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Abstract

The success of natural language processing (NLP) is making NLP applications
commonplace. Unfortunately, recent research has shown that privacy might be
at stake given that these models are often trained on private user data. While
privacy risks are demonstrated in text generation settings, privacy risks of the
text classification settings, which subsume myriad downstream applications, are
largely unexplored. In this work, we study the susceptibility of NLP classification
models, used for text classification tasks, to membership inference (MI), which is a
fundamental type of privacy leakage. We design a comprehensive suite of attacks to
assess the risk of sample-level MI, as well as that of relatively unexplored user-level
MI. We introduce novel user-level MI attacks that outperform the existing attacks
and conduct experiments on Transformer-based and RNN-based NLP models. Our
evaluations show that user-level MI is significantly stronger than sample-level MI.
We further perform in-depth analyses showing the effect of various NLP-specific
parameters on MI against NLP classification models.

1 Introduction
In the past few years, natural language processing (NLP) has made a tremendous progress [2] and has
facilitated multiple NLP applications in our daily lives [10]. However, machine learning models are
known to memorize their (potentially private) training data, and NLP models are no exceptions. As a
result, NLP models can unintentionally leak private information in various forms, e.g., membership
inference attacks (MIAs) [22], text reconstruction [18], and text extraction [3]. MIA is the most
fundamental type of privacy leakage, which can represent other, more complex, forms of leakage.
Given a target model and a target sample, the MIA adversary aims to infer whether the sample was a
member of the private training data of the target model.

While MIAs are extensively studied in the settings of image classification [22, 27, 24, 19, 16, 25, 7,
4, 12] and text generation [23, 3, 18], to the best of our knowledge, they are not well-studied for text
classification. Unfortunately, the peculiarities of NLP for text classification do not allow to trivially
extend the understanding of MIAs from (the well-explored) image classification and text generation
domains to MIAs on text classification domain. Hence, in this work, we focus on privacy risks due to
NLP models in text classification settings.

To this end, we take the first step towards systematically evaluating the privacy risks due to NLP
classification models (here onward, simply called “NLP models”) to their private training data. We
use MIAs for our privacy risk analyses.

Sample-level versus user-level MIAs: A majority of prior works on MIAs focus on sample-level
MIAs, where the adversary aims to infer the membership of a single sample. However, in most
practical settings, a model is trained on data collected from users where each user may contribute
multiple data samples, and the data of different users may overlap. Hence, inferring the membership
of a single target sample may not necessarily violate any user’s privacy, but inferring membership of
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a target user can be deemed sensitive (Figure 1). Hence, we argue to analyze NLP models through the
lens of user-level MIAs, along with sample-level MIAs. Given a target model and a target user’s data,
the user-level MIA adversary aims to infer whether the target user’s data was part of the training
data of the target model. Intuitively, compared to sample-level MIAs, we expect user-level MIAs to
be stronger, as they can combine information from multiple samples of a target user. We will show
that this is indeed the case, and user-level MIAs can be as much as 25% more accurate.
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Figure 1: Sample versus user-level member-
ship inference.

Comprehensive suite of MIAs: For a thorough
analysis of privacy risks due to NLP models under
two practical threat models (Section 2), we design
a comprehensive suite of MIAs that contain sample-
level MIAs (SMIAs) and our novel user-level MIAs
(UMIAs). SMIAs are extensively explored in image
classification, and we adopt the simple, yet effective,
threshold-based SMIA [24].

For user-level MIAs (UMIAs), we first compute a
feature for each of the samples in the target user’s
data. An example feature is cross-entropy loss of a
sample with respect to the target model. Next, for
each target user, we compute an aggregate of all fea-
tures, called aggregate feature, and use it to make
membership inference. Based on the type of the aggregate feature, we design three user-level MIAs:
(1) Threshold-based UMIAs use a single statistic, e.g., average, of all the feature as the aggregate
feature, (2) Learning-based UMIAs first compute multiple statistics of all the features (e.g., average,
minimum, maximum, variance). Then they use the vector of these statistics as the aggregate feature.
(3) Sample-to-user-level UMIAs first use threshold-based SMIAs to infer membership status of each
of the samples in target user’s data. Then they use the average of all the membership statuses as the
aggregate feature. The three key contributions (C’s) of our work are:
(C1) We perform the first systematic analyses of privacy risks due to NLP classification models.
(C2) We provide a comprehensive suite of membership inference attack frameworks that can be used
to mount various sample-level and our novel user-level MIAs.
(C3) Our extensive evaluation using two real-world text classification datasets provides various
interesting insights including, (1) depending on the combination of model and data, UMIAs are 11%
to 25% more accurate than SMIAs, (2) the more the number of classes of data a user contributes
to, the more vulnerable they become to UMIAs, (3) the pre-training methodology of transformer
models [5, 13] can significantly impact the privacy of downstream applications.

2 Membership Inference Attacks Against NLP Classification Models
In this section, we first detail the MIA threat model we consider, then provide a comprehensive suite
of sample-level and user-level MIAs for the privacy leakage assessment of NLP classification models.

Threat model. Given a target model Mθ trained on a private training data Dtr and a target sample
(x, y), the goal of sample-level MIAs (SMIAs) is to infer whether the target sample is a part (member)
of the private training data of the target model Mθ. Following previous works [22, 27, 24, 19], we
assume gray-box (also known as black-box) access to the target model, i.e., access to output prediction
vector Mθ(x) for (x, y). As discussed in Section 1, our aim is to understand privacy risks in practical
settings where text classification models are deployed as an oracle. Furthermore, we also evaluate
our attacks under the more practical and difficult setting of label-only access to the target model.
Similar to previous works, we assume access to some shadow data, i.e., data drawn from the same
distribution as Dtr, but disjoint from Dtr.

Threat model of user-level MIAs (UMIAs) is the same as that of sample-level MIAs, except for their
goal. Given a target model Mθ and the data D∗ of a target user, the goal of UMIAs is to infer whether
D∗ is a part of the private training data of Mθ.

2.1 Threshold-based Sample-level MIAs
There are numerous SMIAs in the literature. However [27, 24, 21] observe that the basic threshold-
based SMIAs (T-SMIAs) perform as well as the more sophisticated neural networks based gray-box
or white-box SMIAs [11, 16]. Hence, we only adopt T-SMIAs in our attack suite. There are a
number of T-SMIAs based on different features (e.g., loss of the target model on a target sample) that

2



T-SMIAs use to differentiate between member and non-member samples. We explore the following
five features in our work: (1) cross-entropy loss of Mθ on (x, y) [16], (2) modified entropy of Mθ on
(x, y) [24], (3) rank of y in Mθ(x) [23], (4) confidence of Mθ(x) on y [22], (5) correctness of Mθ

on (x, y) [27]. We formally define each feature and give details of T-SMIAs to Appendix A.1.

2.2 Baseline User-Level MIAs

In Section 1, we argued for privacy risk analyses of NLP models using user-level MIAs. As a baseline
for user-level MIAs (UMIAs), we build upon the T-SMIAs from Section 2.1 and generalize the
approach in [9]. Specifically, we compute an aggregate statistic (e.g., average) of all of the feature
values of a user and use this statistic, called aggregate feature, to make the final inference. Unless
specified otherwise, we use average of feature values as the aggregate feature for each user. It is
worth noting that we choose this statistic after extensively exploring various statistics, including
variance and minimum; we provide their results in Appendix A.2. Finally, we compute a threshold τ
that separates the aggregate features for members and non-members in shadow data, and use τ to
decide membership of the target user. We formalize this in Algorithm 2.

2.3 Our Novel User-Level MIAs

We next propose novel UMIAs that outperform the baseline UMIAs, as we show in our experiments.

Learning based User-level MIAs: This class of UMIAs uses a machine learning model to learn to
differentiate between the behavior of the shadow model (trained on the shadow member users’ data)
towards member and non-member users in the shadow data. These attacks are motivated from a long
line of research [22, 19, 14] on learning based MIAs. Algorithm 3 describes a general framework to
mount UMIAs for any of the aforementioned features (e.g. loss). We first compute a single vector by
concatenating four statistics (average, minimum, maximum, variance) of the set of feature values for
each user in shadow data. We label the vector as a member or a non-member depending on the true
membership of the corresponding user in the shadow data. This gives us training data to train our
UMIA model; we use logistic regression as our UMIA model. Then, we use this UMIA model to
infer the membership of target users using the vector of the statistics of their features values.

Sample-to-User-Level MIAs: Note that, sample-level MIAs become stronger when mounted for
each class separately [22, 19, 24]. This is because, the difficulty of learning a particular class can
vary and result in significantly different generalization errors (i.e., difference between the model’s
performance on train and test data). Generalization error strongly correlates with MIAs’ success,
hence per-class MIAs are stronger than a single, class-independent MIA. Unfortunately, the previous
UMIAs cannot fully exploit the susceptibility of each class in the data, as they compute aggregate
statistics irrespective of the classes in target user’s data. Therefore, in this section, we improve
UMIAs by fully exploiting the susceptibility of each class in the data.

Our intuition is to first mount a T-SMIA from Section 2.1 on each sample in a target user’s data and
then aggregate the results to infer the membership of that user. Therefore, we call them Sample-
to-user level MIAs (S2U-MIAs). The method of our S2U-MIAs (Algorithm 4) is: (1) we obtain
class-wise thresholds τy∈[C] using Algorithm 1, (2) infer the membership status (MS) of each sample
(x, y∗) in the target user’s data using τy∗ (MS=1 if member and 0 otherwise), and (3) infer the user as
a member if the average of MS of all samples in the user’s data is more than 0.5 and a non-member
otherwise (i.e. majority vote over samples).

3 Empirical results
We use Reddit and Amazon datasets for our evaluations. Each sample of both the datasets has a
user id, text (comment or review), class (subreddit or product). We use area under ROC curve and
accuracy to measure attack performances. We defer further experimental setup details in Appendix B.

Table 1 presents AUCs and accuracies of all MIAs (Section 2) for our default settings (Appendix A).
The two key takeaways from comparisons between SMIAs and UMIAs are as follows: (1) UMIAs
are significantly stronger, hence, pose more severe threat than SMIAs. Under the gray-box threat
model, AUC of the strongest UMIA exceed that of the strongest SMIA by 0.19 for Reddit with
BERT and 0.27 for Amazon with BERT. We note that, the successes of SMIAs and UMIAs strongly
correlate with Egen, hence for Reddit (Amazon), MIAs are stronger on BERT (LSTM) than on LSTM
(BERT). (2) UMIAs perform very well even with just the label-only access to the target model with
AUC above 80 for BERT and above 68 for LSTM models. We observe that, under label-only access,
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Dataset
Model
Atest

(Egen)
Threat
Model Feature

Sample-level
MIA User-level MIAs

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
As−th A

(baseline)
u−th Au−nn As2u

Reddit

BERT
18.7

(33.5)
Gray-box

loss 0.745 (68.9) 0.894 (82.3) 0.916 (85.5) 0.935 (85.6)
mentropy 0.744 (69.0) 0.886 (83.1) 0.874 (84.4) 0.891 (85.5)

rank 0.734 (68.8) 0.903 (85.1) 0.829 (81.1) 0.909 (84.9)
confidence 0.745 (69.2) 0.822 (73.8) 0.829 (74.3) 0.890 (83.7)

Label-only correctness 0.652 (62.3) 0.835 (77.1) 0.833 (77.3) 0.811 (76.6)

LSTM
13.2

(12.5)
Gray-box

loss 0.682 (63.2) 0.777 (69.7) 0.816 (73.7) 0.831 (74.2)
mentropy 0.683 (63.4) 0.779 (69.7) 0.824 (73.4) 0.819 (74.2)

rank 0.673 (63.0) 0.772 (70.4) 0.751 (68.6) 0.781 (72.0)
confidence 0.682 (62.2) 0.716 (62.4) 0.719 (65.5) 0.774 (73.2)

Label-only correctness 0.567 (55.1) 0.688 (63.5) 0.640 (63.0) 0.595 (56.6)

Amazon

BERT
75.4

(15.6)
Gray-box

loss 0.597 (58.7) 0.827 (73.7) 0.857 (81.6) 0.849 (74.2)
mentropy 0.598 (58.7) 0.859 (76.7) 0.870 (85.1) 0.862 (75.8)

rank 0.587 (58.4) 0.792 (71.2) 0.600 (70.1) 0.812 (68.6)
confidence 0.597 (58.7) 0.759 (65.4) 0.814 (72.9) 0.813 (74.6)

Label-only correctness 0.585 (58.5) 0.800 (69.5) 0.800 (72.5) 0.822 (75.2)

LSTM
58.7

(20.7)
Gray-box

loss 0.632 (61.6) 0.799 (70.7) 0.925 (86.1) 0.831 (75.4)
mentropy 0.635 (61.7) 0.843 (74.9) 0.940 (88.2) 0.835 (74.8)

rank 0.611 (60.8) 0.788 (70.5) 0.819 (75.1) 0.820 (63.1)
confidence 0.632 (61.6) 0.724 (63.4) 0.921 (83.9) 0.831 (75.4)

Label-only correctness 0.603 (60.2) 0.765 (67.5) 0.732 (64.1) 0.766 (65.6)

Table 1: Comparison of AUCs (accuracy in parentheses) of SMIAs and UMIAs for gray-box and
label-only threat models. We bold the results of the best of SMIAs and the best of UMIAs.

any of UMIAs performs better than the best of SMIAs. This implies that an adversary can correctly
infer the presence of a target user in the private training data with high confidence by just looking at
the output label of the target model, which highlights the severity of our UMIAs.

Our UMIAs outperform the state-of-the-art UMIAs [9, 23]. Algorithm 2 with loss feature corre-
sponds to the UMIA of [9]; Abaseline

u−th column of Table 1 shows its performance. We note that our novel
UMIAs (Au−nn and Au−s2u columns of Table 1) from Section 2.3 outperform the above baseline
UMIAs. Song et al. [23] propose a learning based attack that uses histogram of ranks of the tokens in
target user’s data to decide the user’s membership. The attack is devised for text generation setting,
but it can be trivially extended to our text classification setting by using histogram of ranks of the
correct labels in target user’s data. We note in our experiments that, for Reddit + BERT (LSTM),
AUC of their attack is 0.907 (0.812) while AUC of our best UMIA is 0.935 (0.831); for Amazon +
BERT (LSTM), AUC of their attack is 0.831 (0.878) while AUC of our best UMIA is 0.857 (0.94).

Key takeaways from our experiments with varying the learning parameters Due to space
restrictions, we defer detailed experimental results to Appendix C and provide key takeaways below.
(1) Increasing the number of samples per user, at first increases the susceptibility of NLP models to
user-level MIAs, but as the number of samples/user become very large, the the susceptibility reduces.
However, increasing the number of samples/user always weakens the sample-level MIAs.
(2) Increasing the number of users reduces the susceptibility to both user- and sample-level MIAs.
While increasing the number of classes in data, increases the susceptibility to both types of MIAs.
(3) Increasing the number of parameters (capacity) of a transformer model need not always increase
their susceptibility to MIAs. Instead we observe that, the pre-training methodology of transformer
models [5, 13] can significantly impact the privacy of downstream applications.
(4) Tokenization algorithm used to preprocess the text can significantly impact the privacy of down-
stream applications. For instance, we observe that the models which use word-piece tokenization are
less susceptible to MIAs than the models which use word-level tokenization.
(5) Increasing the size of vocabulary during tokenization increases the susceptibility of downstream
models to both types of MIAs, because of reduced number of out-of-vocabulary tokens.
(6) The more the number of classes of data a user contributes to, the more vulnerable they become to
UMIAs.

We hope that our comprehensive suite of membership inference attacks will help practitioners
understand a lower bound on the privacy leakage due to NLP classification models. Furthermore,
our work opens up a few interesting avenues for future works, e.g., 1) using user-level MIAs to audit
fairness of data collection process, 2) using text perturbations to improve MIAs.
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A Missing Details of Membership Inference Attacks Against NLP
Classification Models

In this section, we provide a missing details of our comprehensive suite of sample-level and user-level
MIAs for the privacy leakage assessment of NLP classification models.

Notations: Let Mθ be the target model, (x, y) be a target sample (for sample-level MIAs), and D∗ be
a target user’s data (for user-level MIAs). D̄ (D̄′) is the union of the data of n (n′) shadow member
(non-member) users. Mθ̄ is the shadow model trained on D̄. Dj denotes jth sample in a sample-level
MIA, while Dj

i denotes jth sample of user i in a user-level MIA. C is the number of classes in data.
We use F to represent different features (e.g. loss, confidence, rank, etc.) that we use in our attacks.
For an integer p, [p] denotes integers in range [1, p]. |D| denotes the size of D. 1{g} is an indicator
function which outputs 1 if g is true and 0 otherwise. For a set of values T , Tavg, Tmax, Tmin, and Tvar
denote average, maximum, minimum, and variance of T , respectively.

Algorithm 1 Threshold-based Sample-level MIA (As−th)

1: Input: D̄, D̄′, Mθ̄ , Mθ , (x, y)
2: Obtain class-wise shadow data: D̄y∈[C], D̄′y∈[C]

3: for y ∈ [C] do
4: {f̄ iy = F (Mθ̄, D̄

i
y)}i∈[|D̄y|]; {f̄

′i
y = F (Mθ̄, D̄

′i
y )}i∈[|D̄′y|]

5: τy = argmax
τ∈R

( ∑
i∈[|D̄y|]

1{f̄ iy ≥ τ}+
∑

i∈[|D̄′y|]
1{f̄ ′iy < τ}

)
6: end for
7: Output 1{F (Mθ, (x, y)) ≥ τy}

A.1 Threshold-based Sample-level MIAs

There are numerous SMIAs in the literature. However [27, 24, 21] observe that the basic threshold-
based SMIAs (T-SMIAs) perform as well as the more sophisticated neural networks based gray-box
or white-box SMIAs [11, 16]. Hence, we only adopt T-SMIAs in our attack suite. There are a
number of T-SMIAs based on different features (e.g., loss of the target model on a target sample) that
T-SMIAs use to differentiate between member and non-member samples. Here, we give a general
methodology and intuition behind these attacks.

Method: As in the previous work [24], we compute separate thresholds for each class in the data to
make the attacks more effective. T-SMIAs in Algorithm 1 use shadow member and non-member data
(D̄ and D̄′) to compute the class-specific thresholds. First, T-SMIAs train a shadow model Mθ̄ on
D̄. Then, for each shadow member sample D̄i

y and non-member sample D̄′iy of class y, T-SMIAs
compute a feature (e.g. model loss) using the sample and Mθ̄ (line 4 of Algorithm 1). Then, for
each class y, they compute a threshold τy that best separates the features of shadow members and
non-members (line 5 of Algorithm 1). Finally, T-SMIAs compute the feature value for the target
sample (x, y), and use τy to make the final inference.

One can use different features (F in Algorithm 1) to mount T-SMIAs; we explore the following five
features in our work:

• (1) Cross-entropy loss [16]

LCE(Mθ(x), y) = −log(Mθ(x)y).

• (2) Modified entropy of [24]

Mentr(Mθ(x), y) = −(1−Mθ(x)y)log(Mθ(x)y)

−
∑
c6=y

Mθ(x)clog(Mθ(x)c).

• (3) Rank of correct label [23]

Rank(Mθ(x), y) = r s.t. Mθ(x)y = Ms
θ (x)[r]

where Ms
θ (x) is Mθ(x) sorted from high to low values and v[r] is the rth index of v.
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• (4) Confidence of the correct label [22]: Mθ(x)y .
• (5) Correctness [27]: 1{y = argmax

c
Mθ(x)c}.

Note that, features (1)-(4) are gray-box features, i.e., for sample (x, y), adversary needs the prediction
vector Mθ(x) to compute them, while feature (5) is a label-only feature, i.e., just arg maxMθ(x) is
required to compute it.

Intuition: The intuition behind T-SMIAs is that the target model Mθ is trained on the training data
(members) and hence, performs well on the training data, but this may not equally apply to the test
data (non-members). This in turn creates a gap between how the model performs on members and
non-members. Therefore, various (aforementioned) features of Mθ become sufficiently different for
members and non-members. Hence, the adversary can find a threshold that separates the member
from non-member features and use it to infer the membership of any target sample.

Algorithm 2 Baseline User-level MIA (A(baseline)
u−th )

1: Input: D̄, n, D̄′, n′, Mθ̄ , Mθ , D∗
2: F̄ i = {F (Mθ̄, D̄

j
i )}j∈[|D̄i|] ∀i ∈ [n]

3: F̄
′i = {F (Mθ̄, D̄

′j
i )}j∈[|D̄′i|]

∀i ∈ [n′]

4: τ = argmax
τ∈R

( ∑
i∈[n]

1{F̄ iavg ≥ τ}+
∑
i∈[n′]

1{F̄
′i
avg < τ}

)
5: Output 1{F ∗avg ≥ τ} where F ∗ = {F (Mθ, D

j
∗)}j∈[|D∗|]

A.2 Baseline User-Level MIAs

In Section 1, we argued for privacy risk analyses of NLP models using user-level MIAs, because the
training data of modern NLP models often contains multiple samples from a user. As a baseline for
user-level MIAs (UMIAs), we build upon the T-SMIAs from Section 2.1 and generalize the approach
in [9]. Specifically, we compute an aggregate statistic (e.g., average) of all of the feature values of
a user and use this statistic, called aggregate feature, to make the final inference. Unless specified
otherwise, we use average of feature values as the aggregate feature for each user. It is worth noting
that we choose this statistic after extensively exploring various statistics, including variance and
minimum; we provide their results in Table 2.

Finally, we compute a threshold τ that separates the aggregate features for members and non-members
in shadow data, and use τ to decide membership of the target user. We formalize this in Algorithm 2.

A.3 Our Novel User-Level MIAs

We next propose novel UMIAs that outperform the baseline UMIAs, as we will show in our experi-
ments.

Learning based User-level MIAs: This class of UMIAs uses a machine learning model to learn to
differentiate between the behavior of the shadow model (trained on the shadow member users’ data)
towards member and non-member users in the shadow data. These attacks are motivated from a long
line of research [22, 19, 14] on learning based MIAs.

Algorithm 3 describes a general framework to mount UMIAs for any of the aforementioned features
(e.g. loss). We first compute a single vector by concatenating four statistics (average, minimum,
maximum, variance) of the set of feature values for each user in shadow data. We label the vector
as a member or a non-member depending on the true membership of the corresponding user in the
shadow data. This gives us training data to train our UMIA model; we use logistic regression as
our UMIA model. Then, we use this UMIA model to infer the membership of target users using the
vector of the statistics of their features values.

Sample-to-User-Level MIAs: Note that, sample-level MIAs become stronger when mounted for
each class separately [22, 19, 24]. This is because, the difficulty of learning a particular class can
vary and result in significantly different generalization errors (i.e., difference between the model’s
performance on train and test data). Generalization error strongly correlates with MIAs’ success,
hence per-class MIAs are stronger than a single, class-independent MIA.
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Algorithm 3 Learning based User-level MIA (Au−nn)

1: Input: D̄, n, D̄′, n′, Mθ̄ , Mθ , D∗
2: Compute sample-level features for shadow users:
F̄ i = {F (Mθ̄, D̄

j
i )}j∈[|D̄i|] ∀i ∈ [n] .member users

F̄
′i = {F (Mθ̄, D̄

′j
i )}j∈[|D̄′i|]

∀i ∈ [n′] .non-member users
3: Compute feature-vector for shadow users
f̄ iu = (F̄ iavg, F̄

i
min, F̄

i
max, F̄

i
var) ∀i ∈ [n] .member users

f̄
′i
u = (F̄

′i
avg, F̄

′i
min, F̄

′i
max, F̄

′i
var) ∀i ∈ [n′] .non-member users

4: Train attack model A on ({f̄ iu, 1}i∈[n] ∪ {f̄
′i
u , 0}i∈[n′])

5: F ∗ = {F (Mθ, D
j
∗)}j∈[|D∗|] .features of target user

F ∗u = (F ∗avg, F
∗
min, F

∗
max, F

∗
var) .feature-vector of target user

6: Output A(F ∗u )

Algorithm 4 Sample to User level MIA (As2u)

1: Input: D̄, D̄′, Mθ̄ , Mθ , D∗
2: Compute per-class thresholds τy using Algorithm 1 lines 2-6
3: Set membership status MS(x, y) = 1{F (Mθ, (x, y)) ≥ τy}
4: Set F ∗ = {MS(x, y)}(x,y)∈D∗
5: Output 1{F ∗avg ≥ 0.5} .majority vote over MS of samples

Unfortunately, the previous UMIAs cannot fully exploit the susceptibility of each class in the data, as
they compute aggregate statistics irrespective of the classes in target user’s data. Therefore, in this
section, we improve UMIAs by fully exploiting the susceptibility of each class in the data.

Our intuition is to first mount a T-SMIA from Section 2.1 on each sample in a target user’s data and
then aggregate the results to infer the membership of that user. Therefore, we call them Sample-
to-user level MIAs (S2U-MIAs). The method of our S2U-MIAs (Algorithm 4) is: (1) we obtain
class-wise thresholds τy∈[C] using Algorithm 1, (2) infer the membership status (MS) of each sample
(x, y∗) in the target user’s data using τy∗ (MS=1 if member and 0 otherwise), and (3) infer the user as
a member if the average of MS of all samples in the user’s data is more than 0.5 and a non-member
otherwise (i.e. majority vote over samples).

Dataset
Model
Atest

(Egen)
Threat
Model Feature

Threshold-based User-level MIAs (Algorithm 2)
Statistic used for attack

Average Minimum Maximum Variance

Reddit

BERT
18.7

(33.5)
Gray-box

loss 0.894 (82.3) 0.658 (58.4) 0.882 (77.0) 0.861 (79.2)
mentropy 0.886 (83.1) 0.658 (58.5) 0.869 (75.2) 0.868 (80.7)

rank 0.903 (85.1) 0.536 (53.6) 0.895 (83.5) 0.901 (85.1)
confidence 0.822 (73.8) 0.882 (77.0) 0.658 (58.4) 0.679 (63.8)

Label-only correctness 0.835 (77.1) 0.501 (50.0) 0.536 (53.6) 0.692 (62.5)

LSTM
13.2

(12.5)
Gray-box

loss 0.777 (69.7) 0.639 (56.8) 0.754 (68.6) 0.751 (68.9)
mentropy 0.779 (69.7) 0.640 (57.0) 0.810 (74.2) 0.751 (68.6)

rank 0.772 (70.4) 0.559 (55.1) 0.743 (68.2) 0.739 (69.0)
confidence 0.716 (62.4) 0.754 (68.6) 0.639 (56.8) 0.669 (58.9)

Label-only correctness 0.688 (63.5) 0.501 (50.0) 0.555 (55.5) 0.674 (61.9)

Amazon

BERT
75.4

(15.6)
Gray-box

loss 0.827 (73.7) 0.486 (51.3) 0.856 (80.0) 0.805 (76.8)
mentropy 0.859 (76.7) 0.486 (51.3) 0.859 (73.8) 0.955 (89.0)

rank 0.792 (71.2) 0.500 (50.0) 0.782 (70.0) 0.811 (70.2)
confidence 0.759 (65.4) 0.856 (80.0) 0.486 (51.3) 0.122 (49.7)

Label-only correctness 0.800 (69.5) 0.530 (53.0) 0.500 (50.0) 0.144 (50.0)

LSTM
58.7

(20.7)
Gray-box

loss 0.799 (70.7) 0.534 (52.2) 0.777 (70.2) 0.809 (72.9)
mentropy 0.843 (74.9) 0.534 (52.2) 0.883 (79.3) 0.933 (87.9)

rank 0.788 (70.5) 0.503 (50.2) 0.819 (76.5) 0.806 (72.9)
confidence 0.724 (63.4) 0.777 (70.2) 0.534 (52.2) 0.265 (50.0)

Label-only correctness 0.765 (67.5) 0.504 (50.4) 0.503 (50.2) 0.310 (49.1)

Table 2: We design our threshold-based user-level MIA attack framework such that one can plug in
various statistics of the feature values of samples from a target user’s data. Here, we provide all of
the results from our explorations of four statistics: average, minimum, maximum, and variance. We
observe the average-based UMIAs perform better for majority of the features, hence, in main paper,
we use average-based results.

9



B Missing Details of Experimental Setup

Datasets: (1) Reddit [1]: We use Reddit comments from a randomly chosen month (November
2017). Each sample of the dataset contains user id, comment, and subreddit (i.e., the comment
topic). Here the labels are subreddits and the classification task is to predict the subreddit for a given
comment. For our default setting of Table 1, we take the users with minimum 150 and maximum
500 comments from the top 256 subreddits; randomly sample 1,200 users and divide them equally
in target member, non-member, and shadow member, non-member datasets; we use two disjoint
sets of 30 users each for test and validation datasets. (2) Amazon [17]: We concatenate Amazon
reviews data from 25 product categories to generate a dataset whose each sample contains user id,
comment on a product, and category of the product. We train our models to predict a product category
for a given comment. For our default setting of Table 1, we take the users with minimum 100 and
maximum 300 comments from all 25 categories; rest of the setting is the same as that of Reddit.

Models: In our experiments, we use the BERT-base [5] and a 2-layer LSTM model [8].

Measurement metrics: We measure the success of MIAs using area under ROC curve (AUC) and
accuracy. MIA AUC measures the probability that for a randomly selected pair of a member and a
non-member user/sample, MIA assigns higher rank to the member than the non-member [6]. Note
that, unlike accuracy, AUC is a more robust, threshold-independent metric; below, we provide MIA
AUCs in most of the experiments. MIA accuracy is the percentage of correct membership predictions
of the target samples/users. We maintain equal number of member and non-member users in the
target data, hence accuracy and AUC of a random guess are 50% and 0.5, respectively.

Note that, we use early stopping in all of our experiments to prevent overfitting to training data
and ensure good generalization performance of models. We report the test accuracy Atest of the
snapshot of the model that achieves the best performance on validation data in the course of training
We define generalization error Egen of a model as the difference between its train and test accuracies,
i.e., Egen = Atrain − Atest. For each experiment, we present the average of three runs with three
different seeds.

C Missing Experimental Results

Below, we study the impacts of various parameters of learning setting, including the ones that are
specific to the training of NLP models. We use Reddit dataset for the following ablation studies.
We only vary the parameter of interest, and keep the others as in the default setting of Reddit from
Section B. For clarity, we present AUCs only of our S2U-MIAs, as they perform the best in most of
the settings.

Number of samples per user: Figure 2-(a) shows the results when we vary the number of samples
per user. The increase in the samples improve the test accuracy, Atest, and the generalization error,
Egen, as expected. Hence, SMIA performance, which strongly correlates with generalization error,
Egen, reduces for both BERT and LSTM.

Note that, for UMIAs, increasing the number of samples per user allows to make more queries to the
target model and glean more information about target users, and hence, we expect UMIAs to be more
effective. Interestingly, we observe this behavior only in the low data regime (up to on average 475
samples/user). But, when we further increase the number of samples/user, the UMIA AUC reduces.
This is because, in high data regimes, the Egen of model reduces significantly and this reduces UMIA
performances.

Number of member users: Figure 2-(b) shows the results when we vary the number of users in the
training data. Increasing the number of users increases the amount of training data. As expected,
this increases the test accuracy, Atest, and reduces generalization error, Egen. This in turn reduces
the performances of both SMIAs and UMIAs. We observe the same behaviors for BERT and LSTM
models.

Number of classes in dataset: Figure 2-(c) shows the results when we vary the number of classes
in the data. With all the other parameters constant, increasing the number of classes increases the
difficulty of the classification task. Hence, Atest reduces and Egen increases, which makes both
SMIAs and UMIAs more effective.
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(a) Impact of varying the number of samples per user
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(b) Impact of varying the number of users in data
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(c) Impact of varying the number of classes in data

Figure 2: Impacts of varying the learning parameters on AUC of SMIAs and UMIAs, and on test
accuracy (Atest) and generalization error (Egen) of the target model.
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Figure 3: Impact of varying the architecture and number of trainable parameters of transformer-based
models on MIAs.

11



1k 2.5k 5k 10k 20k 30k
Vocabulary size

0

2

4

6

8

10

12

14

16

Te
st

 a
cc

/G
en

 e
rr 

(%
)

Test acc (word level)
Test acc (word piece)
Gen err (word level)
Gen err (word piece)

1k 2.5k 5k 10k 20k 30k
Vocabulary size

0.60

0.65

0.70

0.75

0.80

At
ta

ck
 A

UC

SMIA (word level)
SMIA (word piece)
UMIA-NN (word level)
UMIA-NN (word piece)

Figure 4: Impact of varying the size of vocabulary and the tokenization algorithm on MIAs against
LSTM model.
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Figure 5: Impact of varying the maximum length of the tokenized input sequences on MIAs.

Number of trainable parameters: In this experiment we finetune three pre-trained models: Dis-
tilBERT [20], BERT-base [5], and Roberta [13], with 66 million, 108 million, and 148 million
parameters, respectively. We mount all of our SMIAs and UMIAs from Section 2 and present the
results in Figure 3.

Larger models tend to memorize their training data better than smaller models. Hence, as expected,
we observe that BERT is more susceptible to membership inferences than DistilBert. Roberta is the
largest among the three models and achieves the highest test accuracy. Interestingly, it achieves the
lowest generalization error, and hence, it is least susceptible to SMIAs and UMIAs. This experiment
highlights that the pre-training methodology of transformer models can significantly impact the
privacy of downstream applications.

Impact of text tokenization parameters: Tokenization is an important pre-processing step in any
NLP task. There are three important parameters of tokenization: 1) tokenization algorithm (e.g.,
word-level [15] versus word-piece [26]), 2) vocabulary size, and 3) maximum length (number of
tokens) of the tokenized model inputs.
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Figure 6: Understanding user-level MIAs
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Figure 7: Understanding sample-level MIAs

Figure 4 shows the impacts of the first two parameters. We only use the LSTM model here, because
the other model we use is pre-trained BERT-base whose tokenization and vocabulary are fixed. As
the vocabulary size increases, the number of out-of-vocabulary words reduce, which improves the
performance of MIAs. Interestingly, word-piece tokenization weakens MIAs, probably because, it
splits words into sub-words which reduces specificity of the words and obfuscates the signal required
for membership inference.

Figure 5 shows the impact of the maximum length of tokenized model inputs (i.e., sequence). As we
increase the maximum length, the resulting models become more accurate but also more susceptible
to MIAs. This is because, longer tokenized sequences expose more specific context of a given text.
When tokenization truncates the text to obtain shorter sequences, this obfuscates the membership
signal.

C.1 Understanding Sample and User-level MIAs

Below, we try to understand the sources of the susceptibility of NLP models to sample-level and
user-level MIAs.

Sample-level MIAs: Figure 7 shows results plot for understanding sample-level MIAs, where we
plot the generalization error and accuracy of sample-level MIA for each of 10 classes of data. Recall
that we use 10 classes for this experiment to ensure sufficient number of samples in each class.
Similar to previous works [24, 22], we observe that classes with higher Egen are more susceptible to
SMIAs. This is because, higher Egen widens the gap between model’s behaviour on members and
non-members.

User-level MIAs: Here, we try to understand the effect of the distribution of classes in a target user’s
data on their susceptibility to UMIAs. We use entropy of the empirical distribution of classes (Hc) in
a user’s data as the proxy for the distribution of classes in the user’s data. We compute Hc for all
users, sort them based on Hc, and divide them in 10 buckets. Finally, for the users in each bucket, we
plot the average Hc and the average of our S2U-MIA accuracy in Figure 6.

We observe in Figure 6 that the susceptibility to UMIAs increases with the increase in the entropy of
class distribution. In other words, those users who contribute to different classes (e.g., by participating
in various subreddits) are more susceptible to user-level membership inferences.

For Reddit, this is because: the users with low entropy (i.e., those with very few classes) tend to have
only the top classes (i.e., the classes with larger number of samples) in their data. The top classes
tend to have lower generalization error because the model trains on larger number of samples. Hence,
such users are less susceptible to user-level MIAs. But, users with more number of classes in their
data have the classes with low number of samples (along with the top classes). Due to the presence
of such classes, the generalization error of such users is higher, and therefore, their susceptibility
to UMIAs is also higher. Interestingly, UMIAs are stronger against users with a single class (zero
entropy) than those with a few classes , probably because having just a single class makes these users
more unique.
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