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Abstract

Biometric recognition from security camera video is a
challenging problem when the individuals change clothes or
when they are partly occluded. Others have recently demon-
strated that CLIP’s visual encoder performs well in this do-
main, but existing methods fail to make use of the model’s
text encoder or temporal information available in video. In
this paper, we present VCLIP, a method for person identi-
fication in videos captured in challenging poses and with
changes to a person’s clothing. Harnessing the power of
pre-trained vision-language models, we jointly train a tem-
poral fusion network while fine-tuning the visual encoder.
To leverage the cross-modal embedding space, we use
learned biometric pedestrian attribute features to further
enhance our model’s person re-identification (Re-ID) abil-
ity. We demonstrate significant performance improvements
via experiments with the MEVID and CCVID datasets, par-
ticularly in the more challenging clothes-changing condi-
tions. In support of this and future methods that use textual
attributes for Re-ID with multimodal models, we release a
dataset of annotated pedestrian attributes for the popular
MEVID dataset [4].

1. Introduction

Biometric recognition has become ubiquitous in daily
life, with embedded facial, fingerprint, and iris sensing in
mobile devices and other electronics. However, challenges
persist in recognizing individuals across temporal variations
(e.g., changes in clothing) and poses with occluded faces.
These limitations have spurred the development of whole-
body biometric recognition algorithms that work on im-
agery from traditional security cameras. Whole body bio-
metric algorithms are similar to Re-ID approaches, partic-
ularly as Re-ID is increasingly evaluated on datasets where
subjects change clothing. Even when subjects don’t change
clothing, Re-ID is challenging due to changes in lighting,
pose, occlusion, and varying scale.

Large multi-modal pre-trained models continue to
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Figure 1. At inference time, our VCLIP method takes as input
cropped frames from a video of an individual. It generates a Re-ID
embedding based on both the person’s visual appearance and tex-
tual attributes inferred from the query video. The resulting multi-
modal Re-ID feature can be used to match against a gallery of
videos to produce accurate ranked lists in challenging cases such
as clothing changes.

demonstrate strong performance on a range of tasks [19,
21,30,31]. The Contrastive Language-Image Pre-training
(CLIP) model [17], specifically, has recently been shown
to be useful for visual Re-ID [12] even when operat-
ing exclusively with still image data. We extend the ap-
proach of CLIP-based Re-ID to video recognition with
a novel attention-based fusion method, and demonstrate
that adding textual attributes further improves performance
by fully leveraging the multi-modal CLIP model. We
evaluate the efficacy of our approach with state-of-the-art
(SOTA) performance on recent video Re-ID datasets includ-
ing CCVID [7] and MEVID [4] which embody challenges
in pose, lighting, scale variation and clothing change. Our
contributions are summarized as follows:
1. We extend CLIP-based Re-ID to video Re-ID through
an attention based temporal fusion method.
2. We incorporate attribute learning into our video Re-
ID method and demonstrate how textual attributes in-
ferred at test time can be used to more fully leverage
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CLIP’s text embedding features for Re-ID. If available,
our method can also utilize ground-truth attributes dur-
ing training to tune the attribute prompts.
3. We introduce MEVID Person Attributes, a dataset of
annotated pedestrian attributes for the challenging Re-
ID dataset MEVID. Whereas the Re-ID performance
on some datasets has saturated, attributes associated
with them are not needed to drive improved recogni-
tion performance. We demonstrate that the attributes
we provide for the more challenging MEVID dataset
offer a means to achieve higher Re-ID performance.
We demonstrate the impact of these contributions with
new SOTA results on two challenging clothing-changing
video person identification datasets, MEVID and CCVID.
We improve the mAP and CMC scores on the MEVID
dataset, improving rank-1 by 1.3% and rank-20 matching
by 1.9% using a few biometrically-relevant pedestrian at-
tributes. Through ablation, we demonstrate performance
improvements attributable to these contributions. We also
demonstrate, via an experiment with ground truth attributes,
that further improvements to pedestrian attribute inference
could contribute to better mAP and CMC scores.

2. Related Work

Video Person Re-Identification. Video-based person
Re-ID methods [9, 10, 25,26, 29] rely on spatial-temporal
appearance representation learning. To deal with cloth-
changing situations, Gu et al. [7] design a Clothes-based
Adversarial Loss to mine clothes-irrelevant features by pe-
nalizing the predictive power of the Re-ID model w.r.t.
clothes. Since appearance information is not reliable for
cloth-changing pedestrians, other biometric cues are also
considered for training networks, such as silhouette, 3-
D body shape and skeletons sequences. For example,
Nguyen et al. [15] first captured the temporal dynamics
from video sequences and then estimated frame-wise shape
parameters by an identity-aware 3D regressor. Zhu et
al. [33] developed a Pose and Shape Encoder to model body
shape and an Aggregated Appearance Encoder to fuse tem-
poral appearance features. In contrast, we use biometric
pedestrian attribute features to distinguish between differ-
ent subjects with changing clothes.

Vision-language learning. Recently, researchers lever-
age vision-language learning (i.e., CLIP [17,32]) to extract
more generic appearance representations [3, 12, 28]. By
first learning a set of discriminative text tokens for each ID,
CLIP-RelD [12] fine-tunes the image encoder of CLIP [17]
to extract Re-ID embeddings constrained within the rich
CLIP feature space. Chen et al. [3] apply a CLIP-like
framework with new memory-swapping contrastive learn-
ing to visible-infrared person Re-ID. Different from the
above works focusing on image Re-ID, TF-CLIP [28] ex-
tends the CLIP model for video person Re-ID by proposing

the Temporal Memory Diffusion (TMD) module. In this
work, we learn multi-level spatial-temporal features based
on pre-trained language-image models to produce discrimi-
native cross-modal embeddings.

3. Method

Given a probe video of a subject, biometric video Re-
ID aims to locate that individual from a gallery of enroll-
ments videos. Our VCLIP method, shown in Fig. 2 uses
cross-modal visual, text, and attribute features to generate
discriminative embeddings useful for video Re-ID in the
challenging clothing-changing setting. We utilize attribute
learning to fully take advantage of our model’s cross-modal
embedding space, and we use a co-attention mechanism to
fuse attribute and visual features. Temporal fusion then
combines per-frame features into per-video features. Using
a multi-stage training strategy, we finetune/train all model
components, resulting in the final VCLIP model used for
inference.

3.1. CLIP Overview

The key to successful biometric video Re-ID is extract-
ing biometric feature representations that are invariant to
camera, domain, and clothing. We therefore propose a
method for extracting cross modal spatial-temporal features
from videos that capitalizes on the recent success using
CLIP’s [17] large pretrained vision and language models
for their high quality feature representations and zero-shot
transfer ability. CLIP consists of text and image encoders
that compute embeddings from a pair of visual inputs and
corresponding text descriptions. The text encoder T is a
transformer network, and the visual encoder V is imple-
mented as either a CNN, such as ResNet-50, or a trans-
former, such as ViT-B/16, which we use for our method.
Given an input image x of subject with identity y, the vi-
sual encoder generates an image feature,

fuis(@) = V(z). ey

We also generate a per-subject identity sentence associated
with each video, “A photo of y.” Each identity sentence
is tokenized via byte pair encoding [ 18], embedded into a
512-dimensional vector for each token, and encoded with
the CLIP text encoder into a text feature,

ftext(y) = T(y) 2

The model is trained to minimize the dot product dis-
tance s(-, -) between the [EOS] token embedding of the text
feature, ftext(y), and the [CLS] token embedding of the im-
age feature, fvis(x), both of which are first projected into
a cross-modal embedding space via linear layers Wiex and
Wiis'. To address ambiguous text descriptions, CoOp [32]

!For linear projections i.e. W7, superscript T' denotes transpose.
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Figure 2. Overview of our approach: VCLIP utilizes learned person attribute sentences encoded with the text encoder and visual features
extracted using the image encoder. The cross-modal features— used during inference— are fused using co-attention transformers. During the
first stage of training, we learn subject identity prompts. During the second, we finetune the image encoder, attribute prompts (if ground
truth attributes are available), and train the temporal components of our model. The text encoder remains frozen throughout all stages.

introduces learned prompt tokens, which are trained while
keeping the text and image encoders fixed. CLIP-ReID [12]
similarly trains learnable prompts for the Re-ID task dur-
ing an initial training stage in which the text and image
encoders are fixed, allowing the ambiguous subject iden-
tities to be mapped to learned prompts whose cross-modal
embeddings are aligned with the subjects’ visual embed-
dings. Asin [12], we replace each identity sentence with L
learned prompts, {w;(y)}~ ,, to generate per-subject sen-
tences, i.e., “A photo of [w1 (y)] [w2(y)]... [wr (y)] person.”

3.2. Attribute Learning with Prompts

An advantage of using a cross-modal model is our abil-
ity to utilize pedestrian attribute information that might be
available in addition to video clips. In the event that pedes-
trian attributes are unknown, we use pedestrian attribute
recognition to infer attributes from an input video. Pedes-
trian attribute recognition [0, | 1, 13,22,23,27] aims to de-
scribe semantic information about an individual using a
set of predefined attributes, including biometric informa-
tion (e.g., gender, age) and clothing descriptions (e.g., long
sleeves, skirt, carrying backpack). We use CLIP’s cross-
modal embedding space to embed not only learned prompts
corresponding to individual subjects, but also textual at-

tributes describing each video.

Our attribute branch, (Fig. 2, red arrows) consists of
learned attribute prompts and an attribute selection mod-
ule, which are used to generate a per-frame attribute sen-
tence. For attribute learning, we use a set of K attributes
{a;}E | where each of the attributes belongs to one of C
mutually exclusive classes {Cl}zc:1 For example, we might
use K = 9 attributes (i.e. male, female, age 16 to 31, ages
31 to 45, age 45 to 60, above 61, long hair, short hair, and
bald) and C' = 3 attribute classes (i.e. gender, age, and
hairstyle). Within each attribute class an individual must
be assigned to one and only one attribute (i.e. an individual
must belong to exactly one age group). That is to say with
attributes a;,a; € C, an individual must have attribute a;
or a; but not both. Using these attributes we learn K at-
tribute prompts {z;} X, where each prompt corresponds to
a unique attribute. Note that if ground truth attributes are
not available, we keep the attribute prompts frozen.

We then compute the cosine similarity between the vi-
sual feature f,is(x) and the text feature for each of the at-
tribute prompts fiex(z;). Each attribute is then assigned
a probability based by applying the softmax function over
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so that the probabilities of all attributes within a single class
sum to one (i.e. Y-, coe cgas Pa(@i) = 1)

For each class 4 and image frame x, we select the most
probable attribute G;(x) to generate an attribute sentence,
i.e., “A pedestrian who is [a1 ()], [a2(2)], ..., and [ac(x)].”
Because our goal is person Re-ID in the more challeng-
ing clothing changing setting [4, 7], we eliminate cloth-
ing or action related attributes and retain only biometric
attributes. When using predicted attributes we also ex-
periment with adding confidence to the attribute sentence
by adding phrases which imply doubt when the attribute
probability pus(a;(x)) is low. Specifically, when the at-
tribute probability is less than 75% we use the word “might”
and when greater than 75% we use the word “definitely”,
producing sentences such as “A pedestrian who might be
[G1(x)], might be [a2(x)], ..., and definitely is [ (x)]].”

Each attribute sentence is of length 77 and is tokenized
with the byte pair encoding (BPE) [18], embedded into a
512-dimensional vector for each token, and encoded into a
feature in the cross-modal embedding space with the CLIP
text encoder. The final feature produced by the attribute
branch of our model for input frame x is denoted [, ().

3.3. Cross-Modal Temporal Fusion

In addition to incorporating attribute learning for Re-ID,
our method extends CLIP to use video inputs, instead of
single frame inputs. Given an input video X with 7" frames,
X = {a'}I, of subject y, we generate an image feature
and an attribute feature for each frame t = 1,2,...,7T in
the video. The attribute features { fo;(x?)}7; are fused
with the image features { fyis(2*)}7_, via cross-modal tem-
poral fusion, shown in Fig. 2 (yellow arrows indicate fused
features). The fusion module generates for each video a
feature frysea(X) whose embedding aligns with the video’s
subject identity feature fiex(y).

Given attribute and visual features for each frame, we
use a cross-modal transformer with attention to achieve
a unified feature representation. Rather than fusing the
modalities with concatenation or summation fusion, as in
[2], we use cross-modal attention to fuse the attribute and
visual branches. Using learned attention for cross modal fu-
sion allows us to fully take advantage of complimentary in-
formation extracted from the various modalities and to fuse
them into a discriminative, task-aware feature.

We use co-attention transformers [14], originally de-
signed to fuse vision and language features, to fuse vi-
sual features and attribute features by exchanging key-value
pairs in multi-headed attention layers. To fuse the at-
tribute and visual features, we use a co-attention trans-

former CO(q, k, v) with the attribute features as queries
q and the final layer of the CLIP visual encoder projected
into 512-dimensions via W, as keys k and values v,

q= fan(xt)u k= fvis(xt)W\/ji;> V= fvis(mt)W\/ji;u “4)
and visa versa,
q= fvis(xt)W\ia k = fatt(xt)v V= fatl(xt)- (5)

To combine features from each frame z' into a sin-
gle per-video feature, we utilize a temporal transformer.
A learned positional encoding is added to the per frame
fused features. These features are then fed into a two-layer
transformer, and the output is mean pooled along the tem-
poral dimension to produce the final fused video feature

f fused (X ) .
3.4. Training Strategy

We employ a two stage training strategy to train the var-
ious components of our model. In order to utilize the high
quality feature representations from the large pretrained
CLIP models while also finetuning its image encoder for
our task and dataset, we freeze the weights of the CLIP text
encoder and progressively learn the new components of our
model and finetune the CLIP image encoder.

During the first stage of training, as in [12], we learn
only the identity prompts and keep the rest of the model’s
weights frozen. Given a batch with B videos {X;,}2_, of
subjects {y}#_,, we define the visual-to-text and text-to-
visual contrastive losses in terms of the dot product similar-
ity of projected features,

Si,j =S (ftext(yi)vvtz;t) ) (fAvm(Xj)W\;{g) . (6)

The visual-to-text constrastive loss is defined as the simi-
larity between visual and text features, normalized by text
features,

exp (Sp.b)

Lyis—ext(b) = —log <> . @)
o 7 exp(s)

The text-to-visual contrastive loss is likewise defined as the
similarity between visual and text features, normalized by
images features,

1 exp (0.0)
Liext—svis Y) = 7~ IOg = |
(Ys) N(yb) {nynz_yb} <Zf_1 exp (sbJ))

®)
where N (yp) is the number of videos in the batch with iden-
tity y,. Note that during the first stage of training, we do
not utilize the attribute model to reduce computational com-
plexity.
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During the second stage of training, we finetune
the CLIP image encoder while jointly learning attribute
prompts, and the weights of the video-attribute fusion
model and temporal fusion transformer. For our losses we
use triplet loss, an attribute loss, and identity loss with label
smoothing. The triplet loss is defined as

Ly = max (dpos — dneg + @, 0) , 9)

where dj,,s and d,,.4 are the distances between positive and
negative pairs of features, and « is the margin. We sum the
triplet loss computed over several temporal features, includ-
ing fiemp(X) and fiemp(X)WZ.. The identity loss with label
smoothing is

N

Lip == 7nlog(n), (10)

n=1

where 7, is the target distribution, N is the total number
of unique identities, and g,, is the logit value for the n-th
identity computed based on temporal features. We again
sum the identity losses computed for the various features.

To facilitate optimizing the attribute prompts when
ground truth attributes are available, we use an attribute loss
which uses the binary cross entropy loss applied to the es-
timated attribute probabilities p,q(X ), estimated per video,
and the ground truth attribute vector g,

Law = —q-10g (Par( X)) — (1 —¢)-log (1 — pau(X)) . (11)

When ground truth attributes are not available, the attribute
prompts are frozen.

In summary, we use the following losses for the two
stages of training:

stage 1 (12)
stage 2 (13)

Elext—wis + Lvis—next

£’Y + Etri + £id + ‘CZn

vis—text

*If ground truth attributes are available.

During the test time, we compute the fused features
frusea(X) for the gallery tracklets and the query video track-
lets. We use these fused features for finding the match for
the query with the gallery.

4. Experimental and Implementation Details

To quantify the performance of our VCLIP method, we
perform a series of experiments on video Re-ID datasets,
described below. We also describe the person attributes that
we have annotated in support of these experiments.

4.1. Experimental Details

Datasets To quantify the performance of the proposed
method on the task of video-based person Re-ID, we con-
duct experiments using two different public video Re-ID

Male, Male, Female, Male, Female,
45-60, 31-45, 16-30, 31-45, 31-45,
Healthy weight, Healthy weight, Healthy weight, || Healthy Healthy
Bald, Short hair, Long hair, weight, weight,
Facial Hair, Facial Hair, Long sleeves, Short hair, Short hair,
Long sleeves, Long sleeves, Pants, Facial Hair, Sweater,
Pants, Pants, Short coat, Collared shirt, || Long sleeves,
Short coat, Hoodie, Hoodie, Long sleeves, || Jeans,
Glasses, Hat, Glasses, Pants, Short coat
Scarf Jewelry carrying Glasses,

Nothing Scarf

Figure 3. Examples of MEVID attributes. Note for our experi-
ments we only use biometric attribute labels shown in blue.

datasets: MEVID [4] and CCVID [7]. These datasets
represent a range of challenges including long-term Re-ID
(CCVID), large scale variations (MEVID), indoor-outdoor
matching (MEVID), and clothing changes (both). MEVID
consists of 158 identities and CCVID has 226 unique identi-
ties in the dataset. MEVID is more challenging in the sense
that it includes 33 viewpoints and multiple scales of images
from 33 different settings.

4.1.1 MEVID Person Attributes

We release a new dataset for person attribute recogni-
tion, the MEVID Person Attributes Dataset: we enrich the
MEVID dataset with 40 binary and 1 multi-class manually-
annotated attributes, shown in Tab. 1. MEVID is a large-
scale video Re-ID dataset with diversified data collects. It
consists of 158 unique people with 598 outfits in 8,092
tracklets; 4 different outfits per identity and collected with
33 camera views across 17 different camera locations both
indoors and outdoors. For attributes annotations, the check-
in photos of the identities are utilized. The person attributes
are defined based on the following categories: sex, age
range, body type, clothes details, accessories and carryings.

We employ three annotators to annotate the dataset. The
conflicts in annotations are resolved using the majority vot-
ing of the annotators, e.g., if two of the three annotators
agree to an annotation whereas the third annotator disagree,
we will keep the annotation of the first two annotators. If
all three annotators disagree, the annotation is resolved by a
fourth annotator who checks the corresponding image and
the three annotations and makes a decision. Some example
annotations with corresponding images are shown in Fig. 3.

Implementation Details For our main experiments, we
use three simplified MEVID biometric classes (Tab. 1):
gender (male/female), age (younger/older than 45), and hair
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Table 1. All attributes (40 binary and 1 multi-class) included in the MEVID Person Attributes Dataset are listed by class category.

# Binar .
Class Attributzs Attributes
Sex 2 male, female
Age category 4 16-30, 31-45, 45-60, above 61
Body type 3 underweight, healthy weight, overweight
Hair length 3 bald, short, long
Facial hair 1 -
Hair color N/A black, brown, blonde, red, grey, other color, N/A
Upper body clothing 8 t-shirt, collared shirt, dress, vest, suit, sweater, short coat, long coat, hoodie
Sleeve length 2 long sleeves, short sleeves
Lower body clothing 5 jeans, long skirt, short skirt, shorts, other pants
Accessories 6 hat, glasses, scarf, jewelry, gloves, no accessories
Carrying 6 handbag, crossbody bag, backpack, briefcase, carrying other, carrying nothing

length (long/short or bald). For the CCVID dataset which
does not have ground truth attributes we utilize the attribute
prompts learned from MEVID. We use visual encoder and
text encoder from CLIP [17] as the backbone for our image
and text feature extractor. Specifically, we use the ViT-B/16
model architecture. As discussed earlier, we employ a two-
stage training strategy. The first stage learns the prompts
for class ids. The second stage optimizes the network to
learn joint textual (attributes) and visual features as well
as temporal fusion. For training, we use Adam optimizer
and learning rate scheduling. The first-stage training is con-
ducted for 120 epochs. For the second stage we train for
15 epochs. We use a batch size of 32 and sequence length
of 8. Frame sampling is done randomly during training and
evenly during the test time. If the tracklets are shorter than 8
frames during the test, the frames are resampled until there
are 8§ frames used for the video tracklet.

5. Results
5.1. Evaluation Metrics

Following the prior works on video person Re-ID [7,

, 33], we evaluate our proposed method and compare
its performance with other Re-ID methods on different
datasets using mean Average Precision (mAP) and Cumu-
lative Matching Characteristic (CMC) metrics. The CMC
metric scores the success in finding the true match within
the first k ranks (kK = 1,5, 10, 20), and the mAP metric is
based on precision and recall over all the queries.

We also evaluate performance based on the clothing of
the identities. Here, we compute the top-k accuracy and
mAP in the challenging clothes-changing (CC) setting.

5.2. Experimental Results Analysis

Baselines We compare our method to SOTA Re-ID
methods, including [7,33] and others, on the MEVID and

Table 2. Comparative Analysis of proposed method over SoTA
methods on MEVID Dataset [4]. The best scores are shown in
bold whereas the second best scores are underlined.

Rank
Method mAP 1 5 10 20
BiCnet-TKS [9] 6.3 19.0 | 35.1 | 40.5 | 52.9
PiT [29] 13.6 | 342 | 554 | 63.3 | 70.6
STMN [5] 11.3 | 31.0 | 544 | 655 | 72.5
AP3D [8] 159 | 39.6 | 56.0 | 63.3 | 76.3
TCLNet [10] 23.0 | 48.1 | 60.1 | 69.0 | 76.3
PSTA [24] 21.2 | 46.2 | 60.8 | 69.6 | 77.8
AGRL [26] 19.1 | 484 | 62.7 | 70.6 | 77.9
Attn-CL [16] 18.6 | 42.1 | 56.0 | 63.6 | 73.1
Attn-CL+rerank [16] | 25.9 | 46.5 | 59.8 | 64.6 | 71.8
CAL [7] 27.1 | 52.5 | 66.5 | 73.7 | 80.7
ShARc [33] 29.6 | 59.5 | 703 | 77.2 | 829
VCLIP (Ours) 27.7 | 60.8 | 73.1 | 78.2 | 84.8

CCVID datasets. MEVID results are shown in Tables 2,
4, and 5, and CCVID results are shown in Tab. 3. On
the MEVID dataset, where there are ground truth attributes
to learn attribute prompts, VCLIP performs better than the
SOTA methods (Tab. 2): we see performance improvements
of 1.3% in Rank-1 and 1.9% in Rank-20. On the CCVID
dataset, where ground truth attributes are not available, our
method is competitive with most prior work (Tab. 3).

Qualitative Results Example video retrievals are shown
in Fig. 4 for our method and another SOTA method
CAL [7]. The top row showcases a query video from a
challenging high-pitch viewpoint, where VCLIP success-
fully identifies tracks containing the query subject despite
face occlusion, headwear, and clothing changes. In con-
trast, CAL appears to rely on superficial color cues from
the subject’s shirt, failing to accurately identify all but one
track. Furthermore, the second row demonstrates VCLIP’s
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Top 5 Retrievals from Gallery

Figure 4. Qualitative samples on MEVID Dataset [4]. The first image represents a query frame, followed by the top-5 retrieved tracklets.
Frames with green borders are successful retrievals and failures are shown by frames with red borders.

Table 3. Performance of VCLIP and SoTA methods on the CCVID
Dataset [7]. CC refers to clothes changing setup of evaluation.
The best scores are shown in bold whereas the second best scores
are underlined.

General CC
Method mAP | Rank-1 | mAP | Rank-1
GaitNet [20] 56.5 62.6 49.0 57.7
GaitSet [1] 73.2 81.9 62.1 71.0
CAL [7] 81.3 82.6 79.6 81.7
ShARc [33 90.2 89.8 85.2 84.7

the Supplementary Materials. We would like to note that
the performance of ShARc [33] on these specific challenges
could not be evaluated, as relevant results were not reported
in their publication and source code for their method was
not made publicly available.

Table 6. Ablation results for various modules in the proposed
VCLIP method on the MEVID Dataset. The ablations shown are
Temporal Fusion (TF), Estimated Attributes (ES), Attribute Cer-
tainty (AC), and Ground Truth Attributes (GT) [4].

VCLIP (Ours) | 860 | 868 | 81.8 | 84.3

ability to robustly identify subjects across different outfits,
whereas CAL is again observed to be biased towards in-
dividuals wearing a similar outfit to the query video. Fi-
nally, the third row showcases VCLIP’s ability to match
videos across scales and between indoor and outdoor en-
vironments.

MEVID Challenges The MEVID dataset [4] was re-
leased with three challenges to facilitate an in-depth eval-
uation of existing Re-ID methods. We compare the perfor-
mance of VCLIP (without ground truth attributes) against
several SOTA Re-ID methods in the Change-of-Clothing
Challenge (Tab. 4). Notably, our results demonstrate a
substantial improvement over prior work, with signifi-
cant boosts in rank retrieval accuracy observed at Rank-
5 (+6.7%), Rank-10 (+11.3%), and Rank-20 (+20.7%).
Moreover, in the Scale Variation Challenge (Tab. 5), we
present our method’s performance under uniform scale
conditions and varying scale settings, achieving optimal
or second-best mAP and Rank metrics across all scenar-
ios. Lastly, for the Location Difference Challenge, VCLIP
exhibits parity with current SOTA methods, outperform-
ing them under same location conditions while securing a
second-place finish when gallery video locations are differ-
ent than the query videos. Further details can be found in

Rank

TF | ES | AC| GT| mAP 1 5 10 20

X X X X | 19.8 | 52.2 | 722 | 78.2 | 83.2
v X X X | 20.0 | 52.5 | 69.3 | 76.6 | 82.0
| /| X X | 274|595 | 725 | 77.8 | 85.8
|V | vV | X | 277 | 608 | 73.1 | 78.2 | 84.8
X X X | v | 280|617 | 722|763 | 86.7
v X X | v | 451|703 | 83.2 | 87.3 | 90.8

Ablation Study We conducted an ablation study to eval-
uate the contributions of various components in our model
(Tab. 6). Our experiments show that incorporating ground
truth attributes during training and testing significantly im-
proves video-based person re-identification (Re-ID) perfor-
mance. Specifically, using ground truth attributes outper-
forms our baseline approach without attributes. Temporal
fusion provides a gain in recognition performance, while
predicted CLIP attributes improve Re-ID accuracy. Con-
ditioning the attribute sentence with certainty words also
enhances model performance. The results further suggest
that improved attribute prediction could lead to significant
further gains in Re-ID performance.

6. Ethical Considerations

Improving the performance of non-cooperative biomet-
ric recognition has the potential to increase public safety
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Table 4. Comparison with prior work on the MEVID dataset for the Change-of-Clothing Challenge. The best scores are shown in bold
whereas the second best scores are underlined.

Same Clothes Different Clothes

Method Rank Rank
mAPL s 1020 |™P 1 s |10 20
BiCnet-TKS [9] 80 | 05 | 365|417 514 1.7 | 07 | 46 | 7.8 | 134
PiT [29] 19.5 | 36.8 | 58.7 | 66.3 | 73.6 | 2.0 1.1 53 | 85 | 13.7
STMN [5] 185|337 |583]69.1|764| 12 | 04 1.8 | 39 | 6.0
AP3D [8] 232 | 427|597 | 677|792 | 29 1.8 | 74 | 95 | 16.6
TCLNet [10] 319 | 51.7 | 635 | 71.9 | 792 | 39 | 3.5 | 88 | 14.1 | 21.1
PSTA [24] 2971490 | 639 | 722 | 785 | 5.1 | 5.6 | 123 | 19.4 | 28.9
AGRL [26] 326 | 514 | 649 | 73.6 | 80.9 | 5.7 | 49 | 15.1 | 19.0 | 25.7
Attn-CL [16] 242 | 444|597 | 663 | 72.6 | 34 | 28 | 85 | 155 | 24.6
Attn-CL+rerank [16] | 34.1 | 50.7 | 63.2 | 68.1 | 729 | 42 | 2.1 9.2 | 13.7] 225
CAL [7] 39.0 | 56.6 | 70.8 | 78.1 | 854 | 43 | 3.5 | 10.6 | 148 | 19.4
VCLIP(Ours) 37.6 | 63.5| 76.4 | 819 | 87.2 | 6.7 | 6.7 | 17.3 | 26.1 | 40.1

Table 5. Comparison with prior work on the MEVID dataset for the Scale Variation Challenge. The best scores are shown in bold whereas
the second best scores are underlined.

Same Scale Different Scale
Method Rank Rank
mAPL s 1020 |™P 1 s |10 | 20

BiCnet-TKS [9] 52 | 147|260 | 31.0 | 39.7 | 4.6 | 10.7 | 20.8 | 25.5 | 34.9
PiT [29] 11.4 | 237 | 44.0 | 53.3 | 60.3 | 10.6 | 23.5 | 37.3 | 41.6 | 51.0
STMN [5] 105 19.2 | 332|392 | 462 | 94 | 223 | 420 | 51.0 | 58.0
AP3D [8] 142 | 31.0 | 473 | 53.0 | 63.7 | 11.4 | 245 | 359 | 42.6 | 52.7
TCLNet [10] 20.7 | 40.0 | 52.3 | 61.0 | 65.0 | 17.6 | 342 | 443 | 50.3 | 594
PSTA [24] 18.6 | 343 | 513 | 60.3 | 67.0 | 16.8 | 29.9 | 443 | 51.7 | 60.1
AGRL [26] 22.1 1403 | 573 | 64.7 | 71.0 | 17.7 | 29.5 | 43.6 | 493 | 584
Attn-CL [16] 154 | 31.3 | 50.0 | 56.0 | 643 | 143 | 26.5 | 37.6 | 46.3 | 55.7
Attn-CL+rerank [16] | 23.1 | 35.7 | 54.0 | 59.3 | 67.7 | 21.2 | 33.6 | 440 | 50.0 | 544
CAL [5] [7] 243 | 423 | 563 | 61.3 | 71.7 | 20.6 | 352 | 50.7 | 58.4 | 62.4
VCLIP (Ours) 24.0 | 49.7 | 66.7 | 74.0 | 783 | 21.5 | 39.6 | 52.3 | 58.1 | 67.4

but, if used by malicious actors, could lead to harass-
ment, persecution, or other bad outcomes.We note that the
MEVID dataset was collected under IRB supervision and
that all people depicted in this paper expressly consented to
have their likeness appear in publications.

7. Conclusion

We extend the application of CLIP-based Re-ID to video
through attention-based temporal fusion methods, yield-
ing improved performance compared to dense temporal ap-
proaches [33]. Additionally, we propose a novel exten-
sion that leverages textual attributes within the multi-modal
CLIP framework, enabling more effective person identifica-
tion. Our approach achieves SOTA results on the MEVID
dataset with significant advances in robustness to clothing
changes.

We observe a notable gap between performance us-

ing ground truth attributes and predicted attributes, indi-
cating opportunities for further improvement in attribute
prediction and the exploitation of textual attributes under
weak/noisy supervision.
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