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Abstract. Dynamic material handling (DMH) involves the assignment
of dynamically arriving material transporting tasks to suitable vehicles in
real time for minimising makespan and tardiness. In real-world scenarios,
historical task records are usually available, which enables the training
of a decision policy on multiple instances. Recently, reinforcement learn-
ing has been applied to solve DMH. Due to the occurrence of dynamic
events such as new tasks, adaptability is highly required. Solving DMH
is challenging since constraints including task delay should be satisfied.
A feedback is received only when all tasks are served, which leads to
sparse reward. Besides, making the best use of limited computational re-
sources and historical records for training a robust policy is crucial. The
time allocated to different problem instances would highly impact the
learning process. To tackle those challenges, this paper proposes a novel
adaptive constrained evolutionary reinforcement learning (ACERL) ap-
proach, which maintains a population of actors for diverse exploration.
ACERL accesses each actor for tackling sparse rewards and constraint
violation to restrict the behaviour of the policy. Moreover, ACERL adap-
tively selects the most beneficial training instances for improving the
policy. Extensive experiments on eight training and eight unseen test in-
stances demonstrate the outstanding performance of ACERL compared
with several state-of-the-art algorithms. Policies trained by ACERL can
schedule the vehicles while fully satisfying the constraints. Additional
experiments on 40 unseen noised instances show the robust performance
of ACERL. Cross-validation further presents the overall effectiveness of
ACREL. Besides, a rigorous ablation study highlights the coordination
and benefits of each ingredient of ACERL.
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In modern smart logistics such as flexible manufacturing and warehouses,
automated guided vehicles (AGVs) play a key role in dynamic material handling
(DMH) [15, 14], where fleets of AGVs must serve transport tasks arriving in real
time. These tasks typically involve moving materials between workstations, with
the objective of minimising makespan and tardiness under dynamic events (e.g.,
breakdowns, new tasks) and strict operational constraints [12, 9, 6].

Historical task records (e.g., AGV states) are often available [7, 8]. Leveraging
multiple instances for training improves generalisation but introduces trade-offs
across instances and requires careful selection under limited computation [4].
Moreover, task contributions to system performance are hard to evaluate due to
sparse feedback, as performance is only observable after task completion. Clas-
sical dispatching rules [2, 13] are simple and fast but lack adaptability. Search-
based methods, such as evolutionary algorithms [3], restart from scratch after
each event, leading to long search times unsuited for real-time DMH. Reinforce-
ment learning (RL) offers faster online responses [10, 7, 8] by modelling DMH as
a Markov decision process (MDP). However, RL requires carefully designed re-
ward functions [5], which may not align with the true objective and often fail to
generalise across instances. Handling constraints (e.g., AGV availability, task de-
lays) remains challenging. Re-sampling for feasibility [7] or reward penalties [11,
1] are often ineffective. Constrained MDP approaches such as RCPOM [6] ad-
dress feasibility but still suffer from sparse feedback and limited robustness across
instances due to computational budget constraints.

In this paper, we consider DMH problem with uncertainties and sparse feed-
back. We proposed a robust adaptive constrained evolutionary reinforcement
learning (ACERL) approach to achieve real-time decision-making in DMH with
adaptability and effectiveness. ACERL leverages natural gradient ascent to up-
date its parameters. Adaptive instance sampler keeps choosing the training in-
stance from which the policy benefits the most for policy improvement. Rea-
sonable computational resource allocation is allowed. To balance the rewards
and penalties, we present intrinsic stochastic ranking with rank-based fitness.
Instead of common reward-based, real-valued fitness metrics, we incorporate
rank-based fitness to estimate the natural gradient, which implies the optimi-
sation direction of both maximising rewards and constraint satisfaction at the
same time. Intrinsic stochastic ranking provides an independent ranking for dif-
ferent instances based on rewards and penalties, which enables a bias for adap-
tive instance selection. Extensive experiments show that ACERL outperforms
advanced reinforcement learning methods, constrained reinforcement learning
methods and classic dispatching rules on eight training instances and eight test
instances in terms of maximising rewards with constraint satisfaction. ACERL
not only achieves the best makespan, but also fully satisfies tardiness constraints
on nearly all instances. Besides, ACERL is evaluated on five datasets with a total
of 40 noised instances to simulate real-world scenarios. ACERL presents a robust
and outstanding performance on all datasets. Leave-one-out cross-validation is
conducted on ACERL by splitting the training dataset into subsidiary training
and test datasets, and presents the overall effectiveness of ACERL.
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Abstract—Dynamic material handling (DMH) involves the
assignment of dynamically arriving material transporting tasks
to suitable vehicles in real time for minimizing makespan and
tardiness. In real-world scenarios, historical task records are
usually available, which enables the training of a decision policy
on multiple instances consisting of historical records. Recently,
reinforcement learning (RL) has been applied to solve DMH.
Due to the occurrence of dynamic events such as new tasks,
adaptability is highly required. Solving DMH is challenging since
constraints, including task delay, should be satisfied. A feedback
is received only when all tasks are served, which leads to sparse
reward. Besides, making the best use of limited computational
resources and historical records for training a robust policy is
crucial. The time allocated to different problem instances would
highly impact the learning process. To tackle those challenges,
this article proposes a novel adaptive constrained evolutionary
RL (ACERL) approach, which maintains a population of actors
for diverse exploration. ACERL accesses each actor for tackling
sparse rewards and constraint violation to restrict the behavior
of the policy. Moreover, ACERL adaptively selects the most
beneficial training instances for improving the policy. Extensive
experiments on eight training and eight unseen test instances
demonstrate the outstanding performance of ACERL compared
with several state-of-the-art algorithms. Policies trained by
ACERL can schedule the vehicles while fully satisfying the
constraints. Additional experiments on 40 unseen noised instances
show the robust performance of ACERL. Cross validation further
presents the overall effectiveness of ACREL. Besides, a rigorous
ablation study highlights the coordination and benefits of each
ingredient of ACERL.
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I. INTRODUCTION

IN MODERN smart logistics such as flexible manu-
facturing systems and warehouse floors, the need of

automated guided vehicles (AGVs) has grown fast. Dynamic
material handling (DMH) [1], [2] involves scheduling a fleet of
AGVs to serve dynamically arriving transporting tasks in real
time. Transporting tasks typically include lifting and moving
material between workstations using AGVs. The purpose of
the DMH is to minimize makespan and tardiness, i.e., the
maximal task finishing time and delay of tasks, in response
to unexpected events and strict problem constraints. Due to
the unexpected occurrence of dynamic events such as vehicle
breakdowns and new tasks in DMH, the scheduling plans have
to be determined frequently in real time [3], [4]. Problem
constraints such as the delay of tasks should be also guaranteed
to ensure the operation of manufacturing [5].

Usually, some historical completed task records, e.g., previ-
ous task contexts and AGV information, are available in real
life [6], [7]. Training a decision policy using multiple instances
consisting of historical records enhances the generalization,
but the tradeoff across different instances is introduced. Select-
ing suitable instances at different training stages is crucial
with consideration of limited computational budgets [8]. It is
also hard to determine the unique contribution of each task
assignment to the performance of the entire system since the
overall performance can only be determined once all tasks are
completed, which leads to sparse feedback.

Dispatching rule is a classic and common method for
handling DMH [9], [10]. Simple yet practicable mechanism
makes them easy to deploy to real-world operations quickly.
However, this simplicity leads to limited performance and poor
adaptability to real-world scenarios. Search-based methods,
such as evolutionary algorithms (EAs), have been used for
handling DMH when dynamic events occur, which restarts the
search for a new solution [11]. However, a new search needs
to be run from scratch for every single new scenario. The long
search time merely meets the requirement of a fast response.

Recently, reinforcement learning (RL) has made some
promising progress in DMH [6], [7], [12] by providing prompt
online responses with trained policies. In the RL setting, DMH
is formulated as a Markov decision process (MDP), where
the reward function is manually constructed based on the
makespan [6]. It takes massive effort and human knowledge to
construct a “good” reward function since RL-based methods
[7], [12] often suffer from sparse feedback [13]. However,
those designed reward functions cannot guarantee consistency
with the original objective function and fail to generalize on
multiple instances.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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How to handle constraints such as the availability of AGVs
and task delays in DMH is crucial. The work of [6] repeatedly
sampled the task assignment until the sampled assignment
is feasible. However, ensuring adherence to feasible task
assignments is hard by resampling. It is also not plausible
to satisfy the long-term task delay via simply penalizing
rewards [14], [15]. To handle constraints, the work of [5]
formulated the DMH problem as a constrained MDP (CMDP)
[16] and proposed reward-constrained policy optimization with
masking (RCPOM) approach. However, RCPOM suffers from
sparse feedback from both reward and constraint sides. The
robust performance across multiple DMH problem instances
is not fully addressed. A policy may perform well on the
given instances while failing on others, as it might not have
been sufficiently trained on certain instances with limited
computational budget [5].

In this article, we consider the DMH problem with
uncertainties and sparse feedback in the context of multi-
ple instances. We proposed a robust adaptive constrained
evolutionary RL (ACERL) approach to achieve real-time
decision-making in DMH with adaptability and effectiveness.
Unlike regular RL methods, ACREL inherits the gradient-
free characteristic of natural evolution strategies (NES) [17],
which tackles sparse feedback in both rewards and constraint
violation penalties intuitively. No gradient calculation related
to the backpropagation is required. ACREL maintains a pop-
ulation of actors for diverse exploration. Intrinsic stochastic
ranking (ISR) using rank-based fitness is proposed to evaluate
the actors. Those rank-based fitness values facilitate the esti-
mation of natural gradients, which implies the optimization
direction for maximizing rewards and satisfying constraints
simultaneously. The limited computational budget leads to a
tradeoff in the utilization of multiple instances consisting of
historical records for training a robust policy. To tackle the
tradeoff, we propose a novel training mode that adaptively
selects a subset of training instances with which a population
of actors interacts. The selected instances introduce a bias
in estimating the natural gradients after being ranked by the
ISR, which contributes to a remarkable performance among
multiple unseen instances.

The main contributions of this article are summarized as
follows.

1) We propose ACERL to address DMH with uncertain-
ties and sparse feedback. ACERL balances the reward
maximization and constraint satisfaction, even when the
agent receives only limited feedback. Given multiple
instances with different contexts, ACERL still provides
robust scheduling solutions in real time.

2) We experimentally demonstrate the limitations of using
a single instance or randomly selecting from multi-
ple instances for training decision policies. Under this
observation, we propose an adaptive training mode that
deploys an adaptive instance sampler (AIS) to break the
tradeoff of multiple instances. The limited computational
resources are allocated by adaptively choosing the most
beneficial instances for training a robust policy.

3) ACERL requires no domain knowledge and makes no
assumption on reward or constraint-related functions.
It is suitable to solve real-world problems with sparse
feedback and constraints.

4) Extensive experiments show that ACERL outperforms
five state-of-the-art algorithms on eight training and

Fig. 1. Illustration of DMH with AGVs that are in one of the three possible
states Idle, Working, and Broken at different time steps.

eight unseen test instances. Additional experiments on
40 instances with uncertainties and leave-one-out cross
validation between heterogeneous training instances
present its robust performance, in terms of maximizing
the reward and satisfying constraints. The functionality
and coordination of each ingredient in ACERL are
further demonstrated through a rigorous ablation study.

The remainder of this article is organized as fol-
lows. Section II introduces the DMH problem and related
work. Section III details the proposed ACERL and its compo-
nents. Section V presents the experimental studies. Section VI
concludes and discusses some future directions.

II. BACKGROUND

Section II-A describes and formulates DMH. Then, related
works on scheduling DMH and evolutionary RL (ERL) are
presented in Sections II-B and II-C, respectively.

A. Dynamic Material Handling
DMH is widely found in manufacturing, warehouse, and

other systems with transporting scenarios [1], [2]. The problem
is involved with transporting some goods from their storage
sites to some delivery sites with regard to dynamic events,
including new tasks and vehicle breakdowns. A policy is
responsible for assigning dynamically arriving transporting
tasks to AGVs of different types in real time. The objectives
are minimizing the makespan and restricting the task delay
within a tolerant threshold.

1) Problem Description: Fig. 1 presents an example of
a material handling scenario on a manufacturing floor. The
manufacturing floor is formed as a graph G(L, T ), where L
and T denote the sets of sites and paths, respectively. Sites are
stop or working points like pickup points, delivery points, and
parking points for AGVs. Each workstation serves as either a
pickup or delivery point, where AGVs collect some material
or transport carried material. The warehouse can only be the
pickup point. Task u1, u2, . . . can be released at any moment.
The total number of tasks m is unknown initially. A task u is
determined by pickup point u.s, delivery point u.e, arrival time
u.o, and expiry time u.τ when it is released. A fleet of AGVs V
is arranged to complete tasks by a policy π. An AGV has one
of the three possible states, namely Idle, Working, and Broken.
Only available AGVs, i.e., in Idle state, can serve tasks, which
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is an instantaneous constraint. An AGV can handle one and
only one task at once while Working. If an AGV is broken, it
should release the assigned task and be repaired in place for
a certain amount of time v.rp before being available again.

The longest total task finishing time among all AGVs after
finishing serving m tasks, makespan Fm(π), is formulated in
the following equation:

Fm(π) = max
v∈Vπ

FT
�
uv
|HL(v)|, v

�
(1)

where HL(v) refers to the historical list of all tasks served by
v and FT(u, v) is the time of finishing serving task u by v.

The average delay of all tasks, tardiness Ft(π), is defined
as follows:

Ft(π) =
1
m

X
v∈Vπ

|HL(v)|X
i=1

max
˚
FT
�
uv

i , v
�
− uv

i .o − uv
i .τ, 0

	
(2)

where Vπ denotes the fleet scheduled by policy π and uv
i

represent the task ui served by AGV v.
2) CMDP Formulation: DMH is formulated as a CMDP

[5], [16], denoted by the tuple 〈S,A,R, C,P , γ〉, where S is
the set of states, A is the set of actions, and R:S×A×S 7→ R
is the reward function. C is the penalty functions related to
the constraint with C:S × A × S 7→ R. P:S × A × S 7→
[0, 1] is the transition probability function. γ ∈ (0, 1) is the
discount factor. In DMH, the state space, S, is encoded by
task and AGV information, such as the remaining time before
timeout and waiting time of unassigned tasks in the task pool at
decision time t. The action space, A = D×Vt, is a hybrid space
combining AGV information Vt at t and dispatching rules D;
for instance, it involves deciding a specific dispatching rule
to assign a task to a chosen AGV. To maintain consistency
between the reward function and objective function, the policy
receives only the negative number of the final makespan as its
reward, i.e., −Fm, while receiving zero at other time. Similarly,
the penalty function, C, is constructed based on the tardiness,
where the policy gets −Ft once all tasks are served [18].

Policy π(at |st) is the probability of taking action at in
state st at time t. Usually, a cumulative constraint C =

g(c(s0, a0, s1), . . ., c(st, at, st+1)) is restricted by a threshold
ξ where c(s, a, s′):S × A × S 7→ R is a per-step penalty.
Let JπC denote the expectation of the cumulative constraint,
formulated as JπC = Eτ∼π[C], where τ ∼ π denotes a trajectory
(s0, a0, s1, a1, s2, . . .) sampled from π. In DMH, tardiness,
formulated in (2), is considered as the cumulative constraint.
The instantaneous constraint considers if an action at is legal
at state st, i.e., only choose available vehicles. The policy
πθ, parameterized by θ, aims at maximizing the discounted
cumulative reward while satisfying the constraints, formulated
as [16]

max
θ

JπθR = Eτ∼πθ

"
∞X

t=0

γtR(st, at, st+1)

#
(3)

s.t. JπC ≤ ξ (4)
atis legal ∀t = 0, 1, 2, . . . (5)

where ξ represents the constraint threshold.

B. Scheduling DMH
Dispatching rules is a classic approach for DMH. Rules

such as first come first serve (FCFS), earliest due date (EDD)

first, and nearest vehicle first (NVF), usually have simple
handcrafted mechanisms [10]. Due to their simplicity, they
can be quickly implemented and deployed in simple manufac-
turing systems. However, the dispatching rules can hardly be
improved and adapted to complex situations. Motivated by the
poor generalization of using one single rule at once [9], some
work combined multiple dispatching rules to make decisions
[19], [20]. However, how to effectively coordinate multiple
dispatching rules presents a new challenge.

Iterative methods can also be applied to solve DMH.
According to the dynamic events, Iterative methods divide
the scheduling problem into several subproblems. The process
restarts to optimize each subproblem when a dynamic event
occurs. Liu et al. [21] proposed a dynamic framework to
schedule a fleet of robots for material transportation. When
a new task arrives, the framework is triggered to search for
a new scheduling solution with a mixed-integer programming
(MIP) model. Yan et al. [22] integrated the MIP model to
an iterated algorithm for job shop in material handling with
multiple new tasks.

Instead of using an MIP model, population-based search
methods have been applied to solve DMH by searching sub-
problem. Chryssolouris and Subramaniam [11] assumed that
the number of tasks is known and the operations of each job
may vary. Task assignments are encoded as permutation-based
solutions, and then, a genetic algorithm searches for promis-
ing operation sequences whenever a dynamic event happens
[11]. Umar et al. [23] proposed a hybrid genetic algorithm
with a weighted sum fitness function of multiple objectives
using random key representation for DMH. Wang et al. [24]
optimized travel distance and energy consumption at the same
time with the nondominated sorting genetic algorithm. If a
trolley breaks or a task is canceled, the optimization restarts
[24]. An adaptive parameter adjustment with discrete invasive
weed optimization algorithm was investigated by Li et al. [25]
to handle the dynamic scheduling, in which multiple dynamic
events such as new tasks, emergent tasks, and task cancellation
are considered. Although the aforementioned search-based
methods may obtain promising solutions for the subproblems
triggered by every occurrence of dynamic events, they are
limited by the long optimization time [11]. Thus, they hardly
perform a fast and adaptive response for some real-world
scenarios. Moreover, search-based methods typically require
a specific problem representation, which is challenging to
directly transfer for optimizing other problems, particularly
those involving additional dynamic events and constraints.

It has been witnessed that RL presents a competitive level
beyond humans on some sequential decision-making prob-
lems, including video games [26], [27], Go [28], and robotic
control [29]. RL-based methods have been applied to solve
DMH problems for their advantages over sequential decision-
making problems. Chen et al. [30] proposed a Qλ algorithm
with forecast information. The RL-based dispatching policy
decides the tasks of the dolly train, considering multiple loads.
Xue et al. [31] considered a flow shop scenario with multiple
AGVs and applied Q-learning to find a suitable match between
jobs and vehicles. Kardos et al. [32] optimized the choice
of workstations for products, using an RL-based method.
Instead of directly choosing tasks, Hu et al. [6] adapted deep
Q-learning (DQN) to choose a pair of dispatching rule and
AGV, inspired by the work of Chen et al. [20]. The chosen
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rule then assigns a waiting task to the paired AGV, aiming at
minimizing makespan and delay ratio. Li et al. [33] modeled
the scheduling as a multiagent scenarios, where dispatching
tasks and selecting vehicles are controlled by two agents.

However, RL-based methods have to put extra effort to
design dense reward functions for specific problems due to the
inherent sparsity of real-world problems. Although there are
some techniques like intrinsic rewards [34], [35] to address
the issue, they introduce a bias to the true reward function.
Besides, RL-based methods are not originally designed to
handle constraints such as vehicle breakdowns, which makes
them hard to apply to real-world problems directly. To address
those issues, Hu et al. [5] formulated the problem as a CMDP
[16] and proposed a constrained RL (CRL) method, named
RCPOM, by incorporating reward shaping and invalid action
masking into reward constraint policy optimization (RCPO)
[36]. Although RCPOM has shown superior performance on
diverse DMH instances, it does not present enough constraint
satisfaction [5], due to the temporal credit assignment problem
with both sparse rewards and constraint violation. Moreover, as
the RL agent is exposed to multiple instances during training,
a critical question arises regarding the optimal allocation of
training resources across these instances. The proportion of
time or episodes dedicated to each instance can significantly
impact the learning process. As highlighted in [37], different
sampling proportions lead to variations in the distribution
of experiences, which in turn introduces biases in gradient
calculations. This bias can steer the policy optimization in
suboptimal directions, potentially compromising the agent’s
generalization capabilities.

C. Evolutionary RL
Considering neural network optimization (weights or archi-

tecture) as a closed-box problem, ERL directly applies EAs
[38] or integrates EA to RL to search for parameters of an
actor [39], [40]. ERL typically uses a fitness-based metric for
parent selection and survivor selection. It particularly works in
the nondifferentiable case since no gradient calculation related
to the backpropagation is necessarily required.

Evolution strategy (ES), a typical EA for numerical opti-
mization, is often used to train neural network policies for
RL tasks. Salimans et al. [17] leveraged NES for policy
optimization. Noises are sampled from a factored Gaussian
distribution and then added to the policy network to generate
a population. The closed form of the gradient estimator is
also given by Salimans et al. [17]. Such et al. [41] applied a
genetic algorithm to evolve networks, in which the parameters
of a neural network are treated as an individual. Conti et al.
[42] validated the effectiveness of novelty search and quality
diversity assisted with ES, when meeting sparse and deceptive
reward functions. Yang et al. [43] proposed a cooperative co-
evolution algorithm based on a negatively correlated search to
optimize parameters of policy network. Khadka and Tumer
[44] proposed a hybrid framework that combines EA and
MDP-based RL, addressing the sparse reward and exploration
issues. Hu et al. [45] proposed an evolutionary CRL algorithm
for robotic control. The constraint handling technique is incor-
porated into the EA to handle CRL problems. However, on the
other hand, the inherent population and elite survival prevent
it from training on multiple scenarios at the same time.

Algorithm 1 ACERL
Input: Generation number G, population size λ, number of

Instances K, learning rate α, noise standard deviation σ
Output: πθ

1: Initialize policy πθ
2: Initialize reward buffers BR = 〈Bi〉, i = {1 . . .,K}
3: Initialize number of selections N = 〈Ni〉, i = {1 . . .,K}
4: for n = 1 to G do
5: Initialize instance buffers I = 〈Ii〉, i = {1 . . .,K}
6: Sample noise ε1 · · · ελ ∈ N |θ|(0, I)
7: for i = 1 to λ do
8: πθi ← πθ+σεi

9: Sample instance η← AIS(BR,N) .Algorithm 2
10: J

πθi
R , J

πθi
C = Evaluate(πθi , η) .Algorithm 3

11: Nη ← Nη + 1
12: ζ ← i
13: Store J

πθi
R in BηR

14: Store J
πθi
R , J

πθi
C , ζ in I j

15: end for
16: f1, . . ., fλ = ISR(I) .Algorithm 4
17: θ ← θ + α 1

λσ

Pλ
i fiεi

18: end for

Algorithm 2 Adaptive Instance Sampler, AIS(BR,N)
Input: Reward buffers BR, counts N, exploration factor αu

Output: η
1: for η = 1 to K do

2: uη = 1
|Bη

R |

P|Bη
R |

i

max1≤k≤|Bη
R |

(Jk
R)−Ji

R

max1≤k≤|Bη
R |

(Jk
R)−min1≤k≤|Bη

R |
(Jk

R) .

3: end for

4: Sample η = softmaxη

 
uη + αu

r
log
�PM

η Nη

�
Nη

!

III. ADAPTIVE CONSTRAINED ERL
We propose ACERL algorithm1 to optimize the parameters

θ of the policy πθ for scheduling. The framework and pseu-
docode are presented in Fig. 2 and Algorithm 1, respectively.

ACERL models an actor (a neural network in our case) as
an individual and maintains a population of those independent
actors. Instead of evolving the population with genetic opera-
tors, at each generation, ACERL samples a population from a
distribution based on the policy πθ. The individuals and their
corresponding fitnesses are used to update the distribution and
discarded instantly later.

Note that all individuals of the population interact with
the environment formed with a specific training instance.
The corresponding training instances are chosen by an AIS
(Algorithm 2), resulting in an adaptive training process. It
estimates the advantage of each candidate instance according
to its historical rewards based on the evaluation of the policy
(Algorithm 3) and the number of selections. The advantage of
each instance describes how good the instance is for policy
improvement. The most beneficial instance for training the
policy is selected according to the estimated soft probability
formed with the advantages. If the policy shows inferior

1Code: https://github.com/HcPlu/ACERL
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Algorithm 3 Evaluate(π) Evaluates a Policy πθ by Interacting
With a Given Environment
Input: Policy πθ, Instance η
Output: JπθR, J

πθ
C

1: JπθR ← 0
2: JπθC ← 0
3: Initialize environment env with the instance η
4: for t = 0, 1, 2, . . .,T − 1 do
5: Sample action at ∈ πθ(st)
6: Obtain rt, ct, st+1 from env by acting at

7: JπθR ← JπθR + rt

8: JπθC ← JπθC + ct

9: end for

Algorithm 4 Intrinsic Stochastic Ranking, ISR(I). pf ∈ (0, 1)
Is the Tolerate Probability. φ(π) Denotes the Penalty
Input: Instance buffers I1, . . . , IK

Output: f1, . . . , fµ
1: for k = 1 to K do
2: µ′ = |Ik |

3: for i = 1 to µ′ do
4: li = i
5: end for
6: Get 〈J

πθ j

R , J
πθ j

C , ζk
j 〉 from Ik, j = 1, . . ., µ′

7: for i = 1 to µ′ do
8: for j = 1 to µ′ − 1 do
9: Sample δ uniformly at random in (0, 1)

10: if (φ(πθ j ) = φ(πθ j+1 ) = 0) or (δ < P f ) then
11: if J

πθ j

R < Jθ j+1

R then
12: swap l j and l j+1
13: end if
14: else
15: if φ(πθ j ) > φ(πθ j+1 ) then
16: swap l j and l j+1
17: end if
18: end if
19: end for
20: end for
21: for i = 1 to µ′ do
22: fζk

li
= µ′ − i + 1

23: end for
24: end for

performance on certain instances, the likelihood of choosing
those instances increases accordingly.

After obtaining the episodic rewards and penalties, we
design an ISR method (Algorithm 4) to group the sampled
individuals that interact with the same training instance into
the same buffer. The fitness of each individual is assigned
with its own rank index in the descending intrinsic ranked
buffer. The ranking method balances the rewards and penalties,
seeking to maximize the long-term reward with constraint
satisfaction. The impact of fitness weight is further involved
in breaking the tradeoff among multiple training instances.
Finally, ACERL updates the policy with NES according to
sampled noises and the corresponding fitness values.

Sections III-A–III-C detail the core ingredients of ACERL,
including adaptive training, ISR with rank-based fitness, and
NES.

A. Efficient Instance Selection via Adaptive Training
To achieve a better computational resource allocation, we

design an AIS to train ACERL by selecting suitable training
instances adaptively. The pseudocode of AIS is shown in
Algorithm 2. The idea behind AIS is that if the policies have
performed well on a specific instance, then the probability of
selecting this instance should be reduced and the likelihood of
selecting the instances that were evaluated fewer times should
increase.

Specifically, an inverted distance metric for evaluating the
advantage of training instances is proposed

uη =
1ˇ̌
BηR

ˇ̌ |Bη
R|X

i=1

max1≤k≤|Bη
R|

Jk
R − Ji

R

max1≤k≤|Bη
R|

Jk
R −min1≤k≤|Bη

R|
Jk
R
. (6)

The distance metric measures the performance of the policy
on the training instance η at the time horizon. Specifically, it
calculates how much each episode’s reward deviates from the
maximum reward, scaled by the batch’s reward range. A larger
uη signifies poorer policy performance on η, which provides
an insight that the instance should be chosen more.

The adaptive training takes the metric in (6) and the number
of times of selecting each training instance into account by the
widely used upper confidential bound (UCB) [46], [47]

UCB = ui + αu

vuut log
�PK

j Nj

�
Ni

(7)

where αu is the exploration factor, K is the total number of
training instances, and Ni is the number of instance i being
selected as the training candidate. With the UCB-based AIS,
instances are chosen to train the policy more efficiently. Thus,
the computational resource can be dynamically allocated in a
proper way.

B. ISR With Rank-Based Fitness
Assessing a policy for DMH that involves multiple instances

and constraints can be challenging beyond the uncon-
strained optimization problems [17], [42]. Regular methods
use a weighted sum of the objective value and penalties
for constraint violation as the reshaped reward function,
which, however, introduces the challenge of adjusting the
weights [48].

Stochastic ranking (SR) [49] is an effective constraint
handling technique, which has been successfully applied to
constrained optimization [50] and combinatorial optimization
[51]. SR makes no assumption on the problem, while only
one parameter is introduced and is easy to tune [49]. Inspired
by the work of [49], we propose ISR with rank-based fitness,
shown in Algorithm 4, to handle the constraints in the case of
sparse feedback. During the evolution process, the individuals
that interact with the same training instance are collected and
stored in the same buffer. Then, all the individuals in the same
buffer are ranked according to their rewards and penalties.
Notably, if solutions provided by two individuals are either
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feasible or meet the probability threshold pf , the solution with
the higher reward is assigned a better rank; otherwise, the one
with fewer constraint violations is given the higher rank.

An individual’s fitness value is assigned based on the
ranking in its own buffer by ISR. Following the setting of
[49], the penalty function related to the constraint violation is:

φ(π) =
�
max{0, JπC − ξ}

�2
. (8)

ISR remains some infeasible solutions with high fitness
values besides giving priority to feasible solutions. Although
infeasible solutions cannot be executed to solve the problem,
they may help escape from some infeasible areas. ISR not
only balances the rewards and penalties but also allows the
dynamic selection of suitable training instances with prefer-
ence, which makes efficient use of the computational resource.
Additionally, ISR only requires the final scalar value instead of
temporal information, which aligns well with the sparse case.

C. Policy Improvement Through Searching Gradients
ACERL applies evolution strategies to update the policy πθ,

which is parameterized by a neural network θ. A population is
sampled from a distribution over pψ(θ) with the given policy
πθ. The estimated gradient is given by [52]

∇ψEθ∼pψF(θ) = Eθ∼pψF(θ)∇ψ log(pψ(θ)) (9)

where F(θ) is the fitness function related to the policy πθ.
The minimal requirement of temporary information makes
natural gradient intuitive to tackle sparse reward and long-
term horizon, compared with value-based methods and policy
gradient, without calculating the gradients for the backpropa-
gation. The perturbations in the parameter space also facilitate
the exploration for collecting more diverse experiences [17].

In the DMH, the fitness of each individual is given by
the ISR (Algorithm 4). More specifically, pψ is a factored
Gaussian distribution N (ψ, σ2), in which ψ is the mean value
and σ is the covariance. The expectation of fitness under the
distribution considering θ as the mean parameter [17] is written
as follows:

Eθ∼pψF(θ) = Eε∼N (0,I)F(θ + σε). (10)

Finally, the policy is optimized by the gradient ascent with a
vanilla estimator

∇εθF(θ + σε) =
1
σ
Eε∼N (0,I) [F(θ + σε)ε] (11)

or an antithetic estimator

∇εθF(θ + σε) =
1

2σ
Eε∼N (0,I) [(F(θ + σε) − F(θ − σε))ε] .

(12)

All weights are perturbed in the case of factored Gaussian
distribution, which is similar to the coupon collector problem
in a continuous way. Considering ACERL as a randomized
finite difference method, the optimization complexity scales
linearly with the number of weights, i.e., O(|θ|). The expected
covering time to ensure that all weight dimensions are suf-
ficiently perturbed is at least polynomial bound O(|θ| log |θ|).
Given the population size λ, the space complexity and the
communication complexity are both O(λ|θ|) for passing gra-
dients since we only optimize the neural network. Notably,

ACERL follows the optimization scheme of classic evolution
strategies. As such, its optimization complexity, covering time,
space, and communication complexities align with existing
theoretical bounds [52], [53].

IV. THEORETICAL ANALYSIS

Although Choromanski et al. [54] and Liu et al. [55] show
that the gradient estimator is close to the true gradient, they
only derive the theoretical results in the unconstrained setting.
We extend the analysis in [54] and [55] and demonstrate the
theoretical guarantee on the constrained optimization with SR.

First, we simplify the constrained problem formulation on
the function landscape with one single instance for a better
analysis as follows:

max
θ

F(θ) s.t. g(θ) ≤ ξ (13)

where F(θ) is the objective function, g(θ) is the constraint
function, and ξ is the constraint threshold.

Following the settings of Choromanski et al. [54], the
following assumptions of the regularities of F(θ) and g(θ) are
made.

Assumption 1: F and g are L-Lipschitz, i.e., ∀θ, θ′ ∈
Rd, |F(θ) − F(θ′)| ≤ L f ||θ − θ

′||, |g(θ) − g(θ′)| ≤ Lg||θ − θ
′||.

Assumption 2: F has a τ-smooth third-order derivative
tensor with respect to σ > 0 so that F(θ + σε) = F(θ) +
σ∇F(θ)>ε + (σ2/2)ε>H(θ)ε + (1/6)σ3 f ′′′(θ)[v, v, v] with v ∈
[0, ε] satisfying |F′′′(v, v, v)| ≤ τ||v||3 ≤ τ||ε||3, where H(θ) and
F′′′(θ) denote the Hessian matrix and third derivative of F,
respectively. Similarly, g has a τ-smooth third-order derivative
tensor with the same regularities as F.

Assumption 3: σ is small enough, i.e., 0 < σ <
(1/35)((E/τd3 max{L f , Lg, 1}))1/2, where E > 0.

For a better analysis, we relax the penalty function φ(θ)
formulated in (8) to a smooth approximation since φ(θ) is not
differentiable at g(θ) = ξ

φ′(θ) = ρ ln
�
1 + e(g(θ)−ξ)/ρ� (14)

where ρ > 0. This relaxation nearly preserves the ordering of
the inequality as ρ→ 0.

Theorem 1: There exists a sufficiently small ρ > 0 such that

∀θ, θ′ ∈ Rd, φ (θi) ≤ φ
�
θ j
�
⇐⇒ φ′ (θi) ≤ φ′

�
θ j
�

i.e., ρ ln
�
1 + e(g(θi)−ξ)/ρ

�
≤ ρ ln

�
1 + e(g(θ j)−ξ)/ρ

�
.

Intuitively, the relaxed penalty function φ′(θ) is also
L-Lipschitz. Besides, Assumption 2 applies to φ′(θ).

Recalling SR, it assigns priority to individuals based on the
objective and penalty function with probability pf . Thus, we
consider the objective function relaxed by SR as follows:

fSR(θ) = pf F(θ) − (1 − pf )φ′(θ) (15)

where pf is the probability with values in [0, 1]. It is easy to
see that Assumptions 1 and 2 also hold for fSR.

Assuming two candidates πθi and πθ j with F(θi) ≤ F(θ j), all
three possible scenarios are described as follows.

Case 1: If φ′(θi) = φ′(θ j) = 0, then fSR(θi) ≤ fSR(θ j).

Case 2: If 0 ≤ φ′(θ j) ≤ φ′(θi) and 0 < φ′(θi), then fSR(θi) ≤
fSR(θ j).
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Case 3: If 0 ≤ φ′(θi) ≤ φ′(θ j) and 0 < φ′(θ j), then the
ranking fSR(θi) ≤ fSR(θ j) holds under the following inequality:

pf
�
F (θi) − F

�
θ j
��
≤
�
1 − pf

� �
φ′ (θi) − φ′

�
θ j
��

which indicates that the final ranking relies on pf , as well as
both reward and penalty values.

With the above discussions, we show that fSR captures the
behaviors of SR.

Under the assumptions, we can derive an antithetic form
that

fSR(θ + σε) − fSR(θ − σε)
2σ

= ε>∇ fSR(θ) + ζ(θ)

where ζ(θ) ≤ (τ/6)σ2||ε||3. Given fSR is smooth with constant
τ on the third-order derivative tensor, we haveˇ̌̌̌

fSR(θ + σε) − fSR(θ − σε)
2σ

− ε>∇ fSR(θ)
ˇ̌̌̌
≤ τσ2||ε ||3.

Recall the gradient in the antithetic case [(12)]

∇εθF(θ + σε) =
1

2σ
Eε∼N (0,I)[(F(θ + σε) − F(θ − σε))ε].

We have |( fSR(θ + σε) − fSR(θ − σε))/(2σ) − ε>∇ fSR(θ)| ≤
τσ2||ε||3. Then, we can derive the following inequality:

||∇θEε∼N (0,I) fSR(θ + σε) − ∇ fSR(θ)|| ≤ Eετσ2||ε||4. (16)

Theorem 2: The bias of the gradient estimator under SR is
well boundedˇ̌ˇ̌

∇θEε∼N (0,I) fSR(θ + σε) − ∇ fSR(θ)
ˇ̌ˇ̌
≤ E . (17)

Proof: Considering that σ ∼ N (0, I), we have E[σ(i)4] = 3,
E[σ(i)2] = 1, ∀i ∈ {1, . . ., d}. The following inequality holds:

Eε∼N (0,I)
�
||ε||4

�
= Eε

24 dX
i=1

ε(i)4 +
X
i, j

ε(i)2ε( j)2

35
≤ 3d + d2 ≤ 3d2.

Thus, together with (16)ˇ̌ˇ̌
∇θEε∼N (0,I) fSR(θ + σε) − ∇ fSR(θ)

ˇ̌ˇ̌
≤ Eετσ

2||ε||4

≤ 3τσ2d2.

Recall Assumption 3 that 0 < σ <
(1/35)((E)/(τd3 max{L f , Lg, 1}))1/2. Finally, we derive
the result

||∇θEε∼N (0,I) fSR(θ + σε) − ∇ fSR(θ)|| ≤ E .

�

V. EXPERIMENTAL RESULTS AND ANALYSIS

We conduct several sets of experiments and an ablation
study to comprehensively evaluate ACERL. The aims of
experiments and compared methods are detailed as follows.

1) To validate the effectiveness of ACERL, we com-
pare it on eight training instances and eight unseen
test instances with several state-of-the-art methods
and baselines categorized into groups: 1) “MAPPO”
[33], “RCPOM” [5], and soft actor-critic (SAC) [29]
with the fixed Lagrangian multiplier, “LSAC” [56];

2) “SAC” and “PPO” [57]; 3) MAPPO, RCPOM,
LSAC, SAC, and PPO equipped with the AIS denoted
as “AMAPPO,”“ARCPOM,” “ALSAC,” “ASAC,” and
“APPO,” respectively; 4) classic dispatching rules,
including “FCFS,” “EDD,” “NVF,” and “STD” [10]; and
5) two random policies that randomly choose rules or
tasks, denoted as “MIX” and “Random” on both training
instances and test instances, respectively.

2) To present the robust performance of ACERL, it is tested
on 40 instances with increasing extent of perturbations
that simulate different degrees of dynamic events.

3) To further evaluate the performance and limitations of
ACERL in out-of-distribution cases, a leave-one-out
cross validation is conducted by dividing the training
dataset into subsidiary training datasets and test datasets.

4) To examine each ingredient of ACERL including ISR,
rank-based fitness, and adaptive training, an ablation
study is performed to present their unique contributions.

A. Experiment Setting
Experiment settings, including hyperparameters, problem

instances, and metrics for performance assessment, are
described as follows.

1) Implementation Details: The implementations of RL and
CRL policies, including SAC [29] and PPO [57], MAPPO
[33], RCPOM [5], and LSAC [56], are adapted based on
the Tianshou framework2 [58]. Source codes of RCPOM are
provided in [5]. The network structure is formed by two hidden
fully connected layers 128 × 128. The discounted factor γ is
0.97. The initial multiplier λ and the learning rate of RCPOM
are set as 0.001 and 0.0001, respectively. The population size
λ is 256. The number of generations G is 128. The constraint
threshold ξ is set as 50. Other common hyperparameters are
set following the default setting of Tianshou.3 All learning
policies are trained for 1e6 steps with five different seeds and
each is tested 30 times independently.

2) Problem Simulator and Instances: The experiments are
conducted on publicly available DMH instances and simu-
lator, DMH-GYM,4 provided in [5]. The training instances
(DMH-01–DMH-08) are drawn from different distribu-
tions using a searching-based method, while test instances
(DMH-09–DMH-16) are generated by noising the training
instances [5].

3) Evaluation Metrics: Three metrics are used to evalu-
ate the policies, including the average normalized score of
makespan M, the average normalized score of tardiness C, and
the average constraint satisfaction percentage P, formulated as
follows:

M =
1
K

KX
j=1

Fmax
m − F j

m

Fmax
m − Fmin

m
(18)

C =
1
K

KX
j=1

Fmax
t − F j

t

Fmax
t − Fmin

t
(19)

P =
1
K

KX
j=1

1F j
t <ξ

(20)

2https://github.com/thu-ml/tianshou
3tianshou
4https://github.com/HcPlu/DMH-GYM
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TABLE I
AVERAGE MAKESPAN AND TARDINESS OVER 30 INDEPENDENT TRIALS OF FIVE DIFFERENT SEEDS ON TRAINING INSTANCES. BOLD
NUMBERS INDICATE THE BEST MAKESPAN AND TARDINESS. “+,”“≈,” AND “−” INDICATE THE POLICY PERFORMS STATISTICALLY
BETTER/SIMILAR/WORSE THAN ACERL POLICY, RESPECTIVELY. THE NUMBER OF POLICIES THAT ARE “BETTER,” “SIMILAR,”

AND “WORSE” THAN ACERL IN TERMS OF MAKESPAN AND TARDINESS ON EACH INSTANCE IS SUMMARIZED IN THE
BOTTOM ROW. THE LAST COLUMN WITH HEADER “M/C(P)” INDICATES THE AVERAGE NORMALIZED

MAKESPAN, TARDINESS, AND PERCENTAGE OF CONSTRAINT SATISFACTION. HORIZONTAL RULES
IN THE TABLE SEPARATE DIFFERENT GROUPS OF ALGORITHMS

TABLE II
AVERAGE MAKESPAN AND TARDINESS OVER 30 INDEPENDENT TRIALS OF FIVE DIFFERENT SEEDS ON TEST INSTANCES. BOLD NUMBERS INDICATE

THE BEST MAKESPAN AND TARDINESS. “+,”“≈,” AND “−” INDICATE THE POLICY PERFORMS STATISTICALLY BETTER/SIMILAR/WORSE THAN
ACERL POLICY, RESPECTIVELY. THE NUMBER OF POLICIES THAT ARE “BETTER,” “SIMILAR,” AND “WORSE” THAN ACERL IN

TERMS OF MAKESPAN AND TARDINESS ON EACH INSTANCE IS SUMMARIZED IN THE BOTTOM ROW. THE LAST COLUMN WITH
HEADER “M/C(P)” INDICATES THE AVERAGE NORMALIZED MAKESPAN, TARDINESSM, AND PERCENTAGE OF CONSTRAINT

SATISFACTION. HORIZONTAL RULES IN THE TABLE SEPARATE DIFFERENT GROUPS OF ALGORITHMS

where K is the number of instances and ξ is the constraint
threshold. Fmax

m and Fmin
m represent the maximal and minimal

makespan values Fm [(1)] among all the policies, respectively.
Similarly, Fmax

t and Fmin
t represent the maximal and minimal

tardiness values Ft [(2)] among all policies, respectively. All
metrics follow the principle that a larger value indicates better
performance of the policy.

B. Comparison With State of the Arts and Baselines

Tables I and II present the experiment results of ACERL
on training instances (DMH-01–DMH-08) and test instances
(DMH-09–DMH-16), respectively, compared with advanced
RL methods, CRL methods, and classic dispatching rules. It

is obvious that our proposed method, ACERL, statistically
outperforms other algorithms on all the training and test
instances except on DMH-07, DMH-13, and DMH-15. Com-
pared to ACERL, the dispatching rule FCFS gets a competitive
makespan but statistically worse tardiness on DMH-07, while
other compared algorithms perform statistically worse than
ACERL. Similar observations are also found on DMH-13
and DMH-15. Overall, ACERL has the best values in terms
of normalized makespan M, normalized tardiness C, and
constraint satisfaction percentage P and achieves the overall
best performance on all instances.

Besides, ACERL achieves 100% and 97% constraint satis-
faction on training and test instances, respectively, which is
much better than other algorithms. For example, RCPOM [5],
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Fig. 2. Illustration of ACERL framework. A population of actors is sampled with Gaussian noise. All actors then interact with the specific subset of training
instances determined by the AIS (see Section III-A). The collected rewards and selection number of training instances are used to update the instance sampler.
The fitness of each actor is assigned according to its inner rank with the ISR (see Section III-B). A natural gradient ascent is applied to update the policy
accordingly (see Section III-C).

Fig. 3. Training curves on DMH-01. ACERL (red curve) obtains the best
makespan while fully satisfying the tardiness constraint.

a state-of-the-art CRL method only gets 60% and 63% con-
straint satisfaction on training and test instances, respectively.

As an example, the training curves of DMH-01 are shown in
Fig. 3. ACERL shows the best performance by fully satisfying
the constraint in DMH-01. The training time of ACERL
is about 30 min, while other RL and CRL-based methods

take more than 1 h for training 1e6 steps. Moreover, the
computation time of ACERL for one single decision is about
2 ms, which meets the real-time requirement [6]. More training
curves on various instances are provided in Section A of
Supplementary Material.

1) Tackling Sparse Feedback: Tables I and II show that
none of the RL or CRL methods, including MAPPO, SAC,
PPO, RCPOM, and LSAC, performs better than ACERL on
all the 16 training and test instances. SAC and PPO are even
worse than the dispatching rule STD, which achieves the
best M = 0.65 among all dispatching rules. We attribute the
phenomenon to the lack of temporary information. Regular
environments and benchmarks considered in RL studies usu-
ally are well defined with suitable reward functions [59]. It
is hard to guarantee that the same conditions are provided
in real-world scenarios. Objectives, including makespan and
tardiness, are only obtained after all tasks are completed in
DMH. Given an RL agent, it only receives one meaningful
reward at the end of an episode while getting zero for other
steps. This also applies to the constraint satisfaction part, as
the cost function related to tardiness is also sparse. MAPPO
[33] and RCPOM [5] achieve similar results. RCPOM applies
invariant reward shaping to address sparse feedback but still
fails to achieve superior results. On the other hand, MAPPO
suffers from the high requirement of training policies with a
globally centralized critic.

ACERL is validated to handle sparse feedback by the
experiment results. Instead of stochastic gradient descent with
value function or policy gradient, ACERL applies the natural
gradient ascent to update a policy. The usage of rank-based fit-
ness makes it possible to get rid of the temporary information
that regular RL methods require since only the last episodic
value is needed. Thus, ACERL can tackle sparse feedback
without reward shaping relying on domain knowledge.

2) Promising Constraint Satisfaction: Delay of task fin-
ishing time, i.e., tardiness, should be restricted within the
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given threshold in DMH. It also needs to guarantee safety
while assigning tasks since only AGVs in the idle state are
available to serve tasks. They are considered as cumulative and
instantaneous constraints and are handled as long-term behav-
iors and short-term behaviors, respectively. However, it is an
intractable problem for RL methods to handle constraints [36].
The complexity arises from the need of maximizing reward,
i.e., minimizing makespan while ensuring strict adherence to
constraints. The balance is crucial that agents achieving high
reward can still be outperformed by seemingly “poor” agents
that prioritize constraint satisfaction. This phenomenon shows
the critical importance of constraint management in real-
world applications, where violating operational limits (such
as excessive tardiness) can have severe consequences like
human safety. RCPOM [5] combines RCPO [36] and invalid
action masking to deal with the tardiness and available vehi-
cle constraints, respectively. Although the masking technique
guarantees the satisfaction of the available vehicle constraint,
it actually does not perform well with an inferior constraint
satisfaction percentage in terms of tardiness than EDD, a time-
prefer dispatching rule.

The inherent nature of DMH systems introduces an
additional layer of complexity through sparse feedback mech-
anisms. In DMH, meaningful rewards or penalty signals are
only available once all tasks are served. This sparsity in the
feedback loop exacerbates the difficulty of policy optimization,
as the RL agent must learn to make decisions with limited
immediate guidance on the long-term consequences of actions.
Tables I and II show that regular CRL methods like LSAC
fail to achieve high constraint satisfaction. CRL methods,
including RCPOM and LSAC, require temporary penalty
values to restrict the behavior of the policy, which, however,
are usually missing in DMH. This is why, although RCPOM
shows promising results compared to RL and CRL methods,
it has a worse constraint satisfaction in terms of tardiness than
EDD, even with a higher makespan.

ACERL benefits from the balance of maximizing rewards
and satisfying constraints by the ISR with rank-based fitness.
Individuals are grouped into distinct buffers based on the
selected problem instances. This grouping allows for more
meaningful comparisons between solutions within similar
problem contexts as performances among different problems
is incomparable. Instead of using the weighted sum of rewards
and penalties, ACERL estimates the fitness of each individual
based on its rank. The fitness of each individual is determined
by its rank within its instance-specific group, serving as a
unified metric, which enables fair comparisons across poten-
tially diverse problem instances. The natural gradient induced
by these fitness metrics efficiently guides the policy update
process with the most promising direction for improving both
reward and constraint satisfaction simultaneously. The popu-
lation evolves toward feasible regions of the policy space that
offer superior performance across multiple problem instances,
promoting the development of policies that can generalize well
to unseen DMH scenarios.

3) Stable Performance Across Multiple Instances: DMH
considers training an agent on multiple instances and gen-
eralizing to multiple unseen instances. Each instance has
its own context, like different objective value ranges and
representations. This means that the performance of the same

agent on different instances is incomparable. The challenge
lies not only in achieving high performance on individual
instances but in developing a robust policy that can adapt to
the underlying patterns and principles of the dynamic system.

As shown in Tables I and II, ACERL shows the best perfor-
mance on all instances. The diverse problem instances present
a challenge in achieving an overall good performance for a
single policy. There is no single dispatching rule that performs
the best on all instances. EDD, a time-prefer rule, has the
minimal tardiness Ft in DMH-02–DMH-04 with 29.6, 26.5,
and 32.8, respectively. However, it rarely gets good results on
makespan. A similar case happens on NVF, a distance-prefer
rule, which performs fairly on makespan Fm = 1876.5 but
violates the tardiness constraint on DMH-01 with 69.6 < 50.

ACERL tackles the tradeoff of multiple training instances.
Historical metrics such as obtained episodic reward and the
number of selecting an instance are collected. An inverted dis-
tance metric is used to estimate how good the individual is in
the view of the time horizon. We apply a UCB-based sampler
to implement the adaptive training with the inverted distance
metric and the number of selections. If an instance has been
optimized well, i.e., the distance metric is small enough, then
the proportion of the training instance decreases accordingly.
The sampled population then interacts with environments
instantiated by the adaptively selected training instances, for
which the policy benefits the most. By adaptive training, the
corresponding computational resource is allocated suitably.
ACERL can explore and exploit more instances on which
it performs badly to achieve an overall good performance.
Besides, bias estimated by the ISR provokes some optimiza-
tion pressure, which guides the gradient directions and helps
with the next round’s instance selection.

C. Robust Performance on Noised Instances
To further validate the effectiveness of ACERL, we validate

the algorithm on some noised datasets. We extend the problem
dataset by introducing random perturbations to the original
data. The arrival time of each task is perturbed by this random
noise, which is defined using the noise operator denoted as
±. The number following ± specifies the magnitude of the
perturbations. The initial training dataset and test dataset are
labeled as DMH±0 and DMH±5, respectively. Subsequently,
we created extended instance datasets with increasing levels
of perturbation strength, labeled as DMH±10, DMH±15,
DMH±20, DMH±25, and DMH±30. Table III summarizes
the experiment results on noised datasets. More results are
detailed in Section B of Supplementary Material.

It is observed that the performance rank of dispatching rules
changes across different problem datasets. In DMH±0, the
original training dataset, EDD has the highest constraint sat-
isfaction. However, its constraint satisfaction descends and is
even worse than NVF in DMH±20, DMH±25, and DMH±30.
A similar case happens in makespan, NVF gradually achieves
a better M over STD. ACERL outperforms other algorithms on
several noised datasets, on which it has the best performance
on metrics M, C, and P. The constraint satisfaction percentage
of ACERL is much higher than the other algorithms, e.g.,
100% on DMH±0, 97% on DMH±5, 95% on DMH±15,
and 93% on DMH±30. ACERL still holds the first place
in makespan with respect to metric M. Although RCPOM
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TABLE III
PERFORMANCE ON NOISED INSTANCES. “M/C(P)” INDICATES THE AVERAGE NORMALIZED MAKESPAN, TARDINESS, AND PERCENTAGE OF CON-

STRAINT SATISFACTION OVER 30 INDEPENDENT TRIALS OF FIVE DIFFERENT SEEDS. BOLD NUMBER INDICATES THE BEST VALUE IN THE
CORRESPONDING COLUMN. HORIZONTAL RULES IN THE TABLE SEPARATE DIFFERENT GROUPS OF ALGORITHMS

achieves a slightly higher M with 0.88 over ACERL with 0.87,
its constraint satisfaction percentage P is rarely higher than
ACERL, i.e., 66% <75% in DMH±20.

MIX selects dispatching rules uniformly at random and
guarantees a lower performance bound of assigning tasks.
From Table III, MIX has a better performance than FCFS
in both makespan and tardiness and is better than EDD in
makespan. Learning policies, including ACERL, MAPPO,
RCPOM, as well as other RL and CRL policies, aim at
learning a suitable policy to choose a proper rule within a
given state, i.e., improving the lower bound. However, they can
hardly make it due to the tradeoff among multiple instances,
as well as sparse feedback.

ACERL learns from the diverse experiences sampled by
the population. The adaptive selection of training instances
prevents ACERL from focusing solely on specific instances
during training, enabling a strong overall performance across
multiple instances. ISR balances the conflict in terms of
maximizing rewards and satisfying constraints according to
the episodic values including makespan and tardiness. The
obtained rank-based fitness helps with the estimation of the
natural gradient for updating the policy. ACERL is particularly
well-suited to tackling sparse reward and penalty in DMH,
as it requires only episode-level values to guide the learning
process.

A notable strength of ACERL lies in maintaining robust per-
formance even when the noised dataset gradually differs from
the original training dataset. This robustness suggests that the
learned policy captures fundamental principles of DMH rather
than merely memorizing specific instance characteristics. It
indicates potential applications of ACERL in complex real-
world scenarios with dynamics and constraints.

D. Leave-One-Out Cross Validation
To further explore ACERL’s effectiveness and limitations,

we divide the training set into subsidiary training and test
sets by the leave-one-out method. For example, DMH-01 is
stripped out as the test instance, and then, the remaining

instances (DMH-02–DMH-08) are used to train the policy.
Table IV shows the experiment results by leaving DMH-01
out. More results are attached in Section C of Supplementary
Material.

Still, our proposed method, ACERL, achieves the highest
M value of 0.98% and 87% constrained satisfaction. Across
DMH-02–DMH-08, ACERL achieves the best makespans
(Fm). However, we also find that ACERL does not per-
form well on the left instance DMH-01 as expected, with
Fm = 1914.1 and Ft = 54.0. At the same time, STD, a
dispatching rule achieves the best makespan value of 1868.8
and EDD achieves the lowest tardiness Ft = 33.9. The
phenomenon is attributed to the out of distribution. The diverse
training instances are intentionally designed to facilitate a
comprehensive evaluation, and thus, instances may differ from
each other significantly. It is not surprising to observe the
limited performance of learning policies on DMH-01, which is
separated from the training set as they have never encountered
the instance before. At the same time, policies can truly learn
something from the remaining training instances. Learning
policies, including ACERL, RCPOM, and SAC, show superior
performance than the MIX policy, which selects dispatching
rules randomly. Some special knowledge is able to transfer
from some “similar” instances to the split instance. Although
ACERL does not demonstrate superior performance in terms
of makespan on the split instance, it still achieves the overall
best performance.

E. Ablation Study

To fully evaluate ACERL and analyze each ingredient, a
rigorous ablation study is conducted. Compared strategies are
organized into the following two groups.

1) Four ranking strategies are compared. ISR with rank-
based fitness is denoted as “ISR.” The weighted sum
of raw rewards and penalties is denoted as “CF.” Rank-
based fitness is denoted as “R.” Raw reward is denoted
as “F.”
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TABLE IV

CROSS VALIDATION USING LEAVE-ONE-OUT ON DMH-01 (HIGHLIGHTED WITH GRAY BLOCKS): AVERAGE MAKESPAN AND TARDINESS OVER 30
INDEPENDENT TRIALS OF FIVE DIFFERENT SEEDS ON EACH INSTANCE. BOLD NUMBERS INDICATE THE BEST MAKESPAN AND TARDINESS.

“+,”“≈,” AND “−” INDICATE THE POLICY PERFORMS STATISTICALLY BETTER/SIMILAR/WORSE THAN ACERL POLICY, RESPECTIVELY.
THE NUMBER OF POLICIES THAT ARE “BETTER,” “SIMILAR,” AND “WORSE” THAN ACERL IN TERMS OF MAKESPAN AND

TARDINESS ON EACH INSTANCE IS SUMMARIZED IN THE BOTTOM ROW. THE LAST COLUMN WITH HEADER “M/C(P)”
INDICATES THE AVERAGE NORMALIZED MAKESPAN, TARDINESS, AND PERCENTAGE OF CONSTRAINT
SATISFACTION. HORIZONTAL RULES IN THE TABLE SEPARATE DIFFERENT GROUPS OF ALGORITHMS

TABLE V

ABLATION STUDY ON TRAINING INSTANCES (DMH-01–DMH-08). BOLD NUMBER INDICATES THE BEST MAKESPAN AND TARDINESS. “M/C(P)”
INDICATES THE AVERAGE NORMALIZED MAKESPAN, TARDINESS, AND PERCENTAGE OF CONSTRAINT SATISFACTION. STRATEGY DENOTES

THE RANKING STRATEGIES, INCLUDING ISR, CF, R, AND F. MODE DENOTES TRAINING MODES, INCLUDING AIS, UNIFORM, AND
RANDOM. DIFFERENT GROUPS OF ALGORITHMS ARE DIVIDED BY THE ROW LINES ACCORDING TO THE RANKING STRATEGIES

AND TRAINING MODES

2) “AIS,” “Uniform,” and “Random” are three different
training modes. “AIS” denotes the policy trained with
the AIS. “Uniform” denotes that each instance is equally
selected and fixed during training. “Random” means that
instances are selected randomly.

1) Effect of ISR With Rank-Based Fitness: The experimen-
tal results are presented in Tables V and VI. Ranking strategy
“F” can obtain good results on makespan, but it hardly satisfies
the constraints with a high rate. Similarly, although “R,” a
rank-based fitness strategy, has a slightly better makspan than
“F,” it still does not perform well in satisfying the problem

constraints, i.e., making the tardiness of tasks descend to a
promising threshold. “CF,” which applies the regular weighted
sum of makespan and tardiness, tries to improve the likelihood
of satisfying the constraints while only obtaining comparable
results with “F” and “R.” The results from the ablation study
verify the effectiveness of the “ISR” strategy, in which we
obtain excellent performance on makespan in various training
modes with better constraint satisfaction, compared with “F,”
“R,” and “CF.” ACERL that uses the “ISR” strategy can
achieve 100% constraint satisfaction on the training set in the
AIS mode. Our proposed “ISR” strategy not only can eliminate
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TABLE VI

ABLATION STUDY ON TEST INSTANCES (DMH-09–DMH-16). BOLD NUMBER INDICATES THE BEST MAKESPAN AND TARDINESS. “M/C(P)” INDICATES
THE AVERAGE NORMALIZED MAKESPAN, TARDINESS, AND PERCENTAGE OF CONSTRAINT SATISFACTION. STRATEGY DENOTES THE RANKING

STRATEGIES, INCLUDING ISR, CF, R, AND F. MODE DENOTES TRAINING MODES, INCLUDING AIS, UNIFORM, AND RANDOM. DIFFERENT
GROUPS OF ALGORITHMS ARE DIVIDED BY THE ROW LINES ACCORDING TO THE RANKING STRATEGIES AND TRAINING MODES

the effects of scale between rewards and constraint values but
also can well consider reward maximization and constraint
satisfaction simultaneously.

2) Necessity of Adaptive Training: When a policy is
trained on one single instance, i.e., without assuming multiple
instances available as historical records, the policy performs
well on the training instance but fails to generalize to new
instances. Specifically, it results in a high makespan and
struggles to meet constraints on different instances, which
underscores the limitations of a model trained on just one
instance. Detailed experiment results are presented in Section
A of Supplementary Material. Subsequently, we trained the
policies on three training modes, including “AIS,” “Uniform,”
and “Random” to verify the effectiveness of our adaptive
approach. From Tables V and VI, we can observe that using
our proposed “AIS” as the training model results in a better
makespan and a higher constraint satisfaction percentage.

Compared with the training modes of “Uniform” and
“Random,” our proposed “AIS” training mode is able to
dynamically and adaptively adjust its proposition of training
instances during the training process. The suitable choice of
training instances enables a more reasonable and efficient
allocation of computational resources, hence helping ACERL
to achieve an overall good performance across all instances.

3) Coordination of ACERL: We demonstrated the effective-
ness of our proposed ACERL and the unique contributions of
its ingredients through rigorous and comprehensive ablation
experiments, respectively. Overall, as observed in Tables V
and VI, our ACERL achieves the best makespan and the
highest constraint satisfaction percentage compared to all other
combinations of ranking strategies and training modes. The
AIS training mode considers multiple instances and adap-
tively allocates resources based on performance. The ISR
strategy effectively mitigates the effect of value scales and
achieves a well-balanced tradeoff between reward and con-
straint, resulting in excellent performance across all instances.

All ingredients of ACERL, including ISR with rank-based
fitness and adaptive training, cooperate well and are indis-
pensable for solving the problem.

VI. CONCLUSION

In this article, we consider the DMH problem with uncer-
tainties and sparse feedback, where unexpected dynamic
events and constraints are present. Due to the dynamics, it
is hard to determine the unique contribution of each task
assignment, which leads to an issue of sparse feedback in both
rewards and penalties. Although the existence of historical
task records enables training a policy with multiple instances,
the tradeoff across training instances poses a challenge with
limited computational resources. To address the challenges,
we proposed a robust adaptive constrained ERL approach,
called ACERL. ACERL leverages natural gradient ascent
to update its parameters. The population-based exploration
provides diverse experiences by sampling noised actors at
each generation. The adaptive instance sampler keeps choosing
the training instance from which the policy benefits the most
for policy improvement. Reasonable computational resource
allocation is allowed. To balance the rewards and penalties,
we present ISR with rank-based fitness. Instead of common
reward-based, real-valued fitness metrics, we incorporate rank-
based fitness to estimate the natural gradient, which implies
the optimization direction of both maximizing rewards and
constraint satisfaction at the same time. ISR provides an
independent ranking for different instances based on rewards
and penalties, which enables a bias for adaptive instance selec-
tion. Extensive experiments show that ACERL outperforms
advanced RL methods, CRL methods, and classic dispatching
rules on eight training instances and eight test instances in
terms of maximizing rewards with constraint satisfaction.
ACERL not only achieves the best makespan but also fully
satisfies tardiness constraints on nearly all instances. Besides,
ACERL is evaluated on five datasets with a total of 40
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noised instances to simulate real-world scenarios. ACERL
presents a robust and outstanding performance on all datasets.
Leave-one-out cross validation is conducted on ACERL by
splitting the training dataset into subsidiary training and test
datasets and presents the overall effectiveness of ACERL.
Furthermore, a comprehensive ablation study demonstrates the
unique contribution of ACERL’s core ingredients.

In future work, it is worth applying ACERL to more real-
world problems such as vehicle routing and grid optimization.
It is also interesting to figure out delicate mechanisms for a
better generalization. Besides, the theoretical aspect presents
an intriguing avenue for future research, potentially bridging
the gap between empirical success and theoretical understand-
ing in constrained ERL. Theoretical analysis will be a valuable
yet challenging future work.
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