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Abstract

Multiple Sequence Alignments (MSAs) provide fundamental information about1

protein evolutionary trajectories and play crucial roles in downstream tasks such as2

augmentation and family-based design . However, constructing high-quality MSAs3

requires significant computational resources to query natural protein databases,4

and traditional techniques fail to provide relevant data for proteins with limited5

evolutionary information. While deep learning approaches have shown promise6

in MSA construction and augmentation, they fail to capture rich distributional7

information while preserving permutation invariance. MSAFlow addresses these8

limitations using a Statistical Flow Matching model conditioned on compressed9

latent MSA representations to generate sequences that would likely belong to the10

target MSA. This approach captures distributional information while augmenting11

shallow MSAs and maintaining permutation invariance. Experiments confirm that12

MSAFlow generates MSAs with performance comparable to traditional methods13

on family-based design tasks. The model outperforms existing machine learning14

augmentation tools while achieving very low inference time and memory efficiency15

despite being lightweight and trained on smaller datasets. MSAFlow enables16

family-based protein design for enzymes and synthetic MSA generation through17

latent diffusion. Extensive ablation studies validate the effectiveness of model18

design components. Overall, MSAFlow provides a robust and efficient framework19

for MSA representation and integration in downstream applications.20

1 Introduction21

Multiple Sequence Alignments (MSAs) provide fundamental information about protein evolutionary22

trajectories and play crucial roles in downstream tasks such as augmentation and family-based design.23

MSAs represent collections of homologous proteins that delineate the evolutionary history of a single24

query sequence, enabling models to identify conserved regions and detect evolutionary couplings.25

Moreover, MSAs carry significant information about functional sites within the query sequence;26

for instance, comparing sequences across a family of enzymes can reveal conserved active site27

residues. However, constructing high-quality MSAs requires significant computational resources28

to query natural protein databases. While traditional statistical search methods such as HHBlits29

[1], MMSeqs [2], and JackHMMER [3] can accurately identify evolutionarily-related sequences,30

they incur significant computational costs and traditional techniques fail to provide relevant data for31

proteins with limited evolutionary information.32

This challenge has been partially addressed by Dense Homology Retriever (DHR) [4], which leverages33

pretrained embeddings from protein language models to identify homologous sequences more34

efficiently and with greater sensitivity. Several other models, including MSAGenerator [5], MSAGPT35
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Figure 1: General framework of MSAFlow. Our approach supports three complementary pathways:
(1) zero-shot generation from a single sequence using ESM2 embeddings, (2) few-shot augmentation
of shallow MSAs, and (3) family-based design given MSAs embedded through the AF3 MSA Module
and reconstructed through MSAFlow Decoder. All pathways leverage the latent flow-matching and
decoder architecture to generate augmented or compressed MSAs, enabling both the enhancement of
limited evolutionary information and the efficient representation of deep alignments.

[6], and EvoDiff [7], have subsequently emerged, employing autoregressive or discrete diffusion36

frameworks to model the joint distribution of multiple sequences in MSAs. While deep learning37

approaches have shown promise in MSA construction and augmentation, they fail to capture rich38

distributional information while preserving permutation invariance.39

However, these methods typically utilize 2D positional encodings to represent row-wise and column-40

wise information present in MSAs. These approaches fail in critical aspects: they are substantially41

memory-intensive due to the O(N²) space complexity of self-attention operations, further exacer-42

bated by the 2D nature of MSAs, and they lack permutation invariance, naively prioritizing certain43

sequences without employing permutation-invariant aggregation techniques. Furthermore, current44

MSA generation models rely solely on existing MSA sequence information for generation, limiting45

their effectiveness in shallow MSA enhancement.46

To address these limitations, we introduce MSAFlow, which addresses these limitations using a47

Statistical Flow Matching [8] (SFM) model conditioned on compressed latent MSA representations48

to generate sequences that would likely belong to the target MSA. The MSAFlow framework first49

employs the AlphaFold3 [9] (AF3) MSAModule to generate a latent MSA embedding, which50

aggregates protein MSA information into its corresponding pair representation. We further compress51

this representation into a single-sequence representation through mean pooling across the second52

dimension. This embedding subsequently serves as conditional information for the Statistical Flow53

Matching model trained to reconstruct sequences from the original MSA. This approach captures54

distributional information while augmenting shallow MSAs and maintaining permutation invariance55

during reconstruction while enabling latent flow matching on the MSA embedding itself.56

Experimental results demonstrate that MSAFlow generates MSAs with performance comparable to57

traditional methods on family-based design tasks. The model outperforms existing machine learning58

augmentation tools while achieving very low inference time and memory efficiency despite being59

lightweight and trained on smaller datasets. We evaluate MSAFlow on its ability to reconstruct60

MSAs from compressed latent representations, testing both the expressivity of the embeddings and61

the model’s capacity to interpolate across the entire evolutionary space of proteins. Additionally,62

we utilize MSAFlow to augment existing shallow MSAs and generate synthetic MSAs for single63

sequences with limited evolutionary data to enhance structure prediction. MSAFlow enables family-64

based protein design for enzymes and synthetic MSA generation through latent diffusion, providing a65

robust and efficient framework for MSA representation and integration in downstream applications.66
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2 Preliminaries67

Multiple Sequence Alignments (MSAs) are mathematically represented as S = {s1, s2, ..., sM}68

where each sequence si ∈ AL consists of amino acids and gaps from alphabet A, aligned to a69

reference sequence sref of length L. Despite containing hundreds to thousands of sequences, we70

hypothesize that the functional and evolutionary information within an MSA can be compressed into71

a continuous latent representation that captures the essential characteristics of the protein family.72

This compression necessitates a permutation-invariant encoding method to avoid bias from sequence73

ordering. Formally, we seek an encoder hϕ : S → Rd such that hϕ(S) = hϕ(π(S)) for any74

permutation π of the sequences in S . We leverage the AlphaFold3 (AF3) MSAModule architecture,75

which provides a computationally efficient framework for embedding evolutionary information [9].76

The AF3 MSAModule processes an MSA by computing a position-wise outer product for each77

sequence si with the reference sequence, resulting in pairwise representations Pi ∈ RL×L×hpair .78

These representations are averaged across all sequences:79

Pavg =
1

M

M∑
i=1

Pi (1)

The averaged representation is then processed through multiple triangle self-attention blocks to80

produce a refined pair representation Prefined ∈ RL×L×H . We utilize Protenix [10], a pretrained81

variant of AF3, to generate these embeddings for MSAs from the OpenFold dataset [11]. The resulting82

pair representation serves as our compressed MSA embedding m = hϕ(S) ∈ RL×L×H .83

3 Method84

3.1 Flow-matching based autoencoder for MSA representation85

3.1.1 Probabilistic Framework86

We view our model as a conditional generator over the sequence distribution of a protein family. Given87

an MSA S and its embedding m = hϕ(S), the decoder aims to reconstruct sequences consistent with88

the family. Let S̃ = {s1, . . . , sn} be n sequences drawn uniformly without replacement from S . We89

model90

pθ(S̃ | m) =

n∏
i=1

pθ(si | m), (2)

which is permutation-invariant by construction. The decoder pθ(s | m) represents the probability of91

sampling a sequence s compatible with m.92

3.1.2 Statistical Flow Matching for MSA sequence decoding93

To instantiate pθ(s | m) for discrete (categorical) sequences, we adopt Statistical Flow Matching94

(SFM) [12], which learns a continuous Riemannian flow over the statistical manifold of categorical95

distributions equipped with Fisher-Rao metric. Concretely, each sequence in the MSA is treated as a96

sample of the target distribution. We operate in the probability simplex ∆|A|×L, where each position97

in the sequence is represented by a one-hot categorical distribution µ over amino acids.98

Following SFM, we construct flow paths along geodesics on the positive orthant of the unit sphere99

by applying the mapping: π : x = π(µ) =
√
µ. SFM demonstrated that such a mapping to the100

unit sphere preserves the metric, which coincides with the canonical spherical geometry. Therefore,101

we can operate on the unit sphere with the standard spherical geometry. Mathematically, given a102

sequence si from the MSA and its corresponding categorical representation x1 = π(µ1) (e.g., one-hot103

encoding) and the noise representation x0 = π(µ0), the time-dependent interpolation follows:104

xt = expx0
(t · logx0

(x1)) (3)
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where exp and log are the spherical exponential and logarithm maps on the manifold, respectively,105

and can be calculated in closed form as106

expx(u) = x cos ∥u∥2 +
u

∥u∥2
sin ∥u∥2, (4)

logx(y) =
arccos(⟨x, y⟩)√

1− ⟨x, y⟩2
(y − x− ⟨x, y − x⟩x), (5)

After transforming back to the simplex with µt = π−1(xt), the interpolation in Equation 3 traces the107

geodesic between µ0 and µ1 with respect to the Fisher information metric, ensuring we follow the108

shortest path on the statistical manifold. The corresponding vector field for this mapped geodesic109

flow is given by:110

ut(xt|x0, x1) =
logxt

(x1)

1− t
. (6)

Instead of an unconditional model, our MSAFlow decoder employs a conditional parameterization111

where vθ(xt|m, t) is trained to approximate the vector field conditioning on the MSA embedding112

m = hϕ(S):113

LSFM(θ) = Et∼U [0,1],si∼S,µ0∼π∗p0,µ1∼π∗δ(si)

[
∥vθ(xt|m, t)− ut(xt|x0, x1)∥2

]
(7)

where π∗ denotes the pushward of applying the mapping π, xt is obtained via the geodesic inter-114

polation, and δ(si) represents the categorical distribution corresponding to sequence si (typically a115

one-hot encoding) in an MSA. During sampling, we first follow the learned marginal vector field116

on the sphere to obtain x1, then discrete generations of MSAs can be sampled from the categorical117

distribution µ1 = π−1(x1).118

3.1.3 Model Architecture and Implementation119

Figure 2: DiT architecture for MSAFlow decoder.

We implement the vector field model120

vθ using a modified conditional Dif-121

fusion Transformer (DiT) architec-122

ture. Since the output of the AF3123

MSAModule is the pair representa-124

tion of dimension L×L×H , we first125

compress it along the second dimen-126

sion through mean pooling to obtain127

a sequence-level representation of di-128

mension L×H:129

mseq =
1

L

L∑
j=1

m:,j,: ∈ RL×H (8)

This compressed representation serves130

as conditional information for the DiT131

model, which consists of 12 trans-132

former blocks with a hidden dimen-133

sion of 768, totaling approximately134

130M parameters. The architecture135

incorporates sinusoidal time embed-136

dings for the diffusion timestep t, to-137

ken embeddings for each amino acid138

position, conditional embeddings from the compressed MSA representation, and multi-headed self-139

attention blocks with adaptive layer normalization. Notably, the MSA embedding conditioning is140

applied per-residue through a position-wise AdaLN to achieve residue-level control. At inference141

time, we sample sequences by starting with random noise x1 ∼ Uniform(A) and iteratively applying:142

xt−∆t = xt − vθ(xt|m, t) ·∆t (9)

for timesteps t = 1, 1−∆t, 1− 2∆t, ..., 0, where ∆t is a small step size (typically 0.01). At t = 0,143

we obtain the final sequence by taking the argmax over the amino acid probabilities at each position.144
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3.2 Conditional latent flow matching for MSA embedding generation145

While our decoder model generates sequences from MSA embeddings, we also develop a comple-146

mentary approach to generate synthetic MSA embeddings themselves. This enables us to create147

artificial MSAs for proteins with limited evolutionary data (e.g., de novo proteins and antibodies).148

3.2.1 Problem Formulation149

Let z1 = hϕ(S) ∈ RL×H be the compressed MSA embedding for a reference sequence sref, and let150

e = gψ(sref) ∈ Rde be its ESM embedding. We aim to learn a conditional generative model pθ(z1|e)151

that can produce plausible MSA embeddings given only the reference sequence embedding.152

3.2.2 Latent Flow Matching153

We train a conditional rectified flow that maps a standard Gaussian z0∼N (0, I) to the distribution154

of MSA embeddings p(z | e) conditioned on the ESM embedding e. We use a straight-line path155

zt = (1− t) z1+ t z0 from target z1 (the ground-truth MSA embedding) to noise z0, whose reference156

velocity is the constant field u⋆t (zt; z0, z1) = z0 − z1. A time-dependent, conditional velocity157

vθ(zt, e, t) is learned by least-squares flow matching:158

LRFM = Et∼U [0,1], z0∼N (0,I), z1

∥∥ vθ(zt, e, t)− (z0 − z1)
∥∥2
2
,

which provides a simple, stable objective without explicit score estimation.159

3.2.3 Generative Sampling Process160

At inference, we draw z0∼N (0, I) and integrate the learned conditional velocity backward from161

t=1 to t=0 with an explicit Euler solver. By default we use the deterministic probability-flow ODE162

(T=0); optionally, we add isotropic noise with temperature T ∈ [0, 1] to trade fidelity for diversity:163

zt−∆t = zt − vθ(zt, e, t)∆t + T
√
∆t ε, ε ∼ N (0, I).

Empirically, smaller T (e.g., T<0.5) improves alignment to e, while larger T increases sample164

diversity. Full SDE variants and discretization details follow [13] and are deferred to the Appendix.165

3.2.4 End-to-End MSA Generation Pipeline166

Our complete framework enables two complementary paths for MSA generation (as shown in Figure167

1), each tailored to specific protein scenarios:168

MSA Compression and Reconstruction: For deep MSAs with abundant evolutionary information,169

we first compress the multidimensional sequence information through the AF3 MSAModule into170

a compact latent representation. This compressed embedding effectively captures the evolutionary171

and functional signals present in the original MSA. We then use our SFM decoder to selectively172

reconstruct sequences, maintaining the key evolutionary characteristics while reducing redundancy.173

Zero-shot MSA Generation: For orphan or de novo proteins with limited evolutionary data, we174

first generate the ESM embedding of the single available sequence. Our latent diffusion model then175

transforms this single-sequence representation into a synthetic MSA embedding that emulates the176

evolutionary diversity typically found in natural protein families. Finally, we decode multiple diverse177

sequences from this embedding using our SFM decoder, effectively bootstrapping evolutionary178

information where none previously existed.179

Family-based Design: To perform family-based design for enzymes, we first gather all sequences180

belonging to the enzyme class of a given query. These sequences are compressed into a latent181

representation using the MSAModule distilled from AF3. Our SFM decoder then generates new182

sequences conditioned on this latent embedding, effectively producing candidates that are highly183

likely to belong to the original enzyme class. Because the generated sequences may include gaps, we184

can support both variable-length and fixed-length design: gaps can be ignored when constructing the185

final sequence, enabling flexible design strategies.186

This approach combines both MSA compression and generation capabilities in a unified framework.187

For data-rich scenarios, our method enables efficient information extraction from deep MSAs while188
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preserving their evolutionary signals. For data-limited proteins, it allows the creation of synthetic189

alignments that capture potential evolutionary diversity. The integration of these complementary190

pathways addresses a fundamental limitation in protein analysis by extending evolutionary context to191

proteins that previously lacked sufficient homologous sequences, potentially improving downstream192

structure prediction, functional annotation tasks, and family-based design ability.193

4 Experiments194

4.1 Benchmarking MSA Autoencoding195

We evaluate the reconstruction ability of our model on 50 proteins released by CAMEO on May 10,196

2025, where the ground truth MSA is generated using the same procedure as described in [10]. We197

then compute the embedding for each MSA via the AF3 MSAModule, and generate 32 sequences198

given each latent MSA representation. We find that the relatively shallow MSAs generated by our199

model through this method come close to matching the deep, ground-truth MSAs in terms of pLDDT200

(87.8 vs. 91.6) and TM-scores (0.83 vs. 0.89) while only consuming 6.5% of the overall bits required201

to represent a deep MSA (this is for an average sequence length of 365 and number of alignments202

being more than 7,000 from the CAMEO dataset. We perform conditional generation given an203

embedding of 16-bit floats with an average size of 365 × 128 from the CAMEO dataset).204

Figure 3: pLDDT and TM-scores for AF3 predictions of proteins from CAMEO with no MSA, the
MSAFlow-based reconstructed MSA (32 sequences), a randomly subsampled 32-sequence MSA,
and the ground truth deep MSA (approximately 7k sequences).

Furthermore, when attempting to build synthetic MSA embedding (i.e. MSAs generated via our205

latent diffusion model), we find that our decoder is able to reconstruct some signal from the generated206

MSA latents, achieving much higher quality than wihout using an MSA altogether, although the207

structure prediction accuracy remains worse than using the ground truth embedding itself. Another208

noteworthy point is that our model effectively compresses the heavy signal of full-depth evolutionary209

information encoded in thousands of aligned sequences into a single, fixed-size latent tensor that can210

be dynamically decoded into a range of sequences that remain evolutionarily related to the query. As211

a result, we keep almost all of the functional signal that matters for folding accuracy.212

4.2 Augmenting shallow and single-sequence MSAs213

We further evaluate our model on a dataset of sequences with limited evolutionary information214

derived from MSAGPT [6], which includes 200 proteins from CAMEO [14], CASP14, CASP15, and215

PDB [15] with either few or no sequences in their MSA (few-shot and zero-shot cases, respectively).216

For the zero-shot case, we embed the query sequence with ESM and use it as conditioning for our217

latent diffusion model, which generates a synthetic MSA embedding for the reference sequence.218

We generate embeddings over 10 different seeds and use low temperature sampling during the SDE219

forward pass for higher fidelity reconstructions, as detailed in [16]. We then decode 32 sequences220

from each of the 10 synthetic MSA embeddings and report the best pLDDT and TM-scores. We find221
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that our model significantly improves upon prior state-of-the-art MSA augmentation tools, which222

also seemed to yield poorer results when evaluated with AF3.223

Table 1: The accuracy of MSAFlow-generated multiple sequence alignments compared to other
state-of-the-art methods, as evaluated by AlphaFold3 protein structure prediction performance on a
naturally scarce MSA dataset curated from CAMEO, PDB, and CASP.

pLDDT TM-score
Zero-shot Few-shot Zero-shot Few-shot

No/Shallow MSA 73.1 70.8 0.55 0.58
EvoDiff (650M) 67.7 67.5 0.49 0.55
MSAGPT (3B) 71.6 70.3 0.53 0.58
MSAFlow (Ours,130M) 75.2 70.4 0.62 0.60

For the few-shot augmentation case, we use our latent flow matching model to generate synthetic224

embeddings for each sequence over 5 different seeds, and decode 32 sequences from each MSA225

embedding. We then decode 64 sequences from the ground-truth shallow MSA embedding and226

extract the 16 most diverse sequences across all generations, following [6]. We concatenate our227

generated sequences with the original shallow MSA and find that our model improves upon structure228

prediction accuracy for such cases.229

4.3 Case Studies on de novo and intrinsically disordered proteins230

We show that MSAFlow markedly improves structure prediction for notoriously difficult proteins by231

generating high-quality synthetic MSAs. We focus on three challenging cases from a sparse MSA232

dataset:233

• 8B4K: the N-terminal domain of Rfa1 complexed with a phosphorylated Ddc2 peptide—only234

133 residues, with scarce evolutionary relatives.235

• 8GI8: a Rosetta-designed four-helix bundle with rigid backbone constraints, extraordinary236

thermal stability (Tm > 90◦C), and NMR-validated topology (backbone RMSD = 1.11 Å).237

• 8OKH: the crystal structure of Bdellovibrio bacteriovorus Bd1399.238

MSAFlow’s synthetic MSAs significantly outperform both MSA-free predictions and those using239

MSAGPT, which lacks sufficiently precise coevolutionary signals. This highlights MSAFlow’s240

strengths in addressing two key failure modes: (i) limited sequence homology and (ii) intrinsically241

flexible or disordered regions—by synthesizing information-rich, high-fidelity MSAs in latent space242

that modern folding models require.243

4.4 Family-based Protein Design244

To better demonstrate the strength of MSAFlow on few-shot generation and generalization to other245

downstream applications than AF3 prediction, we now provide new results on family-based enzyme246

design. Our experiments demonstrate clear and significant advantages of MSAFlow, particularly247

for EC classes with limited sequences. Following ProfileBFN [17], we generate sequences in a248

single shot using our model, for enzymes with less than 20 sequences in their corresponding EC249

class, using the sequences from the EC class as an MSA. We then use CLEAN [18] to determine250

their EC number, and compute the accuracy (i.e. how many generated designs match the ground251

truth EC number) and the uniqueness across all generated designs. We report the accuracy ×252

uniqueness score as done by ProfileBFN, the current SOTA for this task. MSAFlow exhibits SOTA253

performance on family-based enzyme design in both fixed and variable length settings. Notably,254

ProfileBFN is confined to fixed-length generation, whereas MSAFlow learns a meaningful homology255

distribution that guides the placement of gaps, which effectively enables variable-length design with256

unprecedented success rate.257
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TM-score: 0.64

TM-score: 0.91

TM-score: 0.32

TM-score: 0.94

TM-score: 0.44

TM-score: 0.89

8b4k 8gi8 8okh

MSAFlow
(Ours)

MSAGPT

Figure 4: Visualization of improved structure prediction for zero-shot augmentation on de novo
and disordered proteins with MSAFlow decoded synthetic MSAs, as compared to MSAs generated
with MSAGPT. Blue represents predictions with an MSAFlow-generated MSA and green represents
predictions with an MSAGPT-generated MSA. Red indicates the ground truth structure.

Q15I65 Q15BH7 P13280 P57298
MSA Depth 15 12 13 15
# of Generated Sequences 1000 100 100 100

Accuracy × Uniqueness (Fixed)
EvoDiff 1.39% 0% 80% 5%

ProfileBFN 42.67% 89% 100% 82%
MSAFlow 83.10% 84% 100% 95%

Accuracy × Uniqueness (Variable)
EvoDiff - 0% 0% 0%

MSAGPT - 35.59% 37.5% 24.98%
MSAFlow - 92% 92% 84%

Table 2: Performance comparison of MSAFlow with baseline methods on family-based enzyme
design task across different EC classes.

5 Conclusion258

MSAFlow integrates statistical flow matching with latent space optimization to enable bidirectional259

manipulation of multiple sequence alignments. By combining AlphaFold3-inspired permutation-260

equivariant embeddings with diffusion-based generation, it uniquely achieves both evolutionary261

signal compression and biologically plausible augmentation of sparse alignments. Comprehensive262

benchmarking across three critical applications—latent space reconstruction fidelity, shallow MSA263

augmentation for protein structure prediction, and synthetic alignment generation for underrepresented264

proteins—demonstrates MSAFlow’s superiority, achieving state-of-the-art performance with only265

130M parameters. MSAFlow’s ability to generate evolutionarily coherent sequence ensembles creates266

new opportunities for designing orphan proteins and tackling de novo structure prediction challenges.267

Importantly, our framework also enables family-based design, where latent representations distilled268

from enzyme or protein families can guide the generation of sequences that remain faithful to family-269

level constraints while still exploring novel sequence diversity. Overall, MSAFlow advances both270

computational efficiency and conceptual modeling of protein sequence spaces through flow-based271

generation, paving the way for conditional protein engineering, resource-efficient applications, and272

family-level design of functional proteins.273
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A Additional results341

A.1 Zero-shot Prediction Comparison with ESMFold342

Table 3: The accuracy of MSAFlow-generated multiple sequence alignments compared to ESMFold,
evaluated on zero-shot protein structure prediction performance on a naturally scarce MSA dataset
curated from CAMEO, PDB, and CASP.

TM-score
Zero-shot Few-shot

No/Shallow MSA 0.55 0.58
EvoDiff (650M) 0.49 0.55
MSAGPT (3B) 0.53 0.58
MSAFlow (Ours,130M) 0.62 0.60
ESMFold 0.58 NA

We further compared MSAFlow with ESMFold and other MSA generation models according to343

the TM-score after folding. The protein structure prediction research based on MSAFlow has344

demonstrated substantial results. Through evaluation on a naturally scarce MSA dataset, the results345

show that MSAFlow (applying only 130M parameters) achieved the optimal TM-scores in both346

zero-shot and few-shot scenarios, with scores of 0.62 and 0.60 respectively. In comparison, ESMFold347

scored 0.58 in zero-shot testing, while competing models such as EvoDiff (650M parameters)348

and MSAGPT (3B parameters) performed less effectively than MSAFlow. These results indicate349

MSAFlow’s precise modeling in MSA generation and its computational efficiency.350

A.2 Additional Case Studies351

To further validate the robustness of MSAFlow’s zero-shot predictions, we provide more cases for352

comparison. From the table 4, we can observe that MSAFlow achieves improvement on cases with353

different structural patterns as well as different families.354

PDB ID Length Description GT MSAGPT MSAFlow
6NW8_A 27 Scorpion venom toxin 0.39 0.40 0.53
6WKK_X 280 Phage capsid 0.28 0.27 0.55
7EQB_B 80 Central spindle assembly 0.65 0.58 0.71
7QRR_L 153 Noumeavirus 0.31 0.61 0.83
7ZOL_A 151 Cas 7-11 regulator 0.33 0.34 0.67

Table 4: Performance comparison of MSAFlow with baseline methods on clinically relevant proteins
showing TM-Score improvements across different structural patterns and protein families.

A.3 Inference Speed and Memory Cost355

In order to demonstrate that MSAFlow exhibits notable improvements in sampling efficiency com-356

pared to other MSA-based generative models, We benchmark MSAFlow against existing tools,357

attempting to generate 100 sequences conditioned on an existing MSA with 6 sequences on an358

NVIDIA A40 GPU, and observe the following:359

Latency Per Sequence Memory Consumption
MSAFlow 1.02s 5.8 GiB
ProfileBFN 8.49s 7.7 GiB
MSAGPT 62.46s 41.6 GiB
EvoDiff 478.24s 4.0 GiB

Table 5: Sampling efficiency comparison of MSAFlow with baseline methods showing latency per
sequence and memory consumption on NVIDIA A40 GPU for generating 100 sequences conditioned
on an MSA with 6 sequences.

11



We find that MSAFlow has better sampling efficiency, both in terms of speed and memory. We can360

attribute this to the fact that our model only has to deal with L×H embedding of the MSA, rather361

than carry the quadratic cost of representing an MSA in the ambient space. The result shows that362

MSAFlow has the potential to be a highly light-weight and accurate MSA designer.363

Moreover, our pipeline utilizes outputs from tools like MMseqs and HMMER for Multiple Sequence364

Alignment (MSA) reconstruction. A key advantage of this approach is its ability to generate high-365

quality MSAs even when these standard homology search methods fail to find sufficient homologous366

information. To provide a quantitative comparison of computational cost, we evaluated our MSAFlow367

model against HMMER and MMseqs2 for generating an MSA from a single query sequence (PDB368

9BCZ_A from CAMEO, 644 amino acids). The empirical results are detailed below.369

Method Wall Clock Time (s)
MSAFlow (100 seqs) 153.93
HMMER 310.92
MMseqs2 497.73

Table 6: Computational cost comparison for generating MSA from query sequence alone (PDB
9BCZ_A from CAMEO, 644 AA) showing wall clock time in seconds.

These results show that MSAFlow achieves over 2× speedups compared to HMMER and MMseqs2,370

while still providing the ability to operate in settings where homology search fails. This confirms that371

MSAFlow not only addresses the coverage gap but also offers computational efficiency advantages372

over traditional methods.373

A.4 Ablation Study of Reconstruction Sequences374

We address using the additional ablation study on the reconstuction task with 2, 4, 8, 16, and 32375

decoded MSA sequences, as well as the comparison with natural-MSA depth on 3 samples from the376

CAMEO reconstruction test set.377

When we keep 2-4 sequences, the MSAFlow reconstructions beat the random ground-truth subsample.378

As we generate more sequences, the designed MSAs generally match that of the ground-truth samples379

(AlphaFold3 searched MSA), indicating that MSAFlow accurately captures structure patterns of380

protein families.381

PDB ID 2 4 8 16 32

Ground Truth Random Sample
9EJY 0.59 0.55 0.85 0.80 0.86
9BIX 0.19 0.32 0.35 0.32 0.49
9CVV 0.35 0.31 0.93 0.97 0.98

MSAFlow Reconstruction
9EJY 0.61 0.61 0.84 0.83 0.84
9BIX 0.28 0.22 0.20 0.30 0.26
9CVV 0.43 0.62 0.87 0.87 0.97

Table 7: Ablation study comparing MSAFlow reconstruction performance against ground truth
random samples across different sequence counts on CAMEO reconstruction test set. Values represent
performance metrics for MSA reconstruction quality. Numbers in the first row denotes the amounts
of decoding MSA sequences.

A.5 Ablation Study on Synthetic and Reconstructed MSAs382

The reconstruction pathway preserves the authentic signal from a limited, shallow MSA, while the383

latentflow pathway generates evolutionary diversity generalized from other MSA-rich proteins. These384

two tracks provide complementary signals that make the few-shot augmentation stronger. To provide385

evidence for this, we detail the separate contributions of each track below:386

As shown in the table, the reconstruction path focuses on preserving crucial motif information within387

the limited observed sequences, which is reflected in the lower entropy signals in the shallow MSA.388

In contrast, the latentflow path generates synthetic MSAs that provide evolution-consistent diversity,389

resulting in higher entropy.390

12



Few-shot task TM Score Avg Per-position Entropy
Syn-16 0.54 2.23
Rec-16 0.52 1.33
Syn+Rec-32 0.57 2.69
Syn+Rec+GT 0.60 2.58
MSAGPT+GT 0.58 1.33
GT 0.58 2.16

Table 8: Ablation study showing the complementary contributions of synthetic and reconstructed
MSA pathways in few-shot tasks, demonstrating improved TM scores and entropy characteristics.
Syn represents Synthetic MSAs; Rec represents Reconstructed MSAs. The number denotes amount
of MSA sequences.

The combination of both tracks leads to an improvement in TM score and an increase in entropy. This391

observation confirms that the two tracks offer complementary signals, which synergistically improve392

quality. Finally, by augmenting the shallow ground truth MSA with the combined generation output,393

we improve prediction accuracy and achieve a better TM score than the MSAGPT baseline, which394

is what we report in Table 1. As can be seen, MSAFlow is the only method to achieve a better TM395

score than the ground truth, with an entropy value closest to it.396

A.6 Ablation Study on ESM Embeddings397

To clarify the individual contributions of the ESM embeddings and our proposed Statistical Flow-398

matching decoding mechanism, we provide ablation results for the MSAFlow zero-shot track trained399

to condition on the one-hot query sequence instead of the ESM embedding:400

Method TM Score
MSAGPT (3B) 0.53
MSAFlow Latent w/ one-hot (130M) 0.55
MSAFlow Latent w/ ESM2 (130M) 0.62

Table 9: Ablation study comparing the contribution of ESM embeddings versus one-hot sequence
encoding in MSAFlow’s zero-shot MSA augmentation performance.

The results demonstrate that the efficiency of our method. Moreover, ESM2 encoding provides more401

useful signals to address the evolutionary information.402
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