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Abstract001

Large language models (LLMs) increasingly002
rely on long prompts or retrieved contexts,003
driving up inference latency and cost. We004
observe that tokens whose forward probabil-005
ity is already high given the preceding con-006
text contribute little additional information,007
as the model has effectively encoded their008
content in its hidden state. Leveraging this009
information-sufficiency insight, we introduce010
CHUNKOUT, a model-agnostic algorithm that011
scores each token with its next-token likeli-012
hood and simply drops those above a threshold013
CHUNKOUT requires no extra training, incurs014
O(n) overhead, and can be plugged into any015
frozen LLM. Across QA and summarization016
benchmarks, it trims 50% of prompt tokens017
while maintaining (and occasionally improv-018
ing) task accuracy, outperforming prior com-019
pression baselines by up to 5% pp. CHUNK-020
OUT offers a principled yet lightweight path021
toward faster, cheaper, and greener LLM infer-022
ence.023

1 Introduction024

State-of-the-art language models now tackle tasks025

by ingesting ever-longer prompts—chat histories,026

retrieved documents, or chain-of-thought exem-027

plars. While larger contexts improve quality, they028

also inflate computation, latency, and energy con-029

sumption. The question, therefore, is how much030

of a prompt is actually needed once the model has031

already internalised its essential content.032

Transformer hidden states are predictive: a sin-033

gle vector often forecasts several upcoming tokens034

(Pal et al., 2023; Din et al., 2024). Complement-035

ing this, Li et al. (2024) show that, after training,036

an LLM “glues” certain tokens together, assigning037

uniformly high probabilities to entire multi-token038

chunks and creating plateau-shaped likelihood re-039

gions. If token xi can be guessed with high prob-040

ability pi from its prefix x<i, then the semantic041

Compressed prompt: How attach toilet glass jar?
Answer to compressed prompt: A 6  tokens
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Token probabilities from the original prompt:

Option A: Press a piece of double-sided tape to the glass jar
and then press the toilet paper onto the tape.
Option B: Spread mayonnaise all over the jar with your palms
and then roll the jar in toilet paper.

Answer to original prompt: A 11  tokens

⚠️ Delete all chunks (at least 2 tokens) above the
threshold (e.g. token probability= 0.1)

Before ChunkOut

During ChunkOut

After ChunkOut

Question: How do you attach toilet paper to a glass
jar?

Figure 1: Overview of CHUNKOUT. Rather than delet-
ing individual high-probability tokens, our approach
targets contiguous chunks of high-probability tokens.

content of xi is already encoded in the context rep- 042

resentation, so removing it incurs little information 043

loss. 044

We operationalise this intuition with CHUNK- 045

OUT, a two-line procedure: First, run the frozen 046

LLM once to collect next-token probabilities 047

{pi}ni=1. Second, remove every contiguous chunk 048

of tokens where each token’s next-token proba- 049

bility pi exceeds a user-chosen threshold τ . No 050

gradients, distillation, or auxiliary models are re- 051

quired; token scoring is parallel and linear in se- 052

quence length. The retained subsequence acts as 053

a compressed prompt that the same solver model 054

can process at full fidelity. Our results demonstrate 055

that CHUNKOUT enables significant prompt reduc- 056
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Figure 2: Question-Answering results across all models and tasks.

tion across diverse NLP benchmarks, preserving057

accuracy and summary quality without sacrificing058

performance. CHUNKOUT offers a plug-and-play059

route to faster, cheaper inference, complementing060

orthogonal advances in speculative decoding and061

model compression.062

2 Related Work063

Prompt Compression. Prompt compression064

methods aim to reduce input length while preserv-065

ing task-relevant information, and can be broadly066

categorized into soft and hard approaches. Soft067

prompt compression methods replace the original068

input with learned representations. Some methods069

use learned vector tokens (Wingate et al., 2022)070

or task-specific gist prefixes (Mu et al., 2024) to071

encode prompt semantics, while others generate072

summary vectors from long contexts via recursive073

distillation (Chevalier et al., 2023) or encode in-074

put into memory slots with lightweight autoen-075

coders (Ge et al., 2024). Hard prompt compres-076

sion, the focus of this work, reduces prompt length077

by selectively removing tokens. Some methods078

score tokens by self-information to filter redundant079

content (Li et al., 2023), while others apply itera-080

tive entropy-based pruning with budget control and081

alignment techniques (Jiang et al., 2023). More re- 082

cent methods frame token selection as a supervised 083

task using LLM-distilled labels to train a compres- 084

sion classifier (Pan et al., 2024). 085

Future Token Prediction. While prompt com- 086

pression focuses on removing tokens after observ- 087

ing their likelihoods, a complementary line of work 088

shows that hidden states themselves already en- 089

code information about multiple upcoming tokens. 090

Early “lens” probes revealed that intermediate ac- 091

tivations can be linearly decoded into next-token 092

distributions (nostalgebraist, 2020; Belrose et al., 093

2023). Going further, Pal et al. (2023) and Din et al. 094

(2024) demonstrate that single hidden vectors of- 095

ten predict phrases several steps ahead, suggesting 096

that transformers implicitly “plan” continuations 097

long before generation. Mechanistic studies disen- 098

tangle whether this foresight is deliberate caching 099

or incidental “breadcrumbs”: synthetic tasks show 100

explicit pre-caching when future information is re- 101

quired, whereas natural text appears mostly my- 102

opic (Wu et al., 2024). Practical systems exploit 103

these latent predictions to accelerate decoding: 104

Medusa attaches parallel heads to output two–four 105

tokens per step without quality loss (Cai et al., 106

2024), and lightweight re-ranking can push a frozen 107
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model to emit coherent multi-token chunks (Sam-108

ragh et al., 2025). Together, these findings motivate109

our method: if a token’s content is already recov-110

erable from its context’s hidden state, it can be111

pruned without harming downstream performance,112

enabling more aggressive yet faithful compression.113

3 Methodology114

3.1 Problem Definition115

Let a prompt be a sequence of n input tokens116

x =
[
x1, x2, . . . , xn

]
fed to a frozen language117

model g(·). Given a downstream solver f(x) (e.g.118

multiple-choice QA), our goal is to build the short-119

est subsequence x̃ ⊆ x such that120

f(x̃) = f(x).121

CHUNKOUT meets this target through a single for-122

ward pass that (a) scores every token and (b) deletes123

only contiguous spans whose tokens are all highly124

predictable.125

3.2 Step 1: Token Scoring126

For each position i ∈ [1, n] we query the127

model once in the forward direction to obtain the128

next-token likelihood129

pi = g
[
xi | x<i

]
. (1)130

A large pi means xi carries little new information131

beyond its prefix x<i; a small pi signals that xi is132

informative or surprising. This pass is embarrass-133

ingly parallel and costs O(n).134

3.3 Step 2: Chunk Identification135

Fix a user-chosen sparsity threshold τ ∈(0, 1). We136

sweep the scored sequence left-to-right and group137

maximal contiguous runs of tokens whose proba-138

bilities all exceed τ :139

Sj =
{
xs, . . . , xe

∣∣ pk > τ for k∈ [s, e],
ps−1≤τ, pe+1≤τ

}
.

140

Only spans of length at least two are retained as141

deletion candidates:142

|Sj | ≥ 2.143

3.4 Step 3: Prompt Reconstruction144

The compressed prompt is the original sequence145

with every candidate span removed:146

x̃ = x \
(⋃

jSj

)
. (2)147

Because both the scoring and the linear scan are148

O(n), CHUNKOUT adds negligible overhead and149

introduces no additional parameters or training.150

4 Results and Analysis 151

4.1 Experimental Setup 152

We evaluate our proposed CHUNKOUT method 153

across a variety of pre-trained language models of 154

different sizes: LLaMA-3.2 1.5B (Grattafiori et al., 155

2024), LLaMA-3.2 3B, LLaMA-3.1 8B, Qwen- 156

3 4B (Yang et al., 2025), Qwen-3.1 7B, and Phi- 157

3-mini (Abdin et al., 2024). Experiments cover 158

both question answering and summarization bench- 159

marks. For prompt deletion, we compare against 160

three baselines: Selective Context (Li et al., 2023), 161

which removes low-information tokens based on 162

self-information computed by an LLM; LLMLin- 163

gua2 (Pan et al., 2024), a supervised Transformer 164

encoder trained for token retention; and random 165

deletion. 166

4.2 Document-Summary 167

Main Results In the summary task setting, 168

we conduct experiments on the CNN/DailyMail 169

dataset (Nallapati et al., 2016), evaluating with 170

ROUGE (Ganesan, 2018) and BERTScore (Zhang 171

et al., 2020). As shown in Table 1, we set the thresh- 172

old τ to 0.5 for all models and compare all base- 173

lines under the same compression ratio. Chunk- 174

Out achieves the best overall performance across 175

all models and evaluation metrics. 176

Performance with Compression Rates CHUNK- 177

OUT consistently preserves summary quality as the 178

compression ratio increases, outperforming base- 179

line methods that suffer sharp drops in ROUGE 180

and BERTScore with higher token removal. In 181

some cases, CHUNKOUT even matches the un- 182

compressed baseline, suggesting effective pruning 183

of redundancy while retaining essential informa- 184

tion. These results demonstrate the robustness of 185

probability-guided chunk deletion, enabling sub- 186

stantial prompt compression with minimal impact 187

on summarization quality across model architec- 188

tures. 189

Model-Specific Observations While LLMLin- 190

gua2 delivers competitive results on Phi-3-mini, 191

its performance falls substantially behind CHUNK- 192

OUT and other baselines on larger models such as 193

Llama and Qwen. This discrepancy may be par- 194

tially explained by the shared development lineage 195

of LLMLingua2 and Phi-3-mini, which both orig- 196

inate from the Microsoft research ecosystem and 197

likely share similarities in data distribution. 198
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Model Method Delete Ratio Rouge-1 Rouge-2 Rouge-L Rouge-Lsum BertScore

Llama 3.2 1B

Baseline – 36.51 15.24 23.55 30.59 86.41
Chunk 24% 33.89 12.24 21.56 28.00 85.33
Select 24% 31.37 9.83 19.95 25.77 84.40
Lingua2 24% 15.58 6.86 11.10 13.71 82.56
Random 24% 28.47 8.81 18.39 23.62 83.59

Llama 3.2 3B

Baseline – 36.72 15.08 23.56 30.63 86.55
Chunk 25% 34.47 12.19 21.75 28.31 85.36
Select 25% 29.26 8.26 18.53 23.77 83.94
Lingua2 25% 15.89 6.88 11.16 13.84 82.57
Random 25% 30.53 9.53 19.50 25.11 84.15

Llama 3.1 8B

Baseline – 37.44 15.56 24.31 31.29 86.79
Chunk 26.5% 35.56 12.93 22.58 29.24 85.98
Select 26.5% 28.64 8.45 18.19 23.11 83.93
Lingua2 26.5% 16.72 6.71 11.74 14.51 81.96
Random 26.5% 30.02 9.88 19.31 24.83 84.3

Qwen 3 4B

Baseline – 37.20 13.58 23.35 30.25 86.06
Chunk 28% 35.09 11.12 21.69 28.37 86.32
Select 28% 34.42 10.88 21.45 28.08 85.19
Lingua2 28% 21.59 8.77 13.81 18.33 83.66
Random 28% 33.35 10.24 20.58 27.48 85.93

Qwen 3.1 7B

Baseline – 36.56 13.05 22.86 29.75 85.91
Chunk 26% 34.54 10.66 21.29 27.86 86.25
Select 26% 32.22 9.26 19.89 26.22 85.10
Lingua2 26% 19.80 8.12 12.71 16.92 83.28
Random 26% 33.24 9.76 20.39 27.17 86

Phi-3-mini

Baseline – 36.2 12.79 23.39 30.13 86.95
Chunk 30% 32.12 9.69 20.43 26.67 85.86
Select 30% 32.22 9.61 20.63 26.59 85.20
Lingua2 30% 34.89 12.35 22.56 29.23 86.20
Random 30% 30.79 8.74 19.53 25.67 85.51

Table 1: Summarization results (Rouge-1, Rouge-2, Rouge-L, Rouge-Lsum, BertScore) on CNN/DailyMail for all
models and baselines. Threshold τ is set as 0.5.

4.3 Question-Answering199

Main Results We directly apply our CHUNKOUT200

method to four QA tasks: ARC_Easy (Clark et al.,201

2018), Copa (Gordon et al., 2012), PIQA (Bisk202

et al., 2019), and Commonsense_QA (Talmor et al.,203

2019), evaluating performance with zero-shot QA204

accuracy. For CHUNKOUT, we vary the probability205

threshold to control the degree of token deletion,206

and report results at the corresponding kept ratios.207

As shown in Figure 2, CHUNKOUT consistently208

outperforms all baselines across a wide range of209

compression ratios and tasks.210

Performance with Compression Rates Across211

all evaluated QA tasks, CHUNKOUT demonstrates212

exceptional robustness to prompt compression, con-213

sistently maintaining accuracy close to the base-214

line even at high deletion ratios. For instance, on215

ARC_Easy and Copa, CHUNKOUT retains strong216

performance with up to 40–50% of tokens removed,217

while other methods show a much steeper drop218

in accuracy as more tokens are deleted. Further-219

more, the performance gap between CHUNKOUT220

and alternative baselines widens as deletion rates221

increase, indicating that chunk-level removal is222

more effective at retaining critical information un-223

der aggressive compression. This pattern holds224

consistently across all tested models, highlighting225

the broad applicability and effectiveness of our ap- 226

proach. 227

5 Conclusion 228

We introduce CHUNKOUT, a simple yet effective 229

prompt compression method that prunes contigu- 230

ous chunks of tokens whose next-token probabil- 231

ities exceed a fixed threshold. This chunk-based 232

pruning strategy systematically identifies and re- 233

moves highly predictable spans, achieving signifi- 234

cant prompt length reduction with minimal infor- 235

mation loss. Across both summarization and ques- 236

tion answering benchmarks, CHUNKOUT consis- 237

tently outperforms competitive baselines in terms 238

of compression rate and downstream accuracy. The 239

method is model-agnostic, requires no retraining, 240

and incurs only negligible overhead, making it 241

broadly applicable to diverse language models and 242

practical for large-scale inference. Future work will 243

explore extending chunk-based pruning to the gen- 244

eration phase and developing adaptive, task-aware 245

compression schemes. 246
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Limitations247

While our CHUNKOUT method enables efficient248

prompt compression, performance inevitably de-249

grades as deletion rates increase, constraining the250

extent of usable compression in practice. Like Se-251

lect Context and Lingua baselines, our approach252

requires an initial full pass over the input to identify253

deletable tokens, limiting its suitability for scenar-254

ios demanding true online or incremental compres-255

sion. At present, CHUNKOUT is used solely for256

prompt compression; extending token deletion to257

the generation phase remains an open direction. Fu-258

ture work could explore more lightweight, online,259

or dynamic deletion strategies that operate during260

generation.261
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A Implementation Appendix394

A.1 Implementation Details395

General Implementation Details All experi-396

ments were conducted on NVIDIA GPUs (a mix397

of RTX A6000, RTX 6000 Ada, L40S, each with398

48GB memory, and A100 40G).399

QA Task-Specific Implementation Details For400

all question answering (QA) tasks, we use the401

lm-eval-harness framework to ensure consis-402

tency and comparability with prior work. The403

evaluation process is as follows:For each exam-404

ple in the test split, the framework constructs a405

prompt by concatenating the question with each406

answer option, using dataset-specific templates. 407

For multiple-choice datasets (e.g., ARC, PIQA, 408

CommonsenseQA, COPA), the model is prompted 409

with each candidate answer in turn.The model com- 410

putes the log-likelihood of the answer tokens con- 411

ditioned on the given prompt. Specifically, the log- 412

probabilities are obtained from the model outputs, 413

and summed over all tokens in the answer span. 414

This sum corresponds to the total log-likelihood 415

of generating the answer given the context.For 416

each example, the answer option with the highest 417

total log-likelihood (i.e., the lowest negative log- 418

likelihood, or “loss”) is selected as the predicted 419

answer. This is equivalent to greedy maximum- 420

likelihood selection across all candidates. The final 421

accuracy is reported as the proportion of questions 422

for which the predicted answer matches the ground- 423

truth label. In line With lm-eval-harness defaults, 424

all results are computed on the official test split 425

of each QA dataset. For all baselines and ablation 426

variants, we follow the same evaluation pipeline, 427

applying the respective prompt compression or to- 428

ken deletion method prior to model inference. To 429

ensure statistical robustness, results for all methods 430

are averaged over three random seeds. 431

For our CHUNKOUT method, we systematically 432

sweep the probability threshold, recording the pro- 433

portion of tokens deleted at each setting and mea- 434

suring the corresponding QA accuracy. For base- 435

line methods, we set their deletion ratios to match 436

the target compression rates as closely as possible; 437

however, due to intrinsic algorithmic differences, 438

baselines may not achieve the exact target ratio, and 439

the actual number of deleted tokens may fluctuate 440

around the intended value. 441

Summarization Task-Specific Implementation 442

Details For document summarization experi- 443

ments, we evaluate models on the CNN/DailyMail 444

test split. We use the prompt “Summarize the fol- 445

lowing article:\n\n{article}\n\nSummary:” to elicit 446

model-generated summaries. For Qwen-series 447

models, we additionally apply the official chat tem- 448

plate as recommended by the model authors. 449

During evaluation, each article is tokenized 450

and—depending on the compression method—may 451

undergo prompt compression prior to inference. 452

The prompt is re-tokenized after compression, and 453

the model generates a summary in a determinis- 454

tic or controlled sampling mode, depending on the 455

model family. For most models, we use greedy 456

decoding (i.e., do_sample=False), whereas for 457
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Qwen-series models, we follow the official recom-458

mendations and enable sampling with top-p=0.8,459

top-k=20, temperature=0.7, and a maximum of460

80 new tokens.461

All experiments are conducted with a batch size462

of one, and for distributed settings, results are ag-463

gregated across processes. Summaries are decoded464

from generated tokens with special tokens removed.465

We report standard automatic evaluation metrics,466

including ROUGE, BERTScore, computed on all467

valid (non-empty) summaries. For each method,468

we record the average proportion of tokens deleted469

and the corresponding evaluation scores.470

For our CHUNKOUT method, we fix the proba-471

bility threshold at 0.5 to determine which tokens to472

prune, and compute the resulting compression rate.473

The same target compression ratio is then applied to474

all baseline methods for a fair comparison.This pro-475

cedure ensures fair comparison across compression476

methods and model architectures. Hyperparame-477

ters (e.g., decoding strategy and prompt format) are478

chosen according to official model documentation479

to maximize performance for each model.480

Data and Model Sources All datasets and pre-481

trained models used in this work are publicly avail-482

able on the Hugging Face Hub. We list their names,483

repositories, and official licenses below:484

Datasets:485

• CNN/DailyMail (abisee/cnn_dailymail):486

https://huggingface.co/datasets/487

abisee/cnn_dailymail488

License: Non-commercial, for research use489

only.490

• ARC (ai2_arc):491

https://huggingface.co/datasets/492

allenai/ai2_arc493

• CommonsenseQA (taucommonsense_qa):494

https://huggingface.co/datasets/tau/495

commonsense_qa496

• PIQA (baberpiqa):497

https://huggingface.co/datasets/498

baber/piqa499

• COPA (pkavumba/balanced-copa):500

https://huggingface.co/datasets/501

pkavumba/balanced-copa502

Models: 503

• Llama-3.1 8B : https://huggingface.co/ 504

meta-llama/Llama-3.1-8B 505

506

• Llama-3.2 1B : https://huggingface.co/ 507

meta-llama/Llama-3.2-1B 508

509

• Llama-3.2 3B : https://huggingface.co/ 510

meta-llama/Llama-3.2-3B 511

License: Meta Llama 3 Community License. 512

• Qwen-3.1 7B: https://huggingface.co/ 513

Qwen/Qwen3-1.7B 514

515

• Qwen-3 4B : https://huggingface.co/ 516

Qwen/Qwen3-4B 517

License: Qwen License. 518

• Phi-3-mini: https://huggingface.co/ 519

microsoft/Phi-3-mini-128k-instruct 520

License: Microsoft Research License. 521

All resources were used in accordance with their 522

respective licenses and intended for research pur- 523

poses only. We refer readers to the Hugging Face 524

model and dataset pages for detailed license texts 525

and citation formats. 526

A.2 ChunkOut Algorithm 527

Algorithm 1 ChunkOut Token Pruning

Require: Frozen language model g(·), tokenized
input sequence x = [x1, . . . , xn], probability
threshold τ ∈ (0, 1)

Ensure: Compressed token sequence x̃
1: Compute next-token probabilities for all posi-

tions:
pi = P (xi | x<i; g) for i = 1 to n

2: Initialize deletion set D ← ∅
3: Identify all maximal consecutive spans Sj

where pk > τ for all k ∈ Sj and |Sj | ≥ 2

4: for each span Sj do
5: D ← D ∪ Sj

6: end for
7: Output compressed sequence: x̃ = [xi | i /∈

D]
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Description. Given a frozen language model and528

a tokenized input, the CHUNKOUT algorithm pro-529

ceeds as follows: (1) Compute the next-token prob-530

ability for each position using a single model for-531

ward pass. (2) Sweep through the sequence to532

identify maximal consecutive runs of tokens whose533

probabilities all exceed the user-chosen threshold τ ;534

only spans of length at least 2 are eligible for re-535

moval. (3) Delete all such spans to form a com-536

pressed prompt. This procedure is linear in se-537

quence length and model-agnostic. The threshold538

τ controls the trade-off between compression and539

information retention.540

B Example Appendix541

To provide qualitative insight into the behavior of542

CHUNKOUT, we present several representative QA543

samples. For each, we show the original and com-544

pressed prompt, with answer options and correct545

label.546

• Sample 1547

Question: To cream butter and sugar together,548

you can549

Options: (A) Place it in a bowl and use a hand550

warmer. (B) Place in a bowl and use a hand551

mixer.552

Correct answer: B553

Original prompt: Question: To cream554

butter and sugar together, you can555

Answer:556

Compressed prompt: To cream butter557

together, you can Answer:558

• Sample 2559

Question: How do I fill holes and tiny gaps560

in the concrete when making a concrete coun-561

tertop?562

Options: (A) Use a concrete slurry. (B) Use563

a concrete brush.564

Correct answer: A565

Original prompt: Question: How do566

I fill holes and tiny gaps in567

the concrete when making a concrete568

countertop? Answer:569

Compressed prompt: How do I fill holes570

and tiny the concrete when making571

Answer:572

• Sample 3573

Question: How do you remove gum from be-574

ing stuck in hair?575

Options: (A) Apply an ice cube and gently576

remove the hardened gum. (B) Use a blow 577

dryer and gently remove melted gum. 578

Correct answer: A 579

Original prompt: Question: How do you 580

remove gum from being stuck in hair? 581

Answer: 582

Compressed prompt: How remove gum 583

from being Answer: 584

• Sample 4 585

Question: How to light a candle with a deep 586

seated wick? 587

Options: (A) invert the candle upside down 588

and pull the wick until the lighter can reach it. 589

(B) invert the candle upside down and use the 590

lighter to reach into the wick to light it. 591

Correct answer: B 592

Original prompt: Question: How to 593

light a candle with a deep seated 594

wick? Answer: 595

Compressed prompt: How to light a 596

candle with a deep seated Answer: 597

• Sample 5 598

Question: What materials are needed to hand 599

sew an article of clothing? 600

Options: (A) Thread, needle, scissors, ma- 601

terial and ruler. (B) Thread, needle, knife, 602

material and ruler. 603

Correct answer: A 604

Original prompt: Question: What 605

materials are needed to hand sew an 606

article of clothing? Answer: 607

Compressed prompt: What materials are 608

needed to hand sew an Answer: 609
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