information. To provide a quantitative comparison of computational cost, we evaluated our MSAFlow
model against HMMER and MMseqs2 for generating an MSA from a single query sequence (PDB
9BCZ_A from CAMEQO, 644 amino acids). The empirical results are detailed below.

Method Wall Clock Time (s)
MSAFlow (100 seqs) 153.93
HMMER 310.92
MMseqs2 497.73

Table 6: Computational cost comparison for generating MSA from query sequence alone (PDB
9BCZ_A from CAMEO, 644 AA) showing wall clock time in seconds.

These results show that MSAFlow achieves over 2x speedups compared to HMMER and MMseqs2,
while still providing the ability to operate in settings where homology search fails. This confirms that
MSAFlow not only addresses the coverage gap but also offers computational efficiency advantages
over traditional methods.

A.4 Ablation Study of Reconstruction Sequences

We address using the additional ablation study on the reconstuction task with 2, 4, 8, 16, and 32
decoded MSA sequences, as well as the comparison with natural-MSA depth on 3 samples from the
CAMEDO reconstruction test set.

When we keep 2-4 sequences, the MSAFlow reconstructions beat the random ground-truth subsample.
As we generate more sequences, the designed MSAs generally match that of the ground-truth samples
(AlphaFold3 searched MSA), indicating that MSAFlow accurately captures structure patterns of
protein families.

PDB ID 2 4 8 16 32

9EJY 0.59 055 0.85 0.80 0.86
Ground Truth Random Sample | 9BIX 0.19 032 035 032 049

9CVV 0.35 031 093 097 098

9EJY 0.61 0.61 084 0.83 0.84
MSAFlow Reconstruction 9BIX 028 022 020 030 0.26

9CVV 043 0.62 087 0.87 097

Table 7: Ablation study comparing MSAFlow reconstruction performance against ground truth
random samples across different sequence counts on CAMEOQ reconstruction test set. Values represent
performance metrics for MSA reconstruction quality. Numbers in the first row denotes the amounts
of decoding MSA sequences.

A.5 Ablation Study on Synthetic and Reconstructed MSAs

The reconstruction pathway preserves the authentic signal from a limited, shallow MSA, while the
latentflow pathway generates evolutionary diversity generalized from other MSA-rich proteins. These
two tracks provide complementary signals that make the few-shot augmentation stronger. To provide
evidence for this, we detail the separate contributions of each track below:

As shown in the table, the reconstruction path focuses on preserving crucial motif information within
the limited observed sequences, which is reflected in the lower entropy signals in the shallow MSA.
In contrast, the latentflow path generates synthetic MSAs that provide evolution-consistent diversity,
resulting in higher entropy.
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Few-shot task | TM Score Avg Per-position Entropy
Syn-16 0.54 2.23
Rec-16 0.52 1.33
Syn+Rec-32 0.57 2.69
Syn+Rec+GT 0.60 2.58
MSAGPT+GT 0.58 1.33
GT 0.58 2.16

Table 8: Ablation study showing the complementary contributions of synthetic and reconstructed
MSA pathways in few-shot tasks, demonstrating improved TM scores and entropy characteristics.
Syn represents Synthetic MSAs; Rec represents Reconstructed MSAs. The number denotes amount
of MSA sequences.

The combination of both tracks leads to an improvement in TM score and an increase in entropy. This
observation confirms that the two tracks offer complementary signals, which synergistically improve
quality. Finally, by augmenting the shallow ground truth MSA with the combined generation output,
we improve prediction accuracy and achieve a better TM score than the MSAGPT baseline, which
is what we report in Table 1. As can be seen, MSAFlow is the only method to achieve a better TM
score than the ground truth, with an entropy value closest to it.

A.6 Ablation Study on ESM Embeddings

To clarify the individual contributions of the ESM embeddings and our proposed Statistical Flow-
matching decoding mechanism, we provide ablation results for the MSAFlow zero-shot track trained
to condition on the one-hot query sequence instead of the ESM embedding:

Method TM Score
MSAGPT (3B) 0.53
MSAFlow Latent w/ one-hot (130M) 0.55
MSAFlow Latent w/ ESM2 (130M) 0.62

Table 9: Ablation study comparing the contribution of ESM embeddings versus one-hot sequence
encoding in MSAFlow’s zero-shot MSA augmentation performance.

The results demonstrate that the efficiency of our method. Moreover, ESM2 encoding provides more
useful signals to address the evolutionary information.
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