
Published in Transactions on Machine Learning Research (07/2025)

Preference Discerning with LLM-Enhanced Generative Re-
trieval

Fabian Paischer
ELLIS Unit, LIT AI Lab, Institute for Machine Learning, JKU Linz, Austria
AI at Meta

Liu Yang
University of Wisconsin-Madison
AI at Meta

Linfeng Liu, Shuai Shao, Kaveh Hassani, Jiacheng Li, Ricky Chen, Zhang Gabriel Li, Xiaoli
Gao, Wei Shao, Xue Feng, Nima Noorshams, Sem Park, Bo Long, Hamid Eghbalzadeh†

heghbalz@meta.com
AI at Meta

Reviewed on OpenReview: https: // openreview. net/ forum? id= 74mrOdhvvT

Abstract

In sequential recommendation, models recommend items based on user’s interaction history.
To this end, current models usually incorporate information such as item descriptions and
user intent or preferences. User preferences are usually not explicitly given in open-source
datasets, and thus need to be approximated, for example via large language models (LLMs).
Current approaches leverage approximated user preferences only during training and rely
solely on the past interaction history for recommendations, limiting their ability to dynam-
ically adapt to changing preferences, potentially reinforcing echo chambers. To address this
issue, we propose a new paradigm, namely preference discerning, which explicitly condi-
tions a generative recommendation model on user preferences in natural language within its
context. To evaluate preference discerning, we introduce a novel benchmark that provides
a holistic evaluation across various scenarios, including preference steering and sentiment
following. Upon evaluating current state-of-the-art methods on our benchmark, we discover
that their ability to dynamically adapt to evolving user preferences is limited. To address
this, we propose a new method named Mender (Multimodal Preference Discerner), which
achieves state-of-the-art performance in our benchmark. Our results show that Mender
effectively adapts its recommendation guided by human preferences, even if not observed
during training, paving the way toward more flexible recommendation models. 1

1 Introduction

Traditional sequential recommendation refers to the task of recommending items to users based on their
historical interactions. This requires inferring latent variables, such as user preferences and intents, which
are often not explicitly provided in common datasets, as information about users is usually scarce. Therefore,
current works use LLMs to approximate user preferences from the users’ interaction history (Zheng et al.,
2023; Cao et al., 2024; Oh et al., 2024) or user reviews about items (Kim et al., 2024). These preferences are
then used as targets for auxiliary tasks (Cao et al., 2024; Zheng et al., 2023), instructions for retrieval (Oh
et al., 2024), or step-by-step reasoning (Kim et al., 2024). Incorporating such information usually improves
recommendation performance.

1Code is available at https://github.com/facebookresearch/preference_discerning.
2†: Corresponding author.

1

https://openreview.net/forum?id=74mrOdhvvT
https://github.com/facebookresearch/preference_discerning


Published in Transactions on Machine Learning Research (07/2025)

Preference

Preference

Preference

Preference

User preferences
Preference conditioning

Interaction History

RecommendationPromptUser data
Review

Review

Review

Review

Preference approximation

LLM

Multimodal sequential 

recommendation system

Figure 1: The preference discerning paradigm consists of two phases: preference approximation and preference
conditioning. In preference approximation phase, a pre-trained LLM is used to infer user preferences from
user-specific data. In preference conditioning phase, a sequential recommendation model is conditioned on
the generated user preferences, enabling personalized recommendations.

Current sequential recommendation models lack the ability to dynamically adapt to changing user preferences
after training, as they rely solely on the past interaction history of a user. Consider a scenario in which a user
interacts on a social media platform and primarily views certain contents. Current recommendation models
will continue to recommend similar content as no other information is provided to them. However, the user’s
interest may change over time influenced by lifestyle changes, career transitions, hobbies, or life events. For
example, a user who uses social media for entertainment might start learning a new skill, but still receives
viral videos instead of tutorials. This issue may be mitigated by users providing their preferences to the
recommendation model; however, this ability is lacking in available models. To adapt to such situations, they
require re-training after the user interacts with different items. Furthermore, there is a lack of understanding
to what extent current recommendation models accurately discern user preferences.

To address these limitations, we propose a novel paradigm, which we term preference discerning. The aim of
preference discerning is to approximate user preferences from previous comments, reviews, or recent activity
and to provide them to the recommendation model, such that it can dynamically adapt its recommendations.
Preference discerning consists of two stages: (1) preference approximation and (2) preference conditioning.
In the first stage, we use LLMs to distill user- and item-specific data into short and concise user preferences.
The second stage trains a sequential recommendation model conditioned on the generated preferences in its
context to generate item recommendations. This in-context conditioning unlocks steering via generated user
preferences, effectively combining the sequential prior from interaction history with the user preferences.
This allows users to specify the item properties they wish to avoid or prefer in natural language. The model
then integrates this information with previous interactions to dynamically adapt the recommendation.

To evaluate preference discerning capabilities of sequential recommendation models, we propose a holistic
benchmark that comprises five evaluation axes: (1) preference-based recommendation, (2) sentiment fol-
lowing, (3) fine-grained steering, (4) coarse-grained steering, and (5) history consolidation. We evaluate
state-of-the-art generative retrieval methods on our benchmark and find that they lack several key abilities
of preference discerning. Therefore, we introduce a novel multimodal generative retrieval method named
Mixedmodal preference discerner (Mender) that effectively fuses pre-trained language encoders with the
generative retrieval framework (Rajput et al., 2023) for preference discerning. We demonstrate that prefer-
ence discerning capabilities can naturally emerge when training solely on preference-based recommendation
data. Furthermore, we show that preference discerning capabilities can be obtained by augmenting the train-
ing data with training splits for the different axes. As a result, Mender can be effectively steered by different
user preferences provided in its context to recommend specific items. Ultimately, Mender outperforms the
existing state-of-the-art generative retrieval models on most evaluation axes of our benchmark. In summary,
our contributions are as follows.

• We introduce a novel paradigm called preference discerning, where the generative recommendation
model is conditioned on user preferences within its context.

• We propose a comprehensive benchmark for evaluating preference discerning, comprising of five
distinct evaluation scenarios that provide a holistic assessment of its capabilities.

2



Published in Transactions on Machine Learning Research (07/2025)

• We present Mender, a multimodal baseline that integrates collaborative semantics with language
preferences, achieving state-of-the-art performance on our proposed benchmark.

2 Related Work

Sequential Recommendation can be categorized into two major scenarios: search (Nigam et al., 2019)
and recommendation (Covington et al., 2016). The former assumes access to a query from a user that
reflects their intent (He et al., 2022), whereas the latter scenario does not make such an assumption. For the
recommendation scenario, numerous works have investigated the use of additional information to enhance
recommendation performance (Meng et al., 2020; Hidasi et al., 2016; Liu et al., 2021; Zhang et al., 2019a;
Bogina & Kuflik, 2017; Li et al., 2020). Our work introduces a new paradigm that enables in-context steering
of sequential recommendation models through textual user preferences.

Existing Benchmarks for recommendation vary in their representation of user preferences and the tasks
they evaluate. Oh et al. (2024) proposed a benchmark for instruction-following in information retrieval
where instructions are generated from search queries. The C4 benchmark (Hou et al., 2024) uses complex
search queries that reflect user preferences for retrieval. Contrary, we focus on user preferences in sequential
recommendation. Such preferences are often modeled indirectly from user queries and responses to recom-
mended items (Min et al., 2023; Huang et al., 2013; Ma et al., 2018), or represented as edges on graphs (Ying
et al., 2018; Li et al., 2019). In query-aware sequential recommendation He et al. (2022) the model is given
keywords in its context that represent the user’s intent but do not capture their preferences. In contrast,
our benchmark builds on established datasets (Ni et al., 2019; Kang & McAuley, 2018) and augments them
with generated user preferences to evaluate preference discerning capabilities.

Generative Retrieval uses autoregressive modeling to generate the next item, rather than performing
pairwise comparisons between a user representation and all item representations. The promise of generative
retrieval is efficient operation on industrial-scale item sets (Singh et al., 2024). Therefore, in our work
we focus mainly on applying preference discerning to generative retrieval. Rajput et al. (2023) proposes
tokenizing items in the form of semantic IDs (Lee et al., 2022) instead of random IDs. The benefit of this
approach is that very large item sets can be represented as a combination of ids that reflect their semantic
similarity. Subsequent works have investigated the effect of learned tokenization (Sun et al., 2023) and
additional objectives (Li et al., 2024; Wang et al., 2024). Our Mender represents items as semantic IDs and
fuses them with pre-trained LMs to effectively steer the recommendation.

Language-Based Sequential Recommendation rely on the premise of enhanced transparency and ac-
tionable interrogation of recommendation systems (Radlinski et al., 2022). Furthermore, language provides
a natural interface for users to express their preferences. Recent works have used LLMs to approximate user
preferences by representing user and item specific data in natural language (Zheng et al., 2023; Oh et al.,
2024; Cao et al., 2024), by conditioning the LLM on user embeddings (Ning et al., 2024), or by leveraging
user reviews of items (Kim et al., 2024). In this context, Kang et al. (2023) found that an effective preference
approximation may require fine-tuning of the LLM. Other studies have explored the use of LLMs for data
augmentation in sequential recommendation (Geng et al., 2022; Zhang et al., 2019b; Luo et al., 2024). In
the near-cold start scenario, Sanner et al. (2023) demonstrated that user preferences represented in natural
language can be particularly effective. Li et al. (2023) showed the benefit of moving from ID-based repre-
sentations to text-based representations of the interaction history. Similarly, Petrov & Macdonald (2023)
represents all items in natural language and performs a ranking conditioned on past interactions. Zheng
et al. (2023) explored aligning semantic IDs with natural language by adding auxiliary tasks.

3 Methodology

We first elaborate on the task of sequential recommendation and give important background in Section 3.1.
In addition, we elaborate on the core components of preference discerning, namely preference approximation
and preference conditioning (see Fig. 1). We cover our preference approximation pipeline in Section 3.2 and
elaborate on our proposed preference-conditioned method Mender in Section 3.3 and Section 3.4. Finally, we
elaborate on the construction of our benchmark to evaluate preference discerning capabilities in Section 3.5.

3



Published in Transactions on Machine Learning Research (07/2025)

3.1 Background

In sequential recommendation, the goal is to provide personalized recommendation for users based on their
interaction history. To this end, we assume access to a set of users U and a set of items I. For each user
u ∈ U , we assume access to a sequence of item interactions in chronological order: su =

[
i
(1)
u , . . . , i

(Tu)
u

]
,

where Tu represents the time horizon of a particular user u who has interacted with items iu ∈ I. The task
of sequential recommendation is then to predict item i

(Tu)
u given

[
i
(1)
u , . . . , i

(Tu−1)
u

]
. Traditional sequential

recommendation systems (Kang & McAuley, 2018; Zhou et al., 2020; Sun et al., 2019; Hidasi et al., 2016)
are based on sequence modeling architectures (Hochreiter & Schmidhuber, 1997; Devlin et al., 2019; Vaswani
et al., 2017) to represent users and items via dense embeddings. These embeddings are then leveraged to
retrieve the most relevant items for a user via pariwise comparisons using maximum inner product search.
This approach can be computationally expensive as the number of items grows and each item must be
represented as an embedding to be stored. Generative retrieval (Rajput et al., 2023) aims at alleviating
the need for pairwise comparisons and storing unique embeddings for each item by leveraging semantic IDs
(Lee et al., 2022) in combination with generative modeling. These approaches have proven to be effective on
industrial-scale item sets (Singh et al., 2024).

3.2 Preference Approximation

Preference approximation refers to the process of distilling user- and item-specific data into short and concise
user preferences. This compression is crucial, as sequential recommendation models are usually limited by
the amount of information that can be provided in their input. This information may include user reviews,
profiles, posts, demographic information, or any other relevant details. Furthermore, incorporating item-
specific information is crucial, as it provides additional context that can help alleviate the vagueness or
incompleteness often encountered in user-specific data. Preference approximation is a necessary prerequisite
that enables in-context conditioning on the generated user preferences.

Algorithm 1 Preference Approximation
Input: prompt x, users U , items I, reviews R, Language

Model LLM(·),user sequence length Tu

1: for u ∈ U do
2: for t ∈ {1, . . . , Tu} do
3: P(t)

u ← LLM
([

x; i
(1)
u ; r

(1)
u ; . . . ; i

(t)
u ; r

(t)
u

])
4: end for
5: end for

To approximate user preferences, we as-
sume access to user-specific data includ-
ing user reviews ru ∈ R and descriptions
of items in natural language. For each
user u and for each timestep 1 ≤ t ≤ Tu,
we collect reviews {r(1)

u , . . . , r
(t)
u } along

with item information {i1
u, . . . , i

(t)
u } from

their interaction history su and prompt
an LLM to approximate the user’s pref-
erences. We add a prompt x (see Ap-
pendix C) to the interaction history that contains general instructions such as ignoring aspects such as
delivery time or pricing, and encode aversions of the user. With this process, we obtain a set of five user
preferences P(t)

u for each timestep t based on past interactions. Importantly, the information contained in the
different user preferences in P(t)

u is mostly orthogonal, i.e., each preference refers to different items or item
properties (see an example in Appendix C). To verify the quality of the generated preferences, we conduct
a manual confirmation study (see Appendix F). The participants found that around 75% of the generated
preferences correctly approximate the user’s preferences. A schematic illustration of the preference gener-
ation procedure is shown in Fig. 10 along with pseudocode in Algorithm 1. For details on prompts, the
generation process, or the granularity of preferences, we refer to Appendix C.

3.3 Multimodal Preference Discerner (Mender)

Dynamically adapting to evolving user preferences requires the recommendation model itself to be condi-
tioned on them, which leads to recommendation steerability. Steerability in this context can be defined as
guiding a recommendation model towards or away from certain items, based on the provided preferences
and their given context. For example, if user preferences are given as “user prefers AR devices prioritizing

4



Published in Transactions on Machine Learning Research (07/2025)

comfort and minimal eye strain” (see Figure 10), the recommendation model must steer its recommendations
towards items relevant in this context. To achieve steerability, we perform preference conditioning.

In preference conditioning, we explicitly provide generated user preferences as an additional input to the
sequential recommendation model. This requires the model to be capable of processing natural language
input and to predict item identifiers. Therefore, we design a recommendation model that efficiently fuses the
generated user preferences with item descriptions in its context and predicts item identifiers. This results in
our new method, Mender, a novel multimodal generative sequential recommendation model. Mender builds
on the TIGER (Rajput et al., 2023), a generative retrieval model trained using semantic IDs. These semantic
IDs are obtained by training a RQ-VAE (Lee et al., 2022) on embeddings of items in the Sentence-T5 space.
Given an item embedding e ∈ Rd, the RQ-VAE quantizes e into a discrete feature map as:

RQ(e, C, N) = (k1, . . . , kN ) ∈ [K]N (1)

where C represents a finite set of tuples {(k, ck)}k∈K , K denotes the granularity of the codebook C with
embeddings {ck|1 ≤ k ≤ K}, and N corresponds to the depth of the RQ-VAE, i.e., the number of codebooks.
A user sequence su is then represented as a sequence of semantic IDs:

[
k

(1)
1 , . . . , k

(1)
N , . . . , k

(Tu)
1 , . . . , k

(Tu)
N

]
,

which serves as input to train a Transformer model (Vaswani et al., 2017). To enable conditioning on natural
language, we leverage pre-trained language encoders. Specifically, we represent both the interaction history
and the user preference in natural language and process them with a pre-trained FLAN-T5-Small encoder
(Chung et al., 2024). This is inspired by Li et al. (2023); Paischer et al. (2022; 2023), who demonstrated the
benefits of history compression using natural language. The decoder of Mender is randomly initialized and
conditioned on the language encoder through cross-attention to predict semantic IDs. Since semantic IDs are
represented in a separate embedding space than natural langauge, Mender can be classified as multimodal.

3.4 Mender Variants

Figure 2: Mender. The decoder generates
semantic IDs conditioned on user prefer-
ences and interactions via cross-attention
with a pre-trained language encoder.

To strike a balance between efficiency and performance, we fur-
ther propose two variants of Mender, namely MenderTok and
MenderEmb. The key difference between these variants lies in
the way they encode user preferences and items. MenderTok
encodes user preferences and items as a single sequence of lan-
guage tokens. Hence, this model provides a performant and
high-capacity model with strong language understanding ca-
pabilities. However, MenderTok processes the entire token se-
quence at once, making it suitable for complex language-based
in-context learning and fine-tuning. In contrast, MenderEmb
encodes each user preference and item separately using a pre-
trained embedding model from Su et al. (2023). MenderEmb
allows pre-computing item and preference embeddings, result-
ing in improved training efficacy. MenderEmb does not require
fine-tuning, as propagating through the embedding model for
each preference/item is prohibitively expensive.

3.5 Evaluating Steerability via User Preferences

Steerability can come in various forms, and there is no conventional way to evaluate it. In this work, we
define five performance axes that shall evaluate different aspects of steerability (see Fig. 3):

• Preference-based Recommendation: recommending the correct item based on user preference
and interaction history

• Fine & Coarse-Grained Steering: The ability to steer towards items that are similar (fine-
grained) or very distinct (coarse-grained) to items observed during training

• Sentiment Following Capabilities: the ability to understand the sentiment in steering (e.g, user
likes something vs. user does NOT like something)

• History Consolidation: the ability of the model to incorporate multiple user preferences.

5



Published in Transactions on Machine Learning Research (07/2025)

Fine-grained steering

Newest AR devices. 

Curved OLED 
monitors.

Coarse-grained steering

Preference-based Recommendation

AR devices 
prioritizing comfort.

Sentiment Following

Avoid bulky 
headsets.

Find bulky 
headsets.

History Consolidation

Avoid bulky 
headsets.

AR devices 
prioritizng comfort.

On-ear headsets..

Figure 3: Five evaluation axes for preference discerning we focus on in this work: Preference-based Recom-
mendation, Fine-grained steering, Coarse-grained steering, Sentiment following, and History Consolidation.
Preferences highlighted in green indicates that they are unseen during training.

We provide a more in-depth definition of these performance axes in the following paragraphs.

Preference-based Recommendation. This evaluation scenario extends the sequential recommendation
scenario by incorporating the generated user preferences. For this task, the model receives a single user
preference of the set P(t−1)

u along with the interaction history and must predict the next item i
(t)
u . We select

the preference that yields the maximum cosine similarity to i(t) in a pre-trained sentence embedding space
(Ni et al., 2022). More formally, given a pre-trained sentence embedding model ϕ(·), we select p

(t)
u as

p(t)
u = arg max

p∈P(t−1)
u

ϕ(p)⊤ϕ(it)
∥ϕ(p)∥∥ϕ(i(t)

u )∥
. (2)

This results in a setting where each ground truth item i
(t)
u is associated with a single user preference p

(t)
u .

Therefore, the input to the sequential recommendation system is a sequence of
[
p

(t)
u , i

(1)
u , . . . , i

(t−1)
u

]
and the

task is to predict i
(t)
u . Since p

(t)
u is generated based only on information about past items (p ∈ P(t−1)

u ), there
is no information leak that could reveal the ground truth item, that is, there is no information leak and the
underlying aleatoric uncertainty of the task is preserved.

Fine-Grained & Coarse-Grained Steering. To evaluate the ability of the model to discern user pref-
erences that are semantically related to items, we introduce the tasks of fine- and coarse-grained steering.
Recall that the preference-based recommendation scenario captures the underlying uncertainty of the origi-
nal recommendation task as we provide the model with p

(t−1)
u to predict i

(t)
u . This can result in cases where

p
(t−1)
u is not semantically related to i

(t)
u , since often i

(t)
u is not related to previously acquired items. Therefore,

our goal is to quantify the model’s ability to be steered towards items that are either semantically similar
or very distinct from i

(t)
u by modifying the user preference in its context. To achieve this, we identify a very

similar item ĩ(t) and a very distinct item î
(t)
u to the ground-truth item i

(t)
u by

ĩ(t)
u = arg max

i∈I\{i
(t)
u }

ϕ(i)⊤ϕ(i(t)
u )

∥ϕ(i)∥∥ϕ(i(t)
u )∥

, and î(t)
u = arg min

i∈I\{i
(t)
u }

ϕ(i)⊤ϕ(i(t)
u )

∥ϕ(i)∥∥ϕ(i(t)
u )∥

. (3)

Next, we associate ĩ(t) and î
(t)
u with different user preferences p1 and p2 by

p1 = arg max
p∈P

ϕ(p)⊤ϕ(̃i(t))
∥ϕ(p)∥∥ϕ(̃i(t))∥

, and p2 = arg max
p∈P

ϕ(p)⊤ϕ(̂i(t)
u )

∥ϕ(p)∥∥ϕ(̂i(t)
u )∥

, (4)

6



Published in Transactions on Machine Learning Research (07/2025)

where P denotes the set of accumulated preferences across all users and items. Additionally, we obtain a
target user û with the same ground truth item i

(t)
û = i

(t)
u , but a different interaction history. The motivation

for this is to enhance the variability in the generated datasets. By combining these elements, we create two
new sequences:

[
p1, i

(1)
û , . . . , i

(t−1)
û

]
and

[
p2, i

(1)
u , . . . , i

(t−1)
u

]
with ground-truth items ĩ

(t)
u and î

(t)
u , respectively.

A visual illustration of this procedure is provided in Fig. 13. Throughout the dataset creation process, we
ensure that the preferences used during training are not associated with the evaluation items. This allows
us to evaluate the model’s ability to generalize to new preferences not observed during training.

Sentiment Following. An important aspect of preference discerning is whether the recommendation model
comprehends the sentiment of user preferences. A user may provide negative preferences about items or
properties that should be avoided To assess the ability of recommendation models to identify and follow the
sentiment of issued preferences, we attempt to establish a causal relationship between items that received a
negative review and negative preferences generated during the preference approximation stage. The intuition
is that a negative user preference generated by the LLM is likely caused by an item in su that received a
negative review. Therefore, we first need to identify negative reviews and user preferences. This is done using
a pre-trained sentiment classifier (Hartmann et al., 2023). Then we match each negative user preference p−

u

at timestep t with a negative review in {r(j)
u |1 ≤ j ≤ t}. The matching is again done via cosine similarity in a

pre-trained Sentence-T5 space (Ni et al., 2022) This results in tuples (p−
u , i), where p−

u represents a negative
preference and i denotes the item that received the negative review to which the preference was matched.
To obtain a positive pair (p+

u , i), we apply a rule-based inversion heuristic to the negative preference (see
Appendix D for details). The compiled data consist solely of (p±

u , i) tuples without interaction history.
During evaluation we provide the preference in the context of the model and it should either predict or not
predict the item based on whether the provided preference is positive or negative.

To evaluate sentiment following, we rely on a combined hit-rate measure. Given a set of k predicted candidate
items C = {ī1, . . . , īk}, we check whether the ground truth item occurs in C (that is, 1C(i) = 1, where 1(·)
represents the indicator function). In practice, we obtain two sets of predictions C+ and C−, where C+ is
obtained using positive preference p+

u and C− using the negative preference p−
u for item i. The combined

hit rate measure is computed as m = 1C+(i) ∧ ¬1C−(i) where m = 1 indicates that the model successfully
recovered the item for p+

u , while simultaneously not predicted it for p−
u . This measure can be calculated for

different sizes (k) of prediction sets as m@k.

History Consolidation. A user may have multiple preferences about different items. In such a case, the
sequential recommendation system must incorporate multiple user preferences to steer their recommendation.
Therefore, our aim is to evaluate the ability of the system to incorporate multiple user preferences, some of
which are potentially not related to the next item. To simulate this, we simultaneously provide the model
with the five generated preferences P(t−1)

u to predict the ground-truth item i
(t)
u . This evaluation scenario can

be considered more difficult than preference-based recommendation, as it potentially has a higher noise ratio
in the provided preferences. In this evaluation scenario, the preference originally matched is contained in the
set of accumulated user preferences P. Therefore, in order to accurately predict the ground truth item, the
model must infer the matched preference from P. The corresponding evaluation sequences are structured as[
p

(Tu−1)
u1 , . . . , p

(Tu−1)
u5 , i1, . . . , i

(Tu−1)
u

]
and contain all five generated user preferences.

4 Experiments

We evaluate our approach on four widely used datasets, namely three Amazon reviews subsets (Ni et al.,
2019) and Steam (Kang & McAuley, 2018). An overview of the dataset statistics can be found in Table 3 in
Appendix B. To generate user preferences, we utilize the LlaMa-3-70B-Instruct2 model. For the sentiment
classification, we employ the model trained by Hartmann et al. (2023)3. The resulting preference statistics,
including the number of generated preferences, the proportion of positive and negative preferences, and the
sample sizes for each evaluation split, are presented in Table 4. Our data generation pipeline is built entirely
on open-source models, making it easily extensible to additional datasets.

2https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
3https://huggingface.co/siebert/sentiment-roberta-large-english

7



Published in Transactions on Machine Learning Research (07/2025)

(a) Beauty (b) Sports and Outdoors (c) Toys and Games

Figure 4: Recall@10 for all methods on our novel benchmark, evaluating preference discerning across three
subsets of the Amazon review dataset: Beauty (4a), Sports and Outdoors (4b), and Toys and Games
(4c). MenderTok mostly outperforms generative retrieval competitors across Recommendation, Fine-grained
steering and History consolidation. All methods struggle on Sentiment following and Coarse-grained steering.

For training our models, we use the preference-based recommendation data, which consists of a single user
preference and the interaction history. Unless mentioned otherwise, the additional generated data splits
(positive/negative and fine/coarse data) are used solely for evaluation purposes. Following (Rajput et al.,
2023), we limit the maximum number of items in a user sequence to the 20 most recent ones. For the
Beauty, Toys and Games, and Steam datasets, we found it beneficial to also fine-tune the language encoder,
for which we use LoRA (Hu et al., 2022). By default, we use the FLAN-T5-Small (Chung et al., 2024)
language encoder for MenderTok. We adopt a leave-last-out data split, where the penultimate item of a
sequence is used for validation and the last item is used for testing (Kang & McAuley, 2018; Sun et al.,
2019). Our evaluation benchmark is based only on the validation and test items of that split along with
their paired user preferences, that is, we use preferences for training and inference. The remaining items
in each sequence are used for training, except for the first item, since no user preferences are available for
it. We evaluate our trained baselines using common retrieval metrics, including Recall (or Hit Rate), and
Normalized Discounted Cumulative Gain (Järvelin & Kekäläinen, 2002, NDCG). Implementation details for
training the RQ-VAE and Transformer models can be found in Appendix A.1 and Appendix A.2, respectively.
All our methods are trained on single A100 or V100 GPUs using PyTorch (Paszke et al., 2019).

4.1 Baselines

We train and evaluate a range of generative retrieval baselines and compare their performance to Mender.

TIGER (Rajput et al., 2023) is a state-of-the-art generative retrieval model based on semantic IDs. Although
TIGER is not conditioned on user preferences, we still evaluate its performance on our benchmarks for
recommendation, fine-grained steering, and coarse-grained steering. The latter two essentially evaluate how
well TIGER predicts a very similar or distinct item to the ground-truth item.
VocabExtRND is based on extending the vocabulary of the TIGER model, which allows it to be conditioned
on language preferences. Notably, this version does not leverage any pre-trained components.
LC-Rec (Zheng et al., 2023) extends the vocabulary of a pre-trained LM with newly initialized embeddings
that represent semantic IDs. We fine-tune the LM using LoRA (Hu et al., 2022), but do not add the
auxiliary tasks. Additionally, we reduce the dimensionality of the language model head to match the number
of semantic IDs, as language generation is not required for our task.
VocabExtLM represents the past interaction history in language as done for MenderTok and MenderEmb,
but initializes the decoder with a pre-trained language decoder. Therefore, this baseline operates on the
same semantic gap as the Mender variants. We again leverage LoRA for fine-tuning.

8



Published in Transactions on Machine Learning Research (07/2025)

4.2 Results

We present a detailed analysis of the results obtained by the different methods on our benchmark for three
subsets of Amazon reviews (Beauty, Sports and Outdoors, and Toys and Games) and Steam datasets. Fig. 4
and Fig. 5a show Recall@10 for all methods on the Amazon and Steam datasets, respectively. Table 1 also
shows Recall@10 plus additional metrics, such as Recall@5, NDCG@5, NDCG@10, as well as relative im-
provements of Mender over the best baseline method. In Appendix E, we report the corresponding standard
deviations for all methods on all datasets. Our results reveal several key trends: (i) incorporating prefer-
ences consistently improves performance; (ii) training on preference-based recommendation data leads to the
emergence of fine-grained steering on certain datasets; (iii) current models struggle with sentiment following;
and (iv) both coarse-grained steering and sentiment following can be achieved through data augmentations.
Additionally, we provide ablation studies on data mixtures and the impact of adding user preferences.

Table 1: Performance for all methods on all evaluation axes for all datasets trained on recommendation data.
We report average performance across three random seeds as well as relative improvements of Mender to
the second-best performing baseline and highlight best performance in boldface. For sentiment following we
report m@k for k ∈ {5, 10} instead of Recall@k.

Methods
Sports and Outdoors Beauty Toys and Games Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation
TIGER 0.0249 0.0158 0.0377 0.0199 0.0431 0.0275 0.0681 0.0356 0.0375 0.0238 0.0600 0.0311 0.1630 0.1440 0.1930 0.1530
VocabExtRND 0.0238 0.0151 0.0392 0.0201 0.0434 0.0277 0.0697 0.0362 0.0330 0.0205 0.0544 0.0275 0.1660 0.1420 0.2000 0.1540
LC-Rec 0.0195 0.0124 0.0291 0.0156 0.0457 0.0294 0.0731 0.0382 0.0327 0.0209 0.0473 0.0256 0.1600 0.1370 0.1940 0.1480
VocabExtLM 0.0233 0.0148 0.0355 0.0187 0.0345 0.0224 0.0561 0.0293 0.0371 0.0234 0.0559 0.0296 0.1547 0.1305 0.1878 0.1412
MenderEmb 0.0264 0.0173 0.0394 0.0215 0.0494 0.0321 0.0755 0.0405 0.0422 0.0267 0.0653 0.0342 0.1450 0.1110 0.1820 0.1230
MenderTok 0.0282 0.0188 0.0427 0.0234 0.0605 0.0401 0.0937 0.0508 0.0533 0.0346 0.0799 0.0432 0.1680 0.1440 0.2040 0.1560
Rel. Impr. +13.2%+18.9% +8.9% +16.4%+32.4%+36.4%+28.1%+33.0%+42.1%+45.4%+33.2%+38.9% +1.2% +0.0% +2.0% +1.3%

Fine-grained steering
TIGER 0.0061 0.0037 0.0118 0.0055 0.0119 0.0074 0.0195 0.0098 0.0149 0.0092 0.0237 0.0120 0.0084 0.0052 0.0145 0.0072
VocabExtRND 0.0104 0.0063 0.0186 0.0089 0.0229 0.0163 0.0437 0.0220 0.0200 0.0123 0.0358 0.0174 0.0102 0.0064 0.0178 0.0088
LC-Rec 0.0119 0.0074 0.0190 0.0097 0.0348 0.0218 0.0563 0.0288 0.0248 0.0153 0.0388 0.0198 0.0157 0.0098 0.0264 0.0133
VocabExtLM 0.0214 0.0132 0.0352 0.0176 0.0292 0.0186 0.0498 0.0253 0.0341 0.0220 0.0572 0.0294 0.0217 0.0133 0.0365 0.0180
MenderEmb 0.0173 0.0106 0.0322 0.0154 0.0276 0.0174 0.0465 0.0234 0.0316 0.0199 0.0529 0.0267 0.0184 0.0114 0.0287 0.0147
MenderTok 0.0190 0.0117 0.0324 0.0159 0.0534 0.0344 0.0844 0.0444 0.0378 0.0237 0.0639 0.0321 0.0211 0.0134 0.0352 0.0179
Rel. Impr. -12.6% -12.8% -8.6% -10.7% +53.4%+57.8%+49.9%+54.2%+10.9% +7.7% +11.7% +9.2% -2.8% +1% -3.7% -1%

Coarse-grained steering
TIGER 0.0001 0.0000 0.0003 0.0001 0.0003 0.0001 0.0003 0.0002 0.0003 0.0001 0.0006 0.0003 0.0005 0.0003 0.0008 0.0004
VocabExtRND 0.0005 0.0003 0.0010 0.0004 0.0023 0.0014 0.0046 0.0021 0.0013 0.0009 0.0021 0.0011 0.0032 0.0018 0.0055 0.0026
LC-Rec 0.0010 0.0006 0.0017 0.0009 0.0032 0.0019 0.0059 0.0028 0.0022 0.0013 0.0036 0.0017 0.0028 0.0018 0.0049 0.0024
VocabExtLM 0.0047 0.0028 0.0098 0.0044 0.0053 0.0033 0.0086 0.0044 0.0037 0.0022 0.0065 0.0030 0.0047 0.0029 0.0077 0.0039
MenderEmb 0.0036 0.0022 0.0071 0.0033 0.0057 0.0035 0.0101 0.0050 0.0035 0.0021 0.0071 0.0032 0.0042 0.0024 0.0067 0.0032
MenderTok 0.0023 0.0013 0.0045 0.0021 0.0094 0.0059 0.0161 0.0080 0.0032 0.0020 0.0060 0.0029 0.0043 0.0027 0.0081 0.0040
Rel. Impr. -30.6% -27.3% -38.1% -33.3% +77.4%+78.8%+87.2%+81.8% -15.6% -4.8% +9.2% +6.7% -9.3% -7.4% +5.2% +2.6%

Sentiment following
TIGER 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 -
VocabExtRND 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0061 - 0.0086 -
LC-Rec 0.0018 - 0.0027 - 0.0029 - 0.0045 - 0.0008 - 0.0017 - 0.0033 - 0.0053 -
VocabExtLM 0.0019 - 0.0016 - 0.0027 - 0.0051 - 0.0012 - 0.0004 - 0.0049 - 0.0107 -
MenderEmb 0.0022 - 0.0022 - 0.0030 - 0.0047 - 0.0017 - 0.0015 - 0.0114 - 0.0185 -
MenderTok 0.0035 - 0.0042 - 0.0043 - 0.0053 - 0.0016 - 0.0017 - 0.0084 - 0.0110 -
Rel. Impr. +84.2% - +55.6% - +48.3% - +3.9% - +41.7% - +0% - +86.9% - +72.9% -

History consolidation
TIGER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VocabExtRND 0.0190 0.0120 0.0329 0.0164 0.0303 0.0191 0.0504 0.0256 0.0260 0.0158 0.0441 0.0216 0.1366 0.1155 0.1642 0.1244
LC-Rec 0.0158 0.0101 0.0243 0.0129 0.0354 0.0226 0.0577 0.0297 0.0295 0.0185 0.0430 0.0229 0.1460 0.1277 0.1726 0.1363
VocabExtLM 0.0179 0.0112 0.0278 0.0145 0.0247 0.0155 0.0423 0.0211 0.0316 0.0195 0.0487 0.0251 0.0615 0.0440 0.0866 0.0521
MenderEmb 0.0206 0.0133 0.0312 0.0167 0.0352 0.0228 0.0580 0.0301 0.0314 0.0201 0.0516 0.0266 0.1241 0.0938 0.1558 0.1040
MenderTok 0.0234 0.0151 0.0345 0.0187 0.0457 0.0304 0.0720 0.0388 0.0467 0.0302 0.0700 0.0377 0.0490 0.0317 0.0745 0.0399
Rel. Impr. +23.2%+25.8% +4.9% +14.0%+29.1%+34.5%+24.8%+30.6%+58.3%+54.9%+43.7%+50.2% -15.1% -26.5% -9.7% -23.7%

Recommendation. Our MenderTok achieves the best performance on all datasets on the recommendation
axis with relative improvements of up to 45%. The significant gap between TIGER and MenderTok demon-

9



Published in Transactions on Machine Learning Research (07/2025)

(a) Steam (b) Beauty

Figure 5: Recall@10 of different baselines trained on the default recommendation data of the Steam dataset
(5a) MenderTok attains the highest performance on Recommendation, but all methods struggle on Steering
and Sentiment following. 5b: Recall@10 for MenderTok trained on different datasplits on the Amazon Beauty
subset. MenderTok-All leverages training data augmentation resulting in a universal model that performs
well across all axes of preference discerning.

strates the benefits of conditioning on the generated user preferences. Furthermore, we provide a comparison
to traditional sequential recommendation baselines on the recommendation task in Table 2 in Appendix A.3
for the three Amazon subsets, which shows that our TIGER implementation outperforms those as well, and
Mender further improves significantly on TIGER. In addition, MenderEmb performs second best in Ama-
zon datasets, providing a decent trade-off between performance and training speed, reducing training time
around five fold. Notably, other baselines such as VocabExtRND and LC-Rec sometimes perform worse than
TIGER on Toys and Steam, indicating that they cannot properly align the semantic ID and language spaces.
LC-Rec usually requires auxiliary tasks to align the two spaces properly (Zheng et al., 2023), while Mender
successfully fuses them without training on auxiliary tasks. VocabExtRND performs significantly worse than
both Mender versions due to its lack of a pre-trained language encoder, which requires learning the interac-
tion between item history and user preferences from scratch. Based on these findings, we conclude that: (i)
user preferences substantially enhance recommendation performance and (ii) representing both interaction
history and preferences in natural language leads to performance improvements.

Fine- and coarse-grained steering. We observe that MenderTok consistently achieves the best perfor-
mance across all datasets for fine-grained steering with relative improvements of up to 70.5% to baselines.
Interestingly, as illustrated in Fig. 4, fine-grained steering naturally emerges as a byproduct of training on
preference-based recommendation data. However, this is not the case for the Steam dataset (Fig. 5a), where
we notice a significant gap between the recommendation and the fine-grained steering performance. We
surmise that the reason for this is the fundamental difference in the respective data distribution of the Ama-
zon and Steam datasets. Prior work demonstrated that data distribution is an essential driving factor to
elicit emerging capabilites such as in-context learning (Chan et al., 2022). We aim to verify this conjecture
in future work. Finally, our results indicate that all methods struggle to perform coarse-grained steering,
suggesting that preference-based recommendation data lacks a beneficial signal to facilitate its emergence.

History Consolidation. Generally, we observe that all methods attain lower scores on history consolidation
compared to the recommendation. This is because the additional preferences are not necessarily related to the
ground-truth item and thus add a substantial amount of noise. Furthermore, one of the five user preferences
provided to the model contains information to identify the ground-truth item as they were matched during
the benchmark generation. Therefore, the performance attained is a proxy for how well the model can identify
a useful preference out of a set of potentially unrelated preferences. On the Amazon subsets, MenderTok

10



Published in Transactions on Machine Learning Research (07/2025)

consistently attains the highest performance, while LC-Rec attains the best results on Steam. These findings
suggest that preference-based methods can effectively fuse interaction history with multiple user preferences
for recommendation. In Table 8 (Appendix E), we also show results for training on history consolidation
data, demonstrating that this drastically degrades performance.

Sentiment Following. Although both Mender variants achieve the highest performance on different
datasets, the overall performance on sentiment following is generally around an order of magnitude lower.
This result indicates that all current models struggle with sentiment following. This finding presents an
interesting avenue for future research that should prioritize the development of models that can accurately
identify the sentiment of user preferences and adapt their retrieval accordingly. Prior works found that there
is little to no gain in incorporating negative user preferences into recommendation models (Sanner et al.,
2023). Our results confirm that current systems mostly lack the ability to discern negative preferences and
to act accordingly. However, in the next section we show that this depends on how the negative preferences
are used during training, and that it is indeed possible to obtain a model that improves along this axis.

4.3 Ablation Studies

Figure 6: Ablation study highlighting the
improvement obtained via combining items
and user preferences in natural language.

Importance of Preferences. We perform an ablation study
to investigate the impact of the generated user preferences. In
Fig. 8 (Appendix A.4), we provide evidence that representing
items in language instead of semantic IDs leads to improved
rankings. Further, we train MenderTok and (i) condition it
only on preferences; (ii) condition it only on item descriptions;
and (iii) condition it on both. We present our results for the
Beauty dataset in Fig. 6. Our results clearly demonstrate the
benefits of leveraging textual user preferences.

Ablating Training Data Mixture to Study Steering
emergence Training on preference-based recommendation
data does not elicit steering capabilities on Steam, or sentiment
following capabilities on any dataset. Therefore, we aim to an-
swer the question whether these capabilities can be elicited by
directly training on additional data for steering and sentiment
following. As can be seen in Table 3 in Appendix C, we also
generate training splits during benchmark generation. Hence,
we can answer this question by augmenting the preference-
based recommendation training set with the additional data sources and train different variants of MenderTok.
Specifically, we train different versions of MenderTok to study how steering-specific data impacts performance:

• MenderTok-Pos/Neg: uses only positive/negative preference-item pairs
• MenderTok-Pos-Neg: combines both positive and negative preference-item pairs
• MenderTok-Fine/Coarse: uses only fine/coarse-grained steering data
• MenderTok-Fine-Coarse: uses fine- and coarse-grained steering data
• MenderTok-All: trained on all data above.

When including the negative (p−
u , i) tuples, we simply minimize the likelihood and downweight it by a hyper-

parameter, as otherwise this term dominates the loss function. We present Recall@10 for Beauty in Fig. 5,
right, and for Steam in Appendix E. We also report Recall@5, NDCG@5, and NDCG@10 for all methods and
evaluation axes in Table 5 (Appendix E). Most importantly, coarse-grained steering and sentiment-following
capabilities arise when we explicitly train the model on the respective data. Interestingly, MenderTok-All
significantly improves on MenderTok on all axes while maintaining performance on the recommendation axis.
However, training on a data split in isolation improves over training on all data, i.e. MenderTok-Coarse leads
to better coarse-grained steering than MenderTok-All, but lacks sentiment following. Furthermore, sentiment-
following capabilities arise only when training jointly on positive and negative data. These findings present
a fruitful avenue for future research on combining the different data sources.

11



Published in Transactions on Machine Learning Research (07/2025)

Scaling the language encoder. By default, we use the FLAN-T5-Small encoder in our experiments. To
investigate the effect of scaling the encoder, we compare the performance of MenderTok with MenderTok-XXL,
which uses the FLAN-T5-XXL encoder. The results of this experiment can be found in Table 9 (Appendix E).
We find that the XXL variant drastically improves recommendation performance on Sports and Outdoors,
fine- and coarse-grained steering on Toys and Games and Steam datasets, and sentiment following on all
datasets. Furthermore, MenderTok-XXL drastically improves the history consolidation axis, which indicates
that the observed gap in Fig. 5a can be attributed to the language encoder. This provides compelling evidence
that more capable language encoders can lead to drastic improvements on the different performance axes.

5 Limitations

Generalization. The generalization capabilities of Mender are limited by the underlying generalization
abilities of the language encoder. In Table 9 we presented results for larger variants of the FLAN-T5 encoder
which show that there are gains to using more expressive LLMs, especially for axes such as coarse-grained
steering or sentiment following. Moreover, recent work (Yang et al., 2025) showed that generalization to cold-
start items is limited for generative retrieval methods. Mender might alleviate this problem by combining
natural language with semantic IDs. Future work should investigate whether this is indeed the case.

Computational complexity. The computational complexity of Mender is mostly restricted by the model
architecture. Currently, it suffers from the quadratic complexity of the Transformer (Vaswani et al., 2017)
and the size of the language encoder that is used. MenderEmb partly alleviates this issue by pre-embedding
items and user preferences, which usually results in slightly worse performance. However, there are fruitful
alternatives that scale linearly with the sequence length (Dao & Gu, 2024) and provide a constant inference
cost (Beck et al., 2024). We aim to investigate such architectures for Mender in the future.

Preference Approximation. Our preference approximation pipeline is computationally expensive, as
it leverages LLMs with 70B parameters. We generated around 5M user preferences for the five different
datasets, which requires massive parallelization of this pipeline. A benefit is that we rely on open source
models, therefore our pipeline can be extended to new datasets, however, it is still expensive. Furthermore,
extensive post-processing, which is tailored to the LLM, is required along with manual inspection to ensure
high-quality user preferences. Using smaller LLMs may affect the quality of the generated preferences and
in turn affect performance of Mender. Finally, we rely on the presence of user reviews, which limits the
applicability of our preference approximation to certain datasets.

6 Broader Impact

Preference discerning enables dynamic steering of recommendation models based on user preferences without
the need for re-training, potentially avoiding echo chambers by explicitly stating what content should be
recommended. Furthermore, preference discerning can positively affect the user experience as it allows
interaction with the recommendation system, fostering trust and transparency. However, potential risks
include amplifying biases if preferences reflect societal prejudices or leading to over-personalization.

7 Conclusion

Current sequential recommendation models are limited in their personalization as they implicitly model user
preferences. We propose a new paradigm, namely preference discerning, in which the sequential recommen-
dation system is explicitly conditioned on user preferences represented in natural language. To evaluate
preference discerning capabilities, we present a benchmark that is specifically designed to evaluate the abil-
ity of sequential recommendation models to discern textual preferences along five different axes. We also
propose a novel generative retrieval model, Mender, which represents items at different levels of abstraction,
namely semantic IDs and natural language. Our experimental results show that Mender outperforms the
state-of-the-art models on our benchmark and can adapt to unseen preferences without any retraining. Our
contributions pave the way for a new class of generative retrieval models with the ability to dynamically
adapt to user preferences provided in their context.

12



Published in Transactions on Machine Learning Research (07/2025)

References
Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,

2016.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael K
Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xLSTM: Extended long short-
term memory. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Veronika Bogina and Tsvi Kuflik. Incorporating dwell time in session-based recommendations with recurrent
neural networks. In Mária Bieliková, Veronika Bogina, Tsvi Kuflik, and Roy Sasson (eds.), Proceedings
of the 1st Workshop on Temporal Reasoning in Recommender Systems co-located with 11th International
Conference on Recommender Systems (RecSys 2017), Como, Italy, August 27-31, 2017, volume 1922 of
CEUR Workshop Proceedings, pp. 57–59. CEUR-WS.org, 2017.

Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan H. Keshavan, Lukasz Heldt, Lichan Hong, Ed H. Chi,
and Maheswaran Sathiamoorthy. Aligning large language models with recommendation knowledge. CoRR,
abs/2404.00245, 2024. doi: 10.48550/ARXIV.2404.00245.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya K. Singh, Pierre H.
Richemond, James L. McClelland, and Felix Hill. Data distributional properties drive emergent in-context
learning in transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. Scaling instruction-finetuned language models. J. Mach. Learn. Res., 25:70:1–70:53, 2024.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations. In
Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells (eds.), Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016, pp. 191–198. ACM, 2016. doi:
10.1145/2959100.2959190.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through struc-
tured state space duality. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio
(eds.), Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics,
2019. doi: 10.18653/V1/N19-1423.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as language
processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5). In Jennifer Golbeck,
F. Maxwell Harper, Vanessa Murdock, Michael D. Ekstrand, Bracha Shapira, Justin Basilico, Keld T.
Lundgaard, and Even Oldridge (eds.), RecSys ’22: Sixteenth ACM Conference on Recommender Systems,
Seattle, WA, USA, September 18 - 23, 2022, pp. 299–315. ACM, 2022. doi: 10.1145/3523227.3546767.

Jochen Hartmann, Mark Heitmann, Christian Siebert, and Christina Schamp. More than a feeling: Accuracy
and application of sentiment analysis. International Journal of Research in Marketing, 40(1):75–87, 2023.
doi: https://doi.org/10.1016/j.ijresmar.2022.05.005.

13



Published in Transactions on Machine Learning Research (07/2025)

Zhankui He, Handong Zhao, Zhaowen Wang, Zhe Lin, Ajinkya Kale, and Julian J. McAuley. Query-aware
sequential recommendation. In Mohammad Al Hasan and Li Xiong (eds.), Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21,
2022, pp. 4019–4023. ACM, 2022. doi: 10.1145/3511808.3557677.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommen-
dations with recurrent neural networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, 1997.
doi: 10.1162/NECO.1997.9.8.1735.

Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian J. McAuley. Bridging language and
items for retrieval and recommendation. CoRR, abs/2403.03952, 2024. doi: 10.48550/ARXIV.2403.03952.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P. Heck. Learning deep
structured semantic models for web search using clickthrough data. In Qi He, Arun Iyengar, Wolfgang
Nejdl, Jian Pei, and Rajeev Rastogi (eds.), 22nd ACM International Conference on Information and
Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, pp. 2333–
2338. ACM, 2013. doi: 10.1145/2505515.2505665.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans.
Inf. Syst., 20(4):422–446, 2002. doi: 10.1145/582415.582418.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In IEEE International
Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pp. 197–206. IEEE Computer
Society, 2018. doi: 10.1109/ICDM.2018.00035.

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong, Ed H. Chi, and
Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on user rating prediction.
CoRR, abs/2305.06474, 2023. doi: 10.48550/ARXIV.2305.06474.

Jieyong Kim, Hyunseo Kim, Hyunjin Cho, SeongKu Kang, Buru Chang, Jinyoung Yeo, and Dongha Lee.
Review-driven personalized preference reasoning with large language models for recommendation. CoRR,
abs/2408.06276, 2024. doi: 10.48550/ARXIV.2408.06276.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation
using residual quantization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 11513–11522. IEEE, 2022. doi: 10.1109/
CVPR52688.2022.01123.

Feng Li, Zhenrui Chen, Pengjie Wang, Yi Ren, Di Zhang, and Xiaoyu Zhu. Graph intention network for
click-through rate prediction in sponsored search. In Benjamin Piwowarski, Max Chevalier, Éric Gaussier,
Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (eds.), Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July
21-25, 2019, pp. 961–964. ACM, 2019. doi: 10.1145/3331184.3331283.

Jiacheng Li, Yujie Wang, and Julian J. McAuley. Time interval aware self-attention for sequential recom-
mendation. In James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (eds.), WSDM ’20: The
Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, pp. 322–330. ACM, 2020. doi: 10.1145/3336191.3371786.

14



Published in Transactions on Machine Learning Research (07/2025)

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian J. McAuley. Text is all
you need: Learning language representations for sequential recommendation. In Ambuj K. Singh, Yizhou
Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.),
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023,
Long Beach, CA, USA, August 6-10, 2023, pp. 1258–1267. ACM, 2023. doi: 10.1145/3580305.3599519.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. Learning to rank in generative retrieval. In
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2014, February 20-27, 2024, Vancouver, Canada, pp. 8716–8723. AAAI Press, 2024. doi: 10.1609/AAAI.
V38I8.28717.

Chang Liu, Xiaoguang Li, Guohao Cai, Zhenhua Dong, Hong Zhu, and Lifeng Shang. Non-invasive self-
attention for side information fusion in sequential recommendation. CoRR, abs/2103.03578, 2021.

Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang, Yuanzhang Xiao, Mingjie
Zhan, and Linqi Song. Integrating large language models into recommendation via mutual augmentation
and adaptive aggregation. CoRR, abs/2401.13870, 2024. doi: 10.48550/ARXIV.2401.13870.

Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation. In Ankur
Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019,
Anchorage, AK, USA, August 4-8, 2019, pp. 825–833. ACM, 2019. doi: 10.1145/3292500.3330984.

Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun Gai. Entire space multi-
task model: An effective approach for estimating post-click conversion rate. In Kevyn Collins-Thompson,
Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (eds.), The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July
08-12, 2018, pp. 1137–1140. ACM, 2018. doi: 10.1145/3209978.3210104.

Wenjing Meng, Deqing Yang, and Yanghua Xiao. Incorporating user micro-behaviors and item knowledge
into multi-task learning for session-based recommendation. In Jimmy X. Huang, Yi Chang, Xueqi Cheng,
Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (eds.), Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25-30, 2020, pp. 1091–1100. ACM, 2020. doi: 10.1145/3397271.3401098.

Erxue Min, Da Luo, Kangyi Lin, Chunzhen Huang, and Yang Liu. Scenario-adaptive feature interaction
for click-through rate prediction. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos,
Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10,
2023, pp. 4661–4672. ACM, 2023. doi: 10.1145/3580305.3599936.

Jianmo Ni, Jiacheng Li, and Julian J. McAuley. Justifying recommendations using distantly-labeled reviews
and fine-grained aspects. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019, pp. 188–197. Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1018.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association for Computational Linguistics:
ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 1864–1874. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.FINDINGS-ACL.146.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Allen Ding, Ankit Shingavi,
Choon Hui Teo, Hao Gu, and Bing Yin. Semantic product search. In Ankur Teredesai, Vipin Ku-
mar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), Proceedings of the 25th ACM

15



Published in Transactions on Machine Learning Research (07/2025)

SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019, pp. 2876–2885. ACM, 2019. doi: 10.1145/3292500.3330759.

Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant Prakash, Bradley Green, Shawn
O’Banion, and Jun Xie. User-llm: Efficient LLM contextualization with user embeddings. CoRR,
abs/2402.13598, 2024. doi: 10.48550/ARXIV.2402.13598.

Hanseok Oh, Hyunji Lee, Seonghyeon Ye, Haebin Shin, Hansol Jang, Changwook Jun, and Minjoon
Seo. INSTRUCTIR: A benchmark for instruction following of information retrieval models. CoRR,
abs/2402.14334, 2024. doi: 10.48550/ARXIV.2402.14334.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian Lehner,
Hamid Eghbal-Zadeh, and Sepp Hochreiter. History compression via language models in reinforcement
learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato (eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp. 17156–17185. PMLR, 2022.

Fabian Paischer, Thomas Adler, Markus Hofmarcher, and Sepp Hochreiter. Semantic HELM: A human-
readable memory for reinforcement learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 8024–8035,
2019.

Aleksandr V Petrov and Craig Macdonald. Generative sequential recommendation with gptrec. In Gen-
IR@SIGIR 2023: The First Workshop on Generative Information Retrieval, 2023.

Filip Radlinski, Krisztian Balog, Fernando Diaz, Lucas Dixon, and Ben Wedin. On natural language user
profiles for transparent and scrutable recommendation. In Enrique Amigó, Pablo Castells, Julio Gonzalo,
Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (eds.), SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15,
2022, pp. 2863–2874. ACM, 2022. doi: 10.1145/3477495.3531873.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz Heldt,
Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Mahesh Sathiamoorthy.
Recommender systems with generative retrieval. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023, 2023.

Scott Sanner, Krisztian Balog, Filip Radlinski, Ben Wedin, and Lucas Dixon. Large language models are
competitive near cold-start recommenders for language- and item-based preferences. In Jie Zhang, Li Chen,
Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, and Yang Song (eds.),
Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore,
September 18-22, 2023, pp. 890–896. ACM, 2023. doi: 10.1145/3604915.3608845.

16



Published in Transactions on Machine Learning Research (07/2025)

Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan H. Keshavan, Maheswaran Sathiamoorthy, Yilin
Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon, Ed H. Chi, and Xinyang Yi. Better general-
ization with semantic ids: A case study in ranking for recommendations. In Tommaso Di Noia, Pasquale
Lops, Thorsten Joachims, Katrien Verbert, Pablo Castells, Zhenhua Dong, and Ben London (eds.), Pro-
ceedings of the 18th ACM Conference on Recommender Systems, RecSys 2024, Bari, Italy, October 14-18,
2024, pp. 1039–1044. ACM, 2024. doi: 10.1145/3640457.3688190.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned text embeddings.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 1102–1121. Association for
Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-ACL.71.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Wenwu Zhu, Dacheng
Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (eds.), Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM
2019, Beijing, China, November 3-7, 2019, pp. 1441–1450. ACM, 2019. doi: 10.1145/3357384.3357895.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen, Dawei
Yin, Maarten de Rijke, and Zhaochun Ren. Learning to tokenize for generative retrieval. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence em-
bedding. In Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (eds.), Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA,
USA, February 5-9, 2018, pp. 565–573. ACM, 2018. doi: 10.1145/3159652.3159656.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Wenjie Wang, Honghui Bao, Xinyu Lin, Jizhi Zhang, Yongqi Li, Fuli Feng, See-Kiong Ng, and Tat-Seng
Chua. Learnable item tokenization for generative recommendation. In Edoardo Serra and Francesca
Spezzano (eds.), Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, CIKM 2024, Boise, ID, USA, October 21-25, 2024, pp. 2400–2409. ACM, 2024. doi: 10.
1145/3627673.3679569.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 38–45, Online, October 2020. Association for Computational Linguistics.

Liu Yang, Fabian Paischer, Kaveh Hassani, Jiacheng Li, Shuai Shao, Zhang Gabriel Li, Yun He, Xue Feng,
Nima Noorshams, Sem Park, Bo Long, Robert D Nowak, Xiaoli Gao, and Hamid Eghbalzadeh. Unifying
generative and dense retrieval for sequential recommendation, 2025.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Yike Guo and Faisal Farooq (eds.),
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2018, London, UK, August 19-23, 2018, pp. 974–983. ACM, 2018. doi: 10.1145/3219819.3219890.

17



Published in Transactions on Machine Learning Research (07/2025)

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, and
Xiaofang Zhou. Feature-level deeper self-attention network for sequential recommendation. In Sarit Kraus
(ed.), Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pp. 4320–4326. ijcai.org, 2019a. doi: 10.24963/IJCAI.2019/600.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, and
Xiaofang Zhou. Feature-level deeper self-attention network for sequential recommendation. In Sarit Kraus
(ed.), Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pp. 4320–4326. ijcai.org, 2019b. doi: 10.24963/IJCAI.2019/600.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen. Adapting
large language models by integrating collaborative semantics for recommendation. CoRR, abs/2311.09049,
2023. doi: 10.48550/ARXIV.2311.09049.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual information
maximization. In Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-
Mauroux (eds.), CIKM ’20: The 29th ACM International Conference on Information and Knowledge
Management, Virtual Event, Ireland, October 19-23, 2020, pp. 1893–1902. ACM, 2020. doi: 10.1145/
3340531.3411954.

18



Published in Transactions on Machine Learning Research (07/2025)

Supplementary Material

Fabian Paischer
ELLIS Unit, LIT AI Lab, Institute for Machine Learning, JKU Linz, Austria
AI at Meta

Liu Yang
University of Wisconsin-Madison
AI at Meta

Linfeng Liu, Shuai Shao, Kaveh Hassani, Jiacheng Li, Ricky Chen, Zhang Gabriel Li, Xiaoli
Gao, Wei Shao, Xue Feng, Nima Noorshams, Sem Park, Bo Long, Hamid Eghbalzadeh†

heghbalz@meta.com
AI at Meta

Reviewed on OpenReview: https: // openreview. net/ forum? id= 74mrOdhvvT

Contents

A Generative Retrieval via semantic IDs 19
A.1 RQ-VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
A.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.3 Reproduced results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
A.4 Additional findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B Datasets 22

C Preference generation 22
C.1 Reviews to properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

D Benchmark design 26
D.1 Sentiment Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D.2 Preference Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

E Additional results 28

F Manual Inspection of Preferences 29

A Generative Retrieval via semantic IDs

We provide an open source implementation of all baselines used in this work, including TIGER (Rajput
et al., 2023). To facilitate reproducibility of the results reported in Rajput et al. (2023), we elaborate on the
implementation details as follows. The training of TIGER consists of two stages: (i) training the residual
quantizer (RQ-VAE) to obtain semantic IDs, and (ii) training the generative retrieval model.

A.1 RQ-VAE

Training the RQ-VAE involves two essential steps: (i) constructing an item embedding, and (ii) optimizing
the model through residual quantization.

19

https://openreview.net/forum?id=74mrOdhvvT


Published in Transactions on Machine Learning Research (07/2025)

Item embedding For item embedding, we utilize the Sentence-T5 model (Ni et al., 2022), which is publicly
available on the Hugging Face Hub (Wolf et al., 2020). We explored various sources of information to represent
items and found that the optimal approach varies between datasets. For the Beauty and Sports datasets,
using item descriptions led to suboptimal results due to the high noise levels present in these descriptions.
In contrast, item descriptions proved beneficial for the Toys dataset. Additionally, we leveraged other item
attributes, including title, price, brand, and categories. For the Stream dataset, we utilized a broader set of
attributes: title, genre, specs, tags, price, publisher, and sentiment.

Training By default, we standardize the item embeddings, as this helps prevent collapse during RQ-VAE
training. For training the RQ-VAE, we found that architectural changes are crucial to increase codebook
coverage. Specifically, residual connections and weight decay are essential for maintaining a good separation.
Our trained RQ-VAE’s consistently attain a codebook coverage of more than 95%. Our encoder architecture
consists of four hidden layers with sizes 768, 512, 256, and 128, respectively. Each layer includes layer
normalization (Ba et al., 2016), ReLU activation, and dropout (Hinton et al., 2012). The decoder follows the
same architecture but in reverse order, where the sum of residuals obtained via the quantization procedure
is up-projected to the original dimension of 768. Following Rajput et al. (2023), we use a three-level residual
quantization scheme with 256 codebooks each. We also experimented with EMA updates and resetting
unused codebook entries, as in Lee et al. (2022), but did not observe any significant improvements. To
evaluate the performance of our trained RQ-VAEs, we rely on metrics such as reconstruction error, codebook
coverage, and downstream task performance.

A.2 Transformer

Following Rajput et al. (2023) we instantiate the generative model with the T5 architecture (Raffel et al.,
2020). Next, we investigate the design choices that underlie this approach, as introduced by Rajput et al.
(2023), and discuss their utility.

Training sequences To construct the training sequences, Rajput et al. (2023) limit the number of items
in a user sequence to at most 20. This can be implemented by taking the first, the last, or all items within
a sliding window of up to 20 items. We experimented with each of these approaches and found that using
the most recent 20 items in a user sequence generally yields improved performance. Unlike prior sequential
recommendation systems, which require at least one item in a sequence to predict the next item (Kang &
McAuley, 2018; Zhou et al., 2020), TIGER uses a user embedding trained alongside the item embeddings.
Therefore, we typically use the first item in a sequence for training as well.

Model architecture.

Decoding Another crucial aspect of the generative retrieval pipeline is the decoding process. As noted in
Rajput et al. (2023), the generation of valid semantic IDs is not guaranteed. To mitigate this issue, we track
the number of invalid semantic IDs produced during decoding. We find that this number is typically quite
low. Nevertheless, to further improve the accuracy of our retrieval results, we employ filtering to remove
invalid IDs and increase the beam size to be 30, which is larger than the final retrieval set.

A.3 Reproduced results

In Table 2, we compare the results of our reproduced version of TIGER with those reported in Rajput et al.
(2023). Our results closely match those reported in Rajput et al. (2023) for the Sports and Beauty datasets,
but we observe a significant gap on the Toys dataset. In particular, our trained models achieve substantially
higher Recall@10 scores on the Beauty dataset. Furthermore, we find that the disparity is more pronounced
for NDCG than for Recall, suggesting that while the retrieved candidate items are similar, our models’
ranking performance is slightly worse.

A.4 Additional findings

Beyond the experiments discussed above, we conducted further investigations into the TIGER framework,
yielding the following key insights.

20



Published in Transactions on Machine Learning Research (07/2025)

Figure 7: Left: Number of correctly retrieved test items for TIGER on the Beauty subset of the Amazon
review dataset. Right: Performance comparison of TIGER with user embedding (TIGER-UserEmb) and
without user embedding (TIGER) on the Beauty dataset.

Table 2: Reproduced results for our open-source implementation of TIGER (Rajput et al., 2023)

Methods
Sports and Outdoors Beauty Toys and Games

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

P5 Geng et al. (2022) 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
Caser Tang & Wang (2018) 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
HGN Ma et al. (2019) 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
GRU4Rec Hidasi et al. (2016) 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084
BERT4Rec Sun et al. (2019) 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099
FDSA Zhang et al. (2019b) 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
SASRec Kang & McAuley (2018) 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374
S3-Rec Zhou et al. (2020) 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376
TIGER(Rajput et al., 2023) 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432
TIGER (Ours) 0.0249 0.0158 0.0377 0.0199 0.0431 0.0275 0.0681 0.0356 0.0375 0.0238 0.0600 0.0311

• TIGER exhibits superior performance on shorter sequences, as shown in Fig. 7 (left).
• The inclusion of user embeddings in TIGER does not yield any significant benefits to downstream

performance, as illustrated in Fig. 7 (right).
• Representing the interaction history in natural language leads to improved ranking performance, as

demonstrated in Fig. 8.

TIGER Works Better on Shorter Sequences. As shown in Fig. 7 (left), TIGER performs significantly
better on shorter sequences than on longer ones. The x-axis represents the number of items per test sequence,
which is at least 4 due to the 5-core user and item filtering applied. Further, the maximum number of items
per sequence is capped at 19, as we limit the maximum sequences length to 20, following (Rajput et al.,
2023). This results in a maximum sequence length of 19 items, where the task is to predict the 20th item.
The y-axis shows the number of matches. Notably, TIGER’s performance is substantially better on shorter
sequences than on longer ones. However, the number of matches increases again for the longest sequences,
although it remains considerably lower than for shorter sequences.

User Embedding. Rajput et al. (2023) employ a user embedding selected based on hashing. However, it is
unclear whether this approach offers any advantages, as the number of user embeddings suggested by Rajput
et al. (2023) often results in numerous collisions in practice. To investigate this, we conduct an experiment

21



Published in Transactions on Machine Learning Research (07/2025)

MRR@10 NDCG@10 Recall@10
0.00

0.02

0.04

0.06

0.08

Coarse Granular Default

Figure 8: Left: Performance comparison between TIGER and LIGER on the Beauty subset of the Amazon
review dataset. Both models predict semantic IDs, but differ in their input representation: LIGER encodes
past items as natural language descriptions, while TIGER represents them as semantic IDs. Right:

in which we remove the user embedding entirely. As shown in Fig. 7 (middle), we do not observe a significant
drop in performance. This suggests that user embedding does not provide any notable benefits.

History Compression via Natural Language. We conduct an additional study in which we represent
the past interaction history in text and initialize the TIGER encoder with a small FLAN-T5 encoder (Chung
et al., 2024). This approach is reminiscent of history compression via language models (Paischer et al., 2022,
HELM). We refer to this variant as LIGER (Language-TIGER), and compare its performance with the
baseline TIGER in Fig. 8, left. The results show that while there is no significant difference in Recall,
LIGER yields notable improvement in NDCG metrics. This suggests that compressing interaction history
using natural language generally enhances the model’s ranking capabilities.

B Datasets

We consider two publicly available datasets for sequential recommendation: Amazon review dataset (Ni
et al., 2019) and Steam (Kang & McAuley, 2018). To preprocess these datasets, we apply 5-core filtering
criterion, removing users with fewer than five interactions and items that appear less than five times. The
statistics of the resulting dataset are presented in Table 3. Due to computational constraints, we sub-sample
the Steam dataset to reduce the number of user preferences generated during the preference approximation
pipeline.

We also visualize the item distribution in Fig. 9, which shows that the three Amazon datasets follow ap-
proximately the same item distribution, while for Steam the distribution differs significantly. In particular,
on the Steam dataset the number of items is in the same range as for the Amazon datasets; however, the
number of users is much larger, as well as the average number of actions per user. As can be observed from
the item distribution, there is a small fraction of items that is overrepresented.

C Preference generation

In this section, we provide details on the prompting scheme used to generate user preferences from item
reviews using LLaMA-3-70B-Instruct. We provide reviews along with item-specific information to the LLM
and prompt it to generate a set of five user preferences (see Fig. 10). Below we present an example prompt
and response for a user in the Beauty subset of the Amazon reviews dataset.

22



Published in Transactions on Machine Learning Research (07/2025)

Figure 9: Data distribution of the Amazon and Steam datasets.

Vision

Figure 10: Schematic illustration of our preference generation pipeline. A user’s reviews for items, combined
with item information, are input into Llama3 as a prompt to infer the user’s preferences.

23



Published in Transactions on Machine Learning Research (07/2025)

Table 3: Dataset statistics after user 5-core and item 5-core preprocessing. Asterisk denotes datasets are
subsets of the Amazon review dataset.

Dataset #users #items avg. actions /user avg. actions /item #actions
Beauty* 22,363 12,101 8.8764 16.403 198,502
Toys and Games* 19,412 11,924 8.6337 14.0554 167,597
Sports and Outdoors* 35,598 18,357 8.3245 16.1430 296,337
Yelp 19,855 14,540 10.4279 14.2387 207,045
Steam 47,761 10,403 12.554 54.6549 599,620

Table 4: Statistics for generated preferences for the different datasets. For pos/neg and fine/coarse we show
number of samples in the format train/val/test split.

Benchmark #preferences #positive #negative pos/neg fine/coarse
Beauty 992,510 708,706 283,804 17,811/3,671/3,716 24,114/16,702/15,956
Toys and Games 837,985 645,696 192,289 11,513/2,342/2,508 23,730/15,968/14,950
Sports and Outdoors 1,481,685 1,075,679 406,006 21,402/4,275/4,293 36,552/25,728/25,188
Steam 2,026,225 1,495,931 530,294 31,505/7,968/8,493 19,550/10,678/10,626

Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } . Your task is
to generate a list of up to five search instructions that reflect the user’s preferences based on their reviews.
Be specific about what the user likes, does not like, and should be avoided. Do not mention brands or
certain products. Return a json file containing the search instructions with the key ’instructions’. Keep the
instructions simple, short and concise, and do NOT include comments on delivery time or pricing.
Parsed response:
[’Search for nail polish with shimmer finish’, ’Look for products with vibrant, bold colors’,

’Avoid products that require base coat for optimal results’, ’Prioritize products with high-quality,

long-lasting formula’, ’Opt for products with easy, smooth application’]

After generation, we apply an exhaustive postprocessing step to ensure that every user-item pair is associated
with exactly five user preferences. In Table 4 we show the statistics after our preference generation pipeline
for the different datasets.

Granularity of preferences. We also investigate whether the granularity of user preferences affects the
model’s ability to adhere to them. We experiment with various prompts to elicit preferences at different
levels of granularity, ranging from coarser, higher-level user preferences to fine-grained preferences that
include detailed descriptions of products and brands. To obtain more abstract user preferences, we slightly
modify the prompt as follows. We show an example for the same user below.

24



Published in Transactions on Machine Learning Research (07/2025)

Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } . Your task is
to generate a list of up to five search instructions that summarizes the user’s high-level preferences based on
their reviews. Be specific on what the user does not like and should be avoided. Do not mention brands or
certain products. Return a json file containing the search instructions with the key ’instructions’. Keep the
instructions simple, short and concise, and do NOT include comments on delivery time or pricing.
Parsed response:
[’Look for products with vibrant colors’, ’Prioritize products with high-quality finishes’, ’Opt for

products that are easy to apply’, ’Consider products that are suitable for multiple uses (e.g., toes and

fingers)’, ’Avoid products that require additional base coats’]

Finally, to obtain more fine-grained user preferences, we slightly modify the prompt again to permit the
inclusion of specific brands and item names in the LLama response. As shown below, the LLama indeed
mentions brands when given the explicit instruction that mentioning item names or brands is acceptable.

Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } . Your task is
to generate a list of up to five search instructions that reflect the user’s preferences based on their reviews.
Be specific about what the user likes, does not like, and should be avoided. It is okay to mention brands or
certain products. Return a json file containing the search instructions with the key ’instructions’. Keep the
instructions simple, short and concise, and do NOT include comments on delivery time or pricing.
Parsed response:
["Search for nail polishes with similar shimmering effects to OPI’s Simmer and Shimmer", ’Prioritize

products with vibrant, long-lasting colors that look great on toes’, "Look for nail polish brands that

offer a wide range of colors, similar to OPI’s Burlesque collection", ’Avoid products that require a

base coat for optimal results’, ’Opt for nail polishes with a smooth, easy-to-apply formula’]

In practice, we found that varying the granularity usually leads to worse performance (see Fig. 8, right).
This suggests that the user preferences obtained through our default prompting scheme contain sufficient
information to effectively steer the model.

C.1 Reviews to properties

In addition to the title and description of the items, the collective reviews of items offer a wealth of information
about their properties. However, with hundreds of users potentially reviewing a single item, each contributing
multiple paragraphs, extracting relevant information can be challenging. To improve the signal-to-noise ratio,
we prompt LLaMA-3-70B-Instruct to extract and condense the properties of the item from the corpus of
user reviews. Specifically, we instruct the LLM to provide concise objective descriptions, excluding subjective
opinions. In the following, we illustrate this approach with an example of extracting properties from reviews
of a froggy pool in the Amazon Toys and Games dataset.

25



Published in Transactions on Machine Learning Research (07/2025)

Instruction:
Your task is to summarize the following reviews of an item into a list of item properties using keywords and
phrases: { } . Keep your response short and concise. Only focus on objective properties of the item. Do
NOT include subjective opinions or emotions. Do NOT include comments on price or delivery time. Return
your response as a python list with at most 10 entries that accurately reflect the properties of the item.
Parsed response:
Inflatable pool with a frog head design, Rainbow sunshade provides shade for the entire pool, inflatable

base consists of multiple air cushions, pool holds 12 gallons of water, Maximum fill line is 4 inches,

Inflated pool area has a 28 inch diameter, Three separate air valves for inflation, Easy to set up and

take down, Suitable for children aged 1-3 years, Cushioned inflatable base for comfort.

Original review:
This froggy pool is great for your young children. It is 45" x 39" x 27" and very comfortable and safe

for your child.

The parsed response above demonstrates that LLama3 is capable of providing a comprehensive list of char-
acteristics about toys in the Amazon Toys and Games dataset. We observed modest performance gains
when providing summarized item properties along with item titles and preferences as input to our language-
conditioned generative retrieval model. Since we were limited by the number of prompts we could issue,
we did not compile the item properties for all datasets. Nevertheless, we provide the prompts to facilitate
future research in this direction.

D Benchmark design

In this section, we provide additional details on the creation of the various components of our benchmark.

D.1 Sentiment Following

The sentiment understanding benchmark is based on preference-item pairs and utilizes a matching mecha-
nism to identify items that triggered negative reviews. This is implemented using a pre-trained sentiment
classification model from Hartmann et al. (2023) to classify reviews. To identify preferences, we employ a
rule-based approach, as we observed that preferences can be both positive and negative simultaneously (e.g.,
a preference may specify liking certain items while avoiding others). Furthermore, we noticed that negative
preferences consistently follow a specific pattern, starting with either “Avoid”, “Exclude”, or “No”. To reduce
misclassifications, we consider preferences beginning with these words as negative. If only one item in a user
sequence received a negative review, we pair the negative preference with that item. Otherwise, we use a
matching mechanism in the Sentence-T5 space, where we match a negative preference to the item whose
review is closest in terms of cosine similarity. An example of the negative matching pipeline is illustrated
in Fig. 11 . This yields a set of negative preference-item pairs, enabling us to assess whether the model
can recognize negative sentiment and respond accordingly. To obtain positive pairs of preferences-items, we
iterate over all negative pairs and invert the gathered preferences. Since negative instructions always start
with “Avoid”, “Exclude”, or “No”, we simply replace these words with “Find” or “Search for” to invert them.
This results in two sets: one that contains negative preferences paired with items and another containing
positive preferences paired with the same items. Finally, we assess whether the model can successfully avoid
certain items while actively retrieving others.

D.2 Preference Steering

In the preference steering scenario, we consider two distinct scenarios: fine-grained and coarse-grained pref-
erence steering. The former assesses whether the model can retrieve an item very similar to the ground
truth by modifying the user preference. In contrast, the latter evaluates whether the model can retrieve a
distinctly different item by changing the user preference accordingly. We identify a very similar item by the
maximal cosine similarity in a pre-trained Sentence-T5 embedding space. In contrast, we retrieve a very
distinct item by the lowest cosine similarity to the ground-truth item. Subsequently, we match the retrieved

26



Published in Transactions on Machine Learning Research (07/2025)

Vision

Figure 11: Schematic illustration of our pipeline to identify the reviews that triggered negative user prefer-
ences. The reviews of different items guided the LLM to generate two distinct user preferences. We perform
sentiment classification on both user preferences and reviews, followed by a matching step in Sentence-T5
space to determine which negative review led to a negative user preference.

Figure 12: Positive and negative preference-item pairs obtained after matching negative preferences to items
that received a negative review. We apply a rule-based inversion to generate the corresponding positive pair.

27



Published in Transactions on Machine Learning Research (07/2025)

Curved OLED monitors

Curved OLED monitors

Fine-grained

Coarse-grained

Figure 13: Schematic illustration of our pipeline for constructing fine- and coarse-grained preference steering.
We search for very similar and dissimilar items to the ground truth item of each original item sequence and
match them to user preferences (top). Then, we obtain two new sequences by exchanging the original
preference with each user preferences and associated new ground truth item.

items to new user preferences, again via cosine similarity. We show a visual illustration of this procedure
in Fig. 13. Finally, we ensure that there is no overlap between our compiled training, validation, and test
split by controlling for the matched preferences, i.e. if a user preference was already matched to a retrieved
item, we associate the current item with the next most similar or distinct preference. This results in unique
(preference, item) tuples for every dataset split.

E Additional results

We provide complementary results for our ablation studies on the data mixture. In Table 5 we report
Recall@5, Recall@10, NDCG@5 and NDCG@10 for the different versions of Mender that are trained on
different data mixes. Furthermore, we provide results for training on the Steam dataset with different
data mixtures in Fig. 14 to highlight that fine- and coarse-grained steering, as well as sentiment following
capabilities can be obtained on this dataset as well.

In addition, we report standard deviations of our results in Table 1 in Table 6 with the higher values colored
red. The small standard deviation indicates that the improvements reported in Mender are statistically
significant.

To assess the efficiency of our Mender variants, we compare the time required for training and inference as
well as their performance. Furthermore, we add a comparison to SASRec (Kang & McAuley, 2018), which
is a traditional sequential recommendation baseline. We present our results in Table 7 for the four datasets.

28



Published in Transactions on Machine Learning Research (07/2025)

Figure 14: Recall@10 for MenderTok trained on different datasplits on the Steam dataset, evaluated under
various schemes: Recommendation, Sentiment following, Preference steering, Preference consolidation, and
History consolidation.

In addition, we conduct an experiment to demonstrate that training on all five generated user preferences
leads to detrimental performance. As mentioned in Section 3.5, each training sequence contains a single
user preference that is matched to the target item in a pre-trained SentenceT5 space. To verify that this is
the best training strategy, we compare MenderTok trained on these sequences to the setup where MenderTok
receives all five user preferences along with the interaction history (MenderTok-AllPrefs), that is, the training
sequences are structured as

[
pTu−1

u1
, . . . , pTu−1

u5
, i1, . . . , iTu−1

]
. We report our results in Table 8. They verify

that training on sequences
[
pTu−1

u , . . . , i1, . . . , iTu−1
]

where pTu−1
u is matched to the ground truth item iTu−1

attains significantly better results than training on providing all preferences in the sequence.

Finally, we conduct an experiment where we exchange the language encoder of MenderTok with a larger
variant. By default, all experiments use the FLAN-T5-Small model (Chung et al., 2024). In Table 9 we
provide results for a comparison to the XXL variant. We observe that drastic improvements can be obtained
on certain datasets usually for tasks such as fine-grained steering, coarse-grained steering, or sentiment
following. This provides evidence that, for the more language-intensive tasks, it is beneficial to scale the
language encoder. However, on Beauty, Toys and Games and Steam, there are some discrepancies, which
are mainly due to the fact that we fine-tune the small variant, but not the large one as this lead to improved
performance. Due to computational requirements, we do not fine-tune the XXL encoder. Impressively, the
XXL variants improve performance on fine- and coarse-grained steering on the Toys and Games and the
Steam datasets, even though we compare to the fine-tuned small variant. This provides compelling evidence
that more capable models can lead to drastic improvements on the different performance axes. Finally, the
XXL variant leads to a drastic improvement on the history consolidation task on Steam, indicating that a
better language understanding is required to tackle this task on the Steam dataset.

F Manual Inspection of Preferences

Our aim is to verify that the user preferences generated by the LLM accurately approximate the real user
preferences. To this end, we conduct a manual confirmation of the preferences to answer the following
questions:

29



Published in Transactions on Machine Learning Research (07/2025)

1. Are the generated user preferences informed by the user’s past interaction history?
2. Do the generated preferences accurately approximate the user’s preferences?
3. Is the matched preference related to the target item?
4. Given that a user preference accurately approximates the user’s preferences, is it related to the

target item?

In total, we manually inspected 440 recommendation scenarios, which is equivalent to 2200 preferences that
were judged. Each scenario consists of 20 randomly sampled recommendations of one of the Beauty, Toys and
Games, Sports and Outdoors, or Steam datasets. In one of such scenario, we first show the past interaction
history of a random user along with their reviews. Then, the generated user preferences are displayed along
with the one user preference that was matched to the ground-truth item, i.e. the next item in the sequence.
Finally, we also display the ground truth item with the same information as the recommendation system
would receive it. For each scenario, we answer all three aforementioned questions and provide one of three
possible answers, namely (1) yes, (2) no, or (3) lack of information to tell. We now iterate over all the
questions and present the corresponding findings.

Are the generated user preferences informed by the user’s past interaction history? The ob-
jective of introducing this question was to quantify how much of the generated preferences was actually
represented in the interaction history and what amount has been hallucinated. We report the results of this
first question in Fig. 15. The majority of generated user preferences are well informed by the user’s interac-
tion history across datasets. We found that the model occasionally generated rather generic preferences, for
example, “Avoid harsh chemicals” on the Beauty dataset, although there was no mention of “harsh chemi-
cals” in the reviews. Such preferences are rather generic and do not convey much information about a user’s
preference. Furthermore, there was a lack of information in some scenarios to answer the question. This can
be traced back to the fact that we intentionally did not provide item descriptions, as these often contain a
substantial amount of noise. As this information is hidden, we believe that it caused the small fraction of
preferences that were rated as lack of info. Thus, we can conclude that the generated user preferences for
the most part were informed by reviews or item-specific info, however, there is still a non-negligible amount
of user preferences that can be considered hallucinated.

Do the generated preferences accurately approximate the user’s preferences? The purpose of
this question is to quantify whether user preferences are correctly approximated. This question is crucial
because it sits at the core of evaluating the quality of preferences. We report the result in Fig. 16. Again, we
find that, for the most part, the preferences accurately reflect the user’s preferences. The answer lack of info
means that there is not enough information to capture the user’s preferences, which is the case if very little
detail is given in the reviews or they are missing entirely. Fortunately, this case is underrepresented. Overall,
we can conclude that the approximation of user preferences via our preference approximation strategy yields
high-quality preferences that accurately reflect the user’s preferences.

Is the matched preference related to the target item? After we have established the quality of the
preferences, it is imperative to also evaluate our matching of preferences to target items for preference-based
recommendation. The reason we conduct this matching is to provide the model with a useful training signal.
This is imperative as we observed that simply using all preferences for training leads to detrimental perfor-
mance (see Table 8). We report the results for this question in Fig. 17. Interestingly, the fraction of correctly
matched preferences is significantly lower compared to the number of correctly generated preferences. The
reasons for this can be two fold, (i) it can be that the target item is entirely unrelated to the past interac-
tion history, or (ii), the matching mechanism is suboptimal. The former case reflects the inherent aleatoric
uncertainty of the sequential recommendation task, as oftentimes the target item is simply not related to
previously acquired purchases. This shortcoming cannot be alleviated. However, the latter can be tackled by
potentially more expressive embedding models or LLMs that can be used to match preferences to the target
item. Finally, the lack of info category represents cases where the information about the target item is too
little, i.e., no description or item title is given. Overall, we can conclude that even though we demonstrated
significant performance gains resulting from training on the matched preferences, it could likely be further
improved by improving the matching of preferences to items.

30



Published in Transactions on Machine Learning Research (07/2025)

Figure 15: Manual inspection results for the question “Are the generated user preferences informed by the
user’s past interaction history?” for the four different datasets used for approximating user preferences.

Figure 16: Manual inspection results for the question “Do the generated preferences accurately approximate
the user’s preferences?” for the four different datasets used for approximating user preferences.

Figure 17: Manual inspection results for the question “Is the matched preference related to the target item?”
for the four different datasets used for approximating user preferences.

31



Published in Transactions on Machine Learning Research (07/2025)

Given that a user preference accurately approximates the user’s preferences, is it related to the
target item? We can obtain an estimate on the underlying aleatoric uncertainty of the task by evaluating
whether accurate preferences are related to the target item. In particular, we consider the cases where Q2
was answered yes and visualize the three categories for Q3 (see Fig. 18). In other words, we look at correctly
approximated preferences and ask what fraction of them is related to the target item. If Q2 is answered
with yes, then we expect the matching to perform well if there is a semantic relation to the target item.
However, if there is still no relation to the target item, that is, Q3 is answered with no, then we can infer
that this is due to the inherent uncertainty of the task. Interestingly, 50-70% of the correctly approximated
preferences are related to the target item. This provides us with an empirical upper bound on the maximum
performance that can be obtained on the sequential recommendation task, i.e. the maximum Recall that
can be obtained is in the range of 0.5-0.7, depending on the dataset.

32



Published in Transactions on Machine Learning Research (07/2025)

Table 5: Performance for different versions of Mender trained on different data mixtures for all evaluation
axes on the Beauty and Steam datasets. We report average performance across three random seeds.

Methods
Beauty Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation
MenderTok 0.0605 0.0401 0.0937 0.0508 0.1682 0.1441 0.2037 0.1555
MenderTok-Pos 0.0553 0.0371 0.0840 0.0463 0.1667 0.1429 0.2004 0.1538
MenderTok-Neg 0.0598 0.0394 0.0917 0.0497 0.1646 0.1410 0.1983 0.1519
MenderTok-Pos-Neg 0.0491 0.0321 0.0778 0.0413 0.1647 0.1416 0.1979 0.1523
MenderTok-Fine 0.0591 0.0383 0.0918 0.0487 0.1667 0.1428 0.2005 0.1538
MenderTok-Coarse 0.0601 0.0392 0.0924 0.0496 0.1682 0.1440 0.2018 0.1549
MenderTok-Fine-Coarse 0.0570 0.0366 0.0893 0.0470 0.1663 0.1424 0.2007 0.1535
MenderTok-All 0.0529 0.0337 0.0838 0.0436 0.1634 0.1400 0.1969 0.1508

Fine-grained steering
MenderTok 0.0534 0.0344 0.0844 0.0444 0.0218 0.0137 0.0357 0.0182
MenderTok-Pos 0.0501 0.0321 0.0791 0.0414 0.0217 0.0137 0.0343 0.0177
MenderTok-Neg 0.0500 0.0323 0.0803 0.0420 0.0196 0.0124 0.0318 0.0163
MenderTok-Pos-Neg 0.0513 0.0333 0.0791 0.0423 0.0211 0.0131 0.0344 0.0173
MenderTok-Fine 0.2476 0.1680 0.3475 0.2002 0.0829 0.0538 0.1234 0.0668
MenderTok-Coarse 0.1483 0.0981 0.2212 0.1215 0.0395 0.0244 0.0652 0.0327
MenderTok-Fine-Coarse 0.2781 0.1885 0.3861 0.2234 0.0985 0.0643 0.1459 0.0795
MenderTok-All 0.2676 0.1802 0.3750 0.2148 0.0903 0.0601 0.1338 0.0741

Coarse-grained steering
MenderTok 0.0094 0.0059 0.0161 0.0080 0.0045 0.0028 0.0085 0.0041
MenderTok-Pos 0.0098 0.0062 0.0163 0.0083 0.0047 0.0029 0.0079 0.0040
MenderTok-Neg 0.0063 0.0039 0.0117 0.0056 0.0041 0.0027 0.0072 0.0036
MenderTok-Pos-Neg 0.0095 0.0061 0.0169 0.0084 0.0050 0.0031 0.0083 0.0041
MenderTok-Fine 0.1005 0.0655 0.1494 0.0813 0.0272 0.0175 0.0691 0.0304
MenderTok-Coarse 0.3028 0.2631 0.3541 0.2797 0.0953 0.0485 0.1385 0.0624
MenderTok-Fine-Coarse 0.3525 0.2710 0.4413 0.2999 0.1403 0.1052 0.1741 0.1163
MenderTok-All 0.3294 0.2779 0.3885 0.2970 0.1063 0.0696 0.1495 0.0839

Sentiment following
MenderTok 0.0043 - 0.0053 - 0.0084 - 0.0110 -
MenderTok-Pos 0.0113 - 0.0140 - 0.0123 - 0.0134 -
MenderTok-Neg 0.0000 - 0.0000 - 0.0000 - 0.0000 -
MenderTok-Pos-Neg 0.0268 - 0.0414 - 0.0637 - 0.0787 -
MenderTok-Fine 0.0046 - 0.0075 - 0.0080 - 0.0112 -
MenderTok-Coarse 0.0067 - 0.0089 - 0.0088 - 0.0184 -
MenderTok-Fine-Coarse 0.0057 - 0.0083 - 0.0053 - 0.0081 -
MenderTok-All 0.0440 - 0.0635 - 0.0184 - 0.0256 -

History consolidation
MenderTok 0.0457 0.0304 0.0720 0.0388 0.0490 0.0317 0.0745 0.0399
MenderTok-Pos 0.0405 0.0272 0.0632 0.0344 0.0490 0.0331 0.0704 0.0400
MenderTok-Neg 0.0460 0.0301 0.0714 0.0383 0.0448 0.0288 0.0667 0.0359
MenderTok-Pos-Neg 0.0359 0.0233 0.0581 0.0305 0.0440 0.0293 0.0649 0.0360
MenderTok-Fine 0.0418 0.0270 0.0657 0.0346 0.0492 0.0333 0.0730 0.0410
MenderTok-Coarse 0.0436 0.0284 0.0682 0.0363 0.0495 0.0331 0.0728 0.0406
MenderTok-Fine-Coarse 0.0399 0.0254 0.0636 0.0331 0.0517 0.0355 0.0753 0.0430
MenderTok-All 0.0379 0.0236 0.0607 0.0309 0.0506 0.0349 0.0713 0.0416

33



Published in Transactions on Machine Learning Research (07/2025)

Table 6: Standard deviation for all methods on all evaluation axes for all datasets trained on recommendation
data across three random seeds.

Methods
Sports and Outdoors Beauty Toys and Games Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation
TIGER 0.0009 0.0006 0.0006 0.0005 0.0010 0.0009 0.0012 0.0009 0.0008 0.0005 0.0004 0.0004 0.0015 0.0014 0.0008 0.0012
VocabExtRND 0.0002 0.0001 0.0002 0.0000 0.0020 0.0017 0.0034 0.0022 0.0005 0.0006 0.0006 0.0006 0.0006 0.0002 0.0015 0.0001
LC-Rec 0.0021 0.0014 0.0027 0.0016 0.0010 0.0007 0.0006 0.0006 0.0010 0.0009 0.0015 0.0010 0.0014 0.0019 0.0013 0.0019
MenderEmb 0.0011 0.0005 0.0017 0.0007 0.0007 0.0007 0.0017 0.0010 0.0015 0.0010 0.0023 0.0012 0.0035 0.0030 0.0040 0.0031
MenderTok 0.0007 0.0005 0.0005 0.0004 0.0004 0.0001 0.0012 0.0002 0.0019 0.0011 0.0022 0.0012 0.0006 0.0004 0.0004 0.0003

Fine-grained steering
TIGER 0.0006 0.0004 0.0006 0.0004 0.0040 0.0024 0.0065 0.0032 0.0010 0.0006 0.0032 0.0011 0.0005 0.0003 0.0010 0.0004
VocabExtRND 0.0007 0.0005 0.0006 0.0005 0.0005 0.0004 0.0019 0.0009 0.0009 0.0004 0.0010 0.0004 0.0010 0.0005 0.0011 0.0004
LC-Rec 0.0034 0.0022 0.0054 0.0028 0.0009 0.0004 0.0018 0.0007 0.0016 0.0010 0.0024 0.0012 0.0014 0.0006 0.0020 0.0007
MenderEmb 0.0009 0.0005 0.0013 0.0007 0.0017 0.0013 0.0015 0.0012 0.0020 0.0017 0.0015 0.0015 0.0024 0.0014 0.0039 0.0019
MenderTok 0.0004 0.0000 0.0010 0.0003 0.0012 0.0007 0.0010 0.0006 0.0008 0.0004 0.0010 0.0004 0.0005 0.0003 0.0004 0.0003

Coarse-grained steering
TIGER 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001
VocabExtRND 0.0001 0.0000 0.0001 0.0000 0.0003 0.0002 0.0002 0.0000 0.0004 0.0003 0.0002 0.0002 0.0002 0.0001 0.0004 0.0001
LC-Rec 0.0005 0.0003 0.0008 0.0004 0.0006 0.0003 0.0012 0.0005 0.0007 0.0005 0.0009 0.0005 0.0005 0.0004 0.0008 0.0004
MenderEmb 0.0000 0.0000 0.0004 0.0001 0.0008 0.0005 0.0000 0.0002 0.0009 0.0006 0.0009 0.0005 0.0005 0.0002 0.0010 0.0003
MenderTok 0.0002 0.0001 0.0005 0.0002 0.0015 0.0011 0.0017 0.0011 0.0003 0.0002 0.0009 0.0004 0.0005 0.0003 0.0002 0.0001

Sentiment following
TIGER 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 -
VocabExtRND 0.0000 - 0.0000 - 0.0012 - 0.0005 - 0.0000 - 0.0000 - 0.0029 - 0.0010 -
LC-Rec 0.0003 - 0.0007 - 0.0006 - 0.0012 - 0.0003 - 0.0007 - 0.0016 - 0.0014 -
MenderEmb 0.0001 - 0.0001 - 0.0003 - 0.0007 - 0.0002 - 0.0005 - 0.0003 - 0.0020 -
MenderTok 0.0011 - 0.0012 - 0.0014 - 0.0003 - 0.0000 - 0.0002 - 0.0012 - 0.0014 -

History consolidation
TIGER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VocabExtRND 0.0001 0.0001 0.0007 0.0003 0.0017 0.0016 0.0020 0.0017 0.0009 0.0008 0.0006 0.0007 0.0023 0.0027 0.0028 0.0028
LC-Rec 0.0009 0.0006 0.0012 0.0007 0.0012 0.0007 0.0012 0.0007 0.0008 0.0003 0.0018 0.0007 0.0014 0.0019 0.0012 0.0018
MenderEmb 0.0011 0.0005 0.0018 0.0007 0.0007 0.0003 0.0005 0.0002 0.0006 0.0008 0.0015 0.0007 0.0003 0.0007 0.0006 0.0008
MenderTok 0.0008 0.0006 0.0007 0.0006 0.0005 0.0000 0.0005 0.0001 0.0015 0.0013 0.0014 0.0013 0.0030 0.0023 0.0038 0.0025

Figure 18: Manual inspection results for the question ‘Given that a user preference accurately approximates
the user’s preferences, is it related to the target item?” for the four different datasets used for approximating
user preferences.

34



Published in Transactions on Machine Learning Research (07/2025)

Table 7: Performance, training time and inference time on an A100 GPU for MenderEmb, MenderTok, and
traditional sequential recommendation system SASRec (Kang & McAuley, 2018) on Beauty, Sports and
Outdoors, Toys and Games, and Steam.

Method Dataset Train time Inference time NDGC@10 Recall@10

SASRec

Beauty 293min 8ms 0.0227 ± 0.0004 0.0528 ± 0.0006
Sports and Outdoors 447min 9ms 0.0118 ± 0.0002 0.0271 ± 0.0005
Toys and Games 280min 5ms 0.0267 ± 0.0002 0.0615 ± 0.0002
Steam 280min 5ms 0.1469 ± 0.0002 0.1781 ± 0.0004

MenderEmb

Beauty 127min 453ms 0.0405 ± 0.001 0.0755 ± 0.0017
Sports and Outdoors 374min 194ms 0.0215 ± 0.0007 0.0394 ± 0.0017
Toys and Games 239min 178ms 0.0342 ± 0.0015 0.0653 ± 0.0015
Steam 231min 179ms 0.123 ± 0.0031 0.182 ± 0.004

MenderTok

Beauty 2324min 562ms 0.0508 ± 0.0002 0.0937 ± 0.0012
Sports and Outdoors 2350min 210ms 0.0234 ± 0.0004 0.0427 ± 0.0005
Toys and Games 1021min 227ms 0.0432 ± 0.0012 0.0799 ± 0.0022
Steam 2330min 222ms 0.156 ± 0.0003 0.204 ± 0.0004

Table 8: Performance of MenderTok when being trained on the single matched preference compared to
training on all five generated user preferences on the Amazon datasets. For sentiment following we report
m@10 instead of Recall@10.

Methods
Beauty Sports Toys

Recall
@10

NDCG
@10

Recall
@10

NDCG
@10

Recall
@10

NDCG
@10

Recommendation
MenderTok 0.0937 0.0508 0.0427 0.0234 0.0799 0.0432
MenderTok-AllPrefs 0.0131 0.0066 0.0063 0.0037 0.0074 0.0039

Fine-grained steering
MenderTok 0.0844 0.0444 0.0324 0.0159 0.0639 0.0321
MenderTok-AllPrefs 0.0014 0.0006 0.0009 0.0004 0.0018 0.0009

Coarse-grained steering
MenderTok 0.0161 0.0080 0.0045 0.0021 0.0060 0.0029
MenderTok-AllPrefs 0.0006 0.0002 0.0003 0.0002 0.0006 0.0003

Sentiment following
MenderTok 0.0053 - 0.0042 - 0.0017 -
MenderTok-AllPrefs 0.0008 - 0.0001 - 0.0005 -

History consolidation
MenderTok 0.0720 0.0388 0.0345 0.0187 0.0700 0.0377
MenderTok-AllPrefs 0.0089 0.0041 0.0063 0.0038 0.0046 0.0025

35



Published in Transactions on Machine Learning Research (07/2025)

Table 9: Performance for MenderTok compared to MenderTok-XXL for all datasets trained on recommen-
dation data. We report average performance across three random seeds. For sentiment following we report
m@k for k ∈ {5, 10} instead of Recall@k.

Methods
Sports and Outdoors Beauty Toys and Games Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation
MenderTok 0.0282 0.0188 0.0427 0.0234 0.0605 0.0401 0.0937 0.0508 0.0533 0.0346 0.0799 0.0432 0.1682 0.1441 0.2037 0.1555
MenderTok-XXL0.0302 0.0201 0.0443 0.0247 0.0523 0.0341 0.0802 0.0431 0.0466 0.0307 0.0691 0.0380 0.1702 0.1472 0.2033 0.1579

Fine-grained steering
MenderTok 0.0190 0.0116 0.0324 0.0159 0.0534 0.0344 0.0844 0.0444 0.0378 0.0237 0.0639 0.0321 0.0218 0.0137 0.0357 0.0182
MenderTok-XXL0.0338 0.0206 0.0551 0.0274 0.0495 0.0319 0.0787 0.0412 0.0423 0.0264 0.0681 0.0347 0.0246 0.0157 0.0394 0.0204

Coarse-grained steering
MenderTok 0.0023 0.0013 0.0045 0.0021 0.0094 0.0059 0.0161 0.0080 0.0032 0.0020 0.0060 0.0029 0.0045 0.0028 0.0085 0.0041
MenderTok-XXL0.0096 0.0058 0.0172 0.0082 0.0104 0.0062 0.0184 0.0087 0.0086 0.0053 0.0140 0.0070 0.0048 0.0029 0.0091 0.0043

Sentiment following
MenderTok 0.0035 - 0.0042 - 0.0043 - 0.0053 - 0.0016 - 0.0017 - 0.0084 - 0.0110
MenderTok-XXL0.0044 - 0.0064 - 0.0076 - 0.0103 - 0.0020 - 0.0048 - 0.0135 - 0.0197

History consolidation
MenderTok 0.0234 0.0151 0.0345 0.0187 0.0457 0.0304 0.0720 0.0388 0.0467 0.0302 0.0700 0.0377 0.0490 0.0317 0.0745 0.0399
MenderTok-XXL0.0223 0.0144 0.0334 0.0180 0.0362 0.0235 0.0574 0.0303 0.0383 0.0253 0.0582 0.0317 0.1225 0.1015 0.1458 0.1091

36


	Introduction
	Related Work
	Methodology
	Background
	Preference Approximation
	Multimodal Preference Discerner (Mender)
	Mender Variants
	Evaluating Steerability via User Preferences

	Experiments
	Baselines
	Results
	Ablation Studies

	Limitations
	Broader Impact
	Conclusion
	Generative Retrieval via semantic IDs
	RQ-VAE
	Transformer
	Reproduced results
	Additional findings

	Datasets
	Preference generation
	Reviews to properties

	Benchmark design
	Sentiment Following
	Preference Steering

	Additional results
	Manual Inspection of Preferences

