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Abstract

Reinforcement learning is a powerful model of animal learning in brief, controlled
experimental conditions, but does not readily explain the development of behavior
over an animal’s whole lifetime. In this paper, we describe a framework to address
this shortcoming by introducing the single-life reinforcement learning setting to
cognitive science. We construct an agent with two learning systems: an extrinsic
learner that learns within a single lifetime, and an intrinsic learner that learns across
lifetimes, equipping the agent with intrinsic motivation. We show that this model
outperforms heuristic benchmarks and recapitulates a transition from exploratory
to habit-driven behavior, while allowing the agent to learn an interpretable value
function. We formulate a precise definition of intrinsic motivation and discuss the
philosophical implications of using reinforcement learning as a model of behavior
in the real world.

1 Introduction

Reinforcement learning (RL), in which an agent learns to optimize expected rewards by interacting
with an environment, is both a powerful model of learning in cognitive science [1, 2, 3], and a
successful training paradigm machine learning [4, 5]. In both cases, however, the reward signal
offered by the environment is too sparse to itself fully describe learning, a problem called the “sparse
rewards problem." To address this, handcrafted heuristics such as count-based intrinsic motivation in
machine learning [6] or novelty- and stochasticity-seeking behavior in humans [7, 8] are frequently
used to supplement extrinsic rewards. Hand-crafting intrinsic motivation and intrinsic rewards in
machine learning, however, can lead to unpredictable agent behavior [9]. In reality, biological agents
have no access to hand-crafted intrinsic motivation and reward functions, and must construct their
own sense of what is rewarding [10].

In this paper, we introduce deep RL networks that use meta-RL to learn intrinsic motivation. Unlike
other recent suggestions that learn an agent-internal reward function [11], we focus specifically
on meta-learning intrinsic motivation (defined as bonuses to actions before action selection) while
continuing to use an environmentally-determined reward function. This method allows us to focus
specifically on the role of meta-learning in determining our algorithms of exploration and action.
We recapitulate changes in intrinsic motivation that could capture the adaptation of “exploratory
hyperparameters" across development [12]. This method could in theory be combined with other
approaches to address shortcomings of hand-crafted models, such as meta-learning a time-dependent
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policy or an intrinsic reward function [13, 14]. However, meta-learning intrinsic motivation has
several key advantages: First, it allows learning a value function that represents the true extrinsic
rewards in the environment. Second, it makes explicit in which directions agents are driven by
extrinsic reward, and when the motivation is intrinsic. Finally, it reduces the amount of assumptions
needed in training learning agents on a task de novo, allowing principled studies of learning dynamics.

2 Methods

2.1 Single-life reinforcement learning

We model the learning of extrinsic rewards and adaptation of intrinsic motivation as taking place over
a single life. The defining characteristic of the single-life reinforcement learning (SLRL) setting is
that the agent is given a single “life" (i.e. one long episode) over which to accumulate rewards [15].

The agent interacts with a Markov decision process (MDP; [16] Mlife = (S,A,P,R, p0, γ) sampled
from Mevol. Its goal is to maximize Glife =

∑h
t=0 γ

tR(st) over the course of a single episode,
which may be infinitely long but normally ends with a terminal state in the MDP. The agent’s
trajectory over the episode is called the lifetime trajectory τ and follows the distribution pη(τ |θ0) =
p(s0)

∏T−1
t=0 πθt,ψ(at|st)p(rt+1, st+1|st, at), where θt = f(θt−1, ψ) are the policy parameters of

the extrinsic learner.

2.2 Optimal intrinsic motivation

We conceptualize intrinsic motivation generally as motivation which is trained using extrinsic rewards
across lifespans, but is not based on any extrinsic rewards during a single lifespan. In analogy to
previous work on intrinsic rewards [13, 17], we define the Optimal Intrinsic Motivation Problem
as learning the intrinsic motivation that maximizes the expected value of the lifetime return Glife

obtained by the combined learning agent within a lifetime. Unlike previous work, however, we are
learning a separate intrinsic motivation policy which only takes into account state-action trajectories
and is combined convexly with an extrinsically-generated policy.

We address this problem by meta-learning across lifetimes. Meta-learning occurs over a set Mevol of
Markov decision processes (MDPs) from which we sample according to a distribution ρMevol : M →
R+ at each new lifetime [18, 19]. The objective function of this meta-learning timescale is

J = Eθ0∼Θ,Mlife∼p(Mevol)

[
Eτ∼pψ(τ |θ0)

[
Glife]] (1)

where Θ is an initial policy distribution of the extrinsic learner, ψ are the parameters of the generative
model for intrinsic motivation, and τ is a single-life history of the combined agent. We train the agent
on stationary bandit tasks (task 1), fixed reward structures (task 2), and volatile environments (task
3). Mevol represents all problems in the considered distributions, whereas Mlife are the instances
sampled uniformly from these sets. For tasks 1 and 2, the observation consists solely of the action
selected by the agent on the previous turn; for task 3, in these simulations, the observation additionally
includes reward feedback from the sampled arm to alert the agent to a change.

2.3 A reward-learning, adaptive-intrinsic-motivation agent

We build an agent that is composed of two components, an extrinsic learner that begins every episode
without prior knowledge about the environment and a meta-learning intrinsic motivation learner. We
thus operationalize intrinsic motivation as motivation which is not based on rewards information,
even if it is trained by extrinsic rewards across episodes.

The extrinsic learner has at its objective to maximize the episodic returnGlife. Its values or parameters
are updated in an online manner after every timestep or at least several times within an episode. In
our experiments, the extrinsic learner is implemented as a tabular Q-learning system [20] initialized
to 0 with learning rate η. For stationary tasks, η = 1/N(a), where N(a) is the number of times an
action a was chosen. With this value, the Q-values track the means of the bandits across observations.
For non-stationary tasks, we set a non-decaying learning rate η = 0.1.
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Figure 1: Behaviour of the intrinsic-motivation learning module on variants of the standard 10-
armed bandit testbed. A. Behavior on the stationary 10-armed bandit task. (left) Learning curves as
measured on the training distribution for each episode over 1000 instantiations for tasks 1 and 3 and
100 for task 2. (middle) Intrinsic motivation attributed to the dominant arm over the course of the
whole experiment as sampled over 1000 instantiations for all tasks. (right) How much the intrinsic
motivation for a given arm is updated after that arm is selected as sampled over 1000 instantiations
for all tasks. B. Same as A, but for the constant 10-armed bandit task in which the distribution of
bandits remains the same across different episodes. C Same as B, but for non-stationary bandit tasks
in which the amount of volatility changes between different episodes.

The intrinsic learner has the objective given by Equation 1, and outputs an intrinsic policy over
actions based on state-action trajectories. Its parameters are updated after exposure to a batch of
different lifetimes to ensure that it learns parameters that are useful across different MDPs drawn from
Mevol. We construct this agent as a meta-reinforcement learner trained as in Wang et al. [18]. Except
in the task where we test for responses to volatility, the intrinsic learner only receives action history
information as input (and not reward information). We implement the intrinsic learner as a network
composed of a Long Short-Term Memory (LSTM; [21]) layer of 64 units followed by a softmax
output layer for action selection. We use the REINFORCE algorithm [22] to train the network. In all
simulations, we train the network for 500,000 episodes, with annealed entropy regularization to 0
over the course of the first 250,000 episodes.

Both learners output policies for every timestep. These are combined convexly into one global policy
based on a mixture weight α ∈ [0, 1], such that πagent = (1− α)× πextr + α× πintr. We intentionally
set a high value of α = 0.5 to study the impact of the intrinsic motivation on behavior.

3 Results

3.1 Learned intrinsic motivation in the ten-armed bandit testbed

First, we model performance on the standard ten-armed bandit testbed [4] over episodes of 100 steps.
We train the meta-learner over 500,000 episodes. The payout magnitude of each action is sampled
from a standard normal distribution N (0, 1) at the beginning of each episode. Across five model
instantiations, after training, the model reaches an average performance of 87.7 ± 25.9 (mean ±
SEM over models, see Figure 1A). We compare the performance of our system with other models
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of intrinsic motivation. A 0.5-greedy system (that has the same strength of intrinsic motivation) has
an average reward of 59.9 ± 3.7 (mean ± SEM over 100 test episodes) on the same system. Upper
Confidence Bound (UCB; 23) of the same strength has a performance of 72.9 ± 3.8 (mean ± SEM
over 100 test episodes). This illustrates that the learned intrinsic motivation in the system significantly
outperforms handcrafted heuristics (one-sample t-test comparing average performance for each of
the different model instantiations with average performance ε-greedy: t(4)=17.08, p=3.4e-5, UCB:
t(4)=17.06, p=3.5e-5).

3.2 Evolutionarily-transmitted knowledge

Second, we consider situations where the distributions in payout magnitude across bandits has a fixed
structure across episodes. We sample the payout of arm 1 from the higher distribution N (10, 1). In
this case, the model achieves an average performance of 999.9 ± 0.36 (mean ± SEM over models).
Figure 1B illustrates that the intrinsic motivation system knows which arm to incentivize from the
first step of the episode. This result highlights that the system is capable of modelling instinctive
responses such as fear and innate attraction using our definition of intrinsic motivation. In contrast,
the ε-greedy system achieves rewards of 532.7 ± 9.1 (mean ± SEM over 100 test episodes) in
this case. The UCB system achieves average rewards of 908.2 ± 3.2 (mean ± SEM over 100 test
episodes). Both are significantly worse than the system with adaptive intrinsic rewards (one-sample
t-test comparing average performance for each of the different model instantiations with average
performance ε-greedy: t(4) = 1167.4, p = 1.6e− 12, UCB: t(4) = 229.1, p = 1.1e− 9).

3.3 Within-lifetime adaptation of exploratory policies

Finally, we show that when given access to extrinsic change signals such as reward feedback, the
intrinsic motivation adapts to early experience. Figure 1C illustrates how the intrinsic motivation
supplied to the extrinsic learner differs across implementations of the bandit task, where the arms
have a 10%, 20%, and 50% chance of being redrawn from the base distribution N (0, 1) between
different trials in the same episode (volatility).

Figure 2: Comparison of (blue) meta-learned in-
trinsic motivation terms with (green) the hand-
crafted heuristic upper-confidence bound (UCB)
showing intrinsic motivation attributed to the domi-
nant arm over an episode. Since this arm is chosen
increasingly frequently by the agent, it is less likely
to selected by UCB. The adaptive intrinsic motiva-
tion meanwhile changes from encouraging explo-
ration early in the episode to habit-driven learning
later on.

Agents were trained on volatility levels in the
intervals [0, 13 ] and [ 23 , 1]. Statistical analyses re-
veal significant differences in performance adap-
tation between our model and both the UCB and
ε-greedy across volatility settings. For UCB,
one-sample t-tests yield t(4)=7.0, p=0.0011 at
10% volatility, t(4)=-2.0, p=0.944 at 20% volatil-
ity, and t(4)=18.0, p=3.1e-5 at 50% volatility.
For ε-greedy, the tests yield t(4)=46.0, p=6.8e-
7 at 10% volatility, t(4)=23.0, p=9.9e-6 at 20%
volatility, and t(4)=-18.0, p=1.0 at 50% volatility,
underscoring our model’s enhanced capability
to modulate exploration in response to environ-
mental volatility shifts.

3.3.1 Comparing
learned intrinsic motivation
function with hand-crafted heuristics

The meta-learned intrinsic motivation follows
a smooth transition from encouraging explo-
ration (intrinsic motivation is spread across the
ten arms) to exploitation (intrinsic motivation is
concentrated on one particular arm). In contrast,
hand-crafted heuristics favor exploration even
after it has stopped being beneficial (Figure 2).
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4 Conclusion

The primary aim of this paper is to show how
reinforcement learning can be used as a model of learning across development in a single lifetime.
We show that we can model the adaptation of intrinsic motivation within a lifetime using a framework
with two learners. The adaptive intrinsic motivation is a signal that allows the reinforcement-
learning mechanism to yield safe exploration policies that lead to efficient learning. This framework
suggests that it is possible to view biological agents as lifelong reinforcement learners whose intrinsic
motivation depends on their development but who combine that with within-lifetime learning of
extrinsic rewards. Ultimately, reinforcement learning addresses the same problem biological agents
need to solve, namely learning how to act in an environment in which actions can have better or worse
consequences. There therefore is good reason to think that reinforcement learning can contribute to
the explanation of lifelong biological learning and behavior.
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