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Abstract

The recently proposed Large Concept Model
(LCM) (Barrault et al., 2024) generates
text by predicting a sequence of sentence-
level embeddings and training with either
mean—squared error or diffusion objectives.
We present SONAR-LLM, a decoder-only
transformer that thinks in the same continu-
ous SONAR (Duquenne et al., 2023) embed-
ding space yet is supervised through token-
level cross-entropy propagated via the frozen
SONAR decoder. This hybrid objective re-
tains the semantic abstraction of LCM while
eliminating its diffusion sampler and restor-
ing a likelihood-based training signal. Across
model sizes from 100 M to 900 M parameters,
SONAR-LLM attains competitive generation
quality. We report scaling trends, ablations, and
benchmark results and, release the complete
training code and all pretrained checkpoints to
foster reproducibility and future research.

1 Introduction

Most autoregressive language models learn token-
by-token: they minimise cross-entropy over a dis-
crete vocabulary and emit one token per forward
step (Brown et al., 2020; Raffel et al., 2020). This
fine-grained decoding is simple to train and evalu-
ate but becomes a throughput bottleneck for long
sequences. Meta’s recently introduced Large Con-
cept Model (LCM) (Barrault et al., 2024) addresses
the latency issue by predicting a much shorter tra-
jectory of sentence-level embeddings trained with
diffusion or MSE objective. Yet removing token-
level likelihoods makes optimization less stable.
We present SONAR-LLM, an autoregressive
decoder-only transformer that keeps LCM’s “think
in sentence embeddings” idea while leveraging the
advantages of cross-entropy learning. The model
predicts SONAR sentence embeddings but prop-
agates loss through the frozen SONAR decoder
down to individual tokens, coupling continuous
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Figure 1: Architecture of SONAR-LLM. The model
autoregressively predicts the next sentence embedding
given a prefix of embeddings and decodes it via the
frozen SONAR decoder.
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reasoning with discrete supervision. This yields a

single-shot sentence generator that is diffusion-free,

likelihood-consistent, and fast at inference time.
Our contributions are:

1. Token-Aware Embedding Objective. We
introduce a training objective that back-
propagates token-level cross-entropy through
a frozen SONAR decoder, aligning continu-
ous predictions with discrete targets.

2. Scaling Laws Analysis. We provide a de-
tailed scaling law fit for validation losses
across model sizes, quantifying the scaling ex-
ponents for LLM, LCMs, and SONAR-LLM
architectures.

3. Inference Efficiency Analysis. We present a



Example 1

Prefix: Once upon a time, in a small yard,
there was a small daisy. The daisy had a name.

Generated: Her name was Daisy. Daisy lived in
a garden full of flowers. She loved to play
with her friends. One day, Daisy saw a big
butterfly. The butterfly was very pretty.
Daisy wanted to be friends with the
butterfly. She said, "Hi, butterfly! Do you
want to play with me?"” The butterfly said,
"Yes, I want to play with you!" Daisy and the
butterfly played all day. They had so much
fun. At the end of the day, Daisy was happy
to go home. She knew she would have a new
friend to play with.

Example 2

Prefix: Once upon a time, in a small house,
there lived a kind and honest girl named Lily.
She loved to bake cakes for her friends and
family.

Generated: One day, Lily decided to make a
big cake for her friend. Lily went to the
store to mix cake, flour, and sugar. She
mixed and mixed all the ingredients until it
was time to bake. Then, she put the cake in
the oven and waited for it to bake. When the
cake was done, Lily took it out of the house
and shared it with her friends. They all
loved the cake and said, "Thank you, Lily!"
Lily felt happy and proud that she could make
her friends happy.

Figure 2: Examples of texts generated by SONAR-LLM
900 M

theoretical analysis of inference FLOPs, show-
ing that SONAR-LLM achieves superior com-
putational efficiency on long sequences com-
pared to standard LL.Ms.

4. Reproducible Open-Source Release. All
training code, evaluation scripts, and model
checkpoints are publicly released to facilitate
follow-up research. !

2 Related Works

Token-level autoregressive models. Large lan-
guage models are trained by next-token predic-
tion with cross-entropy over a discrete vocabulary
(Brown et al., 2020), inheriting the Transformer ar-
chitecture (Vaswani et al., 2017). Recent research
has explored alternatives to self-attention for faster
long-sequence processing; for example, MAMBA
replaces attention with selective state-space up-
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dates and achieves linear-time generation while
matching Transformer quality (Gu et al., 2023).

Latent-variable text generators. Continuous
and discrete VAEs generate sentences from latent
codes (Bowman et al., 2016). Vector-Quantised
VAE (VQ-VAE) models compress sentences into
a short sequence of discrete indices and decode
them with an autoregressive prior (van den Oord
et al., 2017). The SONAR encoder—decoder ex-
tends this idea to a language-agnostic, multimodal
sentence embedding space covering 200 languages
(Duquenne et al., 2023). Meta’s Large Concept
Model (LCM) builds an autoregressive prior over
SONAR embeddings and investigates MSE, quan-
tisation and diffusion losses in that space (Barrault
et al., 2024). Our SONAR-LLM also operates
in SONAR space but reinstates token-level cross-
entropy by back-propagating through the frozen
decoder.

Diffusion and discrete denoising models for
text. Diffusion-LM denoises continuous word-
embedding sequences to enable controllable gen-
eration without left-to-right constraints (Li et al.,
2022). Discrete Denoising Diffusion Probabilis-
tic Models (D3PMs) corrupt token sequences and
learn to reverse the process in discrete space
(Austin et al., 2021). Recent work improves train-
ing with a score-entropy objective, narrowing the
perplexity gap to autoregressive baselines (Lou
et al., 2024).

Flow and ODE-based generators. Flow Match-
ing trains continuous normalising flows without
expensive simulation and subsumes diffusion as a
special case (Lipman et al., 2023). Applying flow
matching to text, FLOWSEQ generates high-quality
sentences in a handful of ODE steps, greatly accel-
erating sampling (Hu et al., 2024).

In summary, research has progressed from token-
wise decoding to latent concept prediction (LCM),
diffusion and flow-based models. SONAR-LLM
bridges these by learning an autoregressive prior
in sentence embedding space while retaining
likelihood-based supervision.

3 SONAR-LLM

Suggested SONAR-LLM is an autoregressive de-
coder—only Transformer that operates directly in
the SONAR sentence-embedding space while be-
ing supervised with token-level cross-entropy. The
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overall architecture of our approach is illustrated
in Figure 1.

3.1 Pre-processing and Sentence
Segmentation

We segment text into small units using the Punkt
unsupervised sentence tokenizer implemented in
NLTK (Kiss and Strunk, 2006). Each sentence s;
is encoded with the frozen multilingual SONAR
encoder (Duquenne et al., 2023), yielding a fixed-
length vector e; € R? (d=1024 in all experi-
ments). Given a prefix of sentence embeddings
(e1,...,et), the model predicts the embedding
€41 of the next sentence. This predicted vector is
then decoded using the frozen SONAR decoder,
and the generated sentence is compared to the true
next sentence S¢+1, which serves as the training
target.

3.2 Model Architecture

SONAR-LLM is a decoder-only Transformer with
the same layer pattern as Llama 3 (Llama Team,
Al @ Meta, 2024) but an embedding vocab of size
one: the model predicts a continuous vector rather
than a discrete token at each step. Formally, given
prefix e<; = (eq,...,e;_1), the network outputs
& = folex) € R%. We train variants from 100 M
to 900 M parameters by scaling width and depth;
all use rotary position encodings and RMS-norm.

3.3 Cross-Entropy Through the Frozen
Decoder

To avoid MSE or diffusion objectives yet keep
likelihood-based training, we decode €; back to
token logits with the frozen SONAR decoder D:

z, = D(&;) e RV

We minimise standard cross-entropy between z;
and the ground-truth token sequence of sentence
St

T

L=— Zlogpg(st | e<t)
t=1
T \St|

E— Z Z log (softmax(z)s,,) (1)

t=1 i=1

Back-propagation flows through D keeping
SONAR frozen and reducing memory overhead.
Teacher—forcing supplies the ground-truth embed-
ding e; at the next time step.

3.4 End of sequence

We append a special literal sentence "End of
sequence. " to every document and encode it once
with the SONAR encoder to obtain e.q. At infer-
ence, generation halts when the cosine similarity
between the latest predicted embedding and egq
exceeds Tyop=0.98, or when Ty, = 32 sentences
are produced.

4 Results

We trained large language models (LLMs) of four
different scales (100 M, 300 M, 600 M, and 900 M
parameters) for four epochs each, using the Llama
3 architecture on the TINYSTORIES dataset (El-
dan and Li, 2023). Each run was conducted on a
server equipped with up to 8 NVIDIA A100 GPUs
(80GB). When reporting model sizes for LLMs, we
included the embedding matrices in the parameter
list, as these were fully trained. We also trained
SONAR-LLM, MSE-based LCM, and diffusion-
based LCM. For SONAR-LLM and MSE-based
LCM models, we used the same architecture con-
figurations as their LLM counterparts, but excluded
the embedding and decoder parameters from train-
ing. As a result, these models contain fewer train-
able parameters: 34 M, 170 M, 450 M, and 700
M, respectively, having the same depth and width.
For consistency, we refer to model sizes (100 M
— 900 M) based on the full LLM configurations,
even when the number of trainable parameters is
smaller. For the diffusion-based LCM, we em-
ployed the two-tower architecture from the orig-
inal paper. Both LCM versions were trained us-
ing the official implementation provided by the
authors (Barrault et al., 2024).

All models were trained using a cosine learning
rate scheduler. We experimented with two learning
rates: 5 x 10™% and 1 x 1073, Based on validation
loss performance, we found 1 x 1073 to be optimal
for SONAR-LLM, while the other models (LLM,
MSE-based LCM, and diffusion-based LCM) per-
formed better with a learning rate of 5 x 1074,

Examples of generated texts can be found in
Figure 2

4.1 Scaling laws

The empirical scaling properties of the evaluated
architectures, illustrated in Figure 3, offer insights
into their efficiency in leveraging increased model
parameters and training compute. This analysis
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Figure 3: Scaling laws: validation loss dynamics vs. number of trainable parameters.

focuses on the implications of these observed vali-
dation loss dynamics for each model type.
We fitted the classical scaling law

L(N)=aN"“+1b

to the validation losses of all models at epoch 4.
The results (Table 1) confirm that SONAR-LLM
achieves a strong scaling exponent (o ~ 0.074),
matching or surpassing other embedding-based
models. This demonstrates that SONAR-LLM can
efficiently leverage increased model capacity, bene-
fiting from both semantic abstraction and effective
scaling behaviour.

Table 1: Fitted scaling law parameters L(N) = aN ~*+
b for each model at epoch 4.

Model a a b R?

LLM 1.07 0.170 1.09  0.997
MSE LCM (Meta) 6.40 0.071 199.6 0.994
Diffusion LCM (Meta) 149 0.072  89.1 0.997
SONAR-LLM (ours) 024 0.074 1.74 0.994

4.2 Automatic Evaluation with GPT-40

We evaluated the performance of all four model
types on a dataset consisting of 512 generated sto-
ries, assessing grammatical correctness, creativ-
ity, coherence, and plot consistency, following the
methodology proposed by (Eldan and Li, 2023).
To initiate story generation, we used the first two
sentences from validation set stories as prompts.
During evaluation, GPT-40 was shown the full
story—including the prompt and the generated con-
tinuation—but was explicitly instructed to assess

only the continuation starting from the third sen-
tence. All models were evaluated after four epochs
of training. For the LLM, we experimented with
both greedy decoding and beam sampling with four
beams.

As illustrated in Figure 4, the classic token-level
LLM clearly demonstrates the best performance.
Among the concept-based models, our proposed
SONAR-LLM achieves the highest story genera-
tion quality, significantly outperforming both the
diffusion-based and MSE-based LCM variants.

4.3 NLG Metrics

To assess how effectively models capture the distri-
bution of the original data, we evaluated standard
NLG metrics, including BLEU, ROUGE-L, and
METEOR. Specifically, we selected 512 stories
from the validation set and used the first two sen-
tences from each story as a context (short prefix)
to generate the third sentence. We then measured
similarity between the generated sentence and the
corresponding reference sentence from the valida-
tion set using the aforementioned metrics. Addi-
tionally, we performed the same evaluation using
half of each story in terms of sentence count as a
context (long prefix), to investigate model perfor-
mance under varying context lengths. Results are
provided in Figure 6.

The NLG evaluation demonstrates that SONAR-
LLM achieves results closely matching—and fre-
quently slightly surpassing—those of a standard
autoregressive LLM across all metrics. In contrast,
original concept-based methods, such as diffusion-
based and MSE-based LCMs, consistently show
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Figure 4: GPT-40-based evaluation scores (grammar, creativity, consistency, plot) by model and size. Trainable
parameter counts are shown above bars for SONAR-LLM and MSE LCM.

lower-quality generations, lagging notably behind
both SONAR-LLM and standard LLMs, regard-
less of prompt length or model size.
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Figure 5: Theoretical inference FLOPs for autoregres-
sive LLM and SONAR-LLM as a function of sequence
length (log—log scale).

4.4 Inference Efficiency

We compared the theoretical inference complexity
in FLOPs of SONAR-LLM and a standard LLM
depending on the input sequence length. The com-
parison was performed for models with identical
architectures configured at 600 M parameters. In
the case of SONAR-LLM, we assumed an average
sentence length of 60 tokens and, in addition to the
complexity of the main SONAR-LLM model, we
also included the FLOPs of the SONAR encoder

and decoder. The inference setup of SONAR-LLM
follows the same structural principles as the MSE-
based LCM proposed by Barrault et al. (2024), sug-
gesting that both models exhibit similar inference
efficiency due to similar design.

The results presented in Figure 5 indicate that,
for shorter sequences, standard token-level LLMs
maintain a computational advantage due to their op-
timized token-wise autoregressive decoding. How-
ever, as the input length increases, this advantage
diminishes: starting from approximately 4096 to-
kens, SONAR-LLM surpasses the standard LLM in
inference efficiency. This is attributable to SONAR-
LLM’s design, which processes entire sentences
as atomic units, thereby reducing the number of
required decoding steps relative to token-based
models. While the theoretical computational com-
plexity remains quadratic for both approaches, the
effective cost for SONAR-LLM grows much more
slowly with sequence length because it operates on
a compressed sequence of sentence embeddings.
In practice, this yields an almost linear growth in
FLOPs up to 1 million tokens, as the quadratic
term is scaled by the inverse square of the average
sentence length.

5 Conclusion

We presented SONAR-LLM, a decoder-only
Transformer that predicts sentence embeddings
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MSE LCM.

and is supervised via token-level cross-entropy
propagated through a frozen SONAR decoder.
This approach retains the semantic abstraction of
concept-based models like LCM while restoring a
likelihood-based training signal.

As a proof of concept, we trained SONAR-
LLM on the TINYSTORIES dataset. It showed
faster loss reduction across training epochs than
both MSE-based and diffusion-based LCMs, and
demonstrated favorable scaling behaviour as model
size increased. In GPT-40 evaluations, SONAR-
LLM outperformed both LCM variants in gram-
mar, coherence, creativity, and plot consistency.
On standard NLG metrics, SONAR-LLM demon-
strated strong performance, consistently match-
ing or slightly surpassing the standard token-level
LLM. It also outperformed both the MSE-based
and diffusion-based LCMs across all prefix lengths,
establishing it as a competitive and reliable alterna-
tive for sentence-level generation tasks.

Our theoretical FLOPs analysis further demon-
strates that SONAR-LLM achieves superior infer-
ence efficiency for long contexts: beyond 4096
tokens, its total computational cost grows almost

linearly with sequence length up to 1 million to-
kens. Importantly, this effect results from operat-
ing on sentence-level segments, but the underlying
complexity is still quadratic. This property enables
SONAR-LLM to serve as a practical and scalable
architecture for long-context generation.

We plan to extend our research to more diverse
and open-ended datasets, as well as explore scaling
to larger model sizes to further assess the general-
ization and expressiveness of SONAR-LLM.

6 Limitations

While our study reveals clear trends among the
evaluated model architectures, several limitations
remain.

First, all experiments were conducted on the syn-
thetic TINYSTORIES dataset, which contains short
and structurally simple narratives. The extent to
which our findings generalize to longer-form, more
diverse, or real-world text remains uncertain.

Second, our evaluation of generation qual-
ity combines standard automatic metrics (BLEU,
ROUGE-L, METEOR) with GPT-40-based assess-
ments of grammar, coherence, creativity, and plot



consistency. While the latter offers a stronger proxy
for human judgment, it is still limited by the be-
havior and biases of the underlying model. A more
complete evaluation would benefit from direct hu-
man annotation or broader qualitative analysis.
Third, due to computational constraints, we lim-
ited training to four epochs and model sizes up to
900 M parameters, with minimal hyperparameter
tuning. Larger-scale training or more extensive ex-
ploration might change the observed scaling trends.
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