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Abstract001

The recently proposed Large Concept Model002
(LCM) (Barrault et al., 2024) generates003
text by predicting a sequence of sentence-004
level embeddings and training with either005
mean–squared error or diffusion objectives.006
We present SONAR-LLM, a decoder-only007
transformer that thinks in the same continu-008
ous SONAR (Duquenne et al., 2023) embed-009
ding space yet is supervised through token-010
level cross-entropy propagated via the frozen011
SONAR decoder. This hybrid objective re-012
tains the semantic abstraction of LCM while013
eliminating its diffusion sampler and restor-014
ing a likelihood-based training signal. Across015
model sizes from 100 M to 900 M parameters,016
SONAR-LLM attains competitive generation017
quality. We report scaling trends, ablations, and018
benchmark results and, release the complete019
training code and all pretrained checkpoints to020
foster reproducibility and future research.021

1 Introduction022

Most autoregressive language models learn token-023

by-token: they minimise cross-entropy over a dis-024

crete vocabulary and emit one token per forward025

step (Brown et al., 2020; Raffel et al., 2020). This026

fine-grained decoding is simple to train and evalu-027

ate but becomes a throughput bottleneck for long028

sequences. Meta’s recently introduced Large Con-029

cept Model (LCM) (Barrault et al., 2024) addresses030

the latency issue by predicting a much shorter tra-031

jectory of sentence-level embeddings trained with032

diffusion or MSE objective. Yet removing token-033

level likelihoods makes optimization less stable.034

We present SONAR-LLM, an autoregressive035

decoder-only transformer that keeps LCM’s “think036

in sentence embeddings” idea while leveraging the037

advantages of cross-entropy learning. The model038

predicts SONAR sentence embeddings but prop-039

agates loss through the frozen SONAR decoder040

down to individual tokens, coupling continuous041

SONAR-LLM

Sentence 1

SONAR ENCODER

Sentence 2

SONAR ENCODER

Sentence 3
embedding

SONAR DECODER

<BOS> tok1 tok2

tok1 tok2 tok3
- Trainable parameters

- Frozen parameters 

- Predicted output

- Given input   

Figure 1: Architecture of SONAR-LLM. The model
autoregressively predicts the next sentence embedding
given a prefix of embeddings and decodes it via the
frozen SONAR decoder.

reasoning with discrete supervision. This yields a 042

single-shot sentence generator that is diffusion-free, 043

likelihood-consistent, and fast at inference time. 044

Our contributions are: 045

1. Token-Aware Embedding Objective. We 046

introduce a training objective that back- 047

propagates token-level cross-entropy through 048

a frozen SONAR decoder, aligning continu- 049

ous predictions with discrete targets. 050

2. Scaling Laws Analysis. We provide a de- 051

tailed scaling law fit for validation losses 052

across model sizes, quantifying the scaling ex- 053

ponents for LLM, LCMs, and SONAR-LLM 054

architectures. 055

3. Inference Efficiency Analysis. We present a 056
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Example 1
Prefix: Once upon a time, in a small yard,
there was a small daisy. The daisy had a name.

Generated: Her name was Daisy. Daisy lived in
a garden full of flowers. She loved to play
with her friends. One day, Daisy saw a big
butterfly. The butterfly was very pretty.
Daisy wanted to be friends with the
butterfly. She said, "Hi, butterfly! Do you
want to play with me?" The butterfly said,
"Yes, I want to play with you!" Daisy and the
butterfly played all day. They had so much
fun. At the end of the day, Daisy was happy
to go home. She knew she would have a new
friend to play with.

Example 2
Prefix: Once upon a time, in a small house,
there lived a kind and honest girl named Lily.
She loved to bake cakes for her friends and
family.

Generated: One day, Lily decided to make a
big cake for her friend. Lily went to the
store to mix cake, flour, and sugar. She
mixed and mixed all the ingredients until it
was time to bake. Then, she put the cake in
the oven and waited for it to bake. When the
cake was done, Lily took it out of the house
and shared it with her friends. They all
loved the cake and said, "Thank you, Lily!"
Lily felt happy and proud that she could make
her friends happy.

Figure 2: Examples of texts generated by SONAR-LLM
900 M

theoretical analysis of inference FLOPs, show-057

ing that SONAR-LLM achieves superior com-058

putational efficiency on long sequences com-059

pared to standard LLMs.060

4. Reproducible Open-Source Release. All061

training code, evaluation scripts, and model062

checkpoints are publicly released to facilitate063

follow-up research.1064

2 Related Works065

Token-level autoregressive models. Large lan-066

guage models are trained by next-token predic-067

tion with cross-entropy over a discrete vocabulary068

(Brown et al., 2020), inheriting the Transformer ar-069

chitecture (Vaswani et al., 2017). Recent research070

has explored alternatives to self-attention for faster071

long-sequence processing; for example, MAMBA072

replaces attention with selective state-space up-073

1Available at https://anonymous.4open.science/r/
SONAR-LLM-775D/

dates and achieves linear-time generation while 074

matching Transformer quality (Gu et al., 2023). 075

Latent-variable text generators. Continuous 076

and discrete VAEs generate sentences from latent 077

codes (Bowman et al., 2016). Vector-Quantised 078

VAE (VQ-VAE) models compress sentences into 079

a short sequence of discrete indices and decode 080

them with an autoregressive prior (van den Oord 081

et al., 2017). The SONAR encoder–decoder ex- 082

tends this idea to a language-agnostic, multimodal 083

sentence embedding space covering 200 languages 084

(Duquenne et al., 2023). Meta’s Large Concept 085

Model (LCM) builds an autoregressive prior over 086

SONAR embeddings and investigates MSE, quan- 087

tisation and diffusion losses in that space (Barrault 088

et al., 2024). Our SONAR-LLM also operates 089

in SONAR space but reinstates token-level cross- 090

entropy by back-propagating through the frozen 091

decoder. 092

Diffusion and discrete denoising models for 093

text. Diffusion-LM denoises continuous word- 094

embedding sequences to enable controllable gen- 095

eration without left-to-right constraints (Li et al., 096

2022). Discrete Denoising Diffusion Probabilis- 097

tic Models (D3PMs) corrupt token sequences and 098

learn to reverse the process in discrete space 099

(Austin et al., 2021). Recent work improves train- 100

ing with a score-entropy objective, narrowing the 101

perplexity gap to autoregressive baselines (Lou 102

et al., 2024). 103

Flow and ODE-based generators. Flow Match- 104

ing trains continuous normalising flows without 105

expensive simulation and subsumes diffusion as a 106

special case (Lipman et al., 2023). Applying flow 107

matching to text, FLOWSEQ generates high-quality 108

sentences in a handful of ODE steps, greatly accel- 109

erating sampling (Hu et al., 2024). 110

In summary, research has progressed from token- 111

wise decoding to latent concept prediction (LCM), 112

diffusion and flow-based models. SONAR-LLM 113

bridges these by learning an autoregressive prior 114

in sentence embedding space while retaining 115

likelihood-based supervision. 116

3 SONAR-LLM 117

Suggested SONAR-LLM is an autoregressive de- 118

coder–only Transformer that operates directly in 119

the SONAR sentence-embedding space while be- 120

ing supervised with token-level cross-entropy. The 121
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overall architecture of our approach is illustrated122

in Figure 1.123

3.1 Pre-processing and Sentence124

Segmentation125

We segment text into small units using the Punkt126

unsupervised sentence tokenizer implemented in127

NLTK (Kiss and Strunk, 2006). Each sentence st128

is encoded with the frozen multilingual SONAR129

encoder (Duquenne et al., 2023), yielding a fixed-130

length vector et ∈ Rd (d=1024 in all experi-131

ments). Given a prefix of sentence embeddings132

(e1, . . . , et), the model predicts the embedding133

êt+1 of the next sentence. This predicted vector is134

then decoded using the frozen SONAR decoder,135

and the generated sentence is compared to the true136

next sentence st+1, which serves as the training137

target.138

3.2 Model Architecture139

SONAR-LLM is a decoder-only Transformer with140

the same layer pattern as Llama 3 (Llama Team,141

AI @ Meta, 2024) but an embedding vocab of size142

one: the model predicts a continuous vector rather143

than a discrete token at each step. Formally, given144

prefix e<t = (e1, . . . , et−1), the network outputs145

êt = fθ(e<t) ∈ Rd. We train variants from 100M146

to 900M parameters by scaling width and depth;147

all use rotary position encodings and RMS-norm.148

3.3 Cross-Entropy Through the Frozen149

Decoder150

To avoid MSE or diffusion objectives yet keep151

likelihood-based training, we decode êt back to152

token logits with the frozen SONAR decoder D:153

zt = D(êt) ∈ R|V|.154

We minimise standard cross-entropy between zt155

and the ground-truth token sequence of sentence156

st:157

L = −
T∑
t=1

log pθ(st | e<t)158

= −
T∑
t=1

|st|∑
i=1

log
(
softmax(zt)st,i

)
(1)159

Back-propagation flows through D keeping160

SONAR frozen and reducing memory overhead.161

Teacher–forcing supplies the ground-truth embed-162

ding et at the next time step.163

3.4 End of sequence 164

We append a special literal sentence "End of 165

sequence." to every document and encode it once 166

with the SONAR encoder to obtain eeot. At infer- 167

ence, generation halts when the cosine similarity 168

between the latest predicted embedding and eeot 169

exceeds τstop=0.98, or when Tmax = 32 sentences 170

are produced. 171

4 Results 172

We trained large language models (LLMs) of four 173

different scales (100 M, 300 M, 600 M, and 900 M 174

parameters) for four epochs each, using the Llama 175

3 architecture on the TINYSTORIES dataset (El- 176

dan and Li, 2023). Each run was conducted on a 177

server equipped with up to 8 NVIDIA A100 GPUs 178

(80GB). When reporting model sizes for LLMs, we 179

included the embedding matrices in the parameter 180

list, as these were fully trained. We also trained 181

SONAR-LLM, MSE-based LCM, and diffusion- 182

based LCM. For SONAR-LLM and MSE-based 183

LCM models, we used the same architecture con- 184

figurations as their LLM counterparts, but excluded 185

the embedding and decoder parameters from train- 186

ing. As a result, these models contain fewer train- 187

able parameters: 34 M, 170 M, 450 M, and 700 188

M, respectively, having the same depth and width. 189

For consistency, we refer to model sizes (100 M 190

– 900 M) based on the full LLM configurations, 191

even when the number of trainable parameters is 192

smaller. For the diffusion-based LCM, we em- 193

ployed the two-tower architecture from the orig- 194

inal paper. Both LCM versions were trained us- 195

ing the official implementation provided by the 196

authors (Barrault et al., 2024). 197

All models were trained using a cosine learning 198

rate scheduler. We experimented with two learning 199

rates: 5× 10−4 and 1× 10−3. Based on validation 200

loss performance, we found 1×10−3 to be optimal 201

for SONAR-LLM, while the other models (LLM, 202

MSE-based LCM, and diffusion-based LCM) per- 203

formed better with a learning rate of 5× 10−4. 204

Examples of generated texts can be found in 205

Figure 2 206

4.1 Scaling laws 207

The empirical scaling properties of the evaluated 208

architectures, illustrated in Figure 3, offer insights 209

into their efficiency in leveraging increased model 210

parameters and training compute. This analysis 211
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Figure 3: Scaling laws: validation loss dynamics vs. number of trainable parameters.

focuses on the implications of these observed vali-212

dation loss dynamics for each model type.213

We fitted the classical scaling law

L(N) = aN−α + b

to the validation losses of all models at epoch 4.214

The results (Table 1) confirm that SONAR-LLM215

achieves a strong scaling exponent (α ≈ 0.074),216

matching or surpassing other embedding-based217

models. This demonstrates that SONAR-LLM can218

efficiently leverage increased model capacity, bene-219

fiting from both semantic abstraction and effective220

scaling behaviour.221

Table 1: Fitted scaling law parameters L(N) = aN−α+
b for each model at epoch 4.

Model a α b R2

LLM 1.07 0.170 1.09 0.997
MSE LCM (Meta) 6.40 0.071 199.6 0.994
Diffusion LCM (Meta) 14.9 0.072 89.1 0.997
SONAR-LLM (ours) 0.24 0.074 1.74 0.994

4.2 Automatic Evaluation with GPT-4o222

We evaluated the performance of all four model223

types on a dataset consisting of 512 generated sto-224

ries, assessing grammatical correctness, creativ-225

ity, coherence, and plot consistency, following the226

methodology proposed by (Eldan and Li, 2023).227

To initiate story generation, we used the first two228

sentences from validation set stories as prompts.229

During evaluation, GPT-4o was shown the full230

story—including the prompt and the generated con-231

tinuation—but was explicitly instructed to assess232

only the continuation starting from the third sen- 233

tence. All models were evaluated after four epochs 234

of training. For the LLM, we experimented with 235

both greedy decoding and beam sampling with four 236

beams. 237

As illustrated in Figure 4, the classic token-level 238

LLM clearly demonstrates the best performance. 239

Among the concept-based models, our proposed 240

SONAR-LLM achieves the highest story genera- 241

tion quality, significantly outperforming both the 242

diffusion-based and MSE-based LCM variants. 243

4.3 NLG Metrics 244

To assess how effectively models capture the distri- 245

bution of the original data, we evaluated standard 246

NLG metrics, including BLEU, ROUGE-L, and 247

METEOR. Specifically, we selected 512 stories 248

from the validation set and used the first two sen- 249

tences from each story as a context (short prefix) 250

to generate the third sentence. We then measured 251

similarity between the generated sentence and the 252

corresponding reference sentence from the valida- 253

tion set using the aforementioned metrics. Addi- 254

tionally, we performed the same evaluation using 255

half of each story in terms of sentence count as a 256

context (long prefix), to investigate model perfor- 257

mance under varying context lengths. Results are 258

provided in Figure 6. 259

The NLG evaluation demonstrates that SONAR- 260

LLM achieves results closely matching—and fre- 261

quently slightly surpassing—those of a standard 262

autoregressive LLM across all metrics. In contrast, 263

original concept-based methods, such as diffusion- 264

based and MSE-based LCMs, consistently show 265
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Figure 4: GPT-4o-based evaluation scores (grammar, creativity, consistency, plot) by model and size. Trainable
parameter counts are shown above bars for SONAR-LLM and MSE LCM.

lower-quality generations, lagging notably behind266

both SONAR-LLM and standard LLMs, regard-267

less of prompt length or model size.
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Figure 5: Theoretical inference FLOPs for autoregres-
sive LLM and SONAR-LLM as a function of sequence
length (log–log scale).

268

4.4 Inference Efficiency269

We compared the theoretical inference complexity270

in FLOPs of SONAR-LLM and a standard LLM271

depending on the input sequence length. The com-272

parison was performed for models with identical273

architectures configured at 600 M parameters. In274

the case of SONAR-LLM, we assumed an average275

sentence length of 60 tokens and, in addition to the276

complexity of the main SONAR-LLM model, we277

also included the FLOPs of the SONAR encoder278

and decoder. The inference setup of SONAR-LLM 279

follows the same structural principles as the MSE- 280

based LCM proposed by Barrault et al. (2024), sug- 281

gesting that both models exhibit similar inference 282

efficiency due to similar design. 283

The results presented in Figure 5 indicate that, 284

for shorter sequences, standard token-level LLMs 285

maintain a computational advantage due to their op- 286

timized token-wise autoregressive decoding. How- 287

ever, as the input length increases, this advantage 288

diminishes: starting from approximately 4096 to- 289

kens, SONAR-LLM surpasses the standard LLM in 290

inference efficiency. This is attributable to SONAR- 291

LLM’s design, which processes entire sentences 292

as atomic units, thereby reducing the number of 293

required decoding steps relative to token-based 294

models. While the theoretical computational com- 295

plexity remains quadratic for both approaches, the 296

effective cost for SONAR-LLM grows much more 297

slowly with sequence length because it operates on 298

a compressed sequence of sentence embeddings. 299

In practice, this yields an almost linear growth in 300

FLOPs up to 1 million tokens, as the quadratic 301

term is scaled by the inverse square of the average 302

sentence length. 303

5 Conclusion 304

We presented SONAR-LLM, a decoder-only 305

Transformer that predicts sentence embeddings 306
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Figure 6: NLG scores by model and size; trainable parameter counts are shown above bars for SONAR-LLM and
MSE LCM.

and is supervised via token-level cross-entropy307

propagated through a frozen SONAR decoder.308

This approach retains the semantic abstraction of309

concept-based models like LCM while restoring a310

likelihood-based training signal.311

As a proof of concept, we trained SONAR-312

LLM on the TINYSTORIES dataset. It showed313

faster loss reduction across training epochs than314

both MSE-based and diffusion-based LCMs, and315

demonstrated favorable scaling behaviour as model316

size increased. In GPT-4o evaluations, SONAR-317

LLM outperformed both LCM variants in gram-318

mar, coherence, creativity, and plot consistency.319

On standard NLG metrics, SONAR-LLM demon-320

strated strong performance, consistently match-321

ing or slightly surpassing the standard token-level322

LLM. It also outperformed both the MSE-based323

and diffusion-based LCMs across all prefix lengths,324

establishing it as a competitive and reliable alterna-325

tive for sentence-level generation tasks.326

Our theoretical FLOPs analysis further demon-327

strates that SONAR-LLM achieves superior infer-328

ence efficiency for long contexts: beyond 4096329

tokens, its total computational cost grows almost330

linearly with sequence length up to 1 million to- 331

kens. Importantly, this effect results from operat- 332

ing on sentence-level segments, but the underlying 333

complexity is still quadratic. This property enables 334

SONAR-LLM to serve as a practical and scalable 335

architecture for long-context generation. 336

We plan to extend our research to more diverse 337

and open-ended datasets, as well as explore scaling 338

to larger model sizes to further assess the general- 339

ization and expressiveness of SONAR-LLM. 340

6 Limitations 341

While our study reveals clear trends among the 342

evaluated model architectures, several limitations 343

remain. 344

First, all experiments were conducted on the syn- 345

thetic TINYSTORIES dataset, which contains short 346

and structurally simple narratives. The extent to 347

which our findings generalize to longer-form, more 348

diverse, or real-world text remains uncertain. 349

Second, our evaluation of generation qual- 350

ity combines standard automatic metrics (BLEU, 351

ROUGE-L, METEOR) with GPT-4o-based assess- 352

ments of grammar, coherence, creativity, and plot 353
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consistency. While the latter offers a stronger proxy354

for human judgment, it is still limited by the be-355

havior and biases of the underlying model. A more356

complete evaluation would benefit from direct hu-357

man annotation or broader qualitative analysis.358

Third, due to computational constraints, we lim-359

ited training to four epochs and model sizes up to360

900 M parameters, with minimal hyperparameter361

tuning. Larger-scale training or more extensive ex-362

ploration might change the observed scaling trends.363
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