
Published as a conference paper at ICLR 2022

EVOLUTIONARY DIVERSITY OPTIMIZATION WITH
CLUSTERING-BASED SELECTION FOR REINFORCEMENT
LEARNING

Yutong Wang∗, Ke Xue∗and Chao Qian†

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China
{wangyt, xuek, qianc}@lamda.nju.edu.cn

ABSTRACT

Reinforcement Learning (RL) has achieved significant successes, which aims to obtain
a single policy maximizing the expected cumulative rewards for a given task. However,
in many real-world scenarios, e.g., navigating in complex environments and controlling
robots, one may need to find a set of policies having both high rewards and diverse behav-
iors, which can bring better exploration and robust few-shot adaptation. Recently, some
methods have been developed by using evolutionary techniques, including iterative repro-
duction and selection of policies. However, due to the inefficient selection mechanisms,
these methods cannot fully guarantee both high quality and diversity. In this paper, we
propose EDO-CS, a new Evolutionary Diversity Optimization algorithm with Clustering-
based Selection. In each iteration, the policies are divided into several clusters based on
their behaviors, and a high-quality policy is selected from each cluster for reproduction.
EDO-CS also adaptively balances the importance between quality and diversity in the
reproduction process. Experiments on various (i.e., deceptive and multi-modal) continu-
ous control tasks, show the superior performance of EDO-CS over previous methods, i.e.,
EDO-CS can achieve a set of policies with both high quality and diversity efficiently while
previous methods cannot.

1 INTRODUCTION

Reinforcement Learning (RL) is an effective method for training agents to make decisions in a given envi-
ronment, which is often to obtain a policy maximizing the expected cumulative rewards (Li, 2017; Sutton
& Barto, 2018). As RL is applied to more real-world scenarios, training a single policy is insufficient to
handle complex problems, and we may need to find a set of policies with both high quality (i.e., rewards)
and diverse behaviors. For example, when navigating in complex environments (Zhu et al., 2017; Mirowski
et al., 2017), there are usually deceptive rewards trapping a single policy into the local optima. Maintaining
a set of policies allows data to be collected with diverse behaviors and may lead to better exploration in
these environments. When controlling robots, it is fragile to have one single policy (Cully et al., 2015). In
contrast, maintaining a set of policies can improve robustness, e.g., enable real robots to recover quickly
from joint damage (Cully et al., 2015), and also be helpful for few-shot adaption when facing unseen tasks
(Kumar et al., 2020). General deep RL algorithms mostly focus on achieving high rewards, restricting their
ability to generate diverse behaviors.

∗Equal contribution
†Corresponding author

1



Published as a conference paper at ICLR 2022

Evolutionary Algorithms (EAs) are general-purpose heuristic optimization algorithms that maintain a pop-
ulation (i.e., a set of solutions), and simulate the natural evolution process with iterative reproduction and
selection (Bäck, 1996). Quality-Diversity (QD) algorithms (Pugh et al., 2016; Cully & Demiris, 2018) are a
specific type of EAs that aim to return a set of high-quality solutions with diverse behaviors in a single run.
They have been naturally applied to RL in complex environments, generating the corresponding RL algo-
rithms NSR-ES (Conti et al., 2018), ME-ES (Colas et al., 2020), DvD-ES (Parker-Holder et al., 2020) and
QD-RL (Cideron et al., 2020). Note that classical QD algorithms like NSLC (Lehman & Stanley, 2011a) or
MAP-Elites (Mouret & Clune, 2015; Cully et al., 2015) often employ a Genetic Algorithm (GA) as the un-
derlying optimizer. However, as RL tasks are often high-dimensional, these methods have replaced GA with
Evolution Strategies (ES) presented by Salimans et al. (2017), which has achieved performance comparable
to state-of-the-art deep RL algorithms on high-dimensional control tasks.

NSR-ES (Conti et al., 2018) maintains a population of ES agents and introduces Novelty Search (NS)
(Lehman & Stanley, 2011b) to improve the performance on RL tasks with sparse or deceptive rewards. That
is, it adds a novelty term (representing behavior diversity) to the objective function of ES agents. In each
iteration, NSR-ES selects a policy from the population for reproduction, where the probability of selecting
a particular policy is proportional to its novelty score.

In contrast to NSR-ES (Conti et al., 2018), DvD-ES (Parker-Holder et al., 2020) optimizes all policies of a
population simultaneously, by maximizing the sum of their rewards and a population-wide diversity criterion
(i.e., the volume between the behaviors of the policies). Though DvD-ES can maintain a diverse population,
it ignores the previously generated policies, leading to “cycling” (i.e., a phenomenon where the population
keeps moving alternatively between two areas) and thus inefficient performance.

It has been shown (Cully & Demiris, 2018) that keeping an additional archive (i.e., a subset of policies
generated-so-far) and selecting policies from the archive instead of the population for reproduction can be
beneficial. There are different ways to select policies from the archive. ME-ES (Colas et al., 2020) uses
an alternating selection mechanism, which selects several policies with the best quality in one iteration and
with the best diversity in the next iteration. QD-RL (Cideron et al., 2020) uses Pareto-based selection (Deb
et al., 2002) by considering both quality and diversity in one iteration, and achieves better performance. That
is, the Pareto front is first calculated with respect to quality and diversity, and then the policies are selected
from the Pareto front based on the crowding distance.

Although Pareto-based selection can guarantee the selected policies uniformly distributed over the Pareto
front, these policies may be still similar in the behavior space, limiting the performance of QD-RL. For
example, Figure 1(a) shows the heat map of a synthetic function f(x, y) in the behavior space, where the
color corresponds to the function value, which we call quality here. The goal is to find the four optimal
solutions distributed in the center of four regions of the behavior space. The points represent the solutions in
the current archive, from which we need to select some solutions for reproduction. QD-RL first calculates
the diversity of each solution (i.e., the average Euclidean distance between this solution and its k-nearest
neighbors) in the archive, and then gets the Pareto front with respect to quality and diversity, as shown in
Figure 1(b). By Pareto-based selection, the blue points together with the red star will be selected, which are
uniformly distributed over the Pareto front, but concentrated in the lower right corner of the behavior space.

In this paper, we propose an Evolutionary Diversity Optimization algorithm with Clustering-based Selection
(EDO-CS). In each iteration, the policies in the archive are divided into several clusters based on their
behaviors, and a high-quality policy is selected from each cluster for reproduction. This selection mechanism
can naturally guarantee the diversity of the selected policies in the behavior space. For example, the red
points and red star in Figure 1(a) will be selected by clustering-based selection, which are distributed in the
four different areas of the behavioral space.

To examine the performance of EDO-CS, we conduct experiments on a variety of continuous control tasks
from OpenAI Gym library (Brockman et al., 2016). Firstly, we show that EDO-CS can solve navigating

2



Published as a conference paper at ICLR 2022

(a) Behavior space (b) Objective space

Figure 1: The selected solutions by Pareto-based selection and clustering-based selection on a synthetic problem. Fig-
ure 1(a) shows the behavior space, where the color of the heat map shows the quality of the solution. Figure 1(b) shows
the quality and diversity of each solution.

problems in environments with deceptive rewards. Then, we test it in multi-modal tasks, showing that EDO-
CS can efficiently find optimal policies with diverse behaviors. In the standard MuJoCo environments that do
not require much diversity, we show that EDO-CS can achieve even better performance than Vanilla ES that
focuses on the quality. We also test the influence of the hyper-parameters of EDO-CS in these environments.

The remainder of this paper is organized as follows. We first introduce some definitions and notations used
in our paper in Section 2. After that, we propose our method in Section 3. The results and analyses of
experiments are shown in Section 4. Finally, we conclude this work in Section 5.

2 BACKGROUND

We consider the setting of a fully observable Markov Decision Process (MDP) described as a tuple
(S,A, P,R, γ), where S is the state space, A is the action space, P (st+1|st, at) gives the probability of
transiting to state st+1 after taking action at at state st, rt = R(st, at, st+1) is the reward obtained by
transiting to state st+1 after taking action at at state st, and γ is the discount factor.

A policy πθ : S → A is a mapping from state space S to action space A, paremeterized by θ, which can be
either deterministic or randomized. The goal of general RL algorithms is to optimize the parameters θ such
that πθ maximizes the expectation of the cumulative rewards R(τ) =

∑T
t=0 γ

trt, where τ is the trajectory
over a horizon T . The objective function can be written as J(θ) = Eτ∼πθ

[R(τ)] .

To make better exploration and have more robustness, QD algorithms seek to find a set of policies with both
high rewards and diverse behaviors (Pugh et al., 2016; Cully & Demiris, 2018). The behavior characteriza-
tion b(πθ) of a policy πθ is usually domain-dependent. For example, it can be the coordinates of the final
location (x, y) of the robot in the robot locomotion problem, and the corresponding behavior space is R2. It
can also be defined as the actions taken by policies, leading to a high-dimensional behavior space. Given an
archive A of policies, the diversity of a particular policy πθ is computed as the average Euclidean distance
between b(πθ) and A′

πθ,k
, the set of k-nearest neighbors of πθ in the archive A. That is:

Div(θ) =
1

k

∑
π′
θ∈A′

πθ ,k

∥b(πθ)− b(π′
θ)∥2. (1)

3



Published as a conference paper at ICLR 2022

Then, the objective function to be maximized can be expressed as:

J(θ) = (1− λ) · Eτ∼πθ
[R(τ)] + λ ·Div(θ), (2)

where λ controls the trade-off between the quality (i.e., rewards) and diversity.

3 THE EDO-CS ALGORITHM

In this section, we introduce the proposed algorithm, Evolutionary Diversity Optimization with Clustering-
based Selection (EDO-CS). We first give an overview of EDO-CS in Section 3.1. Then, we introduce the
selection and reproduction mechanisms in Sections 3.2 and 3.3, respectively. Section 3.4 shows how to
balance the quality and diversity. Finally, we compare EDO-CS with other QD algorithms in Section 3.5.

3.1 OVERVIEW

A general flow of EDO-CS is shown in Algorithm 1. It first initializes an archive A with a maximum capacity
of l, which contains the policies generated-so-far together with their corresponding cumulative rewards and
behaviors; and a bandit B, which is used to sample the weight of diversity (i.e., λ in Eq. (2)) during the
reproduction process. Then, it adds l randomly generated policies into the archive A (lines 1–5), and tries
to improve the policies in A iteratively (lines 7–20). In each iteration, EDO-CS employs K-means (Lloyd,
1982) to partition the policies in the archive into K clusters based on their behaviors (line 8), and selects
one specific policy from each cluster (line 9). After getting K policies, EDO-CS samples the value of λ in
the objective function for each policy from the bandit B, and uses the ES optimizer to update the selected
policies in parallel for T ′ iterations (lines 11–15). The archive and bandit are updated in line 18 after
evaluating all the generated offspring policies. To maintain the diversity of the archive, we avoid adding
policies with similar behaviors (Cully & Mouret, 2013). To be specific, whenever we want to add a new
policy into the archive, we first select the policy with the most similar behavior from the archive. If their
behavior distance is greater than a threshold, we add the new policy into the archive. Otherwise, we compare
their rewards and keep the policy with a higher reward. Note that if the archive size exceeds the capacity l
after adding a new policy, the oldest policy in the archive will be deleted. EDO-CS repeats the above process
until the number of iterations reaches T .

3.2 CLUSTERING-BASED SELECTION

The selection process in each iteration of EDO-CS tries to select a set of high-quality policies with diverse
behaviors from the archive. Here, we employ a natural and efficient way, i.e., clustering-based selection,
which first clusters the policies in the archive and then selects a high-quality policy from each cluster.
Clustering is an unsupervised algorithm for finding natural groups of a data set, such that the data in the
same group (i.e., a cluster) are similar while those in different groups are not similar. For a given data set
D = {x1,x2, · · · ,xn}, a clustering algorithm divides D into K clusters C = {C1, C2, · · · , CK} where
∀i ̸= j, Ci ∩ Cj = ∅ and D = ∪K

i=1Ci. K-means (Lloyd, 1982) is one of the most popular clustering
algorithms, which aims to minimize within-cluster variances, i.e.,

argmin
C

K∑
i=1

∑
x∈Ci

∥x− µi∥22, (3)

where µi is the mean of points in Ci.

In the selection process, we first use K-means to cluster the policies in the archive based on their behaviors,
which means x = b(πθ) in Eq. (3). Then, we select one specific policy πθi

from each cluster Ci. More
specifically, we first select the policy with the highest quality from the archive, and the corresponding cluster

4



Published as a conference paper at ICLR 2022

Algorithm 1: EDO-CS
Input: number K of selected policies, number T of total iterations, number T ′ of updating

iterations, behavior characterization b(πθ), archive size l, archive A, bandit B
Output: archive A
// Warm up

1 for j = 1 : l do
2 Randomly generate policy πθj

;
3 Get cumulative rewards R and behavior b(πθj

) by evaluating the policy πθj
;

4 Add (πθj , R, b(πθj )) into archive A
5 end
6 t = 0;
7 while t < T do

// Selection
8 Use K-means to divide the policies in archive A into K clusters {Ck}Kk=1;
9 Select K policies {πθk

}Kk=1, each one from a cluster;
// Reproduction

10 for k = 1 : K do
// Update in parallel

11 Sample λk from the bandit B;
12 for i = 1 : T ′ do
13 Set the objective function J(θk) = (1− λk)Eτ∼πθk

[R(τ)] + λkDiv(θk);
14 Use ES to update θk as Eq. (6)
15 end
16 Get cumulative rewards R and behavior b(πθ′

k
) by evaluating the updated policy πθ′

k

17 end
18 Update archive A and bandit B;
19 t = t+ T ′

20 end

is denoted as Ci∗ . Then, for each other cluster Ci ̸= Ci∗ , we find its M highest-quality policies and select
one uniformly at random. Policies in the same cluster have similar behaviors, and each selected policy can
be viewed as a representative of its cluster, which has the potential to reproduce a high-quality policy with
this type of behavior. Thus, by this clustering-based selection process, we can select good policies from
different areas of the behavior space for reproduction.

Note that some previous works (Vassiliades et al., 2017; 2018) have also introduced clustering into QD
algorithms to ensure diversity. But the usages are quite different. Previous works use the grid-based container
and employ clustering to partition a high-dimensional behavior space into well-spread geometric regions
before running the iterative evolutionary process, while our EDO-CS employs clustering to select a set of
high-quality solutions with diverse behaviors from the archive in each iteration.

3.3 ES-BASED REPRODUCTION

To reproduce offspring solutions from the selected solutions, we use ES as the optimizer. Inspired by natural
evolution, ES is a broad class of population-based black-box optimization algorithms, while here we use the
version introduced in Salimans et al. (2017), which has achieved performance comparable to state-of-the-art
deep RL algorithms on high-dimensional control tasks. ES represents a population of parameters θ by a

5



Published as a conference paper at ICLR 2022

distribution pϕ(θ), parameterized by ϕ, and seeks to optimize the expected objective value Eθ∼pϕ
[J(θ)],

where J(θ) is an objective function to measure the goodness of parameters θ. Given the population distri-
bution pϕt

, parameters θi
t ∼ N (θt, σ

2I) are sampled and evaluated. Using the log-likelihood trick, θt is
updated using an estimation of the gradient of expected reward:

∇ϕEθ∼pϕ
[J(θ)] ≈ 1

n

∑n

i=1
J(θi

t)∇ϕ log pϕ(θ
i
t), (4)

where n is the number of samples evaluated per generation. In practice, any θi
t can be decomposed as

θi
t = θt + σϵi, where σ > 0 and ϵi ∼ N (0, I). Thus, the gradient estimation in Eq. (4) becomes

∇θt
Eϵ∼N (0,I) [J(θt + σϵ)] ≈ 1

nσ

∑n

i=1
J(θi

t)ϵ
i. (5)

Based on the above gradient estimation, the parameter θt will be updated as

θt+1 = θt +
η

nσ

∑n

i=1
J(θi

t)ϵ
i, (6)

where η is the learning rate of the ES optimizer. In this paper, we set J(θ) as Eq. (2), i.e., a weighted sum
of quality and diversity. But as different values of the hyper-parameter λ in Eq. (2) may be required for
different tasks as well as different stages of the same task, we self-adjust it based on multi-armed bandit,
which will be presented in the next subsection.

3.4 ADAPTIVE BALANCE BETWEEN QUALITY AND DIVERSITY

In Eq. (2), the reward and diversity correspond to exploitation and exploration, respectively, implying that
the hyper-parameter λ controls the trade-off between exploitation and exploration. Here, we model the
problem of setting an appropriate λ as a multi-armed bandit problem (Vermorel & Mohri, 2005) by treating
each alternative λ as an arm of the bandit. Let Λ = {λ(1), λ(2), . . . , λ(m)} denote the set of alternative arms.
For each arm λ(i), the gain of rewards after updating a policy with λ(i) is used as its reward. Note that to
use the multi-armed bandit model, we have made a stationary assumption, i.e., disregarding the change of
the reward distribution of each arm in the process of optimization.

The Upper Confidence Bound (UCB) algorithm (Auer, 2002) is used to select a specific arm in each iteration.
That is, the arm λt in iteration t is chosen as

λt = argmax
λ(i)

µt(λ
(i)) + c

√
ln t

Nt(λ(i))
, (7)

where c > 0, µt(λ
(i)) is the estimated mean reward of arm λ(i), and Nt(λ

(i)) is the number of times we have
selected λ(i). Note that µt(λ

(i)) reflects the current knowledge of the algorithm in a condensed form and
guides further exploitation, while

√
ln t

Nt(λ(i))
(i.e., the width of the confidence bound) reflects the uncertainty

of the algorithm’s knowledge and guides further exploration. The ablation study of the effectiveness of
multi-armed bandit can be found in Appendix A.2.

3.5 COMPARISON OF QD ALGORITHMS

Finally, we compare EDO-CS with other related QD algorithms from the perspective of EAs, as shown in
Table 1. The second column gives the selection strategies, and the third column shows whether the quality or
diversity is considered in the objective function for reproducing offspring solutions. In the column of “EAs
type”, the algorithm maintains µ solutions in the population, and generates λ offspring solutions in each
iteration, where (µ+λ) and (µ, λ) denote that the parent solutions will and will not be selected, respectively.
The last column indicates whether the algorithm selects the solutions from the archive.

6



Published as a conference paper at ICLR 2022

Table 1: A review of QD algorithms from the perspective of EAs.

Method Selection Reproduction EAs type From archive
Vanilla ES The only parent solution Quality (1, 1) ×
NSR-ES Probabilistic selection Quality and diversity (K, 1) ×
CVT-ES Uniform selection Quality and diversity (K +K) ✓
ME-ES Biased selection Quality or diversity (K +K) ✓
DvD-ES All parent solutions Quality and diversity (K,K) ×
QD-RL Pareto-based selection Quality or diversity (K +K) ✓

EDO-CS Clustering-based selection Quality and diversity (K +K) ✓

4 EXPERIMENT

To examine the performance of EDO-CS, we conduct experiments on a variety of continuous control tasks
from the OpenAI Gym library (Brockman et al., 2016), including deceptive, multi-modal and standard Mu-
JoCo environments. We compare EDO-CS against Vanilla ES (Salimans et al., 2017), NSR-ES (Conti et al.,
2018), CVT-MAP-Elites (Vassiliades et al., 2018), ME-ES (Colas et al., 2020), DvD-ES (Parker-Holder
et al., 2020) and QD-RL (Cideron et al., 2020). For a fair comparison, we use the ES optimizer with the
same hyper-parameters in all algorithms, and CVT-MAP-Elites is denoted as CVT-ES accordingly. The pop-
ulation size K of these algorithms is always set to 5. For EDO-CS, the number M of candidates for selection
in each cluster is set to 2, and the arms of the bandit are {λ(1) = 0, λ(2) = 0.5}. Other parameter settings can
be found in Appendix A.1. To have a sample-wise fair comparison, each algorithm uses the same number
(i.e., 3000) of generations of ES optimizer. Note that each of the 600 iterations in the x-axis of all figures
corresponds to five generations. Thus, for Vanilla ES and NSR-ES which reproduce only one policy in each
iteration, one unit in the x-axis actually corresponds to their five iterations. Other algorithms reproduce five
policies in each iteration, and thus one unit in the x-axis just corresponds to their one iteration. We report
the mean and standard deviations across six identical seeds (2016 - 2021) for all algorithms and all tasks.

4.1 DECEPTIVE ENVIRONMENTS

First, we consider an environment with deceptive rewards, which is modified from the standard Ant-v2
environment. As shown in Figure 2(a), a U-shape wall is in front of the ant, separating the ant from the
target, i.e., green cuboid. The reward is a mixture of distance away from the target and costs for joint
torques, encouraging the ant to walk to the target as fast as possible. Obviously, following the gradient of
only the expected cumulative rewards will make the ant walk forward directly and get trapped by the wall.
Here we use the final location (x, y) of the ant as the behavior characterization.

Figure 2(b) shows the rewards of the best-performing policy in the current archive in each iteration. As
expected, both Vanilla ES and DvD-ES fail to get past the wall, because they do not use an archive to record
previously explored policies, and thus cannot ensure diversity, leading to bad exploration under deceptive
environments. NSR-ES can converge fast, but will finally get trapped into a local optimum. This is because
NSR-ES reproduces only one policy in each iteration, and may update the same policy for several iterations,
which can cause a rapid improvement of a particular policy but may also lead to a sub-optimal policy due
to the lack of considering the whole behavior space. Among the previous algorithms we have compared,
only QD-RL can finally obtain the optimal policy, but its convergence speed is slow. We can observe that
our proposed algorithm EDO-CS can converge to the optimal policy much faster, showing the advantage of
clustering-based selection.

7



Published as a conference paper at ICLR 2022

0 100 200 300 400 500 600
Iterations

−2000

−1750

−1500

−1250

−1000

−750

−500

R
ew

ar
d

AntWall-v0

EDO-CS
Vanilla ES
NSR-ES
CVT-ES
ME-ES
DvD-ES
QD-RL

(a) AntWall-v0 environment (b) Performance of different algorithms

Figure 2: The AntWall-v0 environment and the performance of different algorithms.

4.2 MULTI-MODAL ENVIRONMENTS

Next, we create two multi-modal environments to explicitly examine whether EDO-CS can efficiently find
high-quality policies with diverse behaviors. The created HalfCheetahFwdBwd and AntFwdBwd environ-
ments are based on HalfCheetah-v2 and Ant-v2, respectively. In the HalfCheetahFwdBwd environment,
instead of rewarding the agent for walking forward only, we assign rewards for both walking forward and
backward, implying that there are two modals in this environment, i.e., walking forward and walking back-
ward. We train policies in this multi-modal environment, but test them in the single-modal environments
HalfCheetahFwd and HalfCheetahBwd. The best-performing policies for these two modals are reported,
respectively. We use the final location (x, y) of the agent as the behavior characterization. The AntFwdBwd
environment is created similarly.

To compare different algorithms more clearly, we organize the experimental results into a tabular form.
Table 2 reports the cumulative rewards, together with the average performance rankings of all algorithms in
the four environments. We can observe that Vanilla ES which maintains one policy can only learn a single
modal, i.e., walking backward in HalfCheetahFwdBwd and walking forward in AntFwdBwd. As expected,
all the other algorithms maintain a population of policies, and thus can achieve better performance than
Vanilla ES in the multi-modal environments. DvD-ES can learn both modals in AntFwdBwd, but a single
modal in HalfCheetahFwdBwd. NSR-ES, ME-ES, CVT-ES and QD-RL can learn both modals in both
environments, but the quality of each modal is less satisfactory due to their inefficient selection mechanisms.
We can observe that EDO-CS can learn any modal, and always achieves the highest quality in each modal,
validating that EDO-CS can find a set of high-quality policies with diverse behaviors.

Table 2: Rewards obtained by different algorithms in multi-modal environments.

Environment EDO-CS QD-RL ME-ES DvD-ES CVT-ES NSR-ES Vanilla ES
HalfCheetahFwd 4284 2930 2700 -3419 3219 1346 -5543
HalfCheetahBwd 6548 6013 5953 6353 4672 5366 3911

AntFwd 4617 4291 4316 4507 3856 1737 1911
AntBwd 4697 4164 4123 3498 2958 3961 -851

Performance Ranking 1 3 3.5 3.75 4.75 5.25 6.75

8



Published as a conference paper at ICLR 2022

4.3 SINGLE-MODAL ENVIRONMENTS

To examine the performance of EDO-CS for solving tasks that do not require much diversity, we conduct
experiments in standard MuJoCo environments. Here we adopt the action-based behavior characterization,
which was also used in (Parker-Holder et al., 2020). The behavior characterization b(πθ) of a particular
deterministic policy πθ is represented in a vectorized form: b(πθ) = {πθ(·|s)}s∈S , where S is the state
space, and πθ(· | s) corresponds to the action taken in state s under policy πθ. Since the state space can be
infinitely large, we randomly sample 20 states instead of all. We compare all algorithms used before, except
ME-ES, which requires discretization of the behavior space and is hard to be applied to high dimensional
behavior space. Figure 3 shows the results of different algorithms on four standard MuJoCo tasks. We can
observe that EDO-CS can always achieve the best final performance. Although Vanilla ES and NSR-ES can
sometimes converge faster at the early stage of optimization, e.g., in the Humanoid-v2 environment, their
final performance is limited. The performance of DVD-ES and QD-RL is dominated by that of EDO-CS,
because their curves are always below that of EDO-CS.

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

R
ew
ar
d

Hopper-v2

0 100 200 300 400 500 600
Iterations

−1000

0

1000

2000

3000

4000

5000

R
ew
ar
d

Walker2d-v2

0 100 200 300 400 500 600
Iterations

1000

2000

3000

4000

5000

R
ew
ar
d

Ant-v2

0 100 200 300 400 500 600
Iterations

0

2000

4000

6000

8000

R
ew
ar
d

Humanoid-v2

Figure 3: Performance of different algorithms in four standard MuJoCo environments.

By visualizing the clusters in different iterations of EDO-CS, we find that a set of diverse policies can be
indeed selected from the archive through clustering-based selection. By the comparison with fixed λ, we also
validate the effectiveness of self-adjusting λ in Eq. (2) using multi-armed bandit modeling. The influence
of the hyper-parameters (including clustering algorithm, number T ′ of updating iterations, population size
K and archive size l) on the performance of EDO-CS is investigated as well. Due to space limitation, these
experimental results are provided in Appendix A.2.

5 CONCLUSION

QD algorithms aim to help RL to find a set of high-quality policies with diverse behaviors in complex envi-
ronments. However, existing algorithms cannot fully guarantee both quality and diversity, mainly because
of their inefficient selection mechanisms. In this paper, we propose the algorithm EDO-CS using clustering-
based selection, and demonstrate its superiority by experiments on various control tasks.

We have used ES as the optimizer. In fact, EDO-CS can also be equipped with the sample-efficient policy
optimizer (Liu et al., 2020; Nilsson & Cully, 2021), which may further improve the performance. The
mechanism of self-adjusting λ by multi-armed bandit modeling can be replaced by state-of-the-art online-
learning algorithms, which may better balance the importance of quality and diversity. In addition, how
to decide the population size automatically is also a matter of interest. One possible approach is to let
the clustering algorithm determine the number of clusters by itself. Other interesting future works include
combining EDO-CS with representation or manifold learning (Vassiliades & Mouret, 2018; Gaier et al.,
2020; Rakicevic et al., 2021) in the parameter space or behavior space, and analyzing the performance of
EDO-CS theoretically (Gao et al., 2015; Doncieux et al., 2019).

9



Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful and valuable comments. We thank Feiyu Liu, Lei
Yuan, Ziniu Li, Tian Xu, Haopu Shang, and Xueyao Zhang for reading the manuscript and providing helpful
comments. This work was supported by the NSFC (62022039), the Jiangsu NSF (BK20201247), and the
CAAI-Huawei MindSpore Open Fund.

REFERENCES

P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2002.

T. Bäck. Evolutionary algorithms in theory and practice: Evolution Strategies, evolutionary programming,
genetic algorithms. Oxford University Press, 1996.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. OpenAI Gym.
CoRR abs/1606.01540, 2016.

G. Cideron, T. Pierrot, N. Perrin, K. Beguir, and O. Sigaud. QD-RL: Efficient mixing of quality and diversity
in reinforcement learning. CoRR abs/2006.08505, 2020.

C. Colas, V. Madhavan, J. Huizinga, and J. Clune. Scaling map-elites to deep neuroevolution. In Proceedings
of the 22nd Genetic and Evolutionary Computation Conference (GECCO), pp. 67–75, Cancún, Mexico,
2020.

E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J. Clune. Improving exploration in evolu-
tion strategies for deep reinforcement learning via a population of novelty-seeking agents. In Advances in
Neural Information Processing Systems 32 (NeurIPS), pp. 5032–5043, Montréal, Canada, 2018.

A. Cully and Y. Demiris. Quality and diversity optimization: A unifying modular framework. IEEE Trans-
actions on Evolutionary Computation, 22(2):245–259, 2018.

A. Cully and J.-B. Mouret. Behavioral repertoire learning in robotics. In Proceedings of the 15th Annual
Conference on Genetic and Evolutionary Computation (GECCO), pp. 175–182, Amsterdam, The Nether-
lands, 2013.

A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature, 521(7553):
503–507, 2015.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

S. Doncieux, A. Laflaquière, and A. Coninx. Novelty search: A theoretical perspective. In Proceedings
of the 21st Genetic and Evolutionary Computation Conference (GECCO), pp. 99–106, Prague, Czech
Republic, 2019.

A. Gaier, A. Asteroth, and J.-B. Mouret. Discovering representations for black-box optimization. In Pro-
ceeding of the 22nd Genetic and Evolutionary Computation Conference (GECCO), pp. 103–111, Cancún,
Mexico, 2020.

W. Gao, M. Pourhassan, and F. Neumann. Runtime analysis of evolutionary diversity optimization and the
vertex cover problem. In Proceedings of the 17th Genetic and Evolutionary Computation Conference
(GECCO) Companion, pp. 1395–1396, Madrid, Spain, 2015.

10



Published as a conference paper at ICLR 2022

S. Kumar, A. Kumar, S. Levine, and C. Finn. One solution is not all you need: Few-shot extrapolation
via structured MaxEnt RL. In Advances in Neural Information Processing Systems 33 (NeurIPS), pp.
8198–8210, Vancouver, Canada, 2020.

J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through novelty search and local
competition. In Proceedings of the 13th Genetic and Evolutionary Computation Conference (GECCO),
pp. 211–218, Dublin, Ireland, 2011a.

J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, 2011b.

Y. Li. Deep reinforcement learning: An overview. CoRR abs/1701.07274, 2017.

F. Liu, Z. Li, and C. Qian. Self-guided evolution strategies with historical estimated gradients. In Pro-
ceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1474–1480,
Yokohama, Japan, 2020.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137,
1982.

P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to navigate in complex environments. In Pro-
ceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 2017.

J.-B. Mouret and J. Clune. Illuminating search spaces by mapping elites. CoRR abs/1504.04909, 2015.

F. Murtagh and P. Legendre. Ward’s hierarchical agglomerative clustering method: which algorithms imple-
ment ward’s criterion? Journal of classification, 31:274–295, 2014.

O. Nilsson and A. Cully. Policy gradient assisted map-elites. In Proceedings of the 23th Genetic and
Evolutionary Computation Conference (GECCO), pp. 866–875, Lille, France, 2021.

J. Parker-Holder, A. Pacchiano, K. M. Choromanski, and S. J. Roberts. Effective diversity in population
based reinforcement learning. In Advances in Neural Information Processing Systems 33 (NeurIPS), pp.
18050–18062, Vancouver, Canada, 2020.

J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, 3:40, 2016.

N. Rakicevic, A. Cully, and P. Kormushev. Policy manifold search: Exploring the manifold hypothesis
for diversity-based neuroevolution. In Proceeding of the 23th Genetic and Evolutionary Computation
Conference (GECCO), pp. 901–909, Lille, France, 2021.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable alternative to
reinforcement learning. CoRR abs/1703.03864, 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT Press, 2018.

V. Vassiliades and J.-B. Mouret. Discovering the elite hypervolume by leveraging interspecies correlation.
In Proceedings of the 20th Genetic and Evolutionary Computation Conference (GECCO), pp. 149–156,
Kyoto, Japan, 2018.

V. Vassiliades, K. I. Chatzilygeroudis, and J.-B. Mouret. A comparison of illumination algorithms in un-
bounded spaces. In Proceeding of the 19th Genetic and Evolutionary Computation Conference Compan-
ion (GECCO), pp. 1578–1581, Berlin, Germany, 2017.

11



Published as a conference paper at ICLR 2022

V. Vassiliades, K. I. Chatzilygeroudis, and J.-B. Mouret. Using centroidal voronoi tessellations to scale
up the multidimensional archive of phenotypic elites algorithm. IEEE Transactions on Evolutionary
Computation, 22(4):623–630, 2018.

J. Vermorel and M. Mohri. Multi-armed bandit algorithms and empirical evaluation. In Proceedings of the
16th European Conference on Machine Learning (ECML), pp. 437–448, Porto, Portugal, 2005.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method for very large
databases. ACM sigmod record, 25(2):103–114, 1996.

Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, F.-F. Li, and A. Farhadi. Target-driven visual navigation
in indoor scenes using deep reinforcement learning. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pp. 3357–3364, Singapore, 2017.

12



Published as a conference paper at ICLR 2022

A APPENDIX

A.1 HYPER-PARAMETERS

This section will introduce the hyper-parameters used in our experiments. For fair comparison, all the hyper-
parameters of different algorithms are set to be same in each environment.

Table 3: Hyper-parameters for deceptive and multi-modal environments.

Hyper-parameter AntWall-v0 HalfCheetahFwdBwd AntFwdBwd
Population size M 5 5 5

Archive size l 20 100 100
Number T ′ of updating iterations 10 5 10

σ in ES 0.025 0.03 0.025
η in ES 0.015 0.02 0.015

Table 4: Hyper-parameters for single-modal environments.

Hyper-parameter Hopper-v2 Walker2d-v2 Ant-v2 Humanoid-v2
Population size M 5 5 5 5

Archive size l 30 30 30 20
Number T ′ of updating iterations 5 5 10 10

σ in ES 0.025 0.025 0.025 0.0075
η in ES 0.02 0.03 0.015 0.02

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Visualization of clusters. We visualize the clusters in different iterations of EDO-CS for the experiments
under the AntWall-v0 environment. Figure 4 shows the behavior space, where the points represent the so-
lutions in the current archive, and the different colors represent the different clusters. Throughout the op-
timization process, we can observe that the solutions in the archive can always be partitioned into clusters
with different behaviors, validating the effectiveness of clustering-based selection. As the optimization goes,
the clusters can spread different regions of the behavior space better, also implying that EDO-CS can indeed
find a set of diverse policies.

Figure 4: Visualization of the clusters in different iterations of EDO-CS under the AntWall-v0 environment.

Adaptive λ. EDO-CS self-adjusts the hyper-parameter λ in Eq. (2) by multi-armed bandit modeling. A
larger λ implies a larger weight of diversity when doing reproduction with ES. We have used {λ(1) =

13



Published as a conference paper at ICLR 2022

0, λ(2) = 0.5} as the two arms in the experiments. To examine the effectiveness of this adaptive mechanism,
we compare it with fixed λ ∈ {0, 0.5} in deceptive and multi-modal environments. The results in Table 5
show that the adaptive setting of λ always leads to the best performance.

Table 5: Performance of EDO-CS under different settings of λ.

Setting of λ AntWall-v0 HalfCheetahFwd HalfCheetahBwd AntFwd AntBwd
Adaptive λ -529 4284 6548 4617 4697

λ = 0 -650 3856 5931 4340 4426
λ = 0.5 -850 3877 6077 2800 3093

Direct optimization. The selection process in each iteration of EDO-CS is to select a set of high-quality
policies with diverse behaviors from the archive. One direct way is to optimize the weighted sum of the
quality (i.e., rewards) and an explicit diversity metric, which is, however, quite difficult. First, it is hard
to balance the weights of quality and diversity in the objective function. Second, this is actually a pseudo-
Boolean optimization problem with the search space size

(
l
K

)
, where l is the archive size and K is the number

of selected policies. Besides, this optimization problem requires an efficient optimization algorithm, which
is, however, not easy to design. Here, we empirically compare our clustering-based selection strategy with
the direct-optimization-based selection strategy.

For the direct optimization procedure, a set of high-quality policies with diverse behaviors is selected from
the archive in each iteration, by directly optimizing the weighted sum of quality and diversity. The quality
is defined as the sum of rewards of the selected policies. We consider two diversity measures. One is the
sum of the pairwise distances between all the policies in the selected set. The other is the determinant of the
similarity matrix Π of the policies in the selected set, where Πi,j is the similarity between the i-th and j-th
selected policies, and the main diagonal are all 1. The similarity matrix Π is also used in DvD-ES (Parker-
Holder et al., 2020). The two corresponding objective functions are denoted as fpair and fdet, respectively,
as shown in Eqs. (8) and (9).

fpair = (1− ω)

K∑
i=1

Eτ∼πθi
[R(τ)] + ω

K∑
i=1

∑
j ̸=i

∥b(πθi)− b(πθj )∥2 (8)

fdet = (1− ω)

K∑
i=1

Eτ∼πθi
[R(τ)] + ω · det(Π) (9)

The weight ω in Eqs. (8) and (9) is set to 1/2 in the experiments, i.e., the quality and diversity are treated
equally important. Note that both the quality and diversity have been normalized to be in [0, 1]. For the
optimizer, we employ a genetic algorithm which maintains 100 solutions (i.e., the population size is 100)
and generates 100 offspring solutions in each generation. To optimize fpair and fdet, we run the genetic
algorithm for 200 generations.

The results are shown in the following two tables. EDO-CS is the proposed algorithm with the clustering-
based selection strategy, while EDO-DOSpair and EDO-DOSdet denote the algorithms with the direct-
optimization-based selection strategy, where the objective functions are fpair and fdet, respectively. Table 6
shows the reward of the best policy found by each algorithm, from which we can observe that the EDO-CS
algorithm performs better in most cases. Table 7 shows the time required to run the selection process once,
and the clustering-based selection strategy is significantly faster than the direct-optimization-based selection
strategy. Thus, our clustering-based selection method can be better and faster.

14



Published as a conference paper at ICLR 2022

Table 6: Performance of EDO-CS and the algorithms with the direct-optimization-based selection strategy.

Method AntWall-v0 HalfCheetahFwd HalfCheetahBwd AntFwd AntBwd
EDO-CS -529 4284 6548 4617 4697

EDO-DOSpair -706 4188 5847 5013 4392
EDO-DOSdet -536 -5591 6529 -530 2417

Table 7: Time required to run the selection process once of EDO-CS and the algorithms with the direct-optimization-
based selection strategy.

Method AntWall-v0 HalfCheetahFwdBwd AntFwdBwd
EDO-CS 0.015 0.021 0.023

EDO-DOSpair 9.570 9.802 9.807
EDO-DOSdet 8.900 9.266 9.567

Clustering algorithm. An essential step of EDO-CS is to cluster policies in the behavior space. We
have adopted the K-means clustering algorithm because of its popularity. However, it is interesting to
examine whether the choice of clustering algorithm will affect the performance of EDO-CS largely. Thus, we
conduct experiments over various clustering algorithms, including Hierarchical Agglomerative Clustering
(HAC) (Murtagh & Legendre, 2014), K-means (Lloyd, 1982), Balanced Iterative Reducing Clustering using
Hierarchies (BIRCH) (Zhang et al., 1996), and Spectral Clustering (Von Luxburg, 2007). Figure 5 shows that
these clustering algorithms except BIRCH can lead to the similar performance of EDO-CS in most cases.
BIRCH is suitable for a large number of samples, while the number of policies in the archive is relatively
small. Thus, we may not get good clustering results by BIRCH, degrading the performance.

0 100 200 300 400 500 600
Iterations

−2000

−1750

−1500

−1250

−1000

−750

−500

R
ew

ar
d

AntWall-v0

HAC
K-Means
BIRCH
Spectral Clustering

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

R
ew

ar
d

HalfCheetahFwd

HAC
K-Means
BIRCH
Spectral Clustering

0 100 200 300 400 500 600
Iterations

0

2000

4000

6000

R
ew

ar
d

HalfCheetahBwd

HAC
K-Means
BIRCH
Spectral Clustering

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

R
ew

ar
d

Walker2d-v2

HAC
K-Means
BIRCH
Spectral Clustering

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

R
ew

ar
d

Hopper-v2

HAC
K-Means
BIRCH
Spectral Clustering

Figure 5: Performance of EDO-CS equipped with different clustering algorithms.

15



Published as a conference paper at ICLR 2022

Number T ′ of updating iterations. We also study the influence of the number T ′ of updating iterations,
i.e., the number of iterations for which we use ES to update the policy (in lines 12–15 of Algorithm 1) after
selecting it from the archive. We have tested T ′ ∈ {5, 10, 15, 20} under various environments. The results
in Table 8 show that the performance of EDO-CS is not very sensitive to T ′. Note that we have also tried
to update the selected policy for only one iteration (i.e., set T ′ = 1), but it fails. If the number of updating
iterations is too small, the difference between solutions will be insignificant, leading to ineffective selection.

Table 8: Performance of EDO-CS under different numbers T ′ of updating iterations.

Environment T ′ = 5 T ′ = 10 T ′ = 15 T ′ = 20
HalfCheetahFwd 4462 4216 4911 4926
HalfCheetahBwd 6407 6527 6285 6203

Walker2d-v2 2830 4870 4362 4676
Hopper-v2 3301 3566 3578 3559

Population size K. The population size K refers to the number of policies we select from the archive
in each iteration. If the population size is too small, we may not be able to find all optimal policies with
diverse behaviors. If the population size is too large, some policies with similar behavior will be selected
and updated, harming the efficiency of EDO-CS. Thus, it is important to select a proper population size K.

Table 9 shows the performance of EDO-CS under different population sizes. For a sample-wise fair com-
parison, we report the results under the same number of interactions with the environment rather than under
the same number of iterations. It can be observed that the default population size of K = 5 is appropriate in
most environments.

Table 9: Rewards obtained by EDO-CS with different population sizes K, given the same number of interactions with
the environment.

Environment K = 3 K = 5 K = 7 K = 9
AntWall-v0 -852 -618 -1082 -970

HalfCheetahFwdBwd 9101 10274 10221 10242
Walker2d-v2 1840 2453 3062 3558
Hopper-v2 2688 3164 2781 2856

Figure 6 shows the performance of EDO-CS with different population sizes, given the same number of iter-
ations. As expected, a larger population size implies a greater number of interactions with the environment,
and thus results in a better performance of EDO-CS.

Archive size l. The archive is used to record the high-quality policies with diverse behaviors generated-
so-far. It is crucial for EDO-CS, as the parent policies for reproduction in each iteration are selected from
the archive. If the archive size l is too small, some useful information may be lost. If l is too large, the
archive will contain lots of low-quality policies encountered before, the selection of which for reproduction
will lower the efficiency. Figure 7 shows the results under different archive sizes. It would be interesting to
investigate how to adaptively set the archive size of QD algorithms.

16



Published as a conference paper at ICLR 2022

0 100 200 300 400 500 600
Iterations

−2000

−1750

−1500

−1250

−1000

−750

−500

R
ew
ar
d

AntWall-v0

3
5
7
9

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

R
ew
ar
d

HalfCheetahFwd

3
5
7
9

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

6000

R
ew
ar
d

HalfCheetahBwd

3
5
7
9

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

6000

R
ew
ar
d

Walker2d-v2

3
5
7
9

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

R
ew
ar
d

Hopper-v2

3
5
7
9

Figure 6: Performance of EDO-CS with different population sizes K, given the same number of iterations.

0 100 200 300 400 500 600
Iterations

−2000

−1750

−1500

−1250

−1000

−750

−500

R
ew
ar
d

AntWall-v0

20
30
40
50

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

R
ew
ar
d

HalfCheetahFwd

50
100
150
200

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

6000

R
ew
ar
d

HalfCheetahBwd

50
100
150
200

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

5000

R
ew
ar
d

Walker2d-v2

20
30
40
50

0 100 200 300 400 500 600
Iterations

0

1000

2000

3000

4000

R
ew
ar
d

Hopper-v2

20
30
40
50

Figure 7: Performance of EDO-CS under different archive sizes.

17


	Introduction
	Background
	The EDO-CS Algorithm
	Overview
	Clustering-based selection
	ES-based reproduction
	Adaptive balance between quality and diversity
	Comparison of QD algorithms

	Experiment
	Deceptive environments
	Multi-modal environments
	Single-modal environments

	Conclusion
	Appendix
	Hyper-parameters
	Additional Experimental Results


