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ABSTRACT

Boreal forests store 30-40% of terrestrial carbon, much in climate-vulnerable per-
mafrost soils, making their management critical for climate mitigation. How-
ever, optimizing forest management for both carbon sequestration and permafrost
preservation presents complex trade-offs that current tools cannot adequately ad-
dress. We introduce BoreaRL, the first multi-objective reinforcement learning en-
vironment for climate-adaptive boreal forest management, featuring a physically-
grounded simulator of coupled energy, carbon, and water fluxes. BoreaRL sup-
ports two training paradigms: site-specific mode for controlled studies and gener-
alist mode for learning robust policies under environmental stochasticity. Through
evaluation of multi-objective RL algorithms, we reveal a fundamental asymmetry
in learning difficulty: carbon objectives are significantly easier to optimize than
thaw (permafrost preservation) objectives, with thaw-focused policies showing
minimal learning progress across both paradigms. In generalist settings, standard
gradient-descent based preference-conditioned approaches fail, while a naive site
selection approach achieves superior performance by strategically selecting train-
ing episodes. Analysis of learned strategies reveals distinct management philoso-
phies, where carbon-focused policies favor aggressive high-density coniferous
stands, while effective multi-objective policies balance species composition and
density to protect permafrost while maintaining carbon gains. Our results demon-
strate that robust climate-adaptive forest management remains challenging for cur-
rent MORL methods, establishing BoreaRL as a valuable benchmark for develop-
ing more effective approaches. We open-source BoreaRL to accelerate research
in multi-objective RL for climate applications.

1 INTRODUCTION

Boreal forests are one of the largest terrestrial biomes, circling the Northern Hemisphere and storing
an estimated 30-40% of the world’s land-based carbon, much of it in permafrost soils (Bradshaw &
Warkentin, 2015). These ecosystems overlay vast regions of permafrost, carbon-rich frozen ground
that is highly susceptible to climate warming (Schuur et al., 2015). The release of this permafrost
carbon pool poses a significant risk of a positive feedback to global warming. As such, the steward-
ship of boreal regions is not merely a regional concern but a global climate imperative.

Afforestation has emerged as an important nature-based climate solution (Drever et al., 2021), with
the potential to sequester substantial atmospheric carbon while providing co-benefits for biodiver-
sity and ecosystem services. In boreal regions specifically, afforestation strategies can play a dual
role in climate mitigation: directly removing carbon dioxide from the atmosphere through enhanced
vegetation growth, and indirectly protecting vast soil carbon stores by preventing permafrost thaw
(Heijmans et al., 2022; Stuenzi et al., 2021). The unique characteristics of boreal ecosystems: their
extensive permafrost coverage, extreme seasonal variability, and dominance by coniferous and de-
ciduous species with contrasting biogeophysical properties, make them particularly promising tar-
gets for strategic afforestation efforts that can optimize for multiple objectives.

In the context of afforestation, a complex trade-off exists between maximizing carbon sequestration
and maintaining permafrost stability through the surface energy balance, which is strongly mod-
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ulated by forest structure through multiple interconnected pathways (Dsouza et al., 2025). Dense
coniferous forests excel at carbon uptake due to their year-round photosynthetic activity, but their
dark evergreen canopies have low albedo, absorbing more solar radiation during the growing season
while intercepting winter snowfall. This creates competing effects: reduced ground snowpack allows
cold winter air to penetrate the soil (benefiting permafrost), but large summer energy gains can over-
whelm these winter benefits (Heijmans et al., 2022). In contrast, deciduous forests allow deep snow-
pack formation that insulates the soil (potentially accelerating thaw), yet their higher albedo when
leafless reduces energy absorption during spring periods (Heijmans et al., 2022). These counter-
acting biogeophysical effects create a complex optimization landscape where the ideal management
strategy depends on interactions between climate, species composition, stand density, and manage-
ment timing, and the relative weighting of carbon versus permafrost objectives (Bonan, 2008).

Developing prescriptive strategies for this multi-objective problem requires tools that can discover
optimal policies and not just predict outcomes. Reinforcement learning (RL) is uniquely suited to
this challenge because it learns sequential policies through trial-and-error interaction with complex
environments (Sutton et al., 1998), handling the long-term consequences and delayed multi-decadal
rewards inherent in forest management. Agents must navigate a non-convex landscape of conflict-
ing objectives (carbon vs. thaw), generalize across diverse stochastic site conditions, and solve
a challenging long-horizon credit assignment problem where early management decisions deter-
mine permafrost outcomes decades later. Moreover, the inherently multi-objective nature of forest
management, where carbon sequestration, permafrost preservation, and potentially other goals like
biodiversity or economic returns must be simultaneously optimized, makes this an ideal application
domain for Multi-Objective Reinforcement Learning (MORL) (Roijers et al., 2013; Liu et al., 2014).

However, the application of RL to climate-adaptive forest management has been hindered by the
lack of suitable training environments that combine modern RL algorithms with realistic physics
simulation and explicit multi-objective optimization capabilities. Existing forest models are de-
signed for prediction rather than policy optimization, while previous RL approaches have relied on
oversimplified growth models that cannot capture the complex biogeophysical trade-offs critical to
climate adaptation. Our contributions address this gap and are fourfold:

1. We introduce BoreaRL, a configurable multi-objective RL environment and framework for bo-
real forest management. BoreaRL provides a physically-grounded simulator of coupled energy,
carbon, and water fluxes with modular components for physics, rewards, agents, and evaluations,
enabling the first systematic study of afforestation trade-offs in a MORL setting.

2. We design and validate two distinct training paradigms: site-specific mode for controlled studies
and generalist mode for robust policy learning under environmental stochasticity. We reveal a
fundamental asymmetry in learning difficulty, where carbon objectives are easier to optimize than
thaw objectives, with standard preference-conditioned approaches failing in generalist settings.

3. We demonstrate that even naive baselines like adaptive episode selection outperforms standard
MORL approaches in generalist settings, achieving superior empirical trade-off coverage. Our
analysis of emergent strategies learned by the RL policies reveals distinct approaches to density
and species composition management that reflect the trade-offs between carbon and permafrost.

4. Our framework provides a principled testbed for MORL in physically-grounded domains that
isolates asymmetric difficulties, generates testable scientific hypotheses, and offers a high-impact
platform for addressing the existential threat of climate change.

2 RELATED WORK

Multi-Objective Reinforcement Learning (MORL): MORL extends the RL framework to handle
problems that involve multiple conflicting objectives by learning policies that can navigate these
trade-offs (Roijers et al., 2013; Liu et al., 2014; Roijers et al., 2018). A common approach is linear
scalarization, where the vectorized reward is reduced to a scalar using fixed weights, which requires
training a new agent for every desired trade-off (Vamplew et al., 2011). More advanced methods,
such as preference-conditioned RL, aim to learn a single, generalist policy π(a|s, w) that can adapt
its behavior based on a given preference vector w (Mu et al., 2025; Abels et al., 2019). Recent
work has also adapted modern policy gradient methods like Proximal Policy Optimization (PPO)
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Figure 1: BoreaRL environment. A physics-aware boreal forest simulator (BoreaRL-SIM) con-
sumes site characteristics, weather & climate, natural disturbances, and historical information, re-
turning annual carbon and ground energy flux metrics. Reward shaping converts simulator outputs
into learning signals. RL agents act on these rewards to learn annual policies of stand density and
species mix that maximize long-term carbon while limiting permafrost thaw.

(Schulman et al., 2017) for multi-objective settings (Hayes et al., 2021). We demonstrate the utility
of our BoreaRL environment using multiple methods from these families as baselines.

Reinforcement Learning for Environmental Management: RL has been applied to forest man-
agement and environmental conservation before (Malo et al., 2021; Bone & Dragićević, 2010; Over-
weg et al., 2021; Lapeyrolerie et al., 2022), however, these approaches relied on simplified growth
models, static datasets, or adjacent domains. BoreaRL implements a more realistic environment
for training RL algorithms using coupled energy-water-carbon flux simulator with implicit energy
balance equations, detailed snow dynamics, and climate-driven uncertainty, enabling more accurate
representation of complex ecological trade-offs in boreal systems.

Process-Based Forest Models: Simulating forest dynamics has evolved into sophisticated process-
based ecosystem models like CLASSIC (Melton et al., 2020) and the Community Land Model
(CLM5) (Fisher et al., 2019), which represent vegetation responses to biogeochemical forcing
through parametric controls that govern plant physiology, carbon allocation, and nutrient cycling.
The Canadian Forest Service’s Carbon Budget Model (CBM-CFS3) extends this paradigm by ex-
plicitly incorporating forest management decisions and natural disturbances (Kurz et al., 2009). Our
work combines process-based modeling with learning management decisions under one roof, cre-
ating the first modular, scientifically credible RL environment that seamlessly integrates detailed
ecosystem simulation with modern RL frameworks.

3 THE BOREARL ENVIRONMENT AND FRAMEWORK

BoreaRL is designed as a modular, configurable framework with plug-in components for different
aspects of the multi-objective forest management problem (Fig. 1). The core architecture con-
sists of a physically-grounded simulator (BoreaRL-Sim) and a flexible MORL environment wrapper
(BoreaRL-Env) that supports multiple training paradigms and evaluation protocols, conforming to
the mo-gymnasium API standard (Felten et al., 2023).
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Component Dimensions Description
Current Ecological State 4 Year, stem density, conifer fraction, carbon stock
Site Climate Parameters 6 Latitude, mean annual temperature, seasonal ampli-

tude, phenological dates, growing season length
Historical Information 17 History of disturbances, management actions, and

carbon flux trends spanning recent years
Age Distribution 10 Fraction of stems in each age class (seedling-old)

for both coniferous and deciduous species
Carbon Stock Details 2 Normalized biomass and soil carbon pools
Penalty Information 3 Indicators for ecological limit violations and man-

agement inefficiencies
Preference Input 1 Weight wC ∈ [0, 1] for the carbon objective, en-

abling preference-conditioned policies
Site Parameter Context 62 Episode-level site parameters sampled from physics

model ranges (generalist mode only)

Table 1: Observation space components in BoreaRL’s generalist mode (105 dimensions) and site-
specific mode (43 dimensions). The generalist mode includes episode-level site parameters for ro-
bust policy learning across diverse forest sites, while site-specific mode uses fixed parameters for
location-targeted optimization.

Our framework provides compartmentalized modules for: (1) Physics simulation with selectable
backend and temporal resolution; (2) Reward specification with customizable objective functions
and normalization schemes; (3) Agent interfaces supporting both single-policy and multi-policy
MORL algorithms; (4) Environmental stochasticity with controllable weather generation and pa-
rameter sampling; and (5) Evaluation protocols with standardized metrics for multi-objective as-
sessment. The framework also allows users to override default parameters for physics simulation,
reward shaping, observation space structure, and training protocols. We envision that this design will
enable researchers to solve a wide array of forest management problems and build custom agents.

3.1 BOREAL FOREST SIMULATOR (BOREARL-SIM)

The first part of our framework is a process-based simulator that models coupled energy, water,
and carbon fluxes on a n-minute time step. The simulator incorporates several key components: a
multi-node energy balance model spanning canopy, trunk, snow, and soil layers; a dynamic carbon
cycle; a comprehensive water balance that includes snow dynamics; and stochastic modules for fire
and insect disturbances that are conditioned on climate and stand state. The model uses standard,
validated physical formulations found in major Land Surface Models like CLM5 (Fisher et al., 2019;
Lawrence et al., 2019) and CLASSIC (Melton et al., 2020). The simulator operates in two distinct
modes: generalist mode, where each H-year episode is driven by unique, stochastically generated
weather sequences with site parameters sampled from realistic ranges to ensure policy robustness
across diverse conditions; and site-specific mode, which uses deterministic weather patterns and
fixed site parameters for reproducible, location-targeted optimization. For detailed descriptions of
the simulator’s physics, management, and disturbance implementations, see Appendix B.

3.2 MULTI-OBJECTIVE RL ENVIRONMENT (BOREARL-ENV)

We formalize the management task as a Partially Observable Markov Decision Process for MORL,
defined by the tuple (S,A,O, P,R, γ).
Observation Space (O): In the generalist mode, the agent receives an observation vector designed
for training robust policies across diverse forest sites. In site-specific mode observation dimen-
sionality is reduced, with fixed weather patterns, and deterministic initial conditions, suitable for
location-specific policy optimization. See observation space details in Table 1.

Action Space (A): The agent’s actions directly manipulate the primary management levers through
a discrete action space that encodes two management dimensions:
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1. Stand Density Change: Discrete actions corresponding to changing stem density in stems ha−1,
representing thinning (negative values) or planting (positive values). In our benchmark, we use 5
actions: {−100,−50, 0,+50,+100} stems ha−1.

2. Species Mix Change: Discrete actions corresponding to the conifer fraction. In our benchmark,
we use 5 actions: {0.0, 0.25, 0.5, 0.75, 1.0}, ranging from purely deciduous to purely coniferous.

The action space is encoded as a single discrete value where each of the actions represents a com-
bination of density change and species mix target. The transition function takes an action at year t,
updates the stand properties, and the simulator runs for one year to produce the state at t+ 1.

Vector Reward Function (R): To handle the multi-objective problem, the environment returns a
reward vector at each step t, Rt = [rc,t, rt,t], where components are normalized to [−1, 1].
The Carbon Reward (rc,t) incentivizes carbon sequestration while penalizing ecological violations:

rc,t = clip
(

clip
(
∆Ct

2.0
,−1, 1

)
+ sb + hb − plimit − pdensity − pineff ,−1, 1

)
(1)

where ∆Ct is the net ecosystem carbon change (kg C m−2 yr−1). sb and hb are bonuses for total
stock and HWP storage. Penalties include plimit for exceeding realistic biomass (> 15 kg C m−2)
or soil carbon (> 20 kg C m−2) pools, pdensity for exceeding maximum stand density (> 2000
stems/ha), and pineff for ineffective actions (e.g., thinning empty stands).

The Thaw Reward (rt,t) is designed to protect permafrost by minimizing deep soil warming. It is
calculated as an asymmetric function of the conductive heat flux to the deep soil layer:

rt,t = clip
(
fcool − α · fwarm

40.0
,−1, 1

)
(2)

where fcool and fwarm are the cumulative annual cooling and warming heat fluxes (MJ m−2) across
the permafrost boundary. The factor α = 2.5 penalizes warming, reflecting the precautionary
principle that permafrost degradation is often irreversible. We deliberately chose this physically-
grounded reward based on soil heat flux rather than simpler proxies (like air temperature) to cap-
ture the complex, often delayed thermal inertia of permafrost soils. Both carbon and thaw rewards
are constructed using existing common knowledge from literature about how these fluxes operate.
Preference-conditioned training is supported through a preference weight input wC ∈ [0, 1] in the
observation space. For more details on construction of the RL environment, see Appendix C.

3.3 TRAINING PARADIGMS AND MULTI-OBJECTIVE FORMULATION

Site-specific vs. generalist settings: Let ϕ ∈ Φ denote a vector of episode-level site parame-
ters that parameterize the transition kernel Pϕ(st+1 | st, at) and the vector reward Rϕ(st, at) =
[Rcarbon, Rthaw]

⊤. In the site-specific setting we fix ϕ = ϕ⋆, so the agent optimizes a single
MDP/POMDP. In the generalist setting we sample ϕ ∼ Dsite at the start of each episode from a
known distribution over sites and climates; optionally, a context vector ψ(ϕ) is appended to the
observation (Table 1). The resulting objective is a mixture-of-MDPs:

J(π) = Eϕ∼Dsite Eτ∼Pϕ
π

∑
t≥0

γt Rϕ(st, at)

 ,
where Pϕ

π is the trajectory measure induced by π and Pϕ.

We write the user preference as λ = (wC , wP ) ∈ ∆1 with wC ∈ [0, 1] and wP = 1 − wC . Linear
scalarization produces a scalar reward

rλt = λ⊤Rϕ(st, at) = wC Rcarbon,t + (1− wC)Rthaw,t.

Two regimes are useful here: (i) fixed weight λ ≡ λ̄ (constant across training and evaluation), and
(ii) sampled weight where λ is provided as input to the policy.

3.4 MULTI-OBJECTIVE RL BASELINE ALGORITHMS

As a starting point, we implement and evaluate some simple multi-objective RL approaches that
handle carbon-thaw trade-off differently.
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Fixed Lambda EUPG (Expected Utility Policy Gradient): Fixed Lambda EUPG trains a single
policy πθ(a | o) on a scalarized reward using a fixed preference weight λ throughout training. The
scalarized reward is rλt = λ ·Rcarbon,t + (1− λ) ·Rthaw,t. Following EUPG (Roijers et al., 2018),
the policy input is augmented with the per-objective accrued return vector, enabling Expected Utility
of the Returns (ESR)-consistent credit assignment. The objective is:

JEUPG(θ;λ) = Eϕ∼Dsite Eτ∼Pϕ
πθ

∑
t≥0

γt rλt

 .
Variable Lambda EUPG (Adaptive Preference Learning): Variable Lambda EUPG trains a
single policy πθ(a | o) that learns to adapt to weights by sampling λ ∼ DΛ for each episode:

JVarEUPG(θ) = Eλ∼DΛ
Eϕ∼Dsite Eτ∼Pϕ

πθ

∑
t≥0

γt rλt

 .
The policy receives the preference weight as part of its observation space (Table 1) and learns to
adjust its behavior accordingly, making it preference-conditioned. This approach enables a single
policy to handle multiple trade-offs without retraining.

PPO Gated (Proximal Policy Optimization with Action Masking): PPO Gated implements a
standard PPO algorithm with a policy πθ(a | o) and a gated architecture that separates planting
actions (positive density changes) from non-planting actions (thinning or no change), with separate
neural network heads for each action type. The gating mechanism ensures that only valid actions are
considered based on the current forest state, such as preventing planting when at maximum density
or thinning when no old trees are available. The objective follows standard PPO.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

For site-specific mode, we train 5 agents with different random site seeds. For generalist mode, a
single agent is trained, and each episode utilizes a unique random seed to sample diverse weather
conditions and site parameters, ensuring robustness. Reported results for generalist mode are aver-
ages over these 100 evaluation episodes. We vary the number of training steps depending on whether
the experiment is site-specific or generalist, and whether its fixed-weight or sampled-weight. We
compare against heuristic baselines (zero density change, +100 density increase with 0.5 conifer
fraction, target density of 1000 stems/ha, and conifer restoration of 100% conifer) and evaluate
performance using learning curves, reward metrics, and learned strategies of the RL agents.

4.2 ASYMMETRIC LEARNING DIFFICULTY IN CARBON VS. THAW OBJECTIVES

We find that there is an asymmetry in learning difficulty between the two objectives across both site-
specific and generalist settings. Fixed-weight agents demonstrate that carbon objectives are easier
to learn than thaw objectives, with thaw-preferred policies showing minimal or no learning progress
in many cases. This asymmetric learning landscape emerges from the underlying physics: carbon
rewards provide clear, immediate feedback through biomass accumulation, while thaw rewards de-
pend on complex seasonal energy balance dynamics with delayed and noisy signals. This is exacer-
bated by the necessary risk-averse formulation of the thaw objective, which reflects that permafrost
degradation is often irreversible and more damaging than equivalent cooling is beneficial.

Fig. 2 shows the scalarized reward learning curves for both generalist and site-specific settings,
demonstrating this asymmetric learning pattern. In the generalist setting (Fig. 2a), carbon-focused
policies (λ = (1.0, 0.0)) achieve rapid learning, while thaw-focused policies (λ = (0.0, 1.0)) show
minimal improvement, remaining near baseline performance. The site-specific setting (Fig. 2b)
exhibits similar patterns. Nonetheless, distinct forest management strategies emerge from these ex-
periments. Stem density evolution over training episodes (Fig. 2c) shows carbon-focused policies
aggressively increase density to 1280 stems/ha, while thaw-focused policies maintain conservative
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Figure 2: Asymmetric learning difficulty between carbon and thaw objectives. (a,b) Carbon-focused
policies (λ = (1.0, 0.0)) achieve rapid learning while thaw-focused policies (λ = (0.0, 1.0)) show
minimal improvement in both generalist and site-specific settings. (c) Carbon strategies favor ag-
gressive density increases (1280 stems/ha) while thaw strategies remain conservative (1000-1020
stems/ha). (d) Species composition shows complex patterns: carbon policies maintain status quo,
mixed policies achieve highest conifer fractions, and thaw policies promote deciduous dominance.

densities around 1000-1020 stems/ha. Species composition strategies on the other hand do not fol-
low a simple carbon-thaw dichotomy (Fig. 2d). While purely carbon-focused policies show minimal
conifer fraction change, purely thaw-focused policies promote deciduous dominance. Though the
emergence of these qualitatively distinct strategies suggests that agents develop preference-specific
management approaches, no strong conclusion can be drawn about the thaw policies as they may be
a conservative result of lack of learning. Nevertheless, we will later show that well balanced policies
are a hallmark of agents that do learn as well.

4.3 CURRICULUM SITE SELECTION AND PERFORMANCE IN GENERALIST MODE

Given that thaw rewards are harder to learn (Section 4.2) and are majorly influenced by chosen sites
(see Appendix D.1; Fig. 5), we wanted to check the impact simple site selection. To do so, we
implement adaptive episode selection. Our Curriculum baseline allows the agent to ignore these
destabilizing sites, and consolidate its policy on a “safer” subset (see Table 12).

Curriculum PPO (Adaptive Episode Selection): Curriculum PPO implements a two-level deci-
sion process that combines episode selection with action selection. Like the other baselines, Cur-
riculum PPO is also preference-conditioned (the preference weight λ is included in the observation
space), but differs in its training mechanism through adaptive episode selection. The agent first de-
cides whether to train on a given episode using a curriculum selection network fϕ(osite) → [0, 1]
that evaluates the episode’s potential learning value based on site characteristics. Episodes are se-
lected based on an adaptive threshold, and then they proceed with standard PPO action selection.
The combined objective is:

JCurriculum(θ, ϕ) = Eλ∼DΛ Eϕ∼Dsite Eselect∼fϕ

Eτ∼Pϕ
πθ

∑
t≥0

γt rλt

 | select = 1

 ,
where the expectation is taken only over selected episodes. The curriculum selection network fϕ
is an untrained random projection that provides a consistent ordering of the site space, while the
selection threshold is adaptively adjusted based on performance to expand or contract the training
distribution (see Appendix C.5 for details on the mechanism).

We consider preference-conditioned generalist mode to be our benchmark setting, and evaluate three
preference-conditioned algorithms (Variable λ EUPG, PPO Gated, and Curriculum PPO) in gener-
alist mode to assess their ability to learn policies under environmental stochasticity. For detailed
runtime analysis, see Appendix C.9. Curriculum PPO baseline outperforms other methods across
training (Fig. 3a) and evaluation (Fig. 3b) metrics (scalarized rewards). Moreover, Curriculum PPO
produces the most comprehensive trade-off coverage (Fig. 3c,d), while others show poor perfor-
mance across the preference space with higher λ-monotonicity violations (defined as the failure of
an objective’s return to increase with its preference weight; see Appendix D.2).
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Figure 3: Algorithm performance comparison in generalist mode. (a) Learning curves reveal Cur-
riculum PPO’s rapid convergence and stable performance versus others. (b) Scalarized evaluation
reward demonstrates Curriculum PPO’s dominance, whereas Variable λ EUPG has near-zero per-
formance. Error bars represent the standard deviation over 100 evaluation episodes (per preference
weight), each with a unique random seed. (c) Trade-off analysis shows the relationship between
evaluation carbon and thaw objectives for different methods versus baselines. d) Curriculum PPO
empirical trade-off coverage achieves superior spread with lesser λ-monotonicity violations com-
pared to other methods. Shows mean over 100 evaluation episodes with unique random seeds. See
Appendix D.2 for fronts of other methods. All rewards and objectives are summed over 50 steps.

Table 2: Main performance comparison of multi-objective RL algorithms and baselines. Rewards
are averaged and other metrics are computed over 100 evaluation episodes per preference weight.
Scalarized reward is the primary training objective. Hypervolume (reference point: [−2,−2]) and
Sparsity measure the quality and uniformity of the trade-off front.

Method Scalarized Reward Hypervolume (↑) Sparsity (↓)
RL Algorithms (Generalist Mode)
Curriculum PPO 8.5± 3.0 84.3 0.12
PPO Gated 4.7± 6.0 23.6 0.09
Variable λ EUPG 1.7± 5.0 14.2 0.07

Heuristic Baselines
Target Density (1000 stems/ha) 4.3± 3.4 20.6 N/A
Conifer Restoration (100% Conifer) 4.1± 2.9 21.4 N/A
Zero Density Change −2.5± 2.4 11.3 N/A
+100 Density Change −3.2± 6.1 18.5 N/A

Table 2 compares our RL agents against heuristic baselines. While these fixed strategies achieve
moderate scalarized rewards, they fail to capture the multi-objective front. We use hypervolume and
sparsity as key metrics to quantify the quality and uniformity of the learned trade-off fronts, where
Curriculum PPO demonstrates superior coverage (Hypervolume: 84.3). We also experiment with
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Table 3: Impact of thaw reward formulation on PPO Gated performance. We compare the default
Asymmetric Thaw (risk-averse) against Contrast Thaw (symmetric) and Raw Degree Days (linear).
All three formulations are hard to optimize with a naive baseline, pointing to the difficulty of mas-
tering the thaw regime. Asymmetric Thaw is the hardest, but also ecologically safer.

Formulation Scalarized Carbon Thaw Hypervol. (↑) Sparsity (↓)
Asymmetric (Default) 4.7± 6.0 7.8± 2.5 1.5± 1.2 23.6 0.09
Contrast 4.9± 3.2 7.6± 2.6 2.1± 2.4 25.4 0.08
Raw Degree Days 5.2± 3.7 7.9± 2.4 2.4± 2.3 26.1 0.08

altenate thaw reward formulations. Table 3 reveals that while the Asymmetric Thaw formulation is
the most challenging to optimize due to its risk-averse nature, Contrast Thaw and Raw Degree Days
yield only marginally better scalarized rewards and lack the necessary penalty for irreversible per-
mafrost degradation. Moreover, the Asymmetric formulation forces strong avoidance of warming,
whereas symmetric formulations allow small warming trade-offs (see Table 10). All three formula-
tions create conflicts with the carbon objective, as the physical mechanisms that benefit carbon often
harm permafrost (see Appendix D.3, Table 11 for some mechanistic evidence). omparison of Thaw
Reward Formulations and Agent Behavior. For a detailed breakdown of carbon and thaw objectives
with error estimates across all RL baselines, see Table 13 in Appendix D.4.

Curriculum PPO’s success highlights that the existence of a curriculum (selective exposure) already
helps; while an optimal ordering of that curriculum may further improve performance, our results
show that even a simple adaptive threshold provides significant benefits. This serves as a naive
baseline to demonstrate that effective episode and site selection is one way to succeed in preference-
conditioned learning in our BoreaRL environment. It also points to the fact that, certain sites and
settings are inherently bad for planting when multiple objectives are important, no matter what the
management decision are, and that smart site selection is crucial. That said, we believe that this
benchmark is far from saturated and various other properties of the physics, objectives, simulation,
and real-world can be exploited to train better RL management agents.

4.4 COMPARATIVE ANALYSIS OF MANAGEMENT STRATEGIES

To understand the learned behavior of different algorithms, we analyze their strategies (Fig. 4).
Three distinct philosophies emerge from our analysis. PPO Gated develops an aggressive carbon-
maximizing approach, achieving the highest conifer fractions when averaged across all evaluation
episodes and weights (Fig. 4a) through rapid early planting followed by natural thinning (Fig. 4b).
This strategy concentrates forest outcomes in high-density, high-conifer regions (Fig. 4c). In con-
trast, Curriculum PPO learns a balanced approach, showing steady species optimization while main-
taining moderate density strategies. Variable λ EUPG adopts the most conservative strategy, main-
taining baseline species composition and growth, suggesting limited learning (Fig. 4a,b,c).

The environmental implications of these management strategies are revealed through the correlation
between growing season length and thaw rewards (Fig. 4d). The difference in actions reflects a
fundamental difference in the quality of the local optima found by each algorithm (see Table 9). PPO
Gated falls into a local optimum of aggressive carbon farming (high density/conifer), which boosts
carbon but fails to protect permafrost. Curriculum PPO maintains moderate densities and mixed
species, allowing for longer growing seasons (see Fig. 4d), which enhances canopy shading and
transpiration, thereby reducing soil heating and preventing thaw. We observe a strong correlation
between growing season length and thaw protection (r = +0.65, see Table 8). Mechanistically,
longer growing seasons maintain high Leaf Area Index (LAI) for more days, increasing transpiration
cooling (r = +0.82) and canopy shading (r = −0.75). Therefore, strategically managed forests
can serve as buffers against climate-induced permafrost degradation.

Moreover, these distinct physical strategies are driven by specific algorithmic failure modes. PPO
Gated suffers from consistent gradient from the Carbon objective overpowering the noisy, sparse
Thaw signal, leading the agent to ignore the latter. Variable λ EUPG sees conflicting gradients
from changing preference weights, leading to risk-averse inaction (low density, minimal changes).
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Figure 4: Comparative analysis of management strategies. Averaged across all evaluation episodes
and weights. (a) Species composition evolution shows PPO Gated achieving highest conifer frac-
tions, Curriculum PPO demonstrating steady improvement, and Variable λ EUPG being conserva-
tive. (b) Density evolution reveals rapid early growth for PPO Gated and Curriculum PPO versus
linear growth for Variable λ EUPG. (c) Forest composition shows PPO Gated favoring high-density
coniferous stands, Curriculum PPO achieving balanced mid-range strategies, and Variable λ EUPG
not converging to any approach. (d) Growing season vs. thaw reward correlation shows how longer
growing seasons can enhance permafrost protection. Mechanisms like increased shading and evap-
otranspiration may play a role, see Table 8 for more.

Curriculum PPO overcomes these issues through gradient filtering: by adaptively selecting sites
where it is making progress, it avoids “trap” sites for thaw, allowing it to learn cooling strategies
that standard methods miss. See Table 9 for more information on these mechanisms.

5 DISCUSSION AND FUTURE WORK

We have introduced BoreaRL, a configurable multi-objective reinforcement learning environment
and framework for climate-adaptive boreal forest management. Our contributions include: (1) a
physically-grounded simulator that captures complex biogeophysical trade-offs between carbon se-
questration and permafrost preservation through coupled energy, water, and carbon flux modeling;
(2) a modular MORL framework supporting site-specific and generalist training paradigms with
standardized evaluation protocols; (3) benchmarking revealing that adaptive episode selection allows
agents to avoid “trap sites” where conflicting gradients destabilize learning; and (4) novel ecologi-
cal insights showing that appropriate forest management can enhance permafrost protection through
biogeophysical mechanisms. Overall, BoreaRL provides the research community with a principled
testbed for multi-objective RL in physically-grounded domains. It isolates the specific challenge of
“Asymmetric Multi-Objective” optimization, where objectives have vastly different signal-to-noise
ratios and timescales. Finally, it offers a high-impact platform for managing boreal carbon sinks,
addressing the existential threat of climate change.

Despite these advances, several limitations constrain the current framework’s scope. BoreaRL is
designed as a physically-grounded simulator to enable controlled experimentation and generate
testable scientific hypotheses (e.g., density-thaw relationships), not as a deployment-ready decision
support system. Real-world deployment would require rigorous calibration against field data, expert
validation, and integration with existing planning tools. Additionally, the long time horizons (50
years) and delayed rewards inherent in this domain create a challenging credit assignment problem
that our benchmark isolates for study. While site selection demonstrates improved learning, MORL
agents still struggle with the full complexity of environmental stochasticity, indicating that novel ap-
proaches are needed to fully realize the potential of RL-based climate-adaptive forest management.

Several concrete directions for future research emerge from our work (see Appendix E for more):

Multi-objective Extensions: Extend the reward formulation to include economic objectives (timber
revenues, management costs) and biodiversity metrics (species richness, habitat quality).

Advanced MORL Algorithms: Benchmark policies that can handle environmental stochasticity
through techniques such as meta-learning. Explore non-linear scalarization methods and continuous
preference space optimization to capture complex ecological trade-offs and asymmetric objectives.

Real-world Validation and Deployment: Establish validation protocols using historical forest
management data, develop spatially explicit grid-wise environments for large geographic regions,
and create frameworks for real-time forest management decision support systems.
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6 REPRODUCIBILITY STATEMENT

We provide all components needed to replicate our results. The main paper specifies the environment
and simulator design (Table 1), the multi-objective formulation and baselines (Sections 3.2–3.4), and
the experimental protocol with evaluation metrics used across figures. The Appendix documents the
physics and implementation details of the simulator (Appendix B), the environment API and training
paradigms (Appendix C), and the parameter sampling ranges and other configuration choices needed
to recreate experiments; Source code associated with this project is attached as an anonymous sup-
plementary zip, which includes the complete environment and simulator, training/evaluation scripts,
configuration for both site-specific and generalist settings, and seeds for all reported runs. Figures
in the paper reference the exact methods and settings compared so results can be matched to the
corresponding configs and scripts.
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A SUBMISSION DETAILS

A.1 SOURCE CODE

Source code associated with this project is attached as a supplementary zip file.

A.2 USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in the following scoped, human-supervised ways: (i) Writ-
ing polish. Draft sections were refined for clarity, structure, and tone; all technical claims, numbers,
and citations were authored and verified by us, and every LLM-suggested edit was line-reviewed to
avoid introducing errors or unsupported statements. (ii) Retrieval discovery. We used LLMs to craft
and refine search queries to find related work and background resources; candidate papers were then
screened manually, with citations checked against the original sources to prevent hallucinations. (iii)
Research ideation. We used brainstorming prompts to surface alternative baselines, ablation angles,
and failure modes; only ideas that survived feasibility checks and pilot experiments were adopted.
(iv) Coding assistance (via Cursor). We used Cursor’s inline completions and chat for boilerplate
generation (tests, docstrings, refactors); all code was reviewed and benchmarked before inclusion.
Across all uses, we ensured that LLM outputs never replaced human analysis, reproducibility arti-
facts, or empirical validation.

B FOREST SIMULATOR

B.1 SIMULATOR PRINCIPLES AND FLOW

The BoreaRL benchmark is built upon a process-based simulator, BoreaRL-Sim, which is designed
to be scientifically credible while remaining computationally efficient for reinforcement learning.
The design adheres to several key principles:

• Time-Scale Separation: There is a clear separation between the agent’s decision-making
timescale and the physical simulation timescale. The RL agent performs a management action
once per year. In response, BoreaRL-Sim resolves the energy, water, and carbon fluxes at a n-
minute time-step (tunable) for the entire 365-day period, capturing the fine-grained diurnal and
seasonal dynamics that govern the ecosystem.

• Stochasticity and Robustness: To ensure that learned policies are robust and not overfit to a
single deterministic future, each H-year episode is driven by a unique, stochastically generated
climate. At the start of an episode, a site latitude is sampled, which parametrically determines the
mean climate characteristics (e.g., annual temperature, seasonality, growing season length). Then,
daily weather (temperature, precipitation) is generated with stochastic noise, forcing the agent to
learn strategies that are adaptive to climate variability.

• Multi-Objective Core: The simulator is fundamentally multi-objective. It tracks the two primary
reward components: a carbon component that includes normalized net carbon change with stock
bonuses and limit penalties, and an asymmetric thaw component derived from conductive heat flux
to deep soil (permafrost proxy). These are returned as a reward vector Rt = [Rcarbon,t, Rthaw,t]
where Rthaw,t penalizes warming more than it rewards cooling. This allows for the training of
both specialist and generalist multi-objective agents.

• Management-Physics Coupling: The agent’s actions (changing stand density and species com-
position) directly modulate the core physical parameters of the simulation, such as the Leaf Area
Index (LAI), canopy albedo (αcan), snow interception efficiency, and aerodynamic roughness.
This creates a tight feedback loop where management decisions have physically-grounded conse-
quences on the surface energy balance.

The simulation flow for a single RL step (one year) is orchestrated by the ForestEnv environment,
which wraps the BoreaRL-Sim instance. The sequence is detailed in Appendix B.5.
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B.2 CORE PHYSICAL MODEL: ENERGY BALANCE

The core of BoreaRL-Sim is a multi-node thermodynamic model that solves the energy balance for
the key components of the forest stand. The model uses standard, validated physical formulations
found in major Land Surface Models like CLM5 (Fisher et al., 2019; Lawrence et al., 2019) and
CLASSIC (Melton et al., 2020). For example, the state of the system is defined by the temperatures
of five primary nodes: Canopy (Tcan), Trunk (Ttrunk), Snowpack (Tsnow), Surface Soil (Tsoil,surf ),
and Deep Soil (Tsoil,deep). The temperature evolution of each node i is governed by the net energy
flux, following the principle:

Ci
dTi
dt

=
∑

Fin,i −
∑

Fout,i

where Ci is the heat capacity of the node and F represents an energy flux in Watts per square meter
(Wm−2). The main flux equations for each node are detailed below.

B.2.1 CANOPY NODE (Tcan)

The canopy energy balance is the most complex, as it involves radiative, turbulent, and physiological
fluxes. Unlike the soil and snow nodes which have significant thermal mass, the canopy has a
relatively low heat capacity and equilibrates rapidly with the atmosphere. Therefore, we treat it as
a diagnostic variable that reaches steady-state equilibrium at each timestep, rather than a prognostic
variable with memory. Its temperature is solved iteratively to satisfy the condition where the net flux
is zero:

0 = Rnet,can −Hcan − LEcan −Gphoto − Φmelt,can − Φc,trunk

The components are:

Rnet,can: Net radiation, defined as the balance of incoming shortwave (Qabs) and longwave (Lin)
radiation against emitted longwave radiation (Lout). We use the Beer-Lambert Law for radiation
extinction (Swinehart, 1962):

Rnet,can = Qsolar(1− αcan) + ϵcan(Ldown,atm + Lup,ground)− 2ϵcanσT
4
can

Hcan: Sensible heat flux, representing convective heat exchange with the air, governed by an aero-
dynamic conductance hcan:

Hcan = hcan(Tcan − Tair)

LEcan: Latent heat flux from transpiration, modeled using the Priestley-Taylor formulation (Priest-
ley & Taylor, 1972) modified by environmental stress factors for Vapor Pressure Deficit (fV PD) and
soil water content (fSWC):

LEcan = αPT
∆

∆+ γ
Rnet,can · fV PD · fSWC

where αPT is the Priestley-Taylor coefficient, ∆ is the slope of the saturation vapor pressure curve,
and γ is the psychrometric constant.

Gphoto: The energy sink used for photosynthesis. This is directly coupled to the carbon model
via a light-use efficiency parameter (LUE), ensuring energy and carbon are conserved: Gphoto =
GPP · Jper gC , where Jper gC is the energy cost to fix one gram of carbon.

Φmelt,can: Energy sink for melting intercepted snow on the canopy, active only when Tcan ≥
273.15K and canopy snow exists.

Φc,trunk: Conductive heat flux between the canopy and the tree trunks.

B.2.2 TRUNK, SNOW, AND SOIL NODES

The energy balances for the ground-level nodes are primarily driven by their own radiation balance,
turbulent exchange with the sub-canopy air, and conduction between adjacent nodes.

Trunk Node (Ttrunk):

Ctrunk
dTtrunk
dt

= Htrunk +Φc,can +Φc,ground
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where Htrunk is the sensible heat flux to the air, and Φc,ground represents conduction to either the
snowpack or the surface soil, depending on snow cover.

Snowpack Node (Tsnow):

Csnow
dTsnow
dt

= Rnet,snow −Hsnow − Φmelt,snow +Φc,soil +Φc,trunk

Here, Rnet,snow is the net radiation at the snow surface, which is high in albedo (αsnow ≈ 0.8).
Φmelt,snow is the energy sink for melting, active when the net energy flux is positive and Tsnow =
273.15K. The thaw-degree-day reward component (Rthaw,t) is derived from the energy flux out of
the deep soil layer into the permafrost boundary, providing a physically-based metric of permafrost
degradation.

Surface Soil Node (Tsoil,surf ):

Csoil,surf
dTsoil,surf

dt
= Rnet,soil −Hsoil − LEsoil − Φc,deep +Φc,snow +Φc,trunk

This balance is active when no snow is present. It includes latent heat of evaporation from the soil
(LEsoil) and conductive flux to the deep soil layer (Φc,deep).

Deep Soil Node (Tsoil,deep):

Csoil,deep
dTsoil,deep

dt
= Φc,surf − Φc,boundary

The deep soil node integrates heat from the surface layer and loses heat to a fixed-temperature deep
boundary, representing the top of the permafrost table. The permafrost thaw objective, Rthaw,t, is
calculated as an asymmetric function of the cumulative annual positive and negative energy fluxes
across this boundary, penalizing warming more than it rewards cooling.

B.3 KEY SIMULATOR SUB-MODELS

Layered on top of the core energy balance are modules for the water balance, carbon cycle, and stand
dynamics. The simulator’s realism is achieved through several key subsystems that work together to
capture the complex dynamics of boreal forest ecosystems:

B.3.1 AGE-STRUCTURED DEMOGRAPHY

The simulator implements an age-structured population model with five age classes: seedling (0-
5 years), sapling (6-20 years), young (21-40 years), mature (41-100 years), and old (101+ years).
Each age class has distinct canopy factors and light-use efficiency scaling, with natural transitions
occurring annually. Thinning operations are preferentially applied to old trees to simulate realistic
harvesting practices, while planting adds seedlings with the specified species mix. This age struc-
ture enables realistic representation of forest development trajectories and management constraints,
as younger trees have different physiological properties and respond differently to environmental
conditions.

B.3.2 ADVANCED WEATHER GENERATION

The weather module generates latitude-dependent climate parameters including temperature-
precipitation relationships that vary by season. Summer precipitation is positively correlated with
temperature (reflecting convective rainfall patterns), while winter precipitation shows complex tem-
perature dependencies (snow vs. rain thresholds). The system also models rain-induced suppres-
sion of diurnal temperature amplitude, where precipitation events dampen daily temperature swings
through increased cloud cover and latent heat effects. This creates realistic weather patterns that in-
fluence forest dynamics through both direct physiological effects and indirect impacts on the energy
balance.

B.3.3 DISTURBANCE MODELING

The simulator includes stochastic models for fire and insect outbreaks. Fire probability is condi-
tioned on drought index (accumulated temperature and precipitation deficit), temperature thresholds
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(fires more likely during hot periods), and species flammability (conifers more susceptible than de-
ciduous). Insect outbreaks depend on winter temperature (warmer winters increase overwintering
survival) and stand density (denser stands facilitate spread), with coniferous species being more
susceptible to infestations. Both disturbances cause fractional mortality and route carbon appropri-
ately: fire combusts biomass (releasing to atmosphere), while insect kill transfers dead biomass to
soil carbon pools.

B.3.4 HARVESTED WOOD PRODUCTS (HWP) ACCOUNTING

When thinning occurs, the simulator tracks carbon sequestration in harvested wood products rather
than treating all removed biomass as immediate emissions. By default, most of the removed biomass
carbon (typically 70-80%) is stored as HWP (contributing positively to the carbon objective), while
a smaller percentage is lost during harvest operations (representing processing waste and immediate
emissions). This creates an additional management incentive for sustainable harvesting practices
and reflects the reality that forest products can provide long-term carbon storage.

B.3.5 WATER BALANCE

The simulator tracks water in three main reservoirs: canopy-intercepted water, the snowpack on the
ground, and soil water content (SWC).

Snowpack (SWE): Snow Water Equivalent on the ground (SWEground) and on the canopy
(SWEcan) are tracked. The change in the ground snowpack is given by:

∆SWEground = Psnow,throughfall −Mground

where Psnow,throughfall is snow that passes through the canopy and Mground is melt, calculated
from the energy balance. Canopy snow interception is a function of LAI and species type (conifers
intercept more).

Soil Water Content (SWC): The soil is treated as a single bucket model. Its water content changes
according to:

∆SWC = Prain,throughfall +Mcan +Mground − ET −Roff

where inputs are rain and meltwater, and outputs are evapotranspiration (ET , coupled to the energy
balance) and runoff (Roff ), which occurs when SWC exceeds its maximum capacity.

B.3.6 CARBON CYCLE

The simulator tracks two primary carbon pools: living biomass (Cbiomass) and soil organic carbon
(Csoil). The net change in total carbon is a key reward component.

Gross Primary Production (GPP): Carbon uptake is calculated at each n-minute time-step using
the Light Use Efficiency (LUE) model (Monteith, 1972), where GPP is proportional to absorbed
photosynthetic radiation (PARabs) and is down-regulated by environmental stressors:

GPP = PARabs · LUE · f(V PD) · f(SWC)

Respiration (R): Carbon losses occur via respiration from both biomass (autotrophic, Ra) and soil
(heterotrophic,Rh). Both are modeled as a function of temperature using the standard Q10 response
curve (Van’t Hoff & Lehfeldt, 1900):

R = Rbase ·Q
((T−Tref )/10)
10

where Rbase is a base respiration rate at a reference temperature Tref .

Pool Dynamics: The biomass and soil carbon pools are updated annually based on the integrated
fluxes. The net change in biomass is Net Primary Production (NPP = GPP - Ra) minus losses to
litterfall and mortality. The net change in soil carbon is the sum of inputs from litterfall and mortality
minus losses from heterotrophic respiration.

∆Cbiomass = NPP − Lfall −Mfire −Minsect −Mnat

∆Csoil = Lfall +Mdeadwood −Rh
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B.3.7 STAND DYNAMICS AND DISTURBANCES

The simulator includes modules for natural population changes and stochastic disturbances that
impact forest structure and carbon.

Natural Demography: At the end of each year, the model calculates background mortality as a
function of stand density (self-thinning) and a base stochastic rate. It also calculates natural recruit-
ment (new seedlings), which is limited by available space.

Fire Module: A stochastic fire event can occur during the summer. The probability is conditioned
on the stand’s species composition (conifers are more flammable) and a running drought index. If a
fire occurs, it causes fractional mortality and combusts a portion of the biomass carbon, releasing it
from the system.

Insect Module: An annual check for an insect outbreak is performed. The probability is conditioned
on the mean winter temperature (warmer winters increase survival) and stand density. An outbreak
causes fractional mortality, primarily targeting coniferous species, with the dead biomass being
transferred to the soil carbon pool.

B.4 PERFORMANCE OPTIMIZATIONS

The simulator includes several performance optimizations for efficient computation:

JIT Compilation: The canopy energy balance solver uses Numba JIT compilation for significant
speedup of computationally intensive components.

Memory Management: The environment implements automatic memory management for history
tracking, preventing memory leaks during long training runs.

Configurable Physics Backend: The simulator supports two physics backends: a pure Python
implementation for compatibility and a Numba JIT-compiled backend for improved performance
during training.

B.5 ANNUAL SIMULATION TIMELINE

The BoreaRL-Sim instance evolves over a one-year RL time step following a precise sequence of
events. This ensures that management actions and natural processes occur in a logical order.

1. Management Implementation: At the beginning of the year (t=0), the agent’s action is imme-
diately implemented. Stems are added (planting) or removed (thinning) according to the action’s
density and species mix specifications. If thinning occurs, the corresponding carbon is removed
from the Cbiomass pool, representing harvested timber. The age distribution of the forest is up-
dated accordingly.

2. Physical Parameter Update: Based on the new stand structure (density, species mix, age),
all physical parameters are recalculated. This includes LAI, canopy area, albedo, roughness
length, and interception efficiencies. This step ensures the subsequent physical simulation uses
properties that reflect the management action.

3. Sub-Annual Physics Loop: The simulator runs for 365 days, with time-steps per day depending
on step resolution (n). In each time-step:

• The weather forcing (temperature, radiation, precipitation) is updated based on the daily and
diurnal cycles, with added stochastic noise.

• The full energy, water, and carbon balance equations (see Appendix B.2 and B.3) are solved
for the current state.

• The temperatures of all nodes, snow water equivalent (SWE), and soil water content (SWC)
are updated.

• A check for a stochastic fire event is performed if conditions are met (summer, high drought
index).

• The dynamic carbon pools (Cbiomass, Csoil) are updated based on the GPP and respiration
fluxes of the time-step.
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4. End-of-Year Bookkeeping: After the 365-day loop completes, several annual processes are
resolved:

• A stochastic check for an insect outbreak is performed.
• Natural mortality (background and density-dependent) and recruitment are calculated and

applied to the stand’s age distribution.
• All trees in the age distribution are aged by one year.
• Final carbon pool values and the final stem density are calculated.

5. Return Metrics: The simulator calculates the final annual metrics needed for the RL re-
ward. This includes the net change in total ecosystem carbon, positive and negative energy
fluxes across the permafrost boundary, and various carbon pool states. These raw metrics are
returned to the ForestEnv wrapper, which processes them into the normalized reward vector
Rt = [Rcarbon,t, Rthaw,t].

B.6 PARAMETERIZATION

The BoreaRL-Sim is parameterized with a comprehensive set of physics-based parameters to ensure
that trained agents are robust to environmental uncertainty and can generalize across diverse boreal
forest conditions. In generalist mode, key parameters are sampled from uniform distributions at the
start of each episode, while site-specific mode uses fixed parameter values. The parameterization
spans climate forcing, soil properties, vegetation characteristics, and disturbance regimes, enabling
realistic representation of boreal ecosystem variability.

The parameterization strategy ensures that trained agents encounter realistic environmental vari-
ability while maintaining physical consistency. Climate parameters are sampled from ranges rep-
resentative of boreal forest latitudes, with temperature and precipitation patterns that capture the
seasonal dynamics of northern ecosystems. Soil properties vary within ranges typical of boreal
soils, including thermal conductivity and water-holding capacity. Vegetation parameters reflect the
contrasting characteristics of coniferous and deciduous species, with different maximum leaf area
indices and albedo values. Carbon cycle parameters are sampled from literature-based ranges for
boreal ecosystems, ensuring realistic carbon fluxes and turnover rates. Disturbance parameters cap-
ture the stochastic nature of fire and insect outbreaks, with probabilities and impacts calibrated to
boreal forest conditions. This comprehensive parameterization enables the environment to serve as
a robust testbed for multi-objective forest management under climate uncertainty.

Table 4: Comprehensive parameter sampling ranges for the BoreaRL-
Sim.

Parameter Description Sampled Range
Climate Forcing
Latitude Site latitude (◦N) [56.0, 65.0]
Mean Ann. Temp. Offset Climate warming/cooling

offset (◦C)
[-10.0, -5.0]

Seasonal Amplitude Seasonal temperature swing
(◦C)

[20.0, 25.0]

Diurnal Amplitude Daily temperature variation
(◦C)

[4.0, 8.0]

Peak Diurnal Hour Hour of maximum daily
temperature

[3.0, 5.0]

Daily Noise Std Temperature stochasticity
(◦C)

[1.0, 2.0]

Relative Humidity Mean atmospheric humidity [0.6, 0.8]

Precipitation Patterns
Summer Rain Prob Daily summer precipitation

probability
[0.10, 0.20]

Summer Rain Amount Summer rainfall (mm/day) [10.0, 20.0]
Winter Snow Prob Daily winter snowfall prob-

ability
[0.15, 0.30]
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Table 4 – continued from previous page
Parameter Description Sampled Range
Winter Snow Amount Winter snowfall (mm/day) [3.0, 8.0]

Soil Properties
Soil Conductivity Thermal conductivity

(W/m/K)
[0.8, 1.6]

Max Water Content Soil water capacity (mm) [100.0, 200.0]
Stress Threshold Water stress threshold (frac-

tion)
[0.3, 0.6]

Deep Boundary Temp Permafrost boundary tem-
perature (K)

[268.0, 272.0]

Vegetation Characteristics
Max LAI Conifer Maximum leaf area index

(conifers)
[3.0, 5.0]

Max LAI Deciduous Maximum leaf area index
(deciduous)

[4.0, 6.0]

Base Albedo Conifer Canopy albedo (conifers) [0.07, 0.11]
Base Albedo Deciduous Canopy albedo (deciduous) [0.15, 0.20]

Carbon Cycle
Base Respiration Biomass respiration rate

(kgC/m²/yr)
[0.30, 0.40]

Soil Respiration Soil respiration rate
(kgC/m²/yr)

[0.4, 0.6]

Q10 Factor Temperature sensitivity of
respiration

[1.8, 2.3]

Litterfall Fraction Annual biomass turnover
rate

[0.03, 0.04]

Demography
Natural Mortality Annual mortality rate [0.02, 0.03]
Recruitment Rate Annual recruitment rate [0.005, 0.015]
Max Natural Density Maximum stand density

(stems/ha)
[1500, 2000]

Disturbances
Fire Drought Threshold Drought index for fire igni-

tion
[20, 40]

Fire Base Probability Annual fire probability [0.0001, 0.0005]
Insect Base Probability Annual insect outbreak

probability
[0.02, 0.05]

Insect Mortality Rate Mortality rate during out-
breaks

[0.02, 0.05]

Phenology
Growth Start Day Day of year for growth onset [130, 150]
Fall Start Day Day of year for senescence

onset
[260, 280]

Growth Rate Spring phenology rate [0.08, 0.15]
Fall Rate Autumn phenology rate [0.08, 0.15]

C MULTI-OBJECTIVE RL ENVIRONMENT

The BoreaRL environment implements a multi-objective reinforcement learning framework that
wraps the physics simulator with standardized interfaces for training and evaluation. The environ-
ment conforms to the mo-gymnasium API standard and supports both site-specific and generalist
training paradigms.
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C.1 ENVIRONMENT ARCHITECTURE

The environment consists of several key components:

Observation Space: The environment provides a rich observation vector that captures the current
ecological state, historical information, and environmental context. The observation space varies
between operational modes: generalist mode includes episode-level site parameters for robust pol-
icy learning, while site-specific mode uses a reduced observation space with fixed parameters for
location-targeted optimization.

Action Space: The environment implements a discrete action space that encodes two management
dimensions: stand density changes (thinning or planting) and species composition targets. Ac-
tions are encoded as single discrete values representing unique combinations of density change and
conifer fraction targets, enabling efficient policy learning while maintaining interpretable manage-
ment decisions.

Reward Function: The environment returns a 2-dimensional reward vector [Rcarbon,t, Rthaw,t] at
each step. Both reward components are normalized to the range [−1, 1] per step to ensure compara-
ble scales for optimization.

• Carbon Reward (Rcarbon,t): Normalized by a factor of 2.0 kg C m−2 yr−1. It includes the
net carbon change plus stock bonuses, with penalties for exceeding realistic carbon pools
(> 15 kg C m−2 biomass, > 20 kg C m−2 soil).

• Thaw Reward (Rthaw,t): Normalized by a factor of 40.0 degree-days yr−1. It is calculated
as an asymmetric function of conductive heat flux to deep soil: Rthaw ∝ (cooling flux)−
α× (warming flux), where α = 2.5 is a penalty factor that heavily penalizes warming.

Despite the comparable numerical ranges [−1, 1], the thaw objective is significantly harder to opti-
mize due to this asymmetric penalty α and the conflicting physics of the domain (e.g., snow insula-
tion vs. albedo effects), rather than a difference in reward magnitude. A theoretical optimal return
for both objectives over a 50-year episode is estimated at approximately 50.0.

Episode Structure: Each episode consists of 50 annual management decisions, with each decision
followed by a full 365-day physical simulation.

C.2 TRAINING PARADIGMS

The environment supports two distinct training paradigms:

Site-Specific Mode: Designed for controlled studies and location-targeted optimization, this mode
uses deterministic weather patterns, fixed site parameters, and reduced observation dimensional-
ity. The environment uses a fixed weather seed, zero temperature noise, and deterministic initial
conditions, providing reproducible results for systematic ablation studies.

Generalist Mode: Designed for robust policy learning under environmental stochasticity, this mode
samples unique weather sequences and site parameters for each episode. The environment includes
episode-level site parameters in the observation space, enabling policies to adapt to diverse forest
conditions and climate variability.

C.3 PREFERENCE CONDITIONING

The environment supports preference-conditioned training through a preference weight input in the
observation space. This enables training single policies that can adapt to different objective weight-
ings without retraining. Both fixed preference training (for controlled studies) and randomized pref-
erence sampling (for robust generalist policies) are supported.

C.4 RL HYPERPARAMETERS

We evaluate three multi-objective RL algorithms across different training paradigms. The agents
were trained using the hyperparameters listed in Table 5.
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Table 5: Hyperparameters for Multi-Objective RL Agent Training

Hyperparameter Variable λ EUPG PPO Gated Curriculum PPO
Framework morl-baselines Custom PyTorch Custom PyTorch
Learning Rate 1× 10−3 3× 10−4 3× 10−4

Discount Factor (γ) 1.0 0.99 0.99
Network Architecture [128, 64] [64, 64] [64, 64]
GAE Lambda N/A 0.95 0.95
Clip Coefficient N/A 0.2 0.2
Rollout Steps N/A 2048 2048
Batch Size N/A 64 64
Update Epochs N/A 10 10
Curriculum Threshold N/A N/A 0.5
Plant Gate N/A Enabled Enabled
Total Timesteps (Generalist) 3× 105 3× 105 3× 105

Total Timesteps (Site-specific) 1× 105 1× 105 1× 105

C.5 CURRICULUM PPO MECHANISM

The Curriculum PPO agent employs an adaptive episode selection mechanism to stabilize learning
in the generalist setting. The mechanism consists of two components:

1. Episode Selector Network: A fixed, randomly initialized neural network fϕ : Osite →
[0, 1] that projects site features to a scalar score. This network is not trained via gradient
descent but provides a consistent hashing of the site space. We employ a fixed projection
to establish a minimal baseline for curriculum efficacy, demonstrating that the adaptive
thresholding mechanism itself is sufficient for stabilization without the added complexity
of learning a site-value function. While an optimal ordering of the curriculum could poten-
tially yield further improvements, our results show that even this random ordering provides
significant benefits.

2. Adaptive Threshold: A dynamic threshold τ that determines whether to accept an episode
for training (fϕ(s) > τ ). The threshold is updated based on the relative performance
of selected versus skipped episodes. If the agent performs better on selected episodes
(indicating mastery of the current subset), the threshold is decreased (τ ← τ × 0.999) to
expand the training distribution. If performance on selected episodes is worse than skipped
ones, the threshold is increased (τ ← τ × 1.001) to contract the curriculum to a smaller,
more manageable subset.

This approach creates an automatic “breathing” curriculum that expands and contracts the effective
training distribution based on the agent’s current competence.

C.6 OBSERVATION SPACE DETAILS

The observation space structure varies between operational modes. In generalist mode, the observa-
tion vector contains 105 dimensions as detailed in Table 6, while site-specific mode uses a reduced
observation space of 43 dimensions that excludes variable site parameters. The observation vector
is designed to provide information about the current ecological state, historical trends, and environ-
mental context to enable effective policy learning.

Table 6: Detailed breakdown of the observation space structure (gener-
alist mode).

Index Description Normalization
Category 1: Preference Input (1 dimension)
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Table 6 – continued from previous page
Index Description Normalization
0 Carbon Preference Weight (wC) [0, 1] (no change)

Category 2: Current Ecological State (4 dimensions)
1 Year year/50
2 Stem Density (stems ha−1) density/1500
3 Conifer Fraction [0, 1] (no change)
4 Total Carbon Stock (kgC m−2) (biomassC + soilC)/50

Category 3: Site Climate Parameters (6 dimensions)
5 Latitude (◦N) (lat− 50)/20
6 Mean Annual Temperature (◦C) (Tmean + 10)/20
7 Seasonal Temperature Amplitude (◦C) Tamp/30
8 Growth Start Day (DOY) growth day/365
9 Fall Start Day (DOY) fall day/365
10 Growing Season Length (days) (fall day −

growth day)/200

Category 4: Disturbance History (6 dimensions)
11-12 Fire Mortality Fraction (last 2yr) [0, 1] (fraction)
13-14 Insect Mortality Fraction (last 2yr) [0, 1] (fraction)
15-16 Drought Index (last 2yr) index/100

Category 5: Carbon Cycle Details (7 dimensions)
17 Recent Biomass C Change (change+ 0.5)/1.0
18 Recent Soil C Change (change+ 0.2)/0.4
19 Recent Total C Change (change+ 0.7)/1.4
20 Recent Natural Mortality mortality/0.5
21 Recent Litterfall litterfall/2.0
22 Recent Thinning Loss (loss+ 0.5)/1.0
23 Recent HWP Stored hwp/0.5

Category 6: Management History (4 dimensions)
24 Recent Density Action Index action/4
25 Recent Mix Action Index action/4
26 Recent Density Change (change+ 100)/200
27 Recent Mix Change change (no change)

Category 7: Age Distribution (10 dimensions)
28-32 Conifer Age Fractions (5 classes) [0, 1] (fraction)
33-37 Deciduous Age Fractions (5 classes) [0, 1] (fraction)

Category 8: Carbon Stocks (2 dimensions)
38 Normalized Biomass Stock biomass/50
39 Normalized Soil Stock soil/50

Category 9: Penalty Information (3 dimensions)
40 Biomass Limit Penalty penalty/0.5
41 Soil Limit Penalty penalty/0.5
42 Max Density Penalty penalty/1.0

Category 10: Site Parameter Context (62 dimensions, generalist only)
43-104 Site-specific physics parameters Normalized to [0, 1] ranges

The normalization strategy ensures that all components are scaled to approximately [0, 1] ranges
for stable learning, while preserving the relative magnitudes and relationships between different
ecological variables. The preference input enables preference-conditioned policies to adapt their
behavior based on the desired objective weighting.
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C.7 ACTION SPACE ENCODING DETAILS

The environment uses a discrete action space with 25 unique actions (5 density actions × 5 conifer
fractions) as detailed in Table 7. Actions are encoded as single integer values where the density
action index and conifer fraction index are combined using integer division and modulo operations.

Table 7: Action Space Encoding for Forest Management

Action Index Density Change (stems/ha) Conifer Fraction
0-4 -100 0.0, 0.25, 0.5, 0.75, 1.0
5-9 -50 0.0, 0.25, 0.5, 0.75, 1.0
10-14 0 0.0, 0.25, 0.5, 0.75, 1.0
15-19 +50 0.0, 0.25, 0.5, 0.75, 1.0
20-24 +100 0.0, 0.25, 0.5, 0.75, 1.0

Management constraints include thinning restrictions to maintain a minimum density of 150
stems/ha, with thinning operations removing oldest trees first (101+ years) when available. Plant-
ing operations add seedlings (0-5 years) to the stand, with a maximum density of 2000 stems/ha
that cannot be exceeded. If planting is attempted at maximum density, a penalty is applied. Species
composition is controlled by the conifer fraction parameter, allowing for mixed-species management
strategies.

Carbon Accounting: Net carbon change calculations include biomass, soil, and HWP carbon
components. Carbon limits are enforced with penalties rather than hard caps, with biomass carbon
limited to 15.0 kg C/m² and soil carbon limited to 20.0 kg C/m². Excess carbon beyond these limits
incurs proportional penalties to discourage unrealistic carbon accumulation.

Age Distribution Management: The system tracks five age classes: seedling (0-5), sapling (6-
20), young (21-50), mature (51-100), and old (101+ years). Natural mortality and recruitment oc-
cur annually, while management actions modify the age distribution based on species preferences.
Age-weighted canopy factors affect light use efficiency and growth rates, creating realistic stand
dynamics.

C.8 REWARD FUNCTION MATHEMATICAL FORMULATION

The reward function returns a two-dimensional vector [rcarbon, rthaw] with the following compo-
nents:

C.8.1 CARBON REWARD (rc)

rc = clip(cn + sb + hb − pl − pd − pi,−1.0, 1.0)

Where:

cn = clip(
∆C

2.0
,−1.0, 1.0)

sb = 0.0× clip(
Ct

50.0
, 0.0, 1.0)

hb = 0.0× clip(
h

1.0
, 0.0, 1.0)

pl = pb + ps

pb =
eb
15.0

× 0.5

ps =
es
20.0

× 0.5

pd =

{
1.0 if d ≥ 2000

0.0 otherwise
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C.8.2 THAW REWARD (rt)

rt = clip(
at
40.0

,−1.0, 1.0)

Where:
at = fn − 2.5× fp

The carbon reward rc consists of normalized net carbon change cn (where ∆C is the net carbon
change including HWP in kg C/m²/yr), stock bonus sb is based on total carbon stock Ct, and HWP
sales bonus hb is based on HWP carbon stored h. Penalties include total limit penalties pl (sum of
biomass penalty pb and soil penalty ps, where eb and es are carbon excesses beyond limits), density
penalty pd (applied when stem density d exceeds 2000 stems/ha), and ineffective action penalties
pi. The thaw reward rt is based on asymmetric thaw at (degree-days/yr), which combines positive
heat flux fp and negative heat flux fn to deep soil (permafrost proxy) with a 2.5:1 penalty ratio for
warming versus cooling.

Regarding validation, both carbon and thaw rewards are constructed using existing common knowl-
edge from literature about how these fluxes operate. Growth of carbon stock, carbon capacity of
forest and soil, overplanting, excessive thinning, etc are common ways to think about the health of a
forest in forest management. Thaw degree days and fluxes into and out of the soil are common ways
to calculate permafrost thaw. Apart from this existing base, more components can be added to these
depending on user preference and is subjective. Therefore, in some sense, these reward formulations
are already validated from existing literature.

C.9 COMPUTATIONAL COMPLEXITY AND RUNTIME ANALYSIS

Computational cost per episode is ∼12-15 seconds per 50-year episode on a standard CPU (Intel
i7/i9 or AMD Ryzen, single core). With Numba JIT it takes about ∼5-7 seconds. The variance de-
pends on the number of disturbances (fire/insect events trigger additional computation) and whether
the canopy energy balance solver converges quickly (dependent on weather conditions).

In Generalist Mode, the total timesteps is 300,000 (6,000 episodes × 50 steps/episode) and training
time is ∼8-12 hours on a standard CPU workstation. In Site-Specific Mode, the total timesteps is
100,000 (2,000 episodes × 50 steps/episode) and training time is ∼3-4 hours on a standard CPU
workstation. These estimates include forward simulation (physics + reward computation), PPO
policy/value network updates, Logging and checkpointing.

The primary computational cost is the sub-daily physics loop. For each of the 50 annual timesteps,
the simulator runs 365 days × (1440 minutes / 30-minute resolution) = 17,520 physics steps. The
canopy energy balance solver (iterative Newton-Raphson) accounts for∼60-70% of this cost. Train-
ing throughput scales well with CPU cores. With 16 parallel workers, generalist training can be
completed in ∼1-2 hours.

Per-environment memory footprint is ∼50-100 MB. Training a single PPO agent (network param-
eters, replay buffer) is ∼200-500 MB. Total for 16 parallel envs + agent is ∼2-3 GB RAM, easily
feasible on modern workstations.

In absolute terms, BoreaRL is trainable on commodity hardware (laptop or workstation). A full train-
ing run costs $1 in cloud compute (AWS EC2 c5.4xlarge). Relative to other physically-grounded
simulators, BoreaRL is efficient, achieving a balance between physical realism and RL tractability.
We will be exploring JAX/GPU acceleration in future versions.

D ADDITIONAL RESULTS

This section provides additional analysis supporting the claims in the main paper.

D.1 SITE INFLUENCE ON THAW PERFORMANCE

Site characteristics strongly influence thaw performance and learning stability. Certain sites enable
much higher thaw objective values than others, demonstrating that site selection fundamentally de-
termines achievable performance regardless of management decisions. The high volatility in thaw
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reward learning across algorithms supports the importance of curriculum-based approaches for sta-
ble learning.
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Figure 5: Site influence on thaw performance. (a) Thaw objective clustering by site characteristics.
(b) Training volatility in thaw reward learning across algorithms.

D.2 EMPIRICAL TRADE-OFF COVERAGE OF METHODS

Figure 6 shows the carbon-thaw trade-offs achieved by different algorithms.
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Figure 6: Empirical trade-off coverage for different algorithms. We plot for all weights (averaged
across 100 episodes each; summed over 50 steps) to visualize the density and range of learned
policies. The rewards are (a) Fixed-Weight Composition (b) Variable λ EUPG (c) PPO Gated (d)
Curriculum PPO.

Lambda Monotonicity Analysis: Curriculum PPO achieves the best preference control with
50% monotonicity violations, while other methods show poor preference adherence: Fixed-Weight
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(75%), Variable λ EUPG (66.7%), and PPO Gated (100% violations). Curriculum PPO provides the
most reliable trade-off behavior for practical applications.

D.3 MECHANISTIC EVIDENCE AND ANALYSIS

This section provides detailed mechanistic evidence supporting the claims made in the main text,
linking agent behaviors to physical processes.

Table 8: Correlation between Growing Season Length and Thaw Protection Mechanisms. Longer
growing seasons are strongly correlated with better thaw protection, driven by increased transpira-
tion cooling and reduced ground radiation.

Variable Correlation (r) Interpretation
Thaw Reward +0.65 Longer season→ Better Thaw protection
Latent Heat (LE) +0.82 Longer season→More transpiration cooling
Ground Radiation -0.75 Longer season→ Less solar heat on soil

Table 9: Causal Chain of Learned Strategies. Different algorithms converge to distinct local optima
with specific physical mechanisms, outcomes, and algorithmic causes.

Agent Action Strategy Physical
Mechanism

Outcome Algorithmic Cause &
Evidence

PPO
Gated

Carbon Farming
(High Density, High
Conifer)

High Biomass:
Maximizes Carbon.
Low Albedo:
Conifers absorb heat.

High Carbon
(≈ 9.0)
High Warming
(≈ −5.0)

Gradient Dominance:
Dense Carbon signal
overpowers noisy
Thaw signal.
Evid: 100%
λ-violations; Thaw
≈ −5.0.

Variable
λ

Thaw Avoidance
(Low Density,
Deciduous)

High Albedo:
Reflects sunlight.
Low Biomass:
Minimizes Carbon.

Low Carbon
(≈ 1.0)
Max Cooling
(≈ 8.0)

Policy Collapse:
Conflicting gradients
lead to risk-averse
“inaction”.
Evid: Lowest Reward
(1.7); Hypervol 14.2.

Curriculum Balanced / Cooling
(Mod. Density,
Mixed)

High Transpiration:
Cools air.
Mod. Albedo:
Mixed reflection.

Good Carbon
(≈ 8.0)
Good Cooling
(≈ 6.0)

Gradient Filtering:
Removes “trap” sites,
enabling complex
learning.
Evid: High Hypervol
(84.3); Sparsity 0.12.

Table 10: Comparison of Thaw Reward Formulations and Agent Behavior. The Asymmetric formu-
lation forces strong avoidance of warming, whereas symmetric formulations allow small warming
trade-offs.

Formulation Warming Penalty Agent Behavior Resulting Warming Flux

Raw DD Symmetric (1.0) Accepts small warming ≈ 5.0 MJ
Contrast Ratio-based Accepts warming if Cooling

high
≈ 2.0 MJ

Asymmetric Strong (2.5x) Avoids Strongly ≈ 0.1 MJ
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Table 11: Physical Conflicts between Carbon and Permafrost Objectives.

Physical Variable Effect on Carbon (C) Effect on Permafrost (T ) Conflict?

Stem Density ↑ (More Biomass) ↓ (Interception) / ↓
(Absorption)

Yes (Complex)

Conifer Fraction ↑ (Higher Density) ↓ (Lower Albedo → Warmer) Yes (Direct)
LAI ↑ (More Growth) ↑ (Shading/Cooling) No (Synergy)

Table 12: Curriculum Selection Statistics: Characteristics of Accepted vs. Rejected Sites. The
curriculum filters out sites with high warming potential.

Site Category Avg. Latitude Avg. Potential Warming Flux
Accepted Sites High (> 60◦N) Low (≈ 0.5 MJ)
Rejected Sites Low (< 60◦N) High (≈ 8.0 MJ)

D.4 DETAILED OBJECTIVE ANALYSIS

Table 13 provides a detailed breakdown of the Carbon and Thaw objectives achieved by RL base-
lines. Curriculum PPO baseline consistently achieves high values in both objectives, demonstrating
superior trade-off management. In contrast, PPO Gated achieves high Carbon scores but suffers
significant penalties in the Thaw objective, often resulting in negative values due to the asymmetric
warming penalty. Variable λ EUPG fails to learn effective strategies for either objective, clustering
near zero.

Table 13: Detailed breakdown of Carbon and Thaw objectives for RL baselines. Values correspond
to means and errors represent standard deviation over 100 evaluation episodes.

Method & Preference (λ) Carbon Objective Thaw Objective
Curriculum PPO
λ = 0.00 2.5± 1.5 7.8± 1.2
λ = 0.25 7.0± 1.8 8.1± 1.4
λ = 0.50 8.5± 2.0 7.6± 1.5
λ = 0.75 9.5± 1.5 7.7± 1.3
λ = 1.00 10.0± 1.0 7.3± 1.6

PPO Gated
λ = 0.00 8.8± 2.0 −0.2± 2.5
λ = 0.20 7.2± 2.0 2.5± 2.5
λ = 0.40 7.7± 1.5 3.1± 2.0
λ = 0.60 8.4± 1.5 4.2± 2.0
λ = 0.80 7.6± 1.5 1.0± 2.0
λ = 1.00 7.1± 1.0 −1.5± 1.5

Variable λ EUPG
λ = 0.00 −0.7± 1.5 5.8± 2.0
λ = 0.33 1.7± 1.5 2.2± 2.0
λ = 0.44 0.5± 1.5 5.8± 2.0
λ = 0.67 0.9± 1.5 1.1± 1.5
λ = 0.78 −0.8± 1.5 −0.2± 1.5
λ = 0.89 −1.8± 1.5 1.0± 1.5
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D.5 TRAINING DYNAMICS AND STRATEGY EVOLUTION

Figure 7 shows training dynamics for conifer fraction and stem density, revealing distinct algo-
rithmic learning patterns. PPO Gated pursues aggressive early carbon strategies with high conifer
fractions and rapid density growth followed by decline. Curriculum PPO shows steady learning
with moderate improvements in both metrics. Variable λ EUPG maintains conservative species
composition but exhibits sustained density growth throughout training. PPO Gated shows strong
generalization from training to evaluation (see Fig. 4a,b), while Variable λ EUPG exhibits potential
overfitting with poor generalization in density management. Curriculum PPO demonstrates stable
learning across both phases.
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Figure 7: Training dynamics of algorithm strategies. (a) Conifer fraction evolution during training.
(b) Stem density evolution during training.

D.6 MULTI-OBJECTIVE TRADE-OFFS AND CLIMATE ADAPTATION STRATEGIES

Figure 8 shows algorithm performance under varying environmental conditions and objective trade-
offs. Curriculum PPO achieves superior multi-objective performance with high rewards in both
carbon and thaw objectives. PPO Gated prioritizes carbon performance, while Variable λ EUPG
shows inconsistent exploration.

D.7 INDIVIDUAL OBJECTIVE PERFORMANCE ANALYSIS

Figure 9 shows individual carbon and thaw objective performance for each algorithm. PPO Gated
and Curriculum PPO achieve superior carbon performance, while Curriculum PPO dominates thaw
optimization. Variable λ EUPG shows poor performance in both objectives. Curriculum PPO’s
balanced multi-objective approach explains its superior scalarized performance.

D.8 FOREST DEMOGRAPHICS AND COMPOSITIONAL DYNAMICS

This section provides an analysis of forest demographic trajectories and compositional preferences,
offering detailed insights into how different algorithms manage forest structure and species compo-
sition over time. Figure 10 presents two complementary analyses: age-class specific stem density
trajectories and conifer fraction distributions during training and evaluation.

Age-Class Trajectory Analysis: The age-class trajectories (Panels a-e) reveal distinct manage-
ment strategies across different forest developmental stages. For younger age classes (seedling,
sapling, young), all algorithms show initial high stem densities followed by rapid decline, reflect-
ing natural mortality and competition processes. However, the recovery patterns differ: Variable λ
EUPG demonstrates sustained high densities in mature and old age classes, particularly for decidu-
ous trees, suggesting a strategy focused on long-term forest productivity and carbon storage. PPO
Gated shows strong early growth in conifer age classes but experiences more pronounced declines,
indicating a strategy that prioritizes rapid establishment but may sacrifice long-term stability. Cur-
riculum PPO exhibits intermediate patterns, balancing growth and sustainability across age classes.
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Figure 8: Algorithm performance analysis. (a) Carbon vs. thaw rewards during training. (b) Carbon
vs. thaw rewards during evaluation. (c) Growing season vs. thaw reward during evaluation. (d)
Forest demographics during evaluation.

These trajectory differences explain the observed carbon and thaw performance variations, as ma-
ture and old forests contribute significantly to both carbon sequestration and permafrost protection
through their insulating effects.

Compositional Strategy Analysis: The conifer fraction distributions (Panels f-g) reveal funda-
mental differences in species composition preferences. During training (Panel f), Variable λ EUPG
shows a narrow, peaked distribution around 0.45-0.5 conifer fraction, indicating a lack of special-
ized strategy. PPO Gated exhibits a broader distribution with preference for higher conifer fractions
(0.6-0.9), suggesting a strategy that promotes conifer dominance. Curriculum PPO shows interme-
diate preferences, with a broader distribution centered around 0.55-0.6, indicating adaptive compo-
sitional management. The evaluation distributions (Panel g) confirm these training preferences, with
Variable λ EUPG maintaining moderate conifer fractions (0.35-0.65), PPO Gated strongly favor-
ing high conifer fractions (0.75-0.95), and Curriculum PPO showing balanced preferences around
0.6-0.65. These compositional strategies directly impact both carbon and thaw objectives: higher
conifer fractions generally support carbon sequestration through increased biomass, while balanced
compositions may better support permafrost protection through modified energy and water fluxes.

E EXTENDED FUTURE WORK

Additional Multi-Objective Approaches: Future work will incorporate evolutionary algorithms
(e.g., NSGA-II, MOEA/D) as population-based alternatives, hypervolume-based methods (e.g.,
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Figure 9: Individual objective performance analysis. (a) Carbon learning curves during training.
(b) Thaw learning curves during training. (c) Carbon performance during evaluation. (d) Thaw
performance during evaluation.

HSPG) to directly optimize trade-off quality, and model-based MORL to improve efficiency in long-
horizon permafrost dynamics.

Spatial and Temporal Scaling: Develop hierarchical action spaces for landscape-scale manage-
ment, incorporating spatial interactions between stands, temporal coordination of management ac-
tivities, and integration with regional climate models for improved environmental forecasting.

Computational Acceleration: Enable massive parallelization on GPUs/TPUs with JAX/PyTorch.
This would allow for end-to-end vectorization, significantly faster training times, and the ability to
scale to much larger populations of agents or more complex environmental simulations.
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Figure 10: Detailed forest demographics and compositional analysis. (a) Seedling trajectory show-
ing stem density evolution over 50 simulation steps. (b) Sapling trajectory illustrating early forest de-
velopment patterns. (c) Young trajectory demonstrating intermediate growth dynamics. (d) Mature
trajectory revealing long-term forest structure management. (e) Old trajectory showing late-stage
forest dynamics. (f) Conifer fraction distribution during training phase, revealing compositional ex-
ploration strategies. (g) Conifer fraction distribution during evaluation phase, showing learned com-
positional preferences. All panels illustrate how different algorithms (Variable λ EUPG in purple,
PPO Gated in green, Curriculum PPO in brown) manage forest structure and species composition
across developmental stages.
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