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Abstract

Reinforcement Learning (RL) has made promis-
ing progress in planning and decision-making for
Autonomous Vehicles (AVs) in simple driving
scenarios. However, existing RL algorithms for
AVs fail to learn critical driving skills in complex
urban scenarios. First, urban driving scenarios
require AVs to handle multiple driving tasks of
which conventional RL algorithms are incapable.
Second, the presence of other vehicles in urban
scenarios results in a dynamically changing envi-
ronment, which challenges RL algorithms to plan
the action and trajectory of the AV. In this work,
we propose an action and trajectory planner using
Hierarchical Reinforcement Learning (atHRL)
method, which models the agent behavior in a
hierarchical model by using the mid-level percep-
tion of the lidar and birdeye view. The proposed
atHRL method learns to make decisions about the
agent’s future trajectory and computes target way-
points under continuous settings based on a hierar-
chical DDPG algorithm. The waypoints planned
by the atHRL model are then sent to a low-level
controller to generate the steering and throttle
commands required for the vehicle maneuver. We
empirically verify the efficacy of atHRL through
extensive experiments in complex urban driving
scenarios that compose multiple tasks with the
presence of other vehicles in the CARLA simula-
tor. The experimental results suggest a significant
performance improvement compared to the state-
of-the-art RL methods.
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1. Introduction

Autonomous driving has been greatly advanced with the
rapid development of machine learning in the past few years.
The autonomous driving system can be roughly categorized
into several different parts: perception, localization, plan-
ning, and control. The planning module is one of the most
challenging tasks in achieving a reliable autonomous driv-
ing system, especially when experiencing dense traffic with
a large number of diverse participants.

Traditional planners for autonomous driving could be
roughly categorized into optimization-based planners and
sampling-based planners (Paden et al., 2016). They are
usually designed based on rules and strongly rely on the
prediction and sensing information, thus they are unable to
generalize or handle interactive scenarios well. To address
the uncertainties and changes in the intentions during the
interaction process in those scenarios, many learning-based
planners have been proposed in recent years (Zhu & Zhao,
2021; Kiran et al., 2021).

More recently, Hierarchical Reinforcement Learning (HRL)
based planners have been proposed for autonomous driv-
ing. Compared to directly outputting control policies such
as steering and throttle, HRL-based methods better model
the multi-layer decision-making process in driving, where
the lower-level decisions are dependent on high-level de-
cisions. In (Naveed et al., 2020), an option of either lane
change or lane follow is provided by the high-level planner,
and the low-level trajectory planner then learns to output
waypoints for the vehicle to follow. As a recent analysis in
HRL autonomous driving, (Qiao et al., 2020a) proposes a
three-layer HRL method based on Deep Q Network (DQN)
(Mnih et al., 2015) and handcraft some decision choices
to plan the behavior and trajectory in urban driving scenar-
ios, achieving promising results in the lane changing and
left-turn scenarios. However, the discrete action space in Q-
learning-based methods imposes additional constraints on
the choices of available driving decisions in complex urban
driving scenarios. With experiments, we show that current
H-DQN methods like (Qiao et al., 2020a) are struggling
with driving scenarios involving multiple tasks and with the
presence of other vehicles.
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Figure 1. The architecture of the proposed hierarchical system
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In this work, we propose an action and trajectory planner
using Hierarchical Reinforcement Learning (atHRL) to
model the hierarchical behaviors of decision making and
planning for autonomous driving, as shown in Fig. 1. In
the proposed method, a hierarchical architecture is adopted
which includes a high-level intention planner learning a
driving intention, a low-level trajectory planner combin-
ing the intention with the original observation to learn the
trajectory and the desired speed, and a PID controller to
compute the actions of throttle and steering of the vehicle
in the environment from the trajectory and speed. The two
RL planners both adopt the off-policy actor-critic Deep De-
terministic Policy Gradient (DDPG) (Lillicrap et al., 2019)
algorithm. The PID controller is then used to compute the
motion command to track the waypoints. The proposed
atHRL explicitly models a three-layer hierarchical decision
and planning process with dedicated information flow and
thus achieves better and more reliable performance. More-
over, hierarchical DDPG methods demonstrate superior ef-
ficacy in larger and more complex environments, as they
possess the capability to make decisions in a continuous
space. In contrast, Q-learning-based methods are limited by
their discrete decision-making approach. With experiment
results conducted in dynamic urban driving scenarios in
the CARLA simulator that consist of multiple driving tasks
and involve other vehicles, we empirically verify that our
method outperforms conventional RL planners and other
similar HRL-based planners such as method based on hi-
erarchical DQN in (Qiao et al., 2020a), which indicates
that the hierarchical off-policy actor-critic planner suits the
decision-making tasks in urban autonomous driving better.

The main contributions are summarized below:

» we propose a three-level hierarchical structure to model
the planning and decision-making process in urban

autonomous driving environments with the mid-level
perception data.

e we use two off-policy actor-critic structures to learn
two decision layers that generate trajectory in continu-
ous space and apply a PID controller to compute the
throttle and steering.

» we propose the atHRL algorithm that makes better per-
formance compared to alternative RL and Q-learning-
based HRL methods in dynamic urban autonomous
driving scenarios due to the robustness and smoothness
of driving in the continuous action space

2. Related Work

2.1. Reinforcement Learning

Reinforcement Learning has been proven to be a promising
technique in training agents to handle various tasks through
learning from low-level observations. In the past few years,
a number of RL algorithms have been proposed, including
value-based methods such as DQN (Mnih et al., 2015) and
its variants, policy-based methods such as A3C (Mnih et al.,
2016), DDPG (Lillicrap et al., 2019) and PPO (Schulman
et al., 2017). Traditional RL methods have been success-
fully applied to complex decision-making tasks in different
fields and have accomplished a lot. For example, early
in 2015, (Mnih et al., 2015) applied DQN to train agents
to play Atari 2600 games and achieved good performance
over a set of games. More recently, (Vinyals et al., 2019)
successfully trained an agent to master StarCraft with rein-
forcement learning. In robotics, (Levine et al., 2016) and
(Gu et al., 2016) developed reinforcement learning methods
and learned policies to control the robotic arms to perform
different tasks. In addition, RL-based methods have also
been used for autonomous driving tasks and demonstrated
several successes in several scenarios (Zhu & Zhao, 2021;
Kiran et al., 2021; Kendall et al., 2019). For example, (Isele
et al., 2018) adopted DQN to learn policies to deal with the
intersection scenario and outperforms heuristic approaches.
However, many of them are only capable of handling simple
tasks such as lane changing or protected turning and might
perform badly in dynamic and complex scenarios comprised
of several different tasks.

2.1.1. Q LEARNING

As one of the most famous RL algorithms, Q learning
(Watkins, 1989) is a value-based method that aims to opti-
mize the action-value function Q*(s, a) typically by updat-
ing the Bellman Equations:

V(s) = E[r(s,a) +yV(s')] (1)
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Figure 2. The overview of the proposed atHRL planner: two DDPG agents are used to learn the intention and a continuous trajectory, and
a PID controller is used to compute the steering and throttle based on the waypoints.
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where s, a are the state and action, s’, a’ are the next state
and the corresponding action. The updates of Q learning are
in an off-policy manner, which means that at each time step
any data collected in the past can be used for learning. Over
the years, Q learning has been proven to be a very useful
reinforcement learning algorithm, but it can generally only
deal with discrete action spaces and thus has poor perfor-
mance in high-dimension spaces, especially in continuous
and dynamic environments.

2.1.2. POLICY GRADIENT

In contrast to Q learning, policy gradient (PG) methods
are policy-based. They use gradient descent to optimize
the parameterized policy my. With J(my) representing the
return of the policy, the gradient of it with respect to 6 can
be calculated by:

T

Vol (r9) = B [Y_ Vologmo(arls) A™ (silar)], ()
t=0

where s; and a; represents the state at ¢ and the action
at state ¢, 7 is the trajectory and A is the advantage func-
tion. Thereafter, the policy parameters can be updated using
stochastic gradient descent:

9k+1 =0 + OéVQJ(ﬂ'g) 4

Compared to Q learning methods, PG methods directly op-
timize the policy return and thus converge to a good policy
in a more stable manner. In addition, high dimensional
and continuous action spaces can be dealt with in PG meth-
ods, which Q learning methods generally cannot handle.
Specifically, in complex and dynamic environments as in
our experiment, traditional Q learning methods may perform
not as well as PG methods.

2.1.3. HIERARCHICAL REINFORCEMENT LEARNING

In recent years, advances in Hierarchical Reinforcement
Learning (HRL) have greatly improved the ability of RL
agents to make more complicated decisions and achieve dif-
ficult tasks more efficiently. HRL decomposes RL problems
into higher-level and lower-level sub-tasks which are solved
separately using RL algorithms. This approach reduces the
computational complexity by solving several less difficult
sub-tasks and hence can handle more difficult tasks than
traditional RL methods. (Kendall et al., 2019) proposes
h-DQN that generates a sub-goal by the meta-controller
and is used to guide the low-level actions. Later (Nachum
et al., 2018) extends h-DQN to an off-policy framework
with the HIRO algorithm. With hindsight action and tran-
sitions, HAC (Levy et al., 2019) is able to learn multiple
levels of policies in parallel and accelerate the learning
process. Moreover, (Nair et al., 2018) applied the DDPG
algorithm with Hindsight Experience Replay to solve com-
plicated robotic tasks in continuous action space. HRL has
fully demonstrated the ability to handle complex tasks with
a multi-layer decision model. Recently, a few works have
been attempting to apply HRL to autonomous driving appli-
cations to model the hierarchical decision-making structure,
such as (Qiao et al., 2020a;b) with hierarchical DQN and
(Duan et al., 2020) with asynchronous parallel HRL, but
only apply to a few specific tasks and may not adapt to a
different type of tasks.

2.2. Planning and Decision Making in Autonomous
Driving

Many previous works have been conducted for planning
and decision-making in autonomous driving applications.
Several existing methods model the decision-making tasks
as Partially Observable Markov Decision Process (POMDP).
For example, (Brechtel et al., 2014) presents a continuous
space POMDP model that controls the velocity of the vehi-
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cle in a merging scenario. A multi-policy decision-making
algorithm (Cunningham et al., 2015) evaluates and selects
the best policy under different situations to handle uncertain
and dynamic environments. After that, (Hoel et al., 2020)
combines RL and the planning methods from POMDP, us-
ing a Monte Carlo tree search to select appropriate actions
while training the RL agent, which performs well in various
highway scenarios.

Imitation learning that intends to mimic policies from expert
experience proves to be an effective way to train agents in
a structured environment. (Codevilla et al., 2018) applies
conditional imitation learning while allowing manual con-
trol of the vehicle. ChauffeurNet (Bansal et al., 2018) fur-
ther improves the simple imitation by designing additional
handcrafted losses and adding synthesized perturbations
to handle the distribution drift. However, it is still highly
dependent on the amount and the quality of the provided
expert data, and not able to fully explore the varieties of
intentions during the driving.

In addition, agents trained with RL are earning more atten-
tion in the field. With a well-designed architecture, deep
RL agents are able to summarize a viable policy rapidly
by learning from successful and unsuccessful trials. (Wei
et al., 2014) combines several planners to achieve smooth
maneuvers and uses a PCB algorithm to coordinate the
throttle and steering controllers of the vehicle. A continu-
ous decision-making module with a three-stage policy that
interacts with the dynamic environment is implemented in
(Chen et al., 2018a). The module shows its potential in
stabilizing learning when dealing with complicated driving
tasks. Furthermore, trials with constructing HRL structures
are emerging as a trend in recent analyses. (Chen et al.,
2018b) proposed to learn the hierarchical policies with HRL
to deal with decision-making in autonomous driving scenar-
ios, which proves to be more effective than non-hierarchical
planners. (Lu et al., 2020) adopted the hierarchical idea to
design the agent for autonomous driving with a high-level
decision-making model and a low-level motion planning
model. It is shown that good results have been achieved in
many specific scenarios such as lane changing and turning.
However, these analyses have not applied to a complete
urban driving environment. In our work, the HRL agent
will be operating in a complete map consisting of various
tasks with the presence of other vehicles, which means that
different policies need to be learned at the same time.

3. METHODOLOGY
3.1. Problem Formulation
3.1.1. PRELIMINARY ON MDP AND DDPG

The autonomous driving tasks discussed in this paper are
formulated as Markov Decision Processes (MDPs) M =<

S, A, T, R,v >, where S is a set of states s, A; is a set of
actions a; T} is the state transition; R : S x A — R is
the set of rewards s; v € [0, 1] is the discount factor. The
total episodic reward is then the summation of discounted
rewards: Tiorql = Zﬁo ~'r;, where T, is the total steps of
an episode.

Recall that, the goal in RL is to find the optimal policy that
maximizes the expected reward. This optimal action-value
function can be described by the Bellman equation:

Q* (s,a) = S'EP[T (s,a)+ ’}/H}IE}XQ* (s',a)], (5

where s’ ~ P means that the next state s’ is sampled from
a distribution P(-|s, a) from the environment. As discussed
in the previous section, policy gradient methods perform
better than traditional Q-learning methods in complex and
dynamic environments in our experiment. We consider
the off-policy actor-critic RL algorithm Deep Deterministic
Policy Gradient (DDPQG) for this task, which is based on
Q-learning but solves continuous action space problems.
DDPG aims to minimize the mean squared Bellman error
(MSBE) which represents the error between the Q-value
and the Bellman equation:

LD)= (@0 = (0= s 2.)) ] (©)

,a,r,s’ d)~ D

where D is the collection of the transitions (s,a,r, s, d)
and d indicates the terminal state. DDPG deploys the main
network with actor and critic networks while maintaining
a target network to stabilize the Q-learning process in a
continuous domain, where the target is the term in the MSBE
loss:

L=r+7v(1—d)maxQy(s',a) @)

The target network is updated at a slower frequency to main-
tain the training stability:

(btarg — p(btarg + (1 - p) ¢7 (8)

where ¢ is a hyperparameter with a value between 0 and 1.

3.1.2. FORMULATION OF THE HRL

We further design the task observations, actions, and rewards
to formulate the HRL problem by modeling the planning
and decision process in a multi-level structure.

Observations: we use mid-level perception including lidar
perceptions and BEV images as the observations, similar to
(Chen et al., 2019).
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Figure 3. A pair of lidar and birdeye images, which are used as the
input observations of the neural network

Actions for high-level intention: the high-level action is a
latent representation of intentions. It is a value [ in the
range from O to 2, which represents the options of going
left, going straight, and going right that are to be passed to
the trajectory planner to decide the range of the waypoints.

Actions for low-level trajectory: the low-level action is a
trajectory represented by both waypoints and desired speed
at the point. In this work, since we use a PID controller to
track the waypoints, we only output one waypoint and the
corresponding desired speed for simplicity.

Rewards: the design of the reward is based on a few fac-
tors, including longitudinal speed, penalties that come from
collisions, out-of-lane, large steering angle, exceeding the
speed limit, and large lateral acceleration. It is designed
based on the one used in (Chen et al., 2019) which used a
similar environment setting. The overall reward function is
as follows:

T = Q1 Tcollision T Q2T ongspeed + 3Texceed

F QYT out + A5Tsteer + Q6T 1atspeed + Q7 9)

In our work, the corresponding weights of each factor are
designed as follows: a; = 200, = 1,a3 = 10,4 =
1,0(5 = 5,0[6 = 0.2,(17 = —0.1.

3.2. atHRL: Hierarchical Driving Model for Planning
3.2.1. OVERVIEW OF ATHRL

As shown in Fig. 2, we propose a three-level hierarchical
structure with a high-level intention planner, a low-level tra-
jectory planner, and a PID controller to generate the motion
command for trajectory. The intention planner and the tra-
jectory planner are two DDPG agents with Long Short Term
Memory (LSTM) arranged in a hierarchical reinforcement
learning architecture.

3.2.2. THE NEURAL NETWORK

2D lidar image and BEV image are used as observation
inputs as shown in Fig. 3. The dimension of the 2D lidar

Actor RNN Network

Preprocessing
Layer
(32+256)

Action
Layer
(Dense)

Output
Layer
(MLP)

Preprocessing
Layer
(32+256)

Figure 4. The neural network for computing the intention and tra-
jectory

image is 32 x 32 x 1, which represents point clouds projected
on the map; and the dimension of the BEV semantic image
is 32 x 32 x 3, showing the map, the surrounding objects,
and the route of ego vehicle. With the given observations,
the planner computes an intention from the set of ranges.
The intention serves as an intermediate value in the neural
network and will be concatenated with the observation and
passed to the trajectory planner. It gives extra information
on top of the original sensor observations, and the trajectory
planner is only soft-constrained and guided by the intention.

The general neural network structure in the intention and
trajectory planners is as shown in Fig. 4. It takes the 2D
lidar images and BEV semantic images as observations
which go through the 32 x 256 preprocessing layers and
are concatenated together. Then, the network consists of
an Input Layer of Multilayer Perceptron (MLP), an LSTM
layer, an Output Layer of MLP, and a Dense Layer for the
output of actions.

Afterward, the trajectory planner computes the desired speed
and the trajectory of target waypoints for the vehicle to drive
to. The desired speed is based on the speed limit defined
in the simulator and the target waypoint is restricted to a
fixed-sized semi-circle in front of the vehicle, assuming that
the vehicle would not drive reversely in the scenario. This
is to simulate the decision-making of human drivers, where
a place to go and how fast to drive is decided before drivers
control the throttle and steering. Therefore, the algorithm
could well handle dynamic tasks in different complex urban
driving scenarios.

In the end, the PID controller generates the steering angle
given the target waypoint predicted by the trajectory planner
under the local coordinate of the ego vehicle and calculates
the control of the throttle brake based on the desired speed.
The steering angle and the control of the throttle and brake
then serve as the direct command provided to the agent’s
vehicle in the environment.

3.2.3. HIERARCHICAL OFF-POLICY ACTOR-CRITIC

The training of the off-policy actor-critic RL algorithm is
similar to (Chen et al., 2019; Qiao et al., 2020b). The com-
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Algorithm 1 atHRL Planner Algorithm

1: Initialize action planner and trajectory planner P? and
P! with actor RNN networks R, R%* and critic RNN
networks R, R,
Initialize the replay buffer B.
Run N steps with random policy to collect experience
and store in buffer B.
for N+1 to S steps do
Get initial state sg from environment
while s is not terminal state do
Select intention i with the intention planner P’
where observation O = {birdeye, lidar}
8: Select target speed v and waypoint w with the
trajectory planner P! where observation O =
{birdeye,lidar,i}

AN A

o: Calculate Throttle = PID)opn4(u, v), where u is
the current speed
10: Calculate Steering = PIDq+.(w), using local co-
ordinate
11: Step in the environment and get the next state
S¢+1 and reward r
12: Store transitions into buffer B

13:  end while

14:  Train DDPG agents with buffer B, and update the
network

15: end for

Town02

Town03 Town04

Figure 5. The selected test maps from the CARLA simulator

plete method flow to train the atHRL system is described
in Algorithm 1. The low-level DDPG agent computes the
low-level rewards r;, and computes the TD error. The high-
level DDPG agent computes the high-level rewards r;, while
back-propagating both high-level and low-level TD errors.
Since this is an off-policy RL algorithm, a reply buffer is
used to store the interaction for off-policy training.

4. EXPERIMENT AND RESULTS

4.1. Environment Setup

The experiments are conducted using CARLA simula-
tor (Dosovitskiy et al., 2017) with OpenAl Gym interface,
following the setting in (Chen et al., 2019). The simula-
tor provides an urban driving environment to train the RL
agents effectively and allows users to add other vehicles
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Figure 6. Training reward of the different methods.

that can autonomously interact with the agents. To fully in-
vestigate the ability of the vehicle to drive in various urban
environments, we selected three maps from the simulator.
Each map is composed of multiple tasks to test the ability
of the vehicle to learn to plan under various situations, as
shown in Fig. 5. For example, the map Town02 is mainly
made up of T-turnings and does not consist of many com-
plex situations. Meanwhile, there are a lot of long straight
roads in the map Town04, as well as a smaller town part
at the top right corner with multiple turnings inside. In
contrast, the map Town03 is more complex, consisting of
several different driving situations such as T-turnings, long
straight roads, a roundabout, and a five-lane junction. The
experiments are conducted on each map separately. The
diversity of the tasks in each map can help to verify whether
the RL agent can adapt to handle different situations.

For each scenario, we also add 100 background traffic ve-
hicles, which is the same amount as in the experiments in
(Chen et al., 2019). The vehicles will automatically move
around the map and will interact with the RL agent’s vehicle,
randomly resulting in different driving tasks with interac-
tion with other vehicles. The RL-controlled ego-vehicle
thus needs to learn to avoid collisions, stay in lane and in-
teract with other vehicles properly. This creates a dynamic
environment and increases the difficulty for the RL agents to
learn. For each map, we start the experiment by initializing
the experience replay buffer by running a random policy
for 10,000 steps, followed by a training of 30,000 steps.
In addition, we compare the proposed method with several
baseline algorithms to validate its effectiveness.

4.2. Results and Discussion

In the experiments, we compare the proposed method
(atHRL) with three other HRL and RL methods, including
hierarchical DQN, original DDPG, and a two-layer hierar-
chical DDPG. The hierarchical DQN method proposed in
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Figure 7. Results comparison in terms of average reward and aver-
age speed in map Town03.
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Figure 8. The performance of the original DDPG method and our
proposed method in other maps. The left graph is on map Town02
and the right graph is on map Town04

(Qiao et al., 2020a) is an HRL algorithm that also adopted
trajectory planning and is based on DQN with discrete ac-
tion output. It performs well in simpler driving scenarios
with few decision-making options. We would like to use
it as a comparison between our proposed method and the
conventional HRL methods with discrete action spaces. The
original non-hierarchical DDPG method and a two-layer hi-
erarchical DDPG that does not include the intention planner
are taken as examples to validate the effectiveness of our
three-layer hierarchical DDPG method.

Fig. 6 indicates the reward of the different methods during
the training steps. The reward takes into account the penal-
ties of collisions, out-of-lane, large steering angle exceeding
the speed limit, and large lateral acceleration, hence the
comparisons of the reward represent well the performance
comparisons. It shows that after the algorithms converge
after the 30,000 training steps, our proposed method has the
highest reward among the four methods. Fig. 7 shows that
our proposed method outperforms all other methods in the
experiment in terms of both total average reward and total
average speed. While the average reward indicates the over-
all performance of the agents, the average speed can help to
verify the soundness of the vehicles’ driving capabilities.

The direct comparisons of our proposed method with the
traditional non-hierarchical DDPG algorithm in the map
TownO03 show that the adoption of hierarchical planners im-
proves the overall performance of the reinforcement learning
agents in the selected urban driving scenarios. This is not
only reflected by the higher total average reward, which
indicates the agent’s ability to guarantee safety by avoiding

collisions and staying in the simulator for a long time but
also by the higher average driving speed which indicates
its robustness of handling complex situations. This shows
that the high-level decision-making planners enhance the
stability of the motion control and therefore avoid collisions.
Meanwhile, learning low-level control commands directly
from observations may cause instability of controls and dif-
ficulty in learning different policies of different tasks in
the same scenario, hence should be avoided. Furthermore,
the comparison between our proposed method and the two-
layer trajectory planning H-DDPG shows that the higher
level intention planner is able to help the agent to make
smarter decisions on the choice of trajectory and hence can
achieve better performances. In addition, our method out-
performs the hierarchical DQN with a similar trajectory
planning structure proposed in (Qiao et al., 2020a). While
H-DQN with discrete action spaces is capable of handling
simpler decision-making choices, it performs badly in more
complex urban driving environments with combinations of
different tasks. The actor-critic planner in our method, how-
ever, allows continuous decision-making and improves the
overall performance in policy learning, hence leading to
better results in complex urban driving scenarios.

As shown in Fig. 8, the average reward of our proposed
method is higher than the hierarchial DQN method in the
other maps, Town(02 and Town(04 as well. Considering that
the driving scenarios in the three maps are significantly
different from each other, the generally better performance
of our method indicates that this algorithm is capable of
adapting to various situations and achieving more robust
performances compared to the baseline HRL methods in
different environments. This significant improvement is due
to the improvement from limited and discrete selections of
waypoints to continuous ones for the low-level controllers to
follow. In multi-task and dynamic urban driving scenarios,
the performance of Q-learning-based methods is limited by
the discrete action space.

4.3. Case Studies

To analyze how the vehicles in our method operate, a few
representative scenarios are discussed. For example, Fig. 9
shows a complicated roundabout scenario where the agent
needs to avoid collision with other vehicles when passing
through the roundabout. This case compares the behaviors
of the agent trained by the original DDPG method with the
agent from our proposed method. The agent from conven-
tional H-DQN methods could not make meaningful move-
ments under this scenario at all, and thus is not included
in the comparison. From the upper three figures, it can be
seen that the DDPG agent tries to make way for the coming
vehicle behind it by slowing down its speed, but its steering
angle still leads to the collision with the coming vehicle.
In contrast, the agent trained with our proposed method
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Figure 9. Example cases of meeting other vehicles when passing
the roundabout. The upper cases are taken from the original DDPG
and the lower cases are from the proposed atHRL methods.

Figure 10. Case studies of going straight when meeting other vehi-
cles. The upper cases are taken from the original DDPG and the
lower cases are from the proposed atHRL methods.

maintains smooth maneuvering while keeping a reasonable
speed. The high-level decision-making layers have planned
a well-selected continuous trajectory for the low-level con-
trollers to follow, thus the tracking is easier and more stable.
On the other hand, the H-DQN agent and the DDPG agent
either do not have a pre-determined continuous trajectory
to follow or the driving can be easily influenced by subtle
changes in the determination of steering angles, hence fail-
ing to perform well in dynamically changing scenarios that
involve interaction with other vehicles.

Fig. 10 illustrates another example where the agent performs
a simple task of going straight while meeting vehicles from
another side of the road and no lane change is needed to
be performed in this case. As is shown in the upper fig-
ures, the DDPG agent is unstable and can hardly maintain
a straightforward driving direction. In contrast, the agent
of our proposed method is able to drive in a fixed direction.
The high-level intention and trajectory planners have sta-
bilized the movements of the agent and made the driving
in dynamic scenarios more robust. Besides, the PID con-
troller that follows the pre-determined trajectory guarantees
smoothness and safety in the movements compared to the

¢
- L)

Figure 11. Case studies of unprotected left-turn at the intersection.

direct generation of steering angles in the DDPG agent.

Furthermore, Fig. 11 shows another case where the agent
of our proposed method performs an unprotected left turn
at an intersection while many other vehicles are present
at the intersection as well. The completion of this task
further proves that our proposed method is able to deal
with very complex and dynamic driving scenarios robustly
and smoothly where the movements of other vehicles are
unpredictable. When adopting conventional RL methods, it
is often observed that their agents cannot maintain a smooth
movement in the turning and are likely to collide with other
vehicles. To summarize, these case studies validate the more
stable control from our hierarchical architecture compared
to non-hierarchical methods.

5. CONCLUSION

In this work, we propose atHRL, an action and trajectory
planner using a Hierarchical Reinforcement Learning algo-
rithm for complex driving tasks in multiple dynamic urban
scenarios. The proposed method adopts the DDPG algo-
rithm with a hierarchical structure to learn the action and
trajectory, which better models the human decision process
and achieves robust and smooth control of the vehicle in the
continuous action space. The experimental results indicate
that while other RL methods including conventional DDPG,
two-level Hierarchical DDPG, and three-level Hierarchical
DQON (Qiao et al., 2020a) fail to perform well in complex
urban driving scenarios that contain multiple driving tasks
and interactions with other vehicles, our proposed method
is able to perform reliable driving behaviors and achieve
better results.

Meanwhile, there have been many other interesting pol-
icy optimization reinforcement learning algorithms. In the
current work, we have only applied our hierarchical archi-
tecture with the DDPG algorithm. The extension of the
architecture to other reinforcement learning algorithms can
be an interesting research direction that is worth exploring
in our future work.
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