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Abstract

Large language models (LLMs) increasingly
rely on long prompts or retrieved contexts,
driving up inference latency and cost. We
observe that tokens whose forward probabil-
ity is already high given the preceding con-
text contribute little additional information,
as the model has effectively encoded their
content in its hidden state. Leveraging this
information-sufficiency insight, we introduce
CHUNKOUT, a model-agnostic algorithm that
scores each token with its next-token likeli-
hood and simply drops those above a threshold
CHUNKOUT requires no extra training, incurs
O(n) overhead, and can be plugged into any
frozen LLM. Across QA and summarization
benchmarks, it trims 50% of prompt tokens
while maintaining (and occasionally improv-
ing) task accuracy, outperforming prior com-
pression baselines by up to 5% pp. CHUNK-
OuT offers a principled yet lightweight path
toward faster, cheaper, and greener LLM infer-
ence.

1 Introduction

State-of-the-art language models now tackle tasks
by ingesting ever-longer prompts—chat histories,
retrieved documents, or chain-of-thought exem-
plars. While larger contexts improve quality, they
also inflate computation, latency, and energy con-
sumption. The question, therefore, is how much
of a prompt is actually needed once the model has
already internalised its essential content.
Transformer hidden states are predictive: a sin-
gle vector often forecasts several upcoming tokens
(Pal et al., 2023; Din et al., 2024). Complement-
ing this, Li et al. (2024) show that, after training,
an LLM “glues” certain tokens together, assigning
uniformly high probabilities to entire multi-token
chunks and creating plateau-shaped likelihood re-
gions. If token x; can be guessed with high prob-
ability p; from its prefix z.;, then the semantic
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Figure 1: Overview of CHUNKOUT. Rather than delet-
ing individual high-probability tokens, our approach
targets contiguous chunks of high-probability tokens.

content of z; is already encoded in the context rep-
resentation, so removing it incurs little information
loss.

We operationalise this intuition with CHUNK-
OUT, a two-line procedure: First, run the frozen
LLM once to collect next-token probabilities
{pi}?_,. Second, remove every contiguous chunk
of tokens where each token’s next-token proba-
bility p; exceeds a user-chosen threshold 7. No
gradients, distillation, or auxiliary models are re-
quired; token scoring is parallel and linear in se-
quence length. The retained subsequence acts as
a compressed prompt that the same solver model
can process at full fidelity. Our results demonstrate
that CHUNKOUT enables significant prompt reduc-
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Figure 2: Question-Answering results across all models and tasks.

tion across diverse NLP benchmarks, preserving
accuracy and summary quality without sacrificing
performance. CHUNKOUT offers a plug-and-play
route to faster, cheaper inference, complementing
orthogonal advances in speculative decoding and
model compression.

2 Related Work

Prompt Compression. Prompt compression
methods aim to reduce input length while preserv-
ing task-relevant information, and can be broadly
categorized into soft and hard approaches. Soft
prompt compression methods replace the original
input with learned representations. Some methods
use learned vector tokens (Wingate et al., 2022)
or task-specific gist prefixes (Mu et al., 2024) to
encode prompt semantics, while others generate
summary vectors from long contexts via recursive
distillation (Chevalier et al., 2023) or encode in-
put into memory slots with lightweight autoen-
coders (Ge et al., 2024). Hard prompt compres-
sion, the focus of this work, reduces prompt length
by selectively removing tokens. Some methods
score tokens by self-information to filter redundant
content (Li et al., 2023), while others apply itera-
tive entropy-based pruning with budget control and

alignment techniques (Jiang et al., 2023). More re-
cent methods frame token selection as a supervised
task using LLM-distilled labels to train a compres-
sion classifier (Pan et al., 2024).

Future Token Prediction. While prompt com-
pression focuses on removing tokens after observ-
ing their likelihoods, a complementary line of work
shows that hidden states themselves already en-
code information about multiple upcoming tokens.
Early “lens” probes revealed that intermediate ac-
tivations can be linearly decoded into next-token
distributions (nostalgebraist, 2020; Belrose et al.,
2023). Going further, Pal et al. (2023) and Din et al.
(2024) demonstrate that single hidden vectors of-
ten predict phrases several steps ahead, suggesting
that transformers implicitly “plan” continuations
long before generation. Mechanistic studies disen-
tangle whether this foresight is deliberate caching
or incidental “breadcrumbs”: synthetic tasks show
explicit pre-caching when future information is re-
quired, whereas natural text appears mostly my-
opic (Wu et al., 2024). Practical systems exploit
these latent predictions to accelerate decoding:
Medusa attaches parallel heads to output two—four
tokens per step without quality loss (Cai et al.,
2024), and lightweight re-ranking can push a frozen



model to emit coherent multi-token chunks (Sam-
ragh et al., 2025). Together, these findings motivate
our method: if a token’s content is already recov-
erable from its context’s hidden state, it can be
pruned without harming downstream performance,
enabling more aggressive yet faithful compression.

3 Methodology
3.1 Problem Definition

Let a prompt be a sequence of n input tokens
X = [ml,xg, ... ,;vn} fed to a frozen language
model g(-). Given a downstream solver f(x) (e.g.
multiple-choice QA), our goal is to build the short-
est subsequence X C x such that

fx) = f().
CHUNKOUT meets this target through a single for-
ward pass that (a) scores every token and (b) deletes
only contiguous spans whose tokens are all highly
predictable.

3.2 Step 1: Token Scoring

For each position ¢ € [1,n] we query the
model once in the forward direction to obtain the
next-token likelihood

pi = glzi | x<il. (1)

A large p; means x; carries little new information
beyond its prefix x;; a small p; signals that x; is
informative or surprising. This pass is embarrass-
ingly parallel and costs O(n).

3.3 Step 2: Chunk Identification

Fix a user-chosen sparsity threshold 7€ (0, 1). We
sweep the scored sequence left-to-right and group
maximal contiguous runs of tokens whose proba-
bilities all exceed 7:

Sj = {Z’s,n-,xe |pk >Tf01']{7€[8,6],
Ps—1<T, Pet1<T}.

Only spans of length at least two are retained as
deletion candidates:

1551 = 2.
3.4 Step 3: Prompt Reconstruction

The compressed prompt is the original sequence
with every candidate span removed:

X = x\(Uij). ()
Because both the scoring and the linear scan are

O(n), CHUNKOUT adds negligible overhead and
introduces no additional parameters or training.

4 Results and Analysis

4.1 Experimental Setup

We evaluate our proposed CHUNKOUT method
across a variety of pre-trained language models of
different sizes: LLaMA-3.2 1.5B (Grattafiori et al.,
2024), LLaMA-3.2 3B, LLaMA-3.1 8B, Qwen-
3 4B (Yang et al., 2025), Qwen-3.1 7B, and Phi-
3-mini (Abdin et al., 2024). Experiments cover
both question answering and summarization bench-
marks. For prompt deletion, we compare against
three baselines: Selective Context (Li et al., 2023),
which removes low-information tokens based on
self-information computed by an LLM; LLMLin-
gua2 (Pan et al., 2024), a supervised Transformer
encoder trained for token retention; and random
deletion.

4.2 Document-Summary

Main Results In the summary task setting,
we conduct experiments on the CNN/DailyMail
dataset (Nallapati et al., 2016), evaluating with
ROUGE (Ganesan, 2018) and BERTScore (Zhang
etal., 2020). As shown in Table 1, we set the thresh-
old 7 to 0.5 for all models and compare all base-
lines under the same compression ratio. Chunk-
Out achieves the best overall performance across
all models and evaluation metrics.

Performance with Compression Rates CHUNK-
OUT consistently preserves summary quality as the
compression ratio increases, outperforming base-
line methods that suffer sharp drops in ROUGE
and BERTScore with higher token removal. In
some cases, CHUNKOUT even matches the un-
compressed baseline, suggesting effective pruning
of redundancy while retaining essential informa-
tion. These results demonstrate the robustness of
probability-guided chunk deletion, enabling sub-
stantial prompt compression with minimal impact
on summarization quality across model architec-
tures.

Model-Specific Observations While LLMLin-
gua2 delivers competitive results on Phi-3-mini,
its performance falls substantially behind CHUNK-
OUT and other baselines on larger models such as
Llama and Qwen. This discrepancy may be par-
tially explained by the shared development lineage
of LLMLingua2 and Phi-3-mini, which both orig-
inate from the Microsoft research ecosystem and
likely share similarities in data distribution.



Model Method Delete Ratio Rouge-1 Rouge-2 Rouge-L Rouge-Lsum BertScore
Baseline - 36.51 15.24 23.55 30.59 86.41
Llama 3.2 1B Chunk 24% 33.89 12.24 21.56 28.00 85.33
: Select 24% 31.37 9.83 19.95 25.77 84.40
Lingua2 24% 15.58 6.86 11.10 13.71 82.56
Random 24% 28.47 8.81 18.39 23.62 83.59
Baseline - 36.72 15.08 23.56 30.63 86.55
Llama 3.2 3B Chunk 25% 34.47 12.19 21.75 28.31 85.36
: Select 25% 29.26 8.26 18.53 23.77 83.94
Lingua2 25% 15.89 6.88 11.16 13.84 82.57
Random 25% 30.53 9.53 19.50 25.11 84.15
Baseline - 37.44 15.56 2431 31.29 86.79
Llama 3.1 8B Chunk 26.5% 35.56 12.93 22.58 29.24 85.98
o Select 26.5% 28.64 8.45 18.19 23.11 83.93
Lingua2 26.5% 16.72 6.71 11.74 14.51 81.96
Random 26.5% 30.02 9.88 19.31 24.83 84.3
Baseline - 37.20 13.58 23.35 30.25 86.06
Q 34B Chunk 28% 35.09 11.12 21.69 28.37 86.32
wen - Select 28% 3442 1088 2145 28.08 85.19
Lingua2 28% 21.59 8.77 13.81 18.33 83.66
Random 28% 33.35 10.24 20.58 27.48 85.93
Baseline - 36.56 13.05 22.86 29.75 85.91
Qwen3.17B Chunk 26% 34.54 10.66 21.29 27.86 86.25
. Select 26% 32.22 9.26 19.89 26.22 85.10
Lingua2 26% 19.80 8.12 12.71 16.92 83.28

Random 26% 33.24 9.76 20.39 27.17 86

Baseline - 36.2 12.79 23.39 30.13 86.95
Phi-3-mini Chunk 30% 32.12 9.69 2043 26.67 85.86
Select 30% 32.22 9.61 20.63 26.59 85.20
Lingua2 30% 34.89 12.35 22.56 29.23 86.20
Random 30% 30.79 8.74 19.53 25.67 85.51

Table 1: Summarization results (Rouge-1, Rouge-2, Rouge-L, Rouge-Lsum, BertScore) on CNN/DailyMail for all

models and baselines. Threshold 7 is set as 0.5.

4.3 Question-Answering

Main Results We directly apply our CHUNKOUT
method to four QA tasks: ARC_Easy (Clark et al.,
2018), Copa (Gordon et al., 2012), PIQA (Bisk
etal., 2019), and Commonsense_QA (Talmor et al.,
2019), evaluating performance with zero-shot QA
accuracy. For CHUNKOUT, we vary the probability
threshold to control the degree of token deletion,
and report results at the corresponding kept ratios.
As shown in Figure 2, CHUNKOUT consistently
outperforms all baselines across a wide range of
compression ratios and tasks.

Performance with Compression Rates Across
all evaluated QA tasks, CHUNKOUT demonstrates
exceptional robustness to prompt compression, con-
sistently maintaining accuracy close to the base-
line even at high deletion ratios. For instance, on
ARC_Easy and Copa, CHUNKOUT retains strong
performance with up to 40-50% of tokens removed,
while other methods show a much steeper drop
in accuracy as more tokens are deleted. Further-
more, the performance gap between CHUNKOUT
and alternative baselines widens as deletion rates
increase, indicating that chunk-level removal is
more effective at retaining critical information un-
der aggressive compression. This pattern holds
consistently across all tested models, highlighting

the broad applicability and effectiveness of our ap-
proach.

5 Conclusion

We introduce CHUNKOUT, a simple yet effective
prompt compression method that prunes contigu-
ous chunks of tokens whose next-token probabil-
ities exceed a fixed threshold. This chunk-based
pruning strategy systematically identifies and re-
moves highly predictable spans, achieving signifi-
cant prompt length reduction with minimal infor-
mation loss. Across both summarization and ques-
tion answering benchmarks, CHUNKOUT consis-
tently outperforms competitive baselines in terms
of compression rate and downstream accuracy. The
method is model-agnostic, requires no retraining,
and incurs only negligible overhead, making it
broadly applicable to diverse language models and
practical for large-scale inference. Future work will
explore extending chunk-based pruning to the gen-
eration phase and developing adaptive, task-aware
compression schemes.



Limitations

While our CHUNKOUT method enables efficient
prompt compression, performance inevitably de-
grades as deletion rates increase, constraining the
extent of usable compression in practice. Like Se-
lect Context and Lingua baselines, our approach
requires an initial full pass over the input to identify
deletable tokens, limiting its suitability for scenar-
i0s demanding true online or incremental compres-
sion. At present, CHUNKOUT is used solely for
prompt compression; extending token deletion to
the generation phase remains an open direction. Fu-
ture work could explore more lightweight, online,
or dynamic deletion strategies that operate during
generation.
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A Implementation Appendix

A.1 Implementation Details

General Implementation Details All experi-

ments were conducted on NVIDIA GPUs (a mix
of RTX A6000, RTX 6000 Ada, L40S, each with
48GB memory, and A100 40G).

QA Task-Specific Implementation Details For
all question answering (QA) tasks, we use the
1lm-eval-harness framework to ensure consis-
tency and comparability with prior work. The
evaluation process is as follows:For each exam-
ple in the test split, the framework constructs a
prompt by concatenating the question with each

answer option, using dataset-specific templates.
For multiple-choice datasets (e.g., ARC, PIQA,
CommonsenseQA, COPA), the model is prompted
with each candidate answer in turn.The model com-
putes the log-likelihood of the answer tokens con-
ditioned on the given prompt. Specifically, the log-
probabilities are obtained from the model outputs,
and summed over all tokens in the answer span.
This sum corresponds to the total log-likelihood
of generating the answer given the context.For
each example, the answer option with the highest
total log-likelihood (i.e., the lowest negative log-
likelihood, or “loss”) is selected as the predicted
answer. This is equivalent to greedy maximum-
likelihood selection across all candidates. The final
accuracy is reported as the proportion of questions
for which the predicted answer matches the ground-
truth label. In line With Im-eval-harness defaults,
all results are computed on the official test split
of each QA dataset. For all baselines and ablation
variants, we follow the same evaluation pipeline,
applying the respective prompt compression or to-
ken deletion method prior to model inference. To
ensure statistical robustness, results for all methods
are averaged over three random seeds.

For our CHUNKOUT method, we systematically
sweep the probability threshold, recording the pro-
portion of tokens deleted at each setting and mea-
suring the corresponding QA accuracy. For base-
line methods, we set their deletion ratios to match
the target compression rates as closely as possible;
however, due to intrinsic algorithmic differences,
baselines may not achieve the exact target ratio, and
the actual number of deleted tokens may fluctuate
around the intended value.

Summarization Task-Specific Implementation
Details For document summarization experi-
ments, we evaluate models on the CNN/DailyMail
test split. We use the prompt “Summarize the fol-
lowing article:\n\n{article }\n\nSummary:” to elicit
model-generated summaries. For Qwen-series
models, we additionally apply the official chat tem-
plate as recommended by the model authors.
During evaluation, each article is tokenized
and—depending on the compression method—may
undergo prompt compression prior to inference.
The prompt is re-tokenized after compression, and
the model generates a summary in a determinis-
tic or controlled sampling mode, depending on the
model family. For most models, we use greedy
decoding (i.e., do_sample=False), whereas for
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Qwen-series models, we follow the official recom-
mendations and enable sampling with top-p=90.8,
top-k=20, temperature=0.7, and a maximum of
80 new tokens.

All experiments are conducted with a batch size
of one, and for distributed settings, results are ag-
gregated across processes. Summaries are decoded
from generated tokens with special tokens removed.
We report standard automatic evaluation metrics,
including ROUGE, BERTScore, computed on all
valid (non-empty) summaries. For each method,
we record the average proportion of tokens deleted
and the corresponding evaluation scores.

For our CHUNKOUT method, we fix the proba-
bility threshold at 0.5 to determine which tokens to
prune, and compute the resulting compression rate.
The same target compression ratio is then applied to
all baseline methods for a fair comparison.This pro-
cedure ensures fair comparison across compression
methods and model architectures. Hyperparame-
ters (e.g., decoding strategy and prompt format) are
chosen according to official model documentation
to maximize performance for each model.

Data and Model Sources All datasets and pre-
trained models used in this work are publicly avail-
able on the Hugging Face Hub. We list their names,
repositories, and official licenses below:

Datasets:

¢ CNN/DailyMail (abisee/cnn_dailymail):
https://huggingface.co/datasets/
abisee/cnn_dailymail
License: Non-commercial, for research use
only.

* ARC (ai2_arc):
https://huggingface.co/datasets/
allenai/ai2_arc

¢ CommonsenseQA (taucommonsense_ga):
https://huggingface.co/datasets/tau/
commonsense_ga

¢ PIQA (baberpiga):
https://huggingface.co/datasets/
baber/piqga

¢ COPA (pkavumba/balanced-copa):
https://huggingface.co/datasets/
pkavumba/balanced-copa

Models:

e Llama-3.1 8B : https://huggingface.co/
meta-1lama/Llama-3.1-8B

e Llama-3.2 1B : https://huggingface.co/
meta-1lama/Llama-3.2-1B

e Llama-3.2 3B : https://huggingface.co/
meta-1llama/Llama-3.2-3B
License: Meta Llama 3 Community License.

* Qwen-3.1 7B: https://huggingface.co/
Qwen/Qwen3-1.7B

e Qwen-3 4B :
Qwen/Qwen3-4B
License: Qwen License.

https://huggingface.co/

¢ Phi-3-mini: https://huggingface.co/
microsoft/Phi-3-mini-128k-instruct
License: Microsoft Research License.

All resources were used in accordance with their
respective licenses and intended for research pur-
poses only. We refer readers to the Hugging Face
model and dataset pages for detailed license texts
and citation formats.

A.2 ChunkOut Algorithm

Algorithm 1 ChunkOut Token Pruning

Require: Frozen language model g(-), tokenized
input sequence X = [z1, ..., ], probability
threshold 7 € (0,1)

Ensure: Compressed token sequence X

1: Compute next-token probabilities for all posi-
tions:
pi = P(z; | z<i;9) fori =1ton
2: Initialize deletion set D < ()
3: Identify all maximal consecutive spans S
where p;, > 7 forall kK € S; and |S;| > 2

for each span S; do
D+ DuSs j
end for
Output compressed sequence: X = [x; | ¢ ¢
D]

AN
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Description. Given a frozen language model and
a tokenized input, the CHUNKOUT algorithm pro-
ceeds as follows: (1) Compute the next-token prob-
ability for each position using a single model for-
ward pass. (2) Sweep through the sequence to
identify maximal consecutive runs of tokens whose
probabilities all exceed the user-chosen threshold 7;
only spans of length at least 2 are eligible for re-
moval. (3) Delete all such spans to form a com-
pressed prompt. This procedure is linear in se-
quence length and model-agnostic. The threshold
7 controls the trade-off between compression and
information retention.

B Example Appendix

To provide qualitative insight into the behavior of
CHUNKOUT, we present several representative QA
samples. For each, we show the original and com-
pressed prompt, with answer options and correct
label.

e Sample 1
Question: To cream butter and sugar together,
you can
Options: (A) Place it in a bowl and use a hand
warmer. (B) Place in a bowl and use a hand
mixer.
Correct answer: B
Original prompt: Question: To cream
butter and sugar together, you can
Answer:
Compressed prompt: To cream butter
together, you can Answer:

e Sample 2
Question: How do I fill holes and tiny gaps
in the concrete when making a concrete coun-
tertop?
Options: (A) Use a concrete slurry. (B) Use
a concrete brush.
Correct answer: A
Original prompt: Question: How do
I fill holes and tiny gaps in
the concrete when making a concrete
countertop? Answer:
Compressed prompt: How do I fill holes
and tiny the concrete when making
Answer:

e Sample 3
Question: How do you remove gum from be-
ing stuck in hair?
Options: (A) Apply an ice cube and gently

remove the hardened gum. (B) Use a blow
dryer and gently remove melted gum.
Correct answer: A

Original prompt: Question: How do you
remove gum from being stuck in hair?
Answer:

Compressed prompt: How remove gum
from being Answer:

Sample 4

Question: How to light a candle with a deep
seated wick?

Options: (A) invert the candle upside down
and pull the wick until the lighter can reach it.
(B) invert the candle upside down and use the
lighter to reach into the wick to light it.
Correct answer: B

Original prompt: Question: How to
light a candle with a deep seated
wick? Answer:

Compressed prompt: How to light a
candle with a deep seated Answer:

Sample 5

Question: What materials are needed to hand
sew an article of clothing?

Options: (A) Thread, needle, scissors, ma-
terial and ruler. (B) Thread, needle, knife,
material and ruler.

Correct answer: A

Original prompt: Question: What
materials are needed to hand sew an
article of clothing? Answer:
Compressed prompt: What materials are
needed to hand sew an Answer:
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