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Abstract

Reinforcement Learning (RL) algorithms are usually hand-crafted, driven by the
research and engineering of humans. An alternative approach is to automate
this research process via meta-learning. A particularly ambitious objective is
to automatically discover new RL algorithms from scratch that use in-context
learning to learn-how-to-learn entirely from data while also generalizing to a wide
range of environments. Those RL algorithms are implemented entirely in neural
networks, by conditioning on previous experience from the environment, without
any explicit optimization-based routine at meta-test time. To achieve generalization,
this requires a broad task distribution of diverse and challenging environments. Our
Transformer-based Generally Learning Agents (GLAs) are an important first step
in this direction. Our GLAs are meta-trained using supervised learning techniques
on an offline dataset with experiences from RL environments that is augmented
with random projections to generate task diversity. During meta-testing our agents
perform in-context meta-RL on entirely different robotic control problems such as
Reacher, Cartpole, or HalfCheetah that were not in the meta-training distribution.
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Figure 1: Our Generally Learning Agents (GLAs) are
meta-trained on augmented RL datasets via supervised
learning. First, one or more datasets of improving policies
are collected using PPO. Next, these datasets are augmented
with random observation and action projections to create a
large diversity of tasks (environments). A Transformer is
then trained to distill the (sped-up) learning process into a
single in-context RL agent. Finally, at meta-test time, we
can take an environment from a different domain (different
actuators, observations, dynamics, and dimensionalities) and
learn from rewards purely in-context without explicit hand-
crafted RL algorithms or explicit gradient descent.

Improvements in Reinforcement
Learning (RL) algorithms are mainly
driven by the research and engineer-
ing of humans. Meta-learning instead
automates this process (Schmidhuber,
1987; Parker-Holder et al., 2022) to
discover novel RL algorithms with
little human intervention. A key prop-
erty of human-engineered learning
algorithms is their applicability to
a wide range of RL problems. To
replace such algorithms with automat-
ically discovered ones, those need to
be equally general-purpose (Kirsch
et al., 2020; Oh et al., 2020; Team
et al., 2023).

A flexible approach to this prob-
lem is to embed the entire learn-
ing algorithm into a neural network
such that the network learns-to-learn
by in-context learning (Schmidhuber,
1993b; Hochreiter et al., 2001; Duan
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et al., 2016; Wang et al., 2016; Brown et al., 2020; Kirsch et al., 2022a,b). This requires that the entire
learning algorithm be meta-learned from scratch, such as (re)discovering the principle of learning
by gradient descent (Kirsch & Schmidhuber, 2021; Von Oswald et al., 2023; Akyürek et al., 2023)
and credit assignment from rewards. In supervised learning, Large Language Models (LLMs) have
led to strong in-context learning capabilities (Brown et al., 2020). Scaling laws were discovered that
model the increase in predictive performance and capabilities with more training data and model
parameters (Kaplan et al., 2020). Previous work suggested that these are also important drivers for
the generality of in-context learning capabilities (Kirsch et al., 2022b). In RL, generalization of
in-context learners has been more limited (e.g. Laskin et al., 2023; Melo, 2022).

Inspired by these works, we propose a path towards future agents that will be able to learn-how-
to-learn in-context across a wide range of environments. To achieve such generalization, a broad
task distribution of diverse and challenging environments will be needed during meta-training. Our
Generally Learning Agents (GLAs, Figure 1) are an important first step in this direction. Our GLAs
are meta-trained using supervised learning techniques (Laskin et al., 2023; Liu & Abbeel, 2023; Lee
et al., 2023) on a dataset of experiences generated from PPO agents. We add augmentations to this
dataset in the form of random projections to the observations and actions, which generate sufficient
diversity to result in fairly general RL algorithms to be encoded into the neural network weights.
We demonstrate that our GLAs are a significant step towards general-purpose cross-domain in-
context learners by meta-testing them on different robotic control problems that were not seen during
meta-training. We believe to be the first to show such cross-domain generalization for in-context RL.

2 Meta-Learning General-Purpose In-Context Learning Agents

In-context RL agents A reinforcement learning (RL) algorithm is a mapping f : τ 7→ θ from
agent experience τ := (s0, a0, r0, d0, s1, . . . , sL, aL, rL, dL) to a policy π̂(a|s, θ) with index i ∈
{0, . . . , L}, observations si, actions ai, rewards ri, and terminations di.1 We refer to those functions
f as learning algorithms, where the expected return Eπ̂[R] is larger than the returns found in τ and
tends to increase as new experiences are added to τ . Instead of modeling the learning algorithm f and
policy π̂ separately, we may also combine those to an in-context learning policy π(a|s, τ). Optimizing
for π to discover learning algorithms then corresponds to meta-learning. We usually parameterize
π using neural networks such as LSTMs (Hochreiter & Schmidhuber, 1997; Gers et al., 2000),
Transformers (Vaswani et al., 2017), or linear Transformers (Schmidhuber, 1992; Katharopoulos
et al., 2020; Schlag et al., 2021a) due to the sequential nature of τ . See Appendix A for related work.
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Figure 2: Our RL agents reinforcement-learn purely in-
context. A Transformer is used to condition on previously ob-
served environment transitions (si, ai, ri, di, si+1) and predicts
the next action. Meta-Training is done on sequences of transitions
generated from policies with increasing performance.

Meta-learning via supervised
learning Meta-optimization of-
ten involves standard RL tech-
niques (Wang et al., 2016; Duan
et al., 2016) by directly maximiz-
ing the average return over mul-
tiple episodes (together referred
to as the lifetime of the agent).
Recently, supervised learning
has been very successful in lan-
guage modeling (Brown et al.,
2020) but also has shown great
promise in reinforcement learn-
ing (Schmidhuber, 2019; Chen
et al., 2021; Reed et al., 2022).

In this paper, we use supervised learning techniques for meta-learning π and demonstrate their
potential to be used effectively for training across a broad environment distribution to discover novel
generalizing RL algorithms. To do so, we collect sequences of transitions τ := (x0, . . . , xL) with
xi := (si, ai, ri, di, si+1) that correspond to agent behavior with improving performance. Here,
we generate those by running PPO (Schulman et al., 2017) on the meta-training environments. We
then auto-regressively model the action distribution p(ai|si, τ:i−1) given the previous transitions

1Here we assume that π acts in an MDP such that s is a sufficient state representation, but this can be
extended to POMDPs by providing a representation of multiple previous observations instead.
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τ:i−1. To go beyond algorithm cloning/distillation (Kirsch & Schmidhuber, 2021; Laskin et al., 2023)
and exceed the performance of the human-engineered learning algorithm that generated the data,
we sub-sample the data: Given a subset of the data τj:k generated from collection policy π0

C , we
predict the actions in τl:m that are generated from the policy π+g

C that was updated by PPO for g
iterations. We refer to g as the ‘gap’ between τj:k and τl:m. We expect that as we increase the gap g,
we meta-learn RL algorithms that learn more quickly. In summary, our supervised learning objective
that we maximize using gradient ascent is

J(θ) = −
m∑
i=l

D[p(ai|si)|πθ(ai|si, τj:k, τl:i−1, ηi)] (1)

where D is a divergence, here the sum of the reverse and forward KL. The distribution p(ai|si)
corresponds to the policy action distribution as recorded during PPO training. We use a decoder-only
causally-masked Transformer with parameters θ to model πθ, depicted in Figure 2. Additionally,
we may condition on auxiliary information ηi that describes the amount of improvement that is
expected. Options for ηi are the gap g, indicating how many PPO updates to distill into π, or the
policy performance (return) at index i, or the location l within the lifetime l ∈ 0, . . . , L of the agent.

This supervised learning scheme allows us to perform efficient meta-training on offline data with
a stationary objective and without the need for collecting additional data. Because the whole data
sequence is known in advance, without intermediate environment interactions, this allows efficient
training of Transformers to model π. Meta-training is summarized in Algorithm 1.

Training on broad task distributions If we have already solved the environments in the meta-
training distribution with PPO, why is meta-learning a novel learning algorithm still useful? We
hypothesize that meta-training across a sufficiently broad task distribution allows us to discover novel
in-context RL algorithms that can be reused on many unseen RL problems that we typically care about.
As a proof of concept, in this paper we augment the supervised training dataset with random linear
projections in its observations and actions to generate sufficient task diversity. For the augmentations,
we adopt the randomization methodology of previous work in supervised in-context learning (Kirsch
et al., 2022b). We linearly project observations to 64 dimensions and actions to 16 dimensions. This
also enables us to meta-test our GLAs across domains where actuators and observations are of varying
dimensionalities. Kirsch et al. (2022b) have shown that such randomization techniques do not only
result in in-context learners that learn to undo such projections but lead to fairly strong generalization
even outside the trained-on tasks. We demonstrate that this approach also results in increasingly
generalizable in-context learning algorithms for RL.

Meta-Testing During meta testing we simply auto-regressively evaluate the Transformer starting
with an empty history τ ← (), growing τ with each experienced transition for K environment
interactions. This implements in-context RL and is described in Algorithm 2. To make the quadratic
complexity of the full self-attention tractable at inference time, we limit attention to the last 4 thousand
transitions in our experiments.

Algorithm 1 Supervised Meta-Training for GLAs
1: procedure TRAIN(E) ▷ Meta-train on a set of MDPs E
2: D̄ ← {τe} ▷ Collect a dataset of trajectories with increasing

performance using PPO on environments e ∈ E
3: θ ← random parameters ▷ Randomly initialize learning agent π
4: while not converged do
5: D ← augment(D̄) ▷ Augment D; here using random projections on si and ai

6: B ← sample(D) ▷ Sub-sample transitions from D
7: θ ← θ + α∇θJ(θ;B) ▷ Update learning agent πθ via SGD on Equation 1
8: return Generally Learning Agent πθ

Algorithm 2 Meta-Testing for GLAs
1: procedure TEST(e, πθ) ▷ Meta-test on a new MDP e with a generally learning agent πθ

2: τ ← () ▷ Initialize empty history
3: for k ← 1 to K do
4: Use policy πθ(a|s, τ) to obtain a new transition ξ = (s, a, r, d, s′) from environment e
5: τk ← ξ ▷ Update history
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Figure 3: Supervised learning discovers in-context learning agents on single tasks with control-
lable efficiency. In both grid worlds and continuous control the mean return increases in-context
with more environment interactions when running the GLAs Transformer. The rate of learning can
be controlled by the gap g used during meta-training. On Ant-v4, the initial agent is already better
than a random policy, suggesting that the learned in-context RL algorithm leverages task-specific
knowledge. Shading indicates 95% confidence intervals with 64 meta-test training seeds.

3 Experiments

Supervised learning discovers learning agents on single tasks To begin, we demonstrate that
our supervised meta-RL algorithm can discover in-context learning policies that encode a learning
algorithm specific to a task. Figure 3 shows how the mean return increases at meta-test time in a
simple grid world and in continuous control. The grid world consists of a 3x3 grid with directional
movement actions and a goal position at a fixed location. For continuous control, we meta-train on the
Ant-v4 MuJoCo environment. We observe that the initial test return is already larger than a random
policy on Ant-v4 – suggesting that the learned learning algorithm leverages task-specific knowledge.
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Figure 4: In-context learning agents trained
via supervised-learning can adapt to task
changes. On the standard Ant-Dir meta-
learning benchmark the agent adapts when
having seen both tasks during training, but
does not learn in-context on an unseen task.
Shading indicates 95% confidence intervals
with 64 meta-test training seeds.

In-context Learning can be sped-up when the gap
is increased How can the speed of learning be con-
trolled? In Figure 3 (left), we demonstrate how an
increased gap g can speed up learning at meta-test
time. We also test the limiting case of a maximally
large gap g that corresponds to the action targets taken
by the optimal policy in the dataset. We find that in
the case of a single task, the network simply learns
the optimal policy.

Standard meta-learning benchmarks (simple task
distributions) How does the meta-test behavior
change when we move from single tasks to task
distributions? Here, we begin by using a standard
meta-learning task distribution, the Ant-Dir environ-
ment (Finn et al., 2017) that involves the forward
and backward task. The task is not part of the policy
inputs and thus has to be inferred from observations
and rewards. In the Ant-Dir environment (Figure 4),
we observe that training on a single task only allows
learning on that particular task, but does not gen-
eralize to the task of moving in the other direction.
Conversely, meta-training on both environments al-
lows for in-context learning in either task. We observe that for some meta-test training seeds, the
task is incorrectly recognized, resulting in larger confidence intervals. The policy then follows the
incorrect task. We hypothesize that this is a difficulty with the supervised meta-training objective
on such meta-task distributions where the task is determined early in meta-test training and future
actions simply condition on states seen during meta-training, independent of the task rewards. This
may be alleviated by broader task distributions.
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Generalization fails to significantly different tasks and environments We have motivated this
work with the goal of in-context learning agents that generalize to a wide range of environments,
across domains. Given this rather simple training distribution, we would not expect the agent to
generalize to a different environment such as Cartpole or Reacher. To do so, we need to scale the
diversity of the data distribution.
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Figure 5: GLAs generalize to novel domains via
in-context RL. After meta-training on augmented
Ant-v4, the agent can learn in-context on Reacher-
v4, HalfCheetah-v4, and DeepMind-Control Cart-
pole. Shading indicates 95% confidence intervals
with 32 meta-test training seeds.

Scaling the task distribution enables cross-
domain generalization Next, we augment the
dataset by randomly projecting observations and
actions, as described in Section 2. Here, we
meta-train on the augmented Ant-v4 environ-
ment. This makes it impossible to directly en-
code the optimal policy and forces GLAs to
learn in-context. Instead of just meta-testing the
in-context learning agent on the same Ant-v4 en-
vironment or variations thereof, we also apply it
to entirely different domains in Figure 5. We ob-
serve that the agent to some extent implements a
learning algorithm that applies across domains.
It performs in-context learning not just on the
seen Ant-v4 environment (with an unseen ran-
dom projection), but also generalizes its learning
algorithm to the Reacher-v4, HalfCheetah-v4,
and DeepMind-Control Cartpole environment.
To the best of our knowledge, this is the first
time that such strong generalization has been
observed. The resulting performance is still sub-
optimal, but there is visible improvement on
tasks with different actuators, task dynamics,
and observations. Combining a broad task dis-
tribution of many existing continuous control
tasks combined with augmentations as proposed
here may significantly improve these results.

4 Conclusion

Reinforcement Learning (RL) research has produced a wide range of methods to learn from rewards.
In this paper, we instead searched for novel RL algorithms purely by conditioning on previous
experience from the environment, without any explicit optimization at meta-test time. Compared to
previous work in memory-based and in-context meta-RL, we have shown that, given a sufficiently
rich environment distribution, the discovered RL algorithms start generalizing across domains,
moving us closer to automating RL research through meta-learning. To achieve this, we collected an
offline dataset of agent experience with improving performance and then augmented the dataset with
random projections in the observation and action space. When meta-trained on these environments
using supervised learning, the resulting RL algorithms encoded in our Generally Learning Agents
(GLAs) generalize to robotic control problems that are significantly different from training, such as
meta-training on Ant and learning in-context on the Reacher and Cartpole environments.

We believe that our approach provides a foundation for new large models, trained across an extremely
diverse set of RL environments, to enable efficient learning from feedback far beyond our current RL
algorithms. Based on our initial experiments in this paper, we plan to further improve generalization,
robustness, and performance at meta-test time. Further broadening the task distribution with generated,
real, and augmented environments will improve the (learning) capabilities of our GLAs. Finally,
the cost of auto-regressive inference with Transformers and its relatively short context length are a
limiting factor for discovering RL algorithms that make use of hundreds of thousands of environment
transitions. Developing sequence models that can efficiently process and compress hundreds of
thousands of environment transitions (e.g. Schlag et al., 2021a; Gu et al., 2022; Lu et al., 2023) will
be important to improve the efficiency and expressivity of both learning and acting at meta-test time.
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A Related Work

In-context meta-RL and generalization Several works in supervised learning (Hochreiter et al.,
2001; Santoro et al., 2016; Mishra et al., 2018) demonstrated that neural networks such as LSTMs
can learn to learn in-context by updating their activations/memory based on an input feedback
signal (Schmidhuber, 1993b). This mechanism has attracted significant recent attention in large
language models and Transformer models (Brown et al., 2020; Chan et al., 2022; Garg et al., 2022;
Kirsch et al., 2022b) and has been shown (Kirsch & Schmidhuber, 2021; Schlag et al., 2021a) to be
closely related to fast-weight programmers (Schmidhuber, 1992, 1993a; Ha et al., 2017; Miconi et al.,
2018; Najarro & Risi, 2020; Schlag et al., 2021b). Later, this concept was applied to reinforcement
learning (Duan et al., 2016; Wang et al., 2016; Melo, 2022). Although these approaches discover
policies that learn from interaction, their learning capabilities do not generalize to a wide range of
environments. Thus, standard reinforcement learning algorithms, such as PPO, are still required when
training on novel and unseen RL problems. Recent research attempted to broaden the generalization
of in-context RL with parameter-shared neural networks (Kirsch et al., 2022a) or expressive game
simulators (Team et al., 2023) but broad generalization has not yet been achieved. In this paper, we
investigate how data diversity through augmentations can aid general-purpose in-context RL.
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Supervised learning of policies There have been various attempts to use supervised learning
techniques to train RL policies such as offline reinforcement learning (Levine et al., 2020), the
distillation of many task-specific agents into a generalist agent (Reed et al., 2022), and the conditioning
on returns (Schmidhuber, 2019; Chen et al., 2021). Unlike GLAs in this paper, these approaches
implement zero-shot generalization instead of in-context learning.

Supervised meta-learning of RL algorithms Meta-learning of in-context RL agents has recently
been approached with supervised learning techniques. Laskin et al. (2023) distilled learning tra-
jectories generated from PPO agents into neural networks, related to learning algorithm cloning in
supervised learning (Kirsch & Schmidhuber, 2021). Later work demonstrated that sorting offline
experiences by their return and conditioning Transformer models on those leads to improved policy
behavior (Liu & Abbeel, 2023). Using optimal transitions as supervised targets (Lee et al., 2023) can
also result in in-context learning behaviors. In this paper, we argue that such methods are primarily
useful when the discovered reinforcement learning algorithms generalize to a wide range of problems.
This is particularly relevant when the meta-learning algorithm requires existing handcrafted learning
algorithms, such as PPO, to generate the data. Furthermore, we suggest that data can be subsampled
by introducing ‘gaps’ in the increase of returns in concatenated trajectories to discover in-context
learning agents that learn faster. This includes Lee et al. (2023) as a special case, where the gap is
maximal to use the best-performing (optimal) policy.
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