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Abstract

In probabilistic terms, optimal transport aims to find a joint distribution that couples two
distributions and minimizes the cost of transforming one distribution to another. Any feasi-
ble coupling necessarily maintains the support of both distributions. However, maintaining
the entire support is not ideal when only a subset of one of the distributions, namely the
source, is assumed to align with the other target distribution. For these cases, which are com-
mon in machine learning applications, we study the semi-relaxed partial optimal transport
problem that relaxes the constraints on the joint distribution allowing it to under-represent
a subset of the source by over-representing other subsets of the source by a constant factor.
In the discrete distribution case, such as in the case of two samples from continuous random
variables, optimal transport with the relaxed constraints is a linear program. When suffi-
ciently relaxed, the solution has a source marginal with only a subset of its original support.
We investigate the scaling path of solutions, specifically the relaxed marginal distribution
for the source, across different relaxations and show that it is distinct from the solutions
from penalty-based semi-relaxed unbalanced optimal transport problems and fully-relaxed
partial optimal transport, which have previously been explored. We demonstrate the use-
fulness of this support subset selection in applications such as color transfer, partial point
cloud alignment, and semisupervised machine learning, where a part of data is curated to
have reliable labels and another part is unlabeled or has unreliable labels. Our experiments
show that optimal transport under the relaxed constraint can improve the performance of
these applications by allowing for more flexible alignment between distributions.

1 Introduction

Measuring, and subsequently minimizing, the dissimilarity between two distributions or data samples are
ubiquitous tasks in machine learning. Recently, the theory of optimal transport and the family of Wasserstein
distances have seen applications across the spectrum of machine learning problems including computer vision
(Solomon et al., 2014; Kolouri et al., 2017; Rabin et al., 2011; Garg et al., 2020), generative modeling
(Arjovsky et al., 2017; Gulrajani et al., 2017; Salimans et al., 2018; Genevay et al., 2018; Tolstikhin et al.,
2018; Kolouri et al., 2018; Deshpande et al., 2018; Rout et al., 2022; Korotin et al., 2023; Mokrov et al.,
2021), natural language processing (Xu et al., 2018), and domain adaptation (Kirchmeyer et al., 2022).
Optimal transport is widely applicable since it combines the statistical and geometric aspects of data and
provides a correspondence to couple two samples or distributions.
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However, a limitation of standard optimal transport is the strict constraint on the complete transfer of mass
between the two distributions being compared (Frogner et al., 2015). This can be problematic in cases where
such a transfer is not necessary or desirable, such as when dealing with distributions with different support,
over- or under-representation, or the presence of outliers in a portion of the data. In order to deal with
these scenarios partial optimal transport problems (Rubner et al., 1997; Figalli, 2010; Caffarelli & McCann,
2010; Bonneel & Coeurjolly, 2019; Chapel et al., 2020) have been proposed. Partial optimal transport
relaxes the marginal constraints on the transport plan to inequalities, allowing transportation plans that
cover only a fraction of the total mass. Similarly, unbalanced optimal transport corresponds to the case of
unbalanced masses, where only a portion of the mass is transported. One or both of the marginal constraints
can also be relaxed by divergence-based regularizations, such as Kullback-Leibler divergence, total-variation
distance (equivalent to the ℓ1-norm of the difference in mass vectors in the discrete case), or squared ℓ2-
norm (Benamou, 2003; Chizat et al., 2018; Blondel et al., 2018; Peyré & Cuturi, 2019; Séjourné et al., 2019;
Chapel et al., 2021). The solution of partial or unbalanced optimal transport often selects a subset (also
known as an active region) of the support. This property is exploited in machine learning (Chapel et al.,
2020; 2021; Phatak et al., 2023), including the partial Wasserstein covering problem, which has applications
in active learning (Kawano et al., 2022).

In practice, a key limiting factor is the scalability of solving the linear programs corresponding to partial,
unbalanced, or standard optimal transport for large data sets. While efficient gradient based methods cannot
be applied to linear programs directly, a number of regularization based remedies, including entropic (Cuturi,
2013; Cuturi & Peyré, 2018), quadratic, and group-LASSO regularization (Flamary et al., 2016; Blondel
et al., 2018) have been shown to give approximate solutions. In particular, the Sinkhorn algorithm provides
a solution to the entropically regularized standard optimal transport problem. The Sinkhorn algorithm has
been widely applied due to its simple implementation consisting of alternating projections to the feasible
sets of marginal constraints. In the work by Chizat et al. (2018), Dykstra’s algorithm1 is used to solve the
entropically regularized partial optimal transport problem. Similarly, Sinkhorn-like iterations are used for
entropically regularized unbalanced optimal transport in the work by Frogner et al. (2015), and the work
by Séjourné et al. (2019) adapts the Sinkhorn algorithm via asymmetric proximal operators to handle a
variety of divergence-based relaxations. Scalability is even more important in cases where the solution at
different levels of relaxation are sought. Recent works have proposed algorithms for computing the entire
scaling or regularization path of solution for fully-relaxed partial optimal transport (Phatak et al., 2023)
and unbalanced optimal transport problems with fully or semi-relaxed marginal constraints (Chapel et al.,
2021).

In this paper, we study a discrete case of partial optimal transport (Figalli, 2010; Caffarelli & McCann, 2010),
which is posed as a linear program, where the solution is a joint distribution with one fixed marginal and
one marginal that is constrained to be pointwise less than or equal to a constant factor c ≥ 1 of the original,
typically uniform, marginal. The generalized form of this constraint where each point has its own capacity
factor was proposed in the work by Rabin et al. (2014). Initially, we propose an entropically regularized
version to efficiently find an approximate solution, which is equivalent to a specific case within the framework
covered in the work of Séjourné et al. (2019), that we solve with an algorithm that combines Sinkhorn-like
projections with an accelerated proximal gradient method.

As the regularized solution is not sparse, and sparsity of transport map is essential for support subset
selection, we adopt an inexact Bregman proximal point method (Xie et al., 2020) to yield solutions closer
to the original, unregularized, linear program. The work by Xie et al. (2020) is based on the observation
that solving the entropically regularized optimal transport problem is equivalent to a Bregman proximal
point evaluation with Kullback-Leilber divergence as proximal function. As a proximal point method that
uses exact proximal point evaluations is computationally expensive, an inexact proximal point evaluation,
where only a few inner Sinkhorn iterations are used, is used to make the algorithm efficient. In our case, the
computational complexity is on the same order as the accelerated proximal gradient method, but it returns
solution much closer to the linear program for the semi-relaxed partial optimal transport problem. While
other regularization-based methods may induce sparse support, the regularized solution will generally be
distinct from the linear program’s solutions.

1Dykstra’s algorithm can find solutions at the intersection of convex, not necessarily affine, sets.
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The contributions of this paper are the following:

• We motivate and study support susbset selection (SS) a specific formulation of a semi-relaxed partial
optimal transport problem for selecting a subset of a source distribution, parameterized in terms of a
single scalar c ≥ 1 for a fixed target distribution.

• We study the solutions obtained along the scaling path for various values of c, and compare the solution
path to fully-relaxed partial and divergence-based semi-relaxed unbalanced optimal transport problems.

• We develop an accelerated proximal gradient method-based algorithm to solve the entropically regu-
larized version and adapt the inexact Bregman proximal method-based approach for optimal trans-
port (POT) (Xie et al., 2020) to mitigate the effects of entropic regularization detailing an algorithm
SS-Bregman that yields solutions close to the linear program formulation for subset selection and is as
scalable as the Sinkhorn algorithm.

• We apply SS-Bregman to applications including color adaptation, partial distribution alignment, partial
point cloud registration problems, and positive-unlabeled learning (Bekker & Davis, 2020).

• We incorporate the subset selection-based approach into a semi-supervised loss function for training a
neural network-based classifier, which computes the optimal transport based on the learning representa-
tion.

2 Methodology

In Section 2.1, relevant preliminaries related to discrete optimal transport along with formulation of subset
selection problem are discussed. In Section 2.3, the entropically regularized support subset selection problem
and an algorithm to solve it are discussed. In Section 2.4, an inexact Bregman proximal point method to
better approximate the solution of the unregularized support selection problem is detailed.

Notation: The set of the first n natural numbers {1, 2, . . . , n}, is denoted by [n]. The set of integers is
denoted by Z. The ceiling function defined on real numbers x ∈ R is ⌈x⌉ = min{n ∈ Z : n ≥ x}. The
floor function defined on real numbers x ∈ R is ⌊x⌋ = max{n ∈ Z : n ≤ x}. The n-dimensional real vector
space is denoted by Rn. Vectors are typeset in lowercase bold (x); matrices are in uppercase bold (X); and
bold is dropped when an element are referenced by subscripts (xi, Xij). When needed for clarity, elements
will be referenced by subscripts on square brackets ([x1]i, [X2]ij). The set of non-negative vectors in Rn,
known as the non-negative orthant, is denoted by Rn

+. The n-dimensional vector with all elements equal to
unity is denoted by 1n and the m-by-n matrix with all unity elements is denoted by 1m×n. For vectors and
matrices, the symbol ≼ denotes element-wise less than or equal to, and ≽ denotes element-wise greater than
or equal to. The set denoted by ∆n = {x ∈ Rn

+ :
∑n

i=1 xi = 1} is the probability simplex. The element-wise
product for vectors and matrices is denoted by the ⊙ symbol. The element-wise division for vectors and
matrices is denoted by the ⊘ symbol. The diagonal operator is a matrix valued map D : Rn → Rn×n,
such that [D(x)]ii = xi ∀ i ∈ [n] and [D(x)]ij = 0 ∀ i ̸= j ∈ [n]. For x ∈ Rn, the ℓ1, ℓ2 and ℓ∞
norms are given by ∥x∥1 =

∑
i |xi|, ∥x∥2 = (

∑
i |xi|2) 1

2 and ∥x∥∞ = max
i
|xi|, respectively. Both, the

Euclidean inner-product for x,y ∈ Rn given by
∑

i xiyi, and the Frobenius inner-product for X,Y ∈ Rm×n

given by
∑m

i=1
∑n

j=1 XijYij , are denoted by ⟨·, ·⟩. The element-wise exponent of a vector or a matrix is
denoted by exp(·) and the element-wise logarithm of a vector or a matrix is denoted by log(·). For a
matrix X ∈ Rm×n, its non-negative part is represented by X+ or [X]+, with matrix components given
by

[
X+

]
ij

= max{Xij , 0} ∀ i ∈ [m], j ∈ [n]. Similarly, the non-positive part of matrix X ∈ Rm×n is
denoted by X− or [X]− and contains matrix elements

[
X−

]
ij

= min{Xij , 0} ∀ i ∈ [m] and j ∈ [n]. For
a vector x ∈ Rn, both x+ and x− denote the non-negative and non-positive parts respectively. We denote

the indicator function of the singleton set {z} as δz(x) =
{

1, x = z

0, x ̸= z
. The set of vectors {ei}n

i=1 form the

standard basis for Rn, where [ei]i = 1 and [ei]j = 0 for i ̸= j.
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2.1 Problem Formulation

We consider the discrete optimal transport between two weighted samples of size m and n corresponding to
random variables X ∼ µ defined on {x(i)}m

i=1 ⊂ Rd and Y ∼ ν defined on {y(j)}n
j=1 ⊂ Rd, with probability

measures µ =
∑m

i=1 µiδx(i) and ν =
∑n

j=1 νjδy(j) for probability masses µ ∈ ∆m (with {µi = µ(x(i))}m
i=1)

and ν ∈ ∆n (with {νj = ν(y(j))}n
j=1), respectively. Let d : Rd × Rd → R+ denote a distance function. In

practice, this is often the Euclidean distance metric between the points d(x,y) = ∥x−y∥2. Given 1 ≤ p ≤ ∞,
the p-Wasserstein distance (to the p-power) between µ and ν is expressed in terms of the cost matrix M ,
where Mij = dp(x(i),y(j)) ∀i ∈ [m], j ∈ [n] is the cost associated with transporting x(i) to y(j), as

Wp
p (µ, ν) := min

P≽0
⟨P ,M⟩ s.t. P 1n = µ, P ⊤1m = ν, (1)

where P is the transport map and 1⊤
mP 1n = 1⊤

mµ = ν⊤1n = 1. The constraints ensure that any solution P ∗

is a joint distribution that couples the target marginal µ and the source marginal ν. (In the computational
optimal transport literature, µ is referred to as the target and ν as the source.) Therefore, any Wasserstein
distance requires the complete mass transfer between a fixed source and target.

In partial optimal transport (Figalli, 2010), the marginal equality constraints are replaced by the inequalities
P 1n ≼ µ, P ⊤1m ≼ ν, and the equality 1⊤

mP 1n = s; µ ∈ Rm
+ and ν ∈ Rn

+ may not have equal mass; and
the transport map need only transport a fraction of the total mass s ∈ [0,min{∥µ∥1, ∥ν∥1}].

Motivated by machine learning scenarios with a trusted target sample of data and an additional source
of data which cannot be assumed to be of uniform quality, we focus on the semi-relaxed case, where the
constraint on the target is fixed P 1n = µ with ∥µ∥1 = 1, ensuring the total mass constraint, but relax the
constraint on the source, allowing mass to redistribute among the source points ν∗ = P ⊤1m ≤ cν, where
c ≥ 1 is a scaling factor and ∥ν∥1 = 1. The resulting partial optimal transport problem,2 which we refer to
as subset selection (SS), is

min
P≽0

⟨P ,M⟩ s.t. P 1n = µ, P ⊤1m ≼ cν. (2)

Let P ∗
c denote an optimal solution, then the source’s new mass is ν∗

c = P ∗⊤
c 1m. Since 1⊤

mµ = 1⊤
mP ∗

c 1n = 1,
∥ν∗

c ∥1 = 1. Intuitively, this problem allows the new mass of some source points that have relatively lower
cost to increase by a factor of c of the original mass, which enables higher cost source points to have less or
even zero mass. In other words, due to total unit mass constraint, the mass increment at one source point
results in its decrement at other source points. The subset of the source points selected is supp(ν∗

c ), where
supp(·) indicates the support of a vector, i.e., the indices of the points with non-zero mass.

To explore the relaxed constraint set, we consider the case of a uniformly distributed mass ν = 1
n 1n and

express the constraint as P ⊤1m ≼ 1
L 1n, where 0 < L ≤ n and c = n

L . For a fixed value of L, the set
of feasible source marginal distributions form a polyhedral set Ξ(L)

n ⊆ ∆n bounded by linear inequalities
parameterized by L. The set of feasible source marginals Ξ(L)

n is defined as Ξ(L)
n = {x ∈ ∆n : x ≼ 1

L 1n}.
The set Ξ(L)

3 for different values of L are given in Figure 1. Using combinatoric reasoning we deduce the
number of vertices of Ξ(L)

n defining the feasible set for the source marginals.
Remark 1. For the support selection partial optimal transport problem 2 with n > 2 and ν = 1

n 1n, by
defining L = n

c , the inequality constraint can be written as P ⊤1m ≼ 1
L 1n. Extreme points of Ξ(L)

n can be
characterized as follows:

• For 0 < L ≤ 1, the entire probability simplex ∆n is feasible due to the fact that in this case the vertices
of the probability simplex correspond to extreme points of feasible set.

• For 1 < L < 2 and n > 2, the feasible set Ξ(L)
n has n(n− 1) number of vertices, which can can be written

as as convex combination 1
L ei + (1− 1

L )ej, where i, j ∈ [n] and i ̸= j.

• For L = 2, the feasible set Ξ(2)
n has n(n−1)

2 vertices given as 1
2 (ei + ej) for i ̸= j.

2An equivalent set of constraints are P 1n ≼ µ, P ⊤1m ≼ cν, 1⊤
mP 1n = 1.
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• More generally, the number of extreme points of the feasible set Ξ(L)
n is

n!
⌊L⌋!⌈1− ⌊L⌋

L ⌉!(n− ⌊L⌋ − ⌈1−
⌊L⌋
L ⌉)!

,

with the vertices given as the set of possible multi-set permutations of the vector:

[ ⌊L⌋ terms︷ ︸︸ ︷
1
L

1
L · · · 1

L 1− ⌊L⌋
L

n − 1 − ⌊L⌋ terms︷ ︸︸ ︷
0 0 · · · 0

]⊤
=

[ ⌊ n
c ⌋ terms︷ ︸︸ ︷

c
n

c
n · · · c

n 1− c
n⌊

n
c ⌋

n − 1 − ⌊ n
c ⌋ terms︷ ︸︸ ︷

0 0 · · · 0
]⊤
. (3)

Thus, when L ≥ 2 is an integer, which corresponds to c ≤ n
2 and 1

c mod 1
n = 0 the vertices correspond to

uniform distribution of mass across a support of cardinality L = n
c . However, due to the equality constraints

on the other marginal the optimal solution may be a convex combination of these vertices.

Since the amount of mass to be transported is constant, when the scaling parameter c is increased (or
equivalently, when the value of L is decreased) starting from c = 1, the behavior of the coupling P ∗

c ,
and the marginal ν∗

c = (P ∗
c )⊤1n in the transportation problem is affected. This behavior depends on the

structure of the cost matrix M and leads to a redistribution of mass, assigning more mass to certain points
and less to others. At c = 1, corresponding to standard optimal transport, all source constraints are active,
meaning that all constraints in the problem are considered. As the value of c is increased, constraints become
inactive, which constraints depends on the structure of the cost matrix M and the distributions. Once a
point’s mass goes to zero it never re-enters the support for larger values of c. These observations follow
from the linear nature of the problem. Analogous solution paths have been studied for fully-relaxed optimal
transport (Phatak et al., 2023) and fully or semi-relaxed regularized unbalanced optimal transport (Chapel
et al., 2021). Once c reaches c∗, all inequality constraints are inactive and can be discarded. After this
breakpoint c∗, any further increments in c do not affect the resulting transport plans. In other words, for
c ≥ c∗, the transport plan P ∗

c remains the same as P ∗
c∗ , which is a solution that can found by a greedy

algorithm. The exact value of c∗ can be determined analytically, based on the possible greedy solutions. The
analytical expression for c∗ depends on the properties of the cost matrix M and the constraints involved,

c∗ = max
j∈[n]

∑
i Qij

νj
, (4)

where the matrix Q is found by nearest neighbor search,

Qij =
{
µi, j ∈ arg mink∈[n] Mik

0, otherwise
, i ∈ [m], j ∈ [n]. (5)

P ∗
c∗ is a greedy solution with non-zero entries taken from Q by taking one non-zero element in each row,

breaking ties arbitrarily. Thus, as c varies from 1 to c∗, SS varies from standard optimal transport to a
nearest-neighbor transport.

For more flexibility, a designer can provide an upper-bound on the mass assignments to source points by
ζ ∈ Rn

+ with ∥ζ∥1 ≥ 1 (equality corresponds to standard optimal transport), which adds the flexibility in
designing partial optimal transport problems that allow variable ranges of masses for the source points. The
upper-bound can be expressed in terms of a capacity vector κ ∈ Rn

+ such that ζ = κ⊙ν as introduced in the
work by Rabin et al. (2014). For target distribution µ and source upper-bounding measure ζ =

∑m
j=1 ζjδy(j) ,

which is not necessarily a probability measure, the support subset selection problem can be stated as

Sp(µ, ζ) := min
P≽0

⟨P ,M⟩ s.t. P 1n = µ, P ⊤1m ≼ ζ, (6)

and related to the p-Wasserstein distance (to the p-power) by Sp(µ, ζ)
∣∣
ζ=cν

= Sp(µ, cν) ≤ Wp
p (µ, ν) for c ≥ 1.

2.2 Relation to Prior Work

While we consider a purely linear program consisting of a semi-relaxed partial optimal transport, prior
work includes fully-relaxed partial optimal transport and a variety of non-linear approaches for fully or
semi-relaxed partial and unbalanced optimal transport.
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Figure 1: The feasible set Ξ(L)
3 of the source’s new marginal distribution given a uniform distribution ν for

different values of L. For 0 < L ≤ 1 the whole probability simplex is feasible. (a) L = 1.3, six vertices will
exist for 1 < L < 2 . (b) L = 2 yields 3 vertices. (c) L = 2.2, 2 < L < 3 also give 3 vertices. (d) L = 3 yields
a singleton set corresponding to the original uniform distribution.

2.2.1 Divergence-based semi-relaxed partial and unbalanced optimal transport

Many relaxed approaches for unbalanced and partial optimal transport penalize the divergence of the
marginal from the source and/or target distribution (Rabin et al., 2014; Frogner et al., 2015; Chizat et al.,
2018; Séjourné et al., 2019). Many of these also use entropic regularization for scalable algorithms since en-
tropic regularization of the joint distribution defining the transport plan can be cast as the Kullback-Leibler
divergence between the joint and the product of the marginals. The works by Chizat et al. (2018) and
Séjourné et al. (2019) provides an extensive framework for entropic regularization and divergence-based re-
laxations. The latter work (Séjourné et al., 2019) mentions the adjustments necessary to perform asymmetric
marginal penalty case for the semi-relaxed case.

The Kullback-Leibler divergence is a member of the wider family of f -divergences that have been adopted
in relaxed and semi-relaxed optimal transport (Chizat et al., 2018; Séjourné et al., 2019). In the discrete
distribution case p, q ∈∆n, these divergences can be expressed as Dφ(p∥q) :=

∑n
i=1 qiφ( pi

qi
), where φ is the

generating function of the divergence. Notably, φ(r) = KL(r) := r log r− r+ 1 is the generating function for
the KL divergence, and φ(r) = TV(r) := 1

2 |r− 1| is the generating function for total variation, which in the
discrete case is equivalent to an ℓ1-norm based distance: DTV(p∥q) = 1

2
∑n

i=1 qi|pi

qi
− 1| = 1

2∥p− q∥1.

The family of semi-relaxed optimal transport problems with divergence penalty 1
ρ > 0 on the marginal is

SRW(ρ)
φ (µ, ν) := min

P ≽0
⟨P ,M⟩+ 1

ρ
Dφ

(
P ⊤1m∥ ν

)
s.t. P 1n = µ. (7)

The choice φ(r) = ı[0,c](r) :=
{

0, r ∈ [0, c],
∞, otherwise,

yields a range constraint to the interval of [0, c] for the ratio

of the source marginal (Chizat et al., 2018; Séjourné et al., 2019), which is equivalent to Sp(µ, cν) for any
value of ρ and c ≥ 1: SRWı[0,c](µ, ν) = Sp

p (µ, cν).

More generally, one can consider penalties which are not f -divergences such as those based on ℓ∞-norm
Dℓ∞(P ⊤1m∥ ν

)
:= ∥(P ⊤1m)⊘ν−1∥∞ and the squared ℓ2-norm Dℓ2(P ⊤1m∥ν

)
:= ∥P ⊤1m−ν∥2

2 (Benamou,
2003; Blondel et al., 2018; Chapel et al., 2021). The work by Chapel et al. (2021) details a regularization
path algorithm for finding the breakpoints in terms of ρ of the piecewise linear related solutions along the
path, and efficiently calculating the solutions via rank-1 updates of matrix inverse required to solve the
sequence of non-negative, penalized linear regression problems.

Solutions to all of the penalty forms can also be found via equivalent constraint-based optimizations with
the constraint Dφ

(
P ⊤1m∥ ν

)
≤ a, where a ≥ 0. In particular, for c ≥ 2, Sp(µ, cν), the SS problem 2, is

6
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equivalent to the constraint-based optimization with the ℓ∞-norm based penalty by letting a = c− 1, since

∥(P ⊤1m)⊘ ν − 1n∥∞ ≤ a =⇒ ∀j ∈ [n], −aνj ≤ [P ⊤1m]j − νj ≤ aνj

=⇒ ∀j ∈ [n], (1− a)νj ≤ [P ⊤1m]j ≤ (a+ 1)νj =⇒ (2− c)ν ≼ P ⊤1m ≼ cν,

where the lower bound is non-positive for c ≥ 2. However, for 1 < c < 2 or for other choices of Dφ the
feasible set of the marginal differs from the linear program.

The work by Rabin et al. (2014) presents a semi-relaxed optimal transport that combines an additional
ℓ1-norm penalty on the capacity’s deviation with an inequality constraint on the marginal, which ensures
the problem in terms of the transport plan P stays linear,

min
P ≽0
κ∈Rn

+

⟨P ,M⟩+ 1
ρ
∥κ− 1n∥1

s.t. P 1n = µ, P ⊤1m ≼ κ⊙ ν, ⟨κ,ν⟩ ≥ 1

ζ=κ⊙ν=
min
P ≽0
ζ∈Rn

+

⟨P ,M⟩+ 1
ρ
∥ζ ⊘ ν − 1n∥1

s.t. P 1n = µ, P ⊤1m ≼ ζ, ζ⊤1n ≥ 1.

For a given ρ, there is a value of a ≥ 0 such that the constraint-based optimization problem

min
P ≽0
ζ∈Rn

+

⟨P ,M⟩ s.t. P 1n = µ, P ⊤1m ≼ ζ, ζ⊤1n ≥ 1, ∥ζ ⊘ ν − 1n∥1 ≤ a, (8)

has an equivalent solution. The ℓ1-norm based divergence constraint will induce sparsity in the deviations
between ζ ⊘ ν and 1n, such that many of the points maintain the corresponding value of ν. In the uniform
distribution case ν = 1

n 1n, the solution for ζ has a maximum value of a
n such that ζ ⊘ ν = a , the vertices

of the feasible set for the constraint-based formulations include permutations of the vector[
a
n

n − ⌈a⌉ terms︷ ︸︸ ︷
1
n

1
n · · · 1

n
⌈a⌉−a

n

⌈a⌉ − 2 terms︷ ︸︸ ︷
0 0 · · · 0

]⊤
.

This can be compared to the vertices of the feasible set for the marginals of the SS problem 2 explored
in Remark 1, which have more uniform distribution of mass. More uniform mass distribution is motivated
by the maximum entropy principle and desirable such as machine learning tasks such as semi-supervised
learning where the goal is to augment the learning based on additional diversity.

By replacing the ℓ1-norm with the ℓ∞-norm in the capacity-based optimization problem 8 can be related to
Sp(µ, cν) for all values of c ≥ 1 by setting a = c− 1 since ζj is only involved as an upper bound, no longer
considering the lower bound of (2 − c)νj , for [P ⊤1m]j =

∑m
i=1 Pij ≤ ζj ≤ cνj ∀j ∈ [n], yielding the SS

problem 2.

2.2.2 Strictly uniform, semi-relaxed partial optimal transport

The work by Chapel et al. (2020), introduced in the context of positive-unlabeled (PU) learning, further
constrains the semi-relaxed partial optimal transport problem such that the non-zero source masses must be
1
n , the PU Wasserstein optimal transport problem is

PUWp
p(µ, ν; s) := min

T ≽0
⟨T ,M⟩ s.t. 1⊤

mT 1n = s, T 1n ≼
s

m
1m, T ⊤1m ∈ {0,

1
n
}n. (9)

Due to the constraint that the marginal source masses are in the set {0, 1
n} this problem is not a linear

program and only has a non-empty feasible set when s mod 1/n = 0, since s must be an integer multiple
of 1

n , which is an analogous condition to having a uniform distribution among the support as discussed in
Remark 1. If this constraint is relaxed to T ⊤1m ≼ 1

n 1n, then the problem is equivalent to semi-relaxed SS
problem 2, which by the linearity of the problem may result in a solution satisfying the original constraint
T ⊤1m ∈ {0, 1

n}
n. To solve this combinatoric problem, the work by Chapel et al. (2020) obtains the solution

to a convex minimization problem involving group LASSO regularization and additional dummy points, as
in problems for unbalanced optimal transport (Guittet, 2002) to account for dropped mass. The solution to
this problem will create a strictly uniform distribution (after renormalization) amongst the selected subset
of the source marginal. That is, the group LASSO regularization induces a solution whose marginal is a
vertex of the feasible set discussed in Remark 1.

7
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2.2.3 Fully-relaxed partial optimal transport

While the formulation we adopt for subset selection is only for the source marginal (a semi-relaxed formulation
of optimal transport), partial optimal transport formulations can achieve support subset selection on both
marginals using a fully-relaxed optimization (Figalli, 2010; Phatak et al., 2023). Adapting the notation in
the work by Chapel et al. (2020), the partial optimal transport problem is

PWp
p(µ, ν; s) := min

T ≽0
⟨T ,M⟩ s.t. T 1n ≼ µ, T ⊤1m ≼ ν, 1⊤

mT 1n = s, (10)

where s ∈ (0, 1] is the fraction of the mass transported. When the source distribution is uniform µ = 1
n 1n,

after renormalization P = 1
s T , the feasible set for the source marginal P ⊤1m consists of permutations of

the vector [ ns terms︷ ︸︸ ︷
1

ns
1

ns · · · 1
ns

n(1-s) terms︷ ︸︸ ︷
0 0 · · · 0

]⊤
,

which are also the vertices of the feasible set of the marginals for the semi-relaxed SS problem 2 explored
in Remark 1 with L = ns. We note that solutions for the fully-relaxed problem are more likely to have
marginals with this form due to the lack of the equality constraints for the target marginal, as compared to
the semi-relaxed SS problem. However, the main difference of the fully-relaxed approaches compared to our
semi-relaxed SS approach (or other semi-relaxed approaches) is that points in the target may lose mass or
be completely dropped, which is not ideal when the goal is to filter the source distribution for any points
similar to the target distribution.

The fully-relaxed optimal transport can be directly related to the divergence-based unbalanced optimal
transport problem,

FRW(ρ)
φ (µ, ν) := min

P ≽0
⟨P ,M⟩+ 1

ρ

(
Dφ

(
P 1n∥ µ

)
+Dφ

(
P ⊤1m∥ ν

)
)
)
. (11)

There exists a value of ρ ≥ 0 such that the fully-relaxed optimal transport with modified cost matrix
M′ = M− 1

ρ 1m1⊤
n and total variation divergence penalties on both marginals will yield the same solution as

PWp
p(µ, ν; s) Caffarelli & McCann (2010); Chizat et al. (2018); Séjourné et al. (2019). However, as discussed

above, a total variation or ℓ1-based penalty on only the one marginal with an equality constraint on the
other induces a different solution.

For c = 1
s ≥ 1, the fully-relaxed partial optimal transport problem is

min
P≽0

⟨P ,M⟩

s.t. P 1n ≼ cµ, P ⊤1m ≼ cν, 1⊤
mP 1n = 1,

=
min
T≽0

c⟨T ,M⟩

s.t. T 1n ≼ µ, T ⊤1m ≼ ν,1⊤
mT 1n = 1

c
,

(12)

where T = 1
c P . Based on equation 12, c · PWp

p(µ, ν; 1
c ) is the cost for an optimal transport plan with

fully-relaxed constraints P 1n ≼ cµ and P ⊤1m ≼ cν.

The recent work by Phatak et al. (2023), studies the value of ω(s) := PWp
p(µ, ν; s) across all values of

s ∈ (0, 1], which is known as the OT-profile as introduced in the work of Figalli (2010). In the work by
Phatak et al. (2023), ω(s) is shown to be a piece-wise linear convex function of s, and the entire profile can
be computed exactly and approximated efficiently. Furthermore, derivative of ω with respect to s can be
used find a mass fraction where the partial transport separates inliers and outliers Phatak et al. (2023).

To relate the fully-relaxed to the semi-relaxed partial optimal transport, we consider the unbalanced partial
OT-profile function to denote the case where the target marginal is also scaled down by s such that it is
wholly transported

PWp
p(sµ, ν; s) := min

T ≽0
⟨T ,M⟩ s.t. T 1n ≼ sµ, T ⊤1m ≼ ν, 1⊤

mT 1n = s.

8
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Let c = 1
s , then our proposed subset support cost is

Sp(µ, 1
s
ν) = min

P ≽0
⟨P ,M⟩

s.t. 1⊤
mP 1n = 1,

P ≼ µ, P ⊤1m ≼
1
s

ν

=
min
T ≽0

1
s
⟨T ,M⟩

s.t. 1⊤
mT 1n = s,

T 1n ≼ sµ, T ⊤1m ≼ ν.

Thus, Sp(µ, 1
sν) = 1

sPW
p
p(sµ, ν; s) and 1

cSp(µ, cν) = PWp
p( 1

cµ, ν; 1
c ), with optimal solutions related by

P ∗ = 1
s T ∗. Based on this relation we explore the adoption of the knee finding algorithms applied to

selection of s (Phatak et al., 2023) to optimize the selection of c in cases where the source differs from the
target by the presence of outliers.

2.3 Support Subset Selection with Entropic Regularization

The support subset selection problem 6 is a linear program, which can be exactly solved by the simplex
method or interior point methods, both of which do not scale well with the dimension of transport map
(Cuturi, 2013). In order to apply efficient gradient-based optimization to linear programs, entropic regu-
larization has been added to linear objective functions (Li & Fang, 1997). In the work by Cuturi (2013),
entropic regularization is added to the optimal transport problem to efficiently approximate the Wasserstein
distance using Sinhkorn’s matrix scaling algorithm (Cuturi, 2013; Sinkhorn, 1964). For fixed target distri-
bution µ and upper-bounding source measure ζ with mass ζ ∈ Rn

+, the proposed entropically regularized
support subset selection problem is

S(γ)
p (µ, ζ) := min

P≽0
⟨P ,M⟩+ γ⟨P , log(P )− 1m×n⟩ s.t. P 1n = µ, P ⊤1m ≼ ζ, (13)

where γ is the regularization parameter. In the case of a uniform distribution ν = 1
n 1n, the entropically regu-

larization problem will be equivalent to using a Kullback-Leibler divergence between the joint and product of
the given marginals and additional identity and range constraints on the solution’s marginals Séjourné et al.
(2019), as shown in Appendix D. It is important to mention that the regularization term ⟨P , log(P )−1m×n⟩
is negative entropy, which is 1-strongly convex with respect to the ℓ1 and ℓ2 norms in the feasible set:
{P : P ≽ 0, P 1n = µ, P ⊤1m ≼ ζ} (Beck, 2017). The Lagrangian of problem 13 is

L(P ,α,β) =
〈
P , M + γ(log P − 1m1⊤

n ) + α1⊤
n + 1mβ⊤〉

− ⟨α,µ⟩ − ⟨β, ζ⟩, (14)

where α,β are the Lagrange multipliers. Note that we have adopted the approach of Cuturi (2013) and
do not explicitly enforce the simplex constraint on P , which would lead to the log-sum-exp formulation as
in the works by Cuturi & Peyré (2018); Lin et al. (2022); Guminov et al. (2021). Taking the element-wise
derivative of L with respect to P and setting it to zero yields

P̃ (α,β) = D

(
exp (−α/γ)

)
exp (−M/γ)D

(
exp (−β/γ)

)
. (15)

Substituting P̃ back into Lagrangian results in the dual problem

min
α,β

{
f(α,β) := γ1⊤

mP̃ (α,β)1n + ⟨α,µ⟩+ ⟨β, ζ⟩
}

s.t. β ≽ 0.
(16)

The constraint set β ≽ 0 is closed. The indicator function of the constraint set β ≽ 0 is defined as

ı+(β) :=
{

0, for β ≽ 0
∞, otherwise.

Therefore, we can convert problem 16 into an unconstrained composite optimization problem,

min
α,β

f(α,β) + ı+(β). (17)

9
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Since f(α,β) is convex and ı+(β) is proper, closed, and convex, we can apply the accelerated proximal
gradient algorithm to solve the composite optimization problem. Defining the Gibbs kernel K = exp (−M

γ ),
the partial gradient ∇βf(α,β) is

∇βf(α,β) = ζ − exp (−β/γ)⊙
(
K⊤ exp (−α/γ)

)
. (18)

The proximal projection for the non-negative orthant’s indicator function ı+ is computed by setting any
negative entries to zero.

Algorithm 1 (SS-Entropic) outlines our accelerated proximal gradient algorithm to solve the dual form
of subset selection problem with entropic regularization. Similar to the standard entropically regularized
optimal transport problem, the dual variable α is updated with a Sinkhorn-like update at iteration k as

α(k+1) = γ log
((

K exp(−β(k)/γ)
)
⊘ µ

)
. (19)

Whereas, β is updated at iteration k using accelerated proximal gradient based update rule (Beck, 2017;
Beck & Teboulle, 2009) using the extrapolated point ξ with step size 1/η(k)

s

β(k+1) =
[
ξ(k) − 1

η
(k)
s

∇ξf(α(k+1), ξ(k))
]

+ =
[
ξ(k) − 1

η
(k)
s

(
ζ − exp(−ξ(k)/γ)⊙K⊤ exp (−α(k+1)/γ)

) ]
+

(20)

ξ(k+1) = β(k+1) + tk − 1
tk+1

(β(k+1) − β(k)), with tk+1 = 1 +
√

1 + 4t2k
2 , (21)

which uses equation 18 to compute the gradient with respect to the variable ξ(k) before applying the proximal
operator [·]+. In SS-Entropic, we use a constant step size 1

η
(k)
s

= γ (since the primal problem 16 is γ-strongly
convex and its semi-dual is 1

γ -Lipschitz smooth Cuturi & Peyré (2016), see Appendix A for details), but
another option is a backtracking line search (Beck, 2017).

By incorporating the update of α(k+1) as in equation 19 directly into the gradient ∇βf(α(k+1),β(k)), the
algorithm can be written entirely in terms of β(k). This shows that SS-Entropic consists of standard
accelerated proximal gradient updates and has a O(1/k2) convergence rate. As shown in the work by Beck
(2017), the required number of iterations kε to achieve an ε sub-optimal solution of the optimization problem
17 using SS-Entropic is upper-bounded as

kε + 1 ≤
√

2
γε
· ∥β(i) − β∗∥, (22)

where β(i) is the initialization and β∗ is the optimal solution.

If SS-Entropic is allowed to run until its convergence, it returns the optimal coupling P ∗, but in practice,
if SS-Entropic does not reach convergence, P̂ ∗ ∈ Rm×n

+ may violate the primal constraints on its marginals
as these are not ensured by an approximate dual solution. For some applications a projection of P̂ ∗ to
satisfy one or both of the marginal constraints may be required. While not explored in this paper due
to the additional computational cost, projection to the feasible set can be done by the fast dual proximal
gradient (FDPG) algorithm from the works by Beck & Teboulle (2014) and Beck (2017) in conjunction with
Algorithm-2 in the work of Altschuler et al. (2017).

2.4 Support Subset Selection with the Inexact-Bregman Proximal-point Method

Although the entropic regularization of the coupling distribution enables an efficient approximation of the
support subset selection problem 6, the entropic regularization yields denser coupling distributions as com-
pared to the unregularized problem. The denser coupling distributions result in a new marginal mass ν∗ that
is also not sparse, yielding complete support rather than a subset of the source points. Different approaches

10
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Algorithm 1: (SS-Entropic) Fast proximal gradient algorithm to solve the dual problem 17 of
the entropically regularized support subset selection problem 13

Inputs : Target distribution µ, mass assignment bounding vector ζ, cost matrix M ,
entropic regularization parameter γ, initial dual variable, β(i) ∈ Rn

+, and iteration
limit max-iter.

Outputs : P̂ ∗, which approaches the optimal coupling P ∗

1 Function EntropicSS(µ, ζ, β(i), γ, M , max-iter):
Initialization: t0 ← 1, β(0) ← β(i), ξ(0) ← β(i), K ← exp(− 1

γ M)
2 for k ← 0 to max-iter− 1 do

3 α(k+1) ← γ log
((

K exp(− 1
γ β(k))

)
⊘ µ

)
4 β(k+1) ←

[
ξ(k) − γ∇ξf(α(k+1), ξ(k))

]
+

5 tk+1 ←
1+
√

1+4t2
k

2
6 ξ(k+1) ← β(k+1) + ( tk−1

tk+1
)(β(k+1) − β(k))

7 end
8 α∗ ← α(k+1)

9 β∗ ← β(k+1)

10 P̂ ∗ ← P̃ (α∗,β∗) = D
(

exp (− 1
γ α∗)

)
KD

(
exp(− 1

γ β∗)
)

11 return P̂ ∗, α∗, β∗

have been proposed to maintain the computational benefits of entropic regularization while yielding solutions
closer to the unregularized problem (Schmitzer, 2019; Xie et al., 2020).

In this paper, we follow the work by Xie et al. (2020) and adapt an inexact Bregman proximal gradient for
the negative entropy function (Teboulle, 1992) to the partial optimal transport case. The Bregman proximal
gradient approach uses a proximal operator where the usual Euclidean distance(Parikh & Boyd, 2014) is
replaced with the Bregman divergence associated with a continuously differentiable and strictly convex
function (Beck, 2017). In the case of negative entropy, the Bregman divergence is the Kullback–Leibler
divergence. Let ϕ(P ) = ⟨P , log(P )− 1m×n⟩ denote the negative entropy of a non-negative matrix P , then
given a non-negative matrix P

′ ∈ Rm×n
+ , the Bregman divergence is

Bϕ(P ||P
′
) := ⟨P , log(P ⊘ P

′
)⟩ − ⟨P ,1m×n⟩+ ⟨P

′
,1m×n⟩. (23)

For the subset selection problem 6, the Bregman proximal point evaluated at P (t), is

Breg-proxϕ(P (t)) = arg min
P≽0

⟨P ,M⟩+ λBϕ(P ||P (t))

s.t. P 1n = µ, P ⊤1m ≼ ζ,
(24)

where λ is positive scaling factor. By substituting Bϕ(P ||P (t)) from equation 23 into equation 24 and
ignoring the constant term ⟨P (t),1m×n⟩ we obtain

Breg-proxϕ(P (t)) = arg min
P≽0

⟨P ,M − log(P (t))⟩+ λ⟨P , log(P )− 1m×n⟩

s.t. P 1n = µ, P ⊤1m ≼ ζ,
(25)

which corresponds to the entropically regularized subset selection problem 13 with parameters γ and M
in 13 replaced by λ and M − log(P (t)), respectively. Thus, solving the entropy-regularized support subset
selection problem is required to solve an iteration of the proximal-step evaluation problem in equation 25. It
has been shown in the work by Xie et al. (2020) that as t→∞, the iterations P (t+1) = Breg-proxϕ(P (t))
converge to an optimal solution of the original unregularized problem. Therefore, to solve 6 we can iteratively

11
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invoke SS-Entropic to obtain P (t+1) = Breg-proxϕ(P (t)), while replacing γ and M in problem 13 by λ

and M − λP (t) in problem 25, respectively.

Algorithm 2 (SS-Bregman) outlines the steps to solve the subset support selection using the Bregman
proximal-point method, where the inner loop is solved by SS-Entropic. The nested loops of the exact
proximal point algorithm can result in high computational costs, but this can be circumvented by choos-
ing a lower number of iterations for the inner loop—stopping before its convergence. This is justified by
the observation that the majority of the progress towards optimal solutions by gradient based methods is
achieved during the first few iterations. Recently, an inertial variant of inexact-Bregman proximal point
method for the optimal transport has been proposed (Yang & Toh, 2022), which may further accelerate the
Bregman proximal point method, but to the best of our knowledge there are no guarantees for accelerated
convergence.

Algorithm 2: (SS-Bregman) Inexact-Bregman Proximal Point Algorithm to approximately solve 6
via 25

Inputs : Target distribution µ, mass assignment upper bounding vector ζ, cost matrix M ,
Bregman scaling parameter λ, and initial dual variable, β(i) ∈ Rn

+, inner-iteration
limit max-inner-iter and outer-iteration limit max-outer-iter

Outputs : P̂ ∗

Initialization: β(0) ← β(i),P (0) ← 1
mn 1m×n

1 for t← 0 to max-outer-iter− 1 do
// repeatedly invoke Entropic-SS

2 P (t+1),α(t+1),β(t+1) ← EntropicSS
(
µ, ζ,β(t), λ,M − log(P (t)),max-inner-iter

)
3 end
4 P̂ ∗ = P (t+1)

Due to early stopping, SS-Bregman can yield infeasible solutions that do not satisfy the marginal constraints.
In practice, the number of iterations depends on problem in the hand. For applications related to point
cloud registration, color transfer and PU learning, where number of data points in a data-batch is small, the
algorithm is allowed to run with a large number of iterations yielding a highly accurate and feasible solution.
Whereas, for the applications related to neural network training where training efficiency is more important
than the solution accuracy, the algorithm is allowed to run for a smaller number of iterations.

2.5 Point Cloud Registration with Subset Selection

Point cloud registration is a well studied problem that tries to find a correspondence of points in one sample
(cloud) to another sample (Zhang et al., 2021; Zang et al., 2019). Practical settings include points sampled
from the boundaries of 3D images such as captured by LIDAR or the points on the edges of objects in 2D
images (Xu et al., 2023). More generally, points correspond to data points in two or more samples. In both
of these cases it is useful to consider the case that the two samples exist in different coordinate frames such
that there is an affine transformation needed to align the samples before finding the correspondence.

Partial optimal transport for point cloud registration is motivated by cases of occlusion in 2D or 3D imagery.
In the case of data, it could be that one sample has dropped modes either by the nature of the data gathering
or generating process. Our proposed subset selection algorithms are applicable to cases where the source is
assumed to have a complete or overcomplete representation of the target, i.e., only a subset of the target is
available and all target points should be maintained.

We propose to use support subset selection as a loss function for optimizing affine transformations in partial
point cloud registration. This can be posed as a bi-level optimization problem

min
Θ

min
P≽0

⟨P ,M̂(Θ)⟩ s.t. P 1n = µ, P ⊤1m ≼ cν, (26)

where Θ = [A, b] are the parameters of the affine transform, the entries of the cost matrix M̂(Θ) are
[M̂(Θ)]ij = ∥xi−ŷΘ

j ∥2
2 i ∈ [m], j ∈ [n] for fixed target {xi}m

i=1 and transformed source {ŷΘ
j = Ayj +b}n

j=1.

12
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The standard approach to solve bi-level optimization problems in point cloud registration discussed in the
works by Arun et al. (1987) and Myronenko & Song (2010), is an iterative alternating algorithm with two
steps, where the sub-problem for the affine transform is solved exactly via ordinary least squares. If the
coupling matrix during an iteration is given by P ∗, the next subproblem is to find the affine transformation
parameters Θ = [A, b] that minimize the weighted squared errors

∑
i,j [P ∗]ij∥xi− (Ayj +b)∥2

2. The solution
can be found analytically in terms of the source mass vector ν∗ = P ∗⊤1m, weighted means of the target
point cloud X = [x1, . . . ,xm]⊤ and the source point cloud Y = [y1, . . . ,yn]⊤ as x̄ = X⊤µ and ȳ = Y ⊤ν∗,
and centered point clouds X̃ = X − 1mx̄⊤ and Ỹ = Y − 1nȳ⊤, as

A =
(
X̃⊤P ∗Ỹ

)(
Ỹ ⊤D(ν∗)Ỹ

)†
,

b = x̄−Aȳ,
(27)

where (·)† indicates the Moore-Penrose pseudo-inverse.

To find a solution to equation 26, we also use an iterative alternating algorithm with two steps. In contrast
to Myronenko & Song (2010), instead of using complete source and target point clouds to obtain affine
transformations, during every iteration we draw batches from both source and target point clouds to obtain
the coupling matrix P ∗ and update the affine transformation parameters Θ via a gradient update. The
advantage of this mini-batch based approach is an implicit regularization and faster updates for affine
transformation parameters. In the first step, given the affine transformation we obtain an approximate
solution P̂ ∗ to the subset selection problem 6 via SS-Bregman. In the second step, we used automatic
differentiation of the cost ⟨P̂ ∗,M̂(Θ)⟩ and perform gradient based update for the parameters Θ = [A, b]. It
is important to mention that we follow the approach adopted by Xie et al. (2020) for gradient evaluation.
Therefore, during an iteration, once the subset set selection map P̂ ∗ is obtained, it is deemed constant for
the iteration in consideration, therefore the gradient is: ∇Θ⟨P̂ ∗,M̂(Θ)⟩ =

∑
i,j [P̂ ∗]ij∇Θ[M̂(Θ)]ij . More

specifically, we used PyTorch based automatic differentiation for gradient evaluation (Paszke et al., 2017) and
the Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.5 for gradient based updates of parameters
Θ. To initialize the affine mapping parameters we simply set A and b to the identity matrix and zero
vector, respectively. However, since the bi-level optimization problem is not convex, even though the subset
selection problem at each iteration is convex, in practice the algorithm could be allowed to run with multiple
initialization to obtain the best fit.

3 Experimental Results and Discussion

In this section we discuss the application of subset selection. Subsections 3.1 and 3.2 discuss the application
of subset selection in toy data sets: point-clouds in 2D and 3D with and without affine transformations and
color transfer, respectively. Subsection 3.3 discusses subset selection for positive-unlabeled learning tasks.
Subsection 3.4 discusses the application of subset selection for semi-supervised training of neural networks.
All the experiments done in this paper use p = 2 and the Euclidean distance to define the cost matrix.
Unless stated otherwise, experiments use µ = 1

m 1m and ζ = c
n 1n, where c ≥ 1 is the scaling factor.

3.1 Subset Selection on Point Clouds

Circle and Square: In order to demonstrate the proposed algorithms and highlight the difference between
regular optimal transport and subset selection, we consider a target sample of points from a circle centered
at the origin and a source sample of points from a 2D uniform distribution also centered at the origin. We
allow the scaling parameter c to vary between 1 and 100, obtain the optimal transport plans P ∗ using both
SS-Entropic and SS-Bregman, and evaluate the cost values ⟨P ∗,M⟩. Results for this toy case are shown
in Figure 2. It can be observed that as c is increased the transport cost decreases until it saturates to the
cost of the greedy solution

∑
i∈[m]

1
m minj∈[n][M ]ij , which corresponds to c = c∗ where the transport map

could be found by greedily choosing nearest source point for each target point as in equation 4. Figure 2 also
illustrates the transport couplings for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}. A key observation is that transport
maps obtained with SS-Bregman are sparser as compared to the denser maps obtained using SS-Entropic.
Additionally, they achieve smaller values of transport cost. Therefore in the subsequent sections, we focus
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on results from SS-Bregman in the main body; results for Algorithm SS-Entropic are in the Appendix B
and Appendix C, the latter includes comparisons with penalty-based semi-relaxed formulations.
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Figure 2: (a) The toy data generated by uniformly sampling m = 100 points from a circle centered at the
origin with unit diameter as the target. The source contains n = 80 points generated by sampling uniformly
from [- 1

2 ,
1
2 ]×[- 1

2 ,
1
2 ]. (b) The optimal costs ⟨P ∗,M⟩ obtained using SS-Entropic and SS-Bregman versus c for

c ∈ [1, 100]. SS-Entropic is ran for 10,000 iterations with γ = 0.1. SS-Bregman is ran for max-outer-iter =
100, max-inner-iter = 100 and λ = 0.1. (c) and (d) Support subset selection results obtained for c ∈
{1, 1.25, 1.5, 1.75, 2, 4, 8, 16} using the Algorithms SS-Entropic and SS-Bregman, respectively.

Fragmented Hypercube with Mode Dropping: We demonstrate the utility of the support subset
selection algorithm for partial point cloud registration on a toy case with one dropped mode and an affine
transformation between the source and the target. Specifically, we consider data sampled from a uniform
distribution over a hypercube (specifically, a square in 2D or a cube in 3D), which is then fragmented, where
the target has one less fragment than the source. To generate the source we sample n points {vi}n

i=1 from
the uniform distribution over a unit hypercube centered at the origin [− 1

2 ,
1
2 ]d, d ∈ {2, 3}. These points

are then fragmented into 2d fragments according to their quadrant ỹi = vi + (d− 1) sign(vi) and then offset
to obtain the source points as yi = ỹi + 5(d − 1) for i ∈ [n]. The target data is generated similarly: a
sample of m̂ > m points {zi}m̂

i=1 is obtained from [− 1
2 ,

1
2 ]d, then points with all negative coordinates are

discarded, leaving m points, which are fragmented into 2d− 1 fragments to obtain the target set {xi}m
i=1 via

xi = zi + (d − 1) sign(zi) for i ∈ [m]. Examples of the data for 2D and 3D are shown in Figure 3(a) and
Figure 4(a), respectively.
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Figure 3: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 2D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a) Source
and target sample points. (b) Loss function plotted against Θ = [A, b] updates for scaling parameter c ∈
{1, 1.25, 1.5, 1.75, 2, 4, 8, 16}. (c) Target and transformed source points after application of optimized affine
transformation. Subset selection problems are solved using the SS-Bregman with λ = 0.1, max-outer-iter =
100 and max-inner-iter = 500.

Due to the translation by 5(d − 1) of the source point coordinates, direct application of the transport map
will not yield a meaningful registration. Instead we use the bi-level optimization algorithm described in
Section 2.5. The target and the transformed source after applying the affine transformation obtained using
SS-Bregman for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} are displayed in Figure 3(c) and Figure 4(c), respectively.
Clearly, the c = 1 case corresponding to the complete optimal transport fails to identify a meaningful affine
transformation, instead skewing and rotating the source fragments to minimize the Wasserstein distance
to the target. The figures also display the cost ⟨P ∗,M̂⟩ across iterations. It can be observed that, like
the previous toy examples as the value of scaling factor c is increased, initially the value of the optimal
loss ⟨P ∗,M̂⟩ decreases but after certain values of c, it saturates and stops decreasing and stays constant
afterwards.

Partial Point Cloud for 3D Shapes: We further apply this form of subset selection based point cloud
registration to point clouds for 3D objects when the target points are only taken from a portion of the
entire 3D point cloud. Results for the Stanford bunny and armadillo (Turk & Levoy, 1994; Krishnamurthy
& Levoy, 1996) are shown in Figure 5. It can be observed that for the case c = 1, which corresponds to
complete optimal transport, the entire set of source points are coupled to the target point cloud which results
in a distorted affine transform. For c ∈ {2, 5, 10, 20}, subset selection allows an appropriate subset of the
source points to be well-fit by an affine transform to the target point cloud.
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Figure 4: Results for affine transformation optimization with subset selection for partial optimal trans-
port. Target points X are sampled from a 3D fragmented hypercube centered at the origin with negative
co-ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a)
Source and target sample points. (b) Loss function plotted against Θ = [A, b] updates for scaling pa-
rameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}. (c) Target and transformed source points after application of the
optimized affine transformation. Subset selection problems are solved using the SS-Bregman with λ = 0.1,
max-outer-iter = 200 and max-inner-iter = 500.

3.2 Color Transfer

Color transfer is the problem of finding a correspondence in the colors of pixels (represented as points in
a 3D color space) between two images and then using this map to assign the colors of the source image to
the target image (Reinhard et al., 2001). Color transfer is essentially an optimal transport problem in the
color space, but with the added context that the pixels have their image coordinates, which are not used
by the algorithm. For practical application to high resolution images, the pixel colors are first quantized
using k-means clustering, as using partial optimal transport on the full set of pixel colors is computationally
demanding. While in standard optimal transport the relative mass of each color cluster has to be preserved,
here we exploit our formulation of partial optimal transport as support subset selection to allow a subset
of colors to be used at a higher proportion than in the original source and allow a subset of colors to be
completely discarded. For example, if a color cluster represents 1% of the original source’s pixels, then it
could represent up to c% of the target’s pixels.

We apply k-means clustering to the set of vectors in RGB color space representing the source’s M pixels and
the target’s N pixels separately to obtain m ≪ M color centroids {xi}m

i=1 ⊂ R3
+ for the target image and

n ≪ N color centroids {yj}n
j=1 ⊂ R3

+ for the source image, with µ ∈ ∆m and µ ∈ ∆n being the vectors
of proportion of colors in the target and source image color clusters, respectively. After that, we define the
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Figure 5: Affine transformation optimization for partial alignment of point clouds where a subset of the
source point-cloud Y can be perfectly aligned (after rotation and scaling) with the target point cloud X.
We use the optimization algorithm described in Section 2.5, where SS-Bregman is employed to obtain the
coupling P ∗ given the affine transformation parameters A and b, which are updated using equation 27. (a)
Stanford bunny point cloud. (b) Stanford armadillo point cloud.

cost matrix between the color centroids as Mij = ∥xi−yj∥2
2,∀i ∈ [m], j ∈ [n] and obtain the support subset

selection map P ∗ ∈ Rm×n
+ using SS-Bregman, such that P ∗1n = µ and P ∗⊤1m ≼ cν. The support subset

selection is then used to obtain the barycenter projections by solving (Blondel et al., 2018)

x̂i = arg min
x∈R3

n∑
j=1

P ∗
ij∥x− yj∥2

2, ∀i ∈ [m]. (28)

The analytic solution of the barycenter projections can be compactly written as

X̂ = (P ∗ ⊘ (µ1⊤
n ))Y ∈ Rm×3, (29)

where X = [x1,x2, . . . ,xm]⊤ ∈ Rm×3 and Y = [y1,y2, . . . ,ym]⊤ ∈ Rn×3 are matrices of the color centroids.
Each pixel in the target image is assigned the corresponding barycenter projection x̂π(i), where π(i) ∈ [m]
is the cluster assignment for the ith pixel of target image, i ∈ [M ].

We apply this color transfer scheme to images freely available though a Creative Commons licence, the
“Louisiana Nature Scene Barataria Preserve” by Neil O as target and “Autumn in Toronto” by Bahman A-
Mahmoodi as source. The color transfer results with m = n = 128 and SS-Bregman with λ = 0.1 are shown
in Figure 6. It can be observed that the results for larger values of c are smoother within objects or areas
of similar color (e.g., the dark backdrop behind the peppers) and sharper in the color transitions between
different objects (the colors in the orange versus red pepper on the right side of the photograph) as compared
to the optimal transport case c = 1. This is due to the fact that larger values of c allow certain colors to
be reused more than their prevalence in the source image and allow some colors to be discarded, which
enables smoother transitions in colors for areas of the target images with smooth color gradients. Similar
observations can be seen in Figure 7 which uses the same settings and MATLAB test images: “peppers” as
target and “corn” as source.

3.3 Subset Selection for Positive-Unlabeled Learning

In this section, we discuss the application of subset selection to the one-class semi-supervised classification
scheme known as positive-unlabeled (PU) learning (Bekker & Davis, 2020). In PU learning, the training
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target

source

c=1 c=1.25 c=1.5 c=1.75

c=2 c=4 c=8 c=16

(a) (b)

Figure 6: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} for “Louisiana Nature Scene Barataria
Preserve” by Neil O as target and “Autumn in Toronto” as source by Bahman A-Mahmoodi as target. The
value of c for each image is indicated at the top of image.

target

source

(a) (b)

c=1 c=1.25 c=1.5 c=1.75

c=2 c=4 c=8 c=16

Figure 7: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} for MATLAB image “peppers” as target
and “corn” as source. The value of c for each image is indicated at the top of image.

sample consists of purely positively labeled instances, and the unlabeled test sample consists of both positive
and negative instances. Previous work often assumes that a prior on the probability of positive instances in
unlabeled data is known (Kato et al., 2019; Hsieh et al., 2019; Chapel et al., 2020). Partial optimal transport
is then used to find a subset with cardinality proportional to the prior of the test sample (source/unlabeled)
that corresponds to all or a subset of the training sample (target/positive). We argue that all of the target
mass should be preserved in cases of a relatively small and curated positive training sample. This motivates
the application of our proposed subset selection approach to find the subset of the source that covers the
positive target, compared to fully-relaxed approaches.

To illustrate the difference between fully and semi-relaxed partial optimal transport for PU learning, we
consider two-dimensional random variables for the positive and unlabeled points where the support of pos-
itive random variable is a subset of the support of unlabeled random variable and both have long-tailed
distributions, as shown in Figure 8. The lower accuracy for the fully-relaxed solution (79.5% versus subset
selection’s 84.1%) can be accounted for by the increased distances between source and target points away
from the origin, which causes the target points to be dropped, preventing true positives in the source from
being selected. This result holds for more general settings discussed in Appendix E.

We applied subset selection to PU learning using the experimental settings adapted from the work of Chapel
et al. (2020), who explored using the PU-Wasserstein (PUW) 9 and the partial Gromov-Wasserstein distance
(PGW) on various UCI, MNIST, colored-MNIST, and Caltech-office data sets. For the UCI, MNIST, and
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Figure 8: Results of PU learning on toy data using subset selection (accuracy 84.1%) and fully-relaxed partial
optimal transport (accuracy 79.5%). Data is generated as [r cos(ψ), r sin(ψ)] where the radius r is drawn
from a truncated exponential distribution with density 2 exp(−r)ı[log 2,∞)(r) and ψ is uniform over a subset
of angles [0, π]. The points belong to four classes corresponding to the angle falling in one of the intervals
[0, π

4 ], ( π
4 ,

π
2 ], ( π

2 ,
3π
4 ], or ( 3π

4 , π]. The m = 100 target/positive points are all from the third class. The
solutions are obtained using the known number of positives n+ out of the n = 400 source points, setting
c = n

n+
for our semi-relaxed approach and s = n+

n for the fully-relaxed partial optimal transport.

colored-MNIST data sets, we randomly draw m = 400 positive points and n = 800 unlabeled points. For
Caltech-office data sets, we randomly sampled m = 100 positive points from the first domain and n = 100
unlabeled data points from the second domain. Following the experiments from the works by Chapel et al.
(2020) and Kato et al. (2019), for multi-class data sets, we chose the data points from the class labeled 1 as
positive and a random mixture of all classes as unlabeled, and the prior probability of positive class in the
unlabeled set π+ is set to be exactly the proportion of positives in unlabeled sample π+ = n+

n , where n+
is the number of true positives. This informs the PU-Wasserstein, partial Gromov-Wasserstein, and fully-
relaxed partial Wasserstein optimal transport problems on the amount of mass to be transported as s = π+,
whereas for subset selection we set the scaling parameter to be c = n

n+
. Classification accuracy is evaluated

by assigning positive predictions to the n+ largest source mass assignments and negative predictions to
the remaining source points. We also compute the ROC curve by using the source mass assignment ν∗ to
rank the unlabeled source points. We ran the experiment 10 times and report the average of classification
accuracy and the area under the ROC curve (ROC-AUC) in Table 1. It can be observed that the proposed
subset-selection performs better than PU Wasserstein in terms of accuracy in 8 out of the 10 data sets with
same domain (UCI, MNIST, and Caltech-office with same domains). Subset selection does best overall on
6 out of these 10, with fully-relaxed partial optimal transport performing better on 4 datasets. For the
Caltech-office data sets with domain transfer, the partial Gromov-Wasserstein optimal transport does best.
In terms of ROC-AUC, subset selection does better than PU Wasserstein in 9 out of the 10 intra-domain data
sets, which is not surprising since the relative ranking is more meaningful than when the mass assignments
are restricted to be binary valued {0, 1

n+
} as in the solutions from PU Wasserstein.

We attribute, higher AUC-ROC of subset selection as compared to fully-relaxed Wasserstein, to the fact
that, subset selection problem has equality constraints on target mass which ensures coverage (lower false
negatives). The differences between our solutions (SS) and those for the PU Wasserstein (PUW) are subtle,
as both are semi-relaxed and maintain equality constraints on the target distribution. The small, but
consistent, differences in the accuracy between our method and PUW may be due to the additional uniform
mass assignment constraints in PUW, which is achieved through group-LASSO. The uniform mass assignment
constraints in PUW may result into larger transport costs as compared to solutions obtained using SS with
same cardinality. The largest mass assignments in the solution to SS might be more reliable than constrained
solutions to PU Wasserstein.
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Dataset π+
Accuracy ROC-AUC

PUW PGW FR-PW SS PUW PGW FR-PW SS
mushrooms 0.518 95.15 94.85 99.45 96.63 0.9657 0.3336 0.9948 0.9883

shuttle 0.786 95.13 93.63 96.35 96.20 0.9321 0.6215 0.9467 0.9718
pageblocks 0.898 91.90 90.35 91.88 92.40 0.8036 0.7197 0.7817 0.8513

usps 0.167 98.28 95.55 97.08 98.48 0.9815 0.5096 0.9476 0.9927
connect-4 0.658 60.95 58.05 60.95 60.73 0.5692 0.5126 0.5666 0.5871
spambase 0.394 78.80 68.40 69.08 79.28 0.7952 0.5834 0.6770 0.8369

mnist 0.1 99.08 98.23 99.15 99.18 0.9874 0.7638 0.9768 0.9971
mnist-colored 0.1 91.58 96.78 97.66 91.88 0.8189 0.6619 0.9360 0.9521

surf C → surf C 0.1 90.00 87.20 82.00 90.40 0.8576 0.4622 0.7469 0.7333
surf C → surf A 0.1 81.60 86.80 81.40 81.60 0.4546 0.4764 0.5337 0.4889
surf C → surf W 0.1 82.20 86.40 81.20 82.20 0.4707 0.4807 0.4451 0.5056
surf C → surf D 0.1 80.00 87.00 80.00 80.00 0.3756 0.4328 0.4056 0.4444

decaf C → decaf C 0.1 94.00 86.20 82.00 94.40 0.9498 0.5713 0.7667 0.9682
decaf C → decaf A 0.1 80.20 88.20 81.80 80.40 0.3986 0.5031 0.5349 0.4564
decaf C → decaf W 0.1 80.20 88.60 82.00 80.00 0.4299 0.5827 0.5611 0.5965
decaf C → decaf D 0.1 80.80 92.20 80.40 80.40 0.4546 0.5042 0.4617 0.4530

Table 1: PU learning on data sets as in the work by (Chapel et al., 2020). For subset selection (SS)
and fully-relaxed partial-Wasserstein (FR-PW), accuracy is evaluated by assigning label 1 to n+ largest
mass assignments and label 0 to the remaining mass assignments. For PU Wasserstein (PUW), the mass
assignment are constrained to be binary valued in the set {0, p}, the data points with mass assignments 0
are labeled 0 and the data points with mass p = 1

nπ+
= 1

n+
are labeled 1.

3.3.1 PU Learning on MNIST/EMNIST

To further illustrate how SS-Bregman operates on PU learning, we apply it to the case where the positive
training sample (target) consists of MNIST digit images and the unlabeled test sample contains 50% points
(MNIST digits) and 50% negative points (alphabetic letters from EMNIST). When c = 1, which is equivalent
to standard optimal transport, initially all the images in the unlabeled source sample are assigned uniform
masses. As c is increased, we hypothesize that the true positive MNIST digits will been assigned larger
mass and remain in the selected support, whereas the EMNIST letters will receive relatively lower or zero
mass. Our hypothesis is confirmed by the results displayed in Figure 9(a), which displays the ROC curve
across different choices of c, and in Figure 9(c), which displays the area under the ROC curve (AUC). As
c is increased, source points with largest mass assignments are mostly MNIST digits. Likewise, Figure 9(e)
shows the images with highest mass for different values of c which are mainly MNIST numbers or EMNIST
letters with close resemblance to a number. Figure 9(b) visualizes the distribution of source point masses
by graphing the sorted masses for different values of c. From these curves the cardinality of the subset is
easily seen for different values of c. Notably, for values of c ≤ 4 there are exists a subset of the selected
source points with uniform mass, but for larger values of c, the mass is non-uniform across all instances.
These changes correspond to the change in slope of the entropy of the distribution for different values of c
is displayed in Figure 9(d).

We further compared our approach for PU learning with semi-relaxed optimal transport approaches using the
the squared ℓ2-norm penalty Chapel et al. (2021) and total-variation (TV) divergence Séjourné et al. (2019).
The formulation of semi-relaxed problems is discussed in Appendix C. We used POT-toolbox Flamary et al.
(2021) to solve the semi-relaxed optimal transport problems. For both squared ℓ2-norm and total-variation
penalties, we varied regularization parameter ρ with 32 uniform steps on logarithmic scale between 10−3

and 103. For subset-selection, c parameter is varied uniformly on logarithmic scale with 32 steps between 1
and 32. In order to evaluate the performance of each method, we assigned label 1 to all the selected points
and zero to all the remaining points. We also computed the cardinalities and entropies of mass-assignments
ν∗. In Figure 10 we compare the effect of the cardinality of the support of the mass assignment vector
ν∗ on the accuracy and entropy H(ν∗). We observe that for the mass assignments with same cardinality,
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mass assignments obtained through subset selection have higher entropy as compared to both TV and ℓ2
penalized semi-relaxed optimal transport. For each regularization discussed above, mass-assignment paths
across scaling parameter c for SS-Bregman are discussed in the Appendix C.

We also adapt the approach proposed in the work by Phatak et al. (2023) in the context of fully-relaxed
partial optimal transport to automatically select the proportion of mass to separate inliers and outliers
to automatically find a choice of c for subset selection for PU learning. The approach finds the knee of
the smoothed version of the first derivative of 1

cSp(µ, cν) as a function of 1
c ∈ (0, 1], using the kneedle

method (Satopaa et al., 2011). The results in Figure 10(c) show that the automatically selected value of c
is at the highest accuracy.

c c
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Figure 9: Subset selection results obtained using SS-Bregman with parameters λ = 1, max-outer-iter = 250
and max-inner-iter = 20. Source sample n = 512 consists of 50% digit images from MNIST and 50% letter
images from EMNIST. The target sample contains m = 512 digit images drawn from MNIST. (a) ROC
curves for different values for c ∈ {1, 1.25, 1.50, 1.75, 2, 4, 8, 16, 20, 24, 28, 32}. (b) Mass assignments to source
images in descending order ν∗↓. (c) AUC of ROC versus c. (d) Entropy H(ν∗) of the mass assignments ν∗

versus c.

3.3.2 PU Learning for CIFAR-10 Neural-Network Representations

We now consider the proposed subset selection algorithm for PU learning on the CIFAR-10 data set, where a
single class from the training set is treated as the positive target and a mixture of all classes from the test set is
the unlabeled source. Fundamentally, the performance of optimal transport methods on PU learning depends
on the distance metric defining the cost matrix. Thus, the method performs poorly if a Euclidean distance
metric is applied to complex data such as natural images. Instead, a learning representation extracted from
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Figure 10: PU learning with semi-relaxed optimal transport approaches on MNIST/EMNIST. Solutions for
different cardinalities are obtained by varying the regularization/constraint parameters across a grid, uniform
on a logarithmic scale. (a) Accuracy versus cardinality of selected subset using SS-Bregman, semi-relaxed op-
timal transport with total variation (TV) and squared-ℓ2 penalties for PU learning on MNIST/EMNIST. (b)
Entropy of mass assignments versus cardinality of selected subset using SS-Bregman, semi-relaxed optimal
transport with total variation (TV) and squared ℓ2 penalties. (c) Accuracy of PU learning on MNIST/EM-
NIST using SS-Bregman versus scaling parameter c. Vertical lines indicate the location of the knee obtained
using Phatak et al. (2023), the true peak accuracy value of c, and the break point c∗.

a pretrained neural network can be used. Here each image is represented as the vector of activations of the
penultimate layer of the pre-trained ResNet-20 classifier (trained on CIFAR-10), and the Euclidean distance
between the activation vectors defines the cost matrix for the transport problem.The results are given in
Figure 11. The results are similar to the previous MNIST/EMNIST data set. Mass is uniformly distributed
across a subset of images for values of 1 < c < 8. When the subset is greater than the proportion of positive
instances in the unlabeled source, then the relative ranking of mass is not reliable: the top instances for
c ∈ {1.5, 2, 4} are images from the target class, but c ∈ {1.25, 1.75} have images resembling it from other
classes. As c is increased above c = 8 the mass assignment is non-uniform, but constant for further increment
in c. Values of c greater than 2 have an AUC >90%.

Similar to PU learning on MNIST/EMNIST, we also compared our approach for PU learning on neural
network representations of CIFAR-10 with TV and ℓ2 penalized semi-relaxed optimal transport. For semi-
relaxed formulations (ℓ2 and TV penalties) we varied ρ on logarithmic scale between 10−4 and 103 with 32
steps. For subset selection we varied the scaling parameter c logarithmically between 1 and 60 in 32 steps.
We adopted the same strategy as previous case (PU learning on MNIST/EMNIST) to evaluate accuracy,
cardinality, and entropy of mass assignments ν∗ at different values regularization and scaling parameters.
Figure 12 shows accuracy versus cardinality, and entropy versus cardinality, along with variation of PU
learning accuracy across c and knee-based scaling parameter selection. Our observations in this case are
similar to the case for EMNIST/EMNIST: subset selection has the highest entropy at a given cardinality,
its accuracy is at or above the other solutions, and the knee method selects close to optimal value of c.

3.4 Subset Selection for Semi-supervised Learning

We consider the semi-supervised training of a classifier where the training set is divided into a reliably
labeled (curated) target set and an unlabeled or noisily labeled source set. We apply our proposed subset
selection algorithm to perform partial optimal transport of the unlabeled source to the labeled target. The
transport plan is computed without knowledge of any labels but defines how the source points will be labeled,
and subset selection removes points that cannot easily be aligned to labeled training points. Additionally,
the new mass assignment source points may be relatively higher for unlabeled points relatively close to
labeled training points and lower for unlabeled points from existing points. Used in this way, the optimal
transport with subset selection automatically tunes how far to propagate labels in a manner that takes
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Figure 11: Subset selection results obtained using algorithm SS-Bregman with parameters λ = 1,
max-outer-iter = 250 and max-inner-iter = 20. Target and source consist of ResNet-20 embeddings of
m = 512 CIFAR-10 dog images and n = 512 randomly sampled CIFAR-10 images, respectively. (a) ROC
curves for c ∈ {1, 1.25, 1.50, 1.75, 2, 4, 8, 16, 20, 24, 28, 32}. (b) Mass assignments to source images in descend-
ing order ν∗↓. (c) AUC of the ROC versus c. (d) Entropy H(ν∗) of mass assignments ν∗ with versus c. (e)
Source images with 10 largest mass assignments.

into consideration the geometry and distribution of the curated target data set rather than only the local
distances.

However, using the distances defined directly in the input space may not be suitable, and a pre-trained
representation may not exist for various tasks. Instead, we propose to use the internal learning representation
from the neural network classifier while it is being optimized with the semi-supervised loss function.

Let S = {(xi,Li)}M
i=1 denote the labeled portion of the training set with the input xi ∈ X and label encoded

as a one-hot vector Li ∈ {0, 1}k ⊂∆k, ∥Li∥1 = 1 for i ∈ [M ], and T = {yj}N
j=1 denote the unlabeled portion,

yj ∈ X for j ∈ [N ]. We consider a neural-network classifier with soft-max activation f(· ; θ) : X → ∆k

with parameters θ trained on data with k classes. The neural network’s internal representation is a function
g(· ; θ) : X → Rd. The Euclidean distance between the internal representation of data points provides the
distance function, dθ(xi,yj) = ∥g(xi; θ)− g(yj ; θ)∥2, which is parameterized by the network’s parameters.

We train the neural network using mini-batches and a semi-supervised cross-entropy loss. Equal-sized batches
are drawn uniformly from the pooled training data set of size M +N . Let τ and σ denote the length-m and
length-n vectors of indices of the labeled and unlabeled points in a given batch, respectively, where m+n is
the constant batch size. The m-by-n ground cost matrix M(θ) is defined using the squared distances among
the batch’s latent representations, Mij(θ) = d2

θ(xτi
,yσj

) = ∥g(xτi
; θ)− g(yσj

; θ)∥2
2.
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Figure 12: PU learning with semi-relaxed optimal transport approaches on CIFAR-10. Solutions for different
cardinalities are obtained by varying the regularization/constraint parameters across a grid, uniform on a
logarithmic scale. (a) Accuracy versus cardinality of selected subset using SS-Bregman, semi-relaxed optimal
transport with total variation (TV), and squared ℓ2 for PU learning on CIFAR-10. (b) Entropy of mass
assignments versus cardinality. (c) Accuracy of PU learning on CIFAR-10 using SS-Bregman versus scaling
parameter c. Vertical lines indicate knee obtained using Phatak et al. (2023), true peak accuracy value of c,
and break point c∗.

Given the cost matrix and hyper-parameters (including c ≤ n), the subset selection transport plan P ∗ ∈
[0, 1]m×n is obtained using SS-Bregman. Given the matrix of one-hot encoded labels L = [Lτ1 , . . . ,Lτm

]⊤ ∈
{0, 1}m×k, the matrix of pseudo-labels assigned by the algorithm of the unlabeled mini-batch points is
computed L̃ = nP ∗⊤L ∈ [0, c]n×k, where [P ∗⊤L]jl = 1

n L̃jl ∈ [0, 1] is the estimate of the joint probability
that mini-batch unlabeled instance j ∈ [n] belongs to class l ∈ [k].3 Given the pseudo-labels, the semi-
supervised cross-entropy loss function for a batch is

loss(θ) = −
[ m∑

i=1

k∑
l=1

1
m

Lil log(fl(xτi
; θ)) +

n∑
j=1

k∑
l=1

1
n

L̃jl log(fl(yσj
; θ))

]
. (30)

Our approach is similar to other recent work (Damodaran et al., 2020) that also employs optimal transport
using a learning representation. While we address the semi-supervised case, Damodaran et al. (2020) address
supervised learning in the presence of label noise and perform self optimal transport within batches to correct
for label noise.

As baseline comparisons, we compare our semi-supervised approach to supervised training with either only
the labeled portion or with noisy labels on the unlabeled portion. Due to the curated labeled set, the latter
is not the typical label noise scenario; however, the division of a training set into a curated portion and a
portion with label noise is relevant to practical scenarios. While our semi-supervised approach does not use
noisy labels, future extensions could consider how to leverage the noisy labels too.

In order to evaluate our approach we used MNIST, Fashion-MNIST (FMNIST), and CIFAR-10. We split
training data sets into 80/20 proportions for training and validation. We further split the training part
into a reliably labeled and unreliably labeled parts. Labels for the unreliably labeled part are generated
by uniformly corrupting the true labels to other classes depending on the noise level. For each of our
experiments, the subset selection transport underlying the loss done is found via SS-Bregman with λ = 0.1,
max-outer-iter = max-inner-iter = 20 with a batch-size of 512. We used PyTorch framework for our
experiments. A ResNet-18 model architecture is used on the CIFAR-10 data set. We trained the ResNet-18
for 180 epochs using Adam optimizer with an initial learning rate of 0.001, which is scheduled to be halved

3It can be seen that the total sum of this joint is 1, 1⊤
n P ∗⊤︸ ︷︷ ︸

µ⊤

L1k︸︷︷︸
1m

= 1.
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after every 60 epochs. The model architectures containing two convolutional layers for MNIST and FMNIST
are given in Appendix F. The neural network classification models for MNIST are trained using stochastic
gradient descent with a learning rate of 0.001, whereas models for FMNIST are trained using Adam with
a learning rate of 0.001 and weight decay 1e-4. Model training for MNIST and Fashion-MNIST are done
on a desktop system containing Intel Core-i7 9700 CPU, with 32 GB memory and NVIDIA GeForce RTX
2070 GPU. ResNet-18 based models for CIFAR-10 are trained using Lambda-labs cloud resources with 30
vCPUs, 200 GB memory, and NVIDIA A10 GPUs.

Dataset Architecture stand. Subset Selection
c = 1 | c = 2 | c = 3 | c = 4 | c = 5 | c = 6 | c = 7 | c = 8 | c = 20

MNIST 2-layer conv-net 96.57 97.15 97.39 97.33 97.40 97.43 97.32 97.38 97.44 97.35
FMNIST 2-layer conv-net 88.68 90.14 90.30 90.27 90.51 90.23 90.38 90.21 90.37 90.16
CIFAR-10 ResNet-18 79.10 87.18 89.45 89.27 89.21 89.53 89.54 89.72 89.47 89.57

Table 2: Validation accuracies for different values for neural network classification models trained with 50%
reliably labeled points and 50% points with noisy labels (noise level 0.8). Standard training (stand.) treats
them equally, but subset selection treats them as unlabeled and assign pseudo-labels. Subset selection is
done using the SS-Bregman with λ = 0.1 and max-outer-iter = max-inner-iter = 20.

In the first step of experiments, we split the training set for each data set into 50/50 proportions for unreliably
and unreliably labeled parts. Unreliably labeled data is generated by uniformly corrupting the labels with a
80% chance (noise level 0.8). Validation accuracies for each data set are displayed in the Table 2. Notably,
the performance for c = 1 is higher than training with noisy labels, which shows that the semi-supervised
training performs better than training with data with a high noise level. (Because the algorithm is not run
to convergence, the mass assignments for unlabeled points may not be be exactly uniform in the c = 1 case.)
The performance of subset selection is consistently higher for values of c > 1 compared to the c = 1, and the
validation accuracies do not exhibit much change between c = 2 and c = 20. Therefore, we further evaluated
our approach by varying both noise levels and clean and noisy proportions only for c = 2 and c = 20.

Progress of validation accuracies on CIFAR-10 are displayed in Figure 13 for clean/noisy proportions in
{20/80, 40/60, 60/40, 80/20} with noise levels {0.2, 0.4, 0.6, 0.8}. It can be observed that standard neural
network training process with label noise can divided into three phases, first in which the validation accuracy
increases until a peak. In the second phase, validation accuracy decreases, where the magnitude of the
decrement depends on the noise level: it decreases less for low noise levels and more for higher noise levels.
In the third phase, validation accuracy increases again and then oscillates around a constant value. This kind
of phenomenon is more pronounced for larger noise levels (Zheng et al., 2020). In contrast, for the proposed
subset selection based semi-supervised learning the validation accuracy does not go down after hitting its
peak during the training process. This indicates that the transport map tend to assign correct pseudo-labels
to the data points nearest the labeled data points and does not introduce label noise.

The test set accuracies are displayed in Table 3 for supervised training on only the labeled data versus the
semi-supervised training. The semi-supervised training with subset selection outperforms training performs
better on 2 of 3 data sets under a 20/80 split of labeled and unlabeled, but does not outperform supervised
learning for the 40/60 split. Thus, the semi-supervised loss function equation 30 is most beneficial when
there is a higher ratio of unlabeled to labeled points.

4 Discussion and Further Work

In this paper, we have focused on selecting a subset of one distribution’s support as a special case of partial
optimal transport Figalli (2010); Chapel et al. (2020). This is useful to find meaningful alignment when the
support of the target distribution is assumed to be a subset of the source distribution. Results on the partial
point cloud alignment, color transfer, PU learning, and semi-supervised learning all demonstrate the utility
of this approach.
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standard training subset-select training c=2 
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Figure 13: Progress of validation accuracies while training ResNet-18 for CIFAR-10 classification. (a) Uni-
form noise levels are varied between 0.2, 0.4, 0.6, 0.8 for standard training. (b) and (c) Training with the
subset selection based semi-supervised loss at different values of c, does not use the unreliable labels, and
outperforms standard training with noisy labels when either the proportion of reliably labeled data is 40%
or the noise level is 0.4 or greater. Subset selection is done using theSS-Bregman with c = 20, λ = 0.1,
max-outer-iter = max-inner-iter = 20.

Dataset Architecture Labeled/Unlabeled % Labeled only Semi-supervised
with subset selection

MNIST 2-layer
conv-net

20/80 98.19 96.09
40/60 98.30 97.14

F-MNIST 2-layer
conv-net

20/80 88.35 88.42
40/60 89.93 89.48

CIFAR-10 ResNet-18 20/80 81.62 82.37
40/60 87.77 86.74

Table 3: Semi-supervised learning test accuracies on MNIST, Fashion-MNIST, and CIFAR-10. Subset
selection is done using SS-Bregman with c = 20, λ = 0.1, max-outer-iter = max-inner-iter = 20.

In particular, the results from the PU learning show that the proposed subset selection is useful when there
is known target distribution (an existing training or validation set) and an additional source distribution,
which has additional diversity, but also outliers, compared to the target. One application of PU learning
is to filter a source of new data for relevant examples for further modeling. Future work could explore
subset selection approach for source distributions created from synthetic generation mechanisms. While
not explored in a machine learning context, it is possible that the partial optimal transport with affine (or
nonlinear) transformation can be applied to account for global covariate shift between the synthetic and real
data. In this case, a user would want to balance the diversity (entropy) of the filtered source with its purity.

Interestingly, the solution for the subset selection are similar but consistently outperform those from PU
Wasserstein Chapel et al. (2020), which by design of the constraints, have a maximum entropy, uniform
distribution over the selected subset achieved through the group LASSO penalty. The results from subset
selection show that it maintains close to maximum entropy amongst the selected support and is as accu-
rate as other semi-relaxed penalty based approaches. Additionally, the manual choice of c controlling the
constraint is more intuitive than selecting a penalty parameter. Finally, the automatic selection of c using
the straightforward knee-based selection adapted from fully-relaxed partial optimal transport (Phatak et al.,
2023) shows promising results to separate inliers and outliers.
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In our experiments related to semi-supervised learning, we employed optimal transport between a labeled
target and unlabeled source, to assign pseudo-labels to source points that cover the labeled data distribution,
while ignoring ambiguous cases, during training. In future extension, we can consider how to use class
information in the optimal transport planning, perhaps by using class conditional optimal transport, as
currently the transport plan is not informed of the known target labels nor the classifier’s boundaries.
Another line of exploration is how to use the support subset selection to correct noisily labeled source.

Another key contribution of this work is the proposed support subset selection algorithm using the inexact
Bregman proximal point algorithm (SS-Bregman), which as shown in Appendix B yields a solution with a
sparse source marginal similar to solutions to the original linear program 6—unlike the entropically regu-
larized solution from SS-Entropic. We also demonstrate that the mass assignments of the linear program
solution are piece-wise linear as a function of c. While not fully investigated here, this behavior could be
exploited to find the sequence of breakpoints where points leave the support and where points leave the
active set of constraints (indicated by being on the upper diagonal).

Recently, Gromov-Wasserstein optimal transport has seen applications in graph-matching and generative
modeling (Brogat-Motte et al., 2022; Li et al., 2023; Nekrashevich et al., 2023; Bunne et al., 2019; Mé-
moli, 2009). Due to inherent ability to match structural correspondences across spaces, partial Gromov-
Wasserstein optimal transport can be used to solved robust graph-alignment problems. Recently, efficient
locally convergent solutions for a relaxed Gromov-Wasserstein distance have been proposed (Peyré et al.,
2016; Li et al., 2023). Future work can explore the subset selection case of the partial Gromov-Wasserstein
optimal transport, where one domain is expected to have a complete or overcomplete source distribution com-
pared to the target. This may be useful in robust domain adaptation, semi-supervised domain adaptation,
and metric alignment.
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A Appendix: Lipschitz Smoothness of Dual

The dual form 16 considered in this paper does not explicitly enforce the primal problem’s marginal simplex
constraints on the transport plan. Consequently, the dual form is not necessarily Lipschitz smooth (Lin
et al., 2019; Cuturi & Peyré, 2018; Lin et al., 2022). But in the proposed algorithm, we first update the
dual variable α using the Sinkhorn-like update, which implicitly enforces the simplex constraint, making
the semi-dual problem 1

γ -Lipschitz smooth with respect to ℓ1, ℓ2 and ℓ∞ norms. This justifies the use of
η

(k)
s = 1

γ in the accelerated proximal-gradient based approach to solve 16.

Recall that the Lagrangian of 16 given in equation 14 is

L(P ,α,β) =
〈
P , M + γ(log(P )− 1m1⊤

n ) + α1⊤
n + 1mβ⊤〉

− ⟨α,µ⟩ − ⟨β, ζ⟩. (31)

By Slater’s conditions, the problem 16 is strongly dual therefore

min
P≽0

max
α,β
L(P ,α,β) = max

α,β
min
P≽0
L(P ,α,β). (32)

In order to find the minimum of the Lagrangian with respect to P , one takes its element-wise derivative
with respect to P and obtains P̃ (α,β) = D

(
exp (− 1

γ α)
)

exp (− 1
γ M)D

(
exp (− 1

γ β)
)
, which can then be

substituted back into the Lagrangian 31 to obtain the problem

max
α,β

{
g(α,β) = −γ1⊤

mP̃ (α,β)1n − ⟨α,µ⟩ − ⟨β, ζ⟩
}
, s.t. β ≽ 0, (33)

which can be converted to the convex minimization problem 16 by defining f(α,β) = −g(α,β), as in

min
α,β

{
f(α,β) = γ1⊤

mP̃ (α,β)1n + ⟨α,µ⟩+ ⟨β, ζ⟩
}
, s.t. β ≽ 0, (34)

The partial gradients of f(α,β) with respect to α and β are

∇αf(α,β) = µ− exp
(
− α

γ

)
⊙K exp (−β

γ
), (35a)

∇βf(α,β) = ζ − exp
(
− β

γ

)
⊙K⊤ exp (−α

γ
). (35b)

For twice continuously differentiable functions, the Lipschitz smoothness parameter is determined by the
Hessian. The Hessian for f(α,β) is

Hf

(
α,β

)
=

[
∇⊤

α∇αf(α,β) ∇⊤
β∇αf(α,β)

∇⊤
α∇βf(α,β) ∇⊤

β∇βf(α,β)

]
, (36)

where

∇⊤
α∇αf(α,β) = 1

γ
D

(
exp

(
− α

γ

)
⊙K exp (−β

γ
)
)

= 1
γ

D
(
P̃ (α,β)1n

)
, (37a)

∇⊤
β∇βf(α,β) = 1

γ
D

(
exp

(
− β

γ

)
⊙K⊤ exp (−α

γ
)
)

= 1
γ

D
(
P̃ (α,β)⊤1m

)
, (37b)

∇⊤
β∇αf(α,β) = 1

γ

(
K ⊙ exp

(
− α

γ

)
exp (−β⊤

γ
)
)

= 1
γ

P̃ (α,β), (37c)

∇⊤
α∇βf(α,β) = 1

γ

(
K⊤ ⊙ exp

(
− β

γ

)
exp (−α⊤

γ
)
)

= 1
γ

P̃ (α,β)⊤. (37d)

The Sinkhorn update for α in equation 19 ensures that after each update of α, the transport plan
lies on the probability simplex and matches the target marginal µ = P̃ (α(k+1),β(k))1n. Defining
ν̃ = P̃ (α(k+1),β(k))⊤1m, the Hessian equation 36 at (α(k+1),β(k)) is compactly written as

Hf (α(k+1),β(k)) = 1
γ

[
D(µ) P̃ (α(k+1),β(k))

P̃ (α(k+1),β(k))⊤ D(ν̃)

]
.
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We use the induced-norms of the Hessian Hf (α(k+1),β(k)) to characterize the smoothness at (α(k+1),β(k)).
For a matrix A ∈ Rm×n, the induced norm ∥ · ∥p,q is defined as

∥A∥p,q := max
x:∥x∥p≤1

∥Ax∥q. (38)

The twice continuously differentiable function f(α(k+1),β(k)) is L-Lipschitz with respect to ℓp norm, if
∥Hf (α(k+1),β(k))∥p,q ≤ L, where ℓq is the dual norm of the ℓp norm. Since the Hessian Hf (α(k+1),β(k)) is
a non-negative matrix, one can observe that all its matrix entries are less than 1

γ max {µmax, ν̃max}, where
µmax and ν̃max are maximum entries of µ and ν̃ respectively. Therefore for p = 1, if one can find the column
index k corresponding to a matrix entry with value 1

γ max{µmax, ν̃max}, then x = ek is the vertex of the ℓ1

norm-ball where ∥Hf (α(k+1),β(k))x∥∞ = 1
γ max{µmax, ν̃max}. Thus,

∥Hf (α(k+1),β(k))∥1,∞ = 1
γ

max {µmax, ν̃max} ≤
1
γ
, (39)

which proves the function f(α(k+1),β(k)) is 1
γ -Lipschitz with respect to the ℓ1 norm. Since all the matrix

entries of the Hessian Hf (α(k+1),β(k)) are less than 1
γ , its spectral radius is less than 1

γ (Horn & Johnson,
2012)(Theorem 8.1.18) and

∥Hf (α(k+1),β(k))∥2,2 = λmax(Hf ) ≤ 1
γ
. (40)

Therefore, the function f(α(k+1),β(k)) is 1
γ -Lipschitz with respect to the ℓ2 norm. For p = ∞, one can

maximize the norm ∥Hf (α(k+1),β(k))x∥1, at the vertex of the ℓ∞ ball where all entries are unit magnitude,
in particular x = 1m+n, which results into

Hf (α(k+1),β(k))1m+n = 1
γ

[
µ + P̃ (α(k+1),β(k))1n

P̃ (α(k+1),β(k))⊤1m + ν̃

]
= 2
γ

[
µ
ν̃

]
. (41)

Therefore,
∥Hf (α(k+1),β(k))∥∞,1 = 2

γ

∥∥∥∥µ
ν̃

∥∥∥∥
1

= 4
γ
, (42)

and the function f(α(k+1),β(k)) is 4
γ -Lipschitz with respect to the ℓ∞ norm. In summary, the partial

gradients are all 1
γ -Lipschitz smooth with respect to ℓ1, ℓ2 and ℓ∞ norms. Additionally, considering the dual

variables α and β, seperately, one can see that

∥∇⊤
α∇αf(α(k+1),β(k))∥1,∞ = µmax

γ
≤ 1
γ
, ∥∇⊤

α∇αf(α(k+1),β(k))∥2,2 ≤
1
γ
, ∥∇⊤

α∇αf(α(k+1),β(k))∥∞,1 = 1
γ
,

and

∥∇⊤
β∇βf(α(k+1),β(k))∥1,∞ = ν̃max

γ
≤ 1
γ
, ∥∇⊤

β∇βf(α(k+1),β(k))∥2,2 ≤
1
γ
, ∥∇⊤

β∇βf(α(k+1),β(k))∥∞,1 = 1
γ
.

Therefore, f(α(k+1),β(k)) is separately 1
γ -Lipschitz for both α and β with respect to ℓ1, ℓ2 and ℓ∞ norms.

B Appendix: Entropic Regularization Results

In this Appendix, results for point cloud registration and color transfer for SS-Entropic are displayed, which
can be compared to the results for SS-Bregman in the main body.

Fragmented Hypercubes: Figure 14 shows the results for affine transformation optimization in 2D, which
can be compared with the results in Figure 3(a). Visually it is clear that the alignment is much worse for
values of c ∈ {1.25, 1.5}, but quantitatively it is worse for all values of c > 1 as SS-Bregman achieves cost
below 10−2 at 500 iterations of Θ updates. Figure 15 shows the results in 3D using SS-Entropic, which
can be compared with the results in Figure 4(a). In this case, results are quantitatively worse for all values
of c > 1 as SS-Bregman achieves cost below 10−1 at 500 iterations Θ updates.
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(a) (b)

Figure 14: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 2D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a)
Target and transformed source points after application of optimized affine transformation. Subset selection
problems are solved using the SS-Entropic with γ = 0.01 with max-iter = 4000.(b) Loss function curves
for scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}.

(a) (b)

Figure 15: Results for affine transformation optimization with subset selection for partial optimal transport.
Target points X are sampled from a 3D fragmented hypercube centered at the origin with negative co-
ordinates removed, whereas source points Y are sampled from a translated fragmented hypercube. (a)
Target and transformed source points after application of optimized affine transformation. Subset selection
problems are solved using the SS-Entropic with γ = 0.01 with max-iter = 4000.(b) Loss function curves
for scaling parameter c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16}.

Partial point cloud registration: The results for partial point cloud registration with entropically regu-
larized subset selection (SS-Entropic) for the Stanford bunny and armadillo point clouds. It is clear that
the entropically regularized form alone fails to find a meaningful correspondence, transforming the source
such that is completely covered by the partial point cloud.

Color Transfer: The results for color transfer with the entropically regularized subset selection
SS-Entropic are shown in Figure 17, which can be compared to results from SS-Bregman shown in Figure 6
and Figure 7. Namely, for the first image “Louisiana Nature Scene Barataria Preserve” the entropically
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Figure 16: Bunny and Armadillo partial point cloud registration using entropically regularized subset se-
lection SS-Entropic γ = 0.05, fails to find a accurate alignment of the source with the partially occluded
target.

regularized results appear more monochromatic with less distinct colors. In the second set of images, there
is no visual difference between the outputs of SS-Entropic and SS-Bregman.

)a(

)b(

c=1 c=1.25 c=1.5 c=1.75

c=2 c=4 c=8 c=16

Figure 17: Color transfer results for c ∈ {1, 1.25, 1.5, 1.75, 2, 4, 8, 16} using SS-Entropic.
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C Appendix: Comparison with Semi-Relaxed Formulations

We analyze the variation of subset-selection mass assignments ν∗
j =

∑m
i=1 P

∗
ij , for j ∈ [n] as a function of

c for source and target points (m = 100, n = 80) given in Figure 2. We use SS-Entropic and SS-Bregman
and compare to solutions for the subset selection linear program using CVXPY (Diamond & Boyd, 2016;
Agrawal et al., 2018). We also use CVXPY to solve following semi-relaxed unbalanced optimal transport
problems of the form

min
P≽0

⟨P ,M⟩+ 1
ρ
Dφ

(
P ⊤1m∥ν

)
s.t. P 1n = µ,

where Dφ ∈ {TV, ℓ2, ℓ∞} can be either TV distance (TV), squared Euclidean (ℓ2), or ℓ∞-norm based
distance, and ρ > 0. It can be observed from Figure 18 that the sparsity patterns of mass assignments
obtained using SS-Bregman closely match the linear program solutions across a range of c, whereas mass
assignments obtained using SS-Entropic are more dense with less mass assignments equal to 0. The sparsity
patterns for penalty-based relaxations differ from the linear program solutions. By comparing the mass
assignments of different solutions in terms of number of non-zeros, i.e., the cardinality of the support of
solution’s marginal ν∗, denoted as (card), we note that the assignments obtained using subset selection
have the largest entropy, which implies that subset selection tends to assign uniform masses to the selected
subset of points. In comparison, the TV-based penalty, corresponding to the ℓ1-norm tends to have sparse
deviations from uniform 1

n with many points at exactly this value. Entropies of ν∗ are plotted in Figure 19.

To further elaborate our observations, we plot the mass assignments to unlabeled data points ν, across
different values of scaling parameter c for MNIST/EMNIST PU learning in Figure 20 and Figure 21 for
CIFAR-10 PU learning, as discussed in 3.3, and compared that with the mass assignments using semi-
relaxed formulations (ℓ2 and TV) with different values of regularization parameter ρ. We observe that paths
taken by our formulation differs from both ℓ2 and TV . But the solutions correspond at the extreme limits:
as ρ → 0 and c → 1 all solutions approach optimal transport solution, similarly as ρ → ∞ and ∀ c ≥ c∗

mass assignments correspond to nearest neighbor solutions discussed in the Section 2.1. For PU learning
experiments on MNIST/EMNIST and CIFAR10, we used the POT toolbox Flamary et al. (2021) function
optim.semirelaxed_cg to obtain the solutions for semi-relaxed optimal transport problem with TV and
squared-ℓ2 penalties via the Frank-Wolfe conditional gradient algorithm.

D Appendix: Relation between Entropically Regularized Subset Selection and
Unbalanced Optimal Transport

Using the notation from our paper, we have adapted the formulations for the unbalanced optimal transport
with asymmetric penalties from the work by Séjourné et al. (2019). For φ1, φ2, the generating functions
for the divergence penalty functions on the marginals, and entropic regularization parameter γ > 0, the
unbalanced optimal transport for discrete probability measures µ, ν, and cost M is

UOT (φ1,φ2)
γ (µ, ν) = min

P ∈Rm×n
≥0

⟨P ,M⟩+Dφ1(P 1∥µ) +Dφ2(P ⊤1∥ν) + γKL(P ∥µν⊤)

= min
P ∈Rm×n

≥0

⟨P ,M⟩+
m∑

i=1
µiφ1(

∑
j Pij

µi
) +

n∑
i=1

νiφ2(
∑

i Pij

νi
)

+ γ(
∑

ij

Pij(log(Pij)− log(µiνj))−
∑

ij

Pij +
∑

ij

µiνj)

= min
P ∈Rm×n

≥0

⟨P ,M⟩+
m∑

i=1
µiφ1(

∑
j Pij

µi
) +

n∑
i=1

νiφ2(
∑

i Pij

νi
)

+ γ

⟨P , log(P )− 1m×n⟩ −
∑

i

µi log(µi) +
∑

j

∑
i

Pij log(νi) + 1

 .
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Figure 18: (a) The variation of mass assignment vector ν∗ with c for toy problem in Figure 2, using
SS-Entropic, SS-Bregman, and the subset selection linear program 2 is solved using CVXPY Agrawal et al.
(2018); Diamond & Boyd (2016). All divergence regularized semi-relaxed problems are also solved using
CVXPY. (b) Entropy versus cardinality selected set of points. It can be observed that SS-Bregman and ℓ∞
solutions match each other until a support cardinality of around 40. This is due to fact that subset selection
solution matches a unique ℓ∞ penalized solution for all values of c > 2.
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Figure 19: (a) Entropy of mass assignment vector ν∗ with c for toy problem in Figure 2. (b) Entropy
as function of scaling parameter for penalized relaxed-OT problems c(ρ), obtained using formula c(ρ) =
max

i

ν∗
i (ρ)
νi

, which implies that for sufficiently large values of ρ, c(ρ) = c∗.
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Figure 20: Mass assignments ν∗ to unlabeled data points in PU learning on MNIST/EMNIST discussed in
Section 3.3.1 across c for SS-Bregman and across ρ for TV and ℓ2 penalties.
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Figure 21: Mass assignments ν∗ to unlabeled data points in PU learning on CIFAR-10 neural network
representations, discussed in Section 3.3.2 across c for SS-Bregman and across ρ for TV and ℓ2 penalties.

When φ1(x) = ı{1}(x) =
{

0, x = 1
∞, otherwise

is the indicator function for the ratio of the target marginal and

φ2(x) = ı[0,c](x) =
{

0, x ∈ [0, c]
∞, otherwise

is a range constraint to the interval of [0, c] for the ratio of the source

marginal, then

UOT (φ1,φ2)
γ (µ, ν) = min

P ∈Rm×n
≥0

⟨P ,M⟩+ γ
(
⟨P , log(P )− 1m×n⟩ − ⟨µ, log(µ)⟩+ ⟨P ⊤1m, log(ν)⟩+ 1

)
s.t. P 1n = µ, P ⊤1m ≼ cν.

With these choices of φ1, φ2 and a uniformly weighted source νi = 1
n ∀i ∈ [n], we can relate S(γ)

p (µ, cν)
to UOT (φ1,φ2)

γ (µ, ν), since ⟨P ⊤1m, log(ν)⟩ =
∑

j

∑
i Pij log(νi) = − log(n), then UOT (φ1,φ2)

γ (µ, ν) =
S(γ)

p (µ, cν) + γ(H(µ)− log(n) + 1), where H(µ) = −⟨µ, log(µ)⟩ = −
∑

i µi log(µi). The uniformly weighted
source is necessary to eliminate the bias towards ν for the marginal that the Kullback-Leilber divergence
penalty induces compared to our entropy penalty, which only considers ν through the constraint.

E PU Learning Toy Comparison Test

In order to show evidence that subset selection, as a semi-relaxed partial optimal transport, can consistently
outperform fully-relaxed partial optimal transport on PU learning, we plot the mean accuracy for a range
of examples using of the same design as those in Figure 22.
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Figure 22: PU learning accuracy on toy data using subset selection and fully-relaxed partial optimal
transport. Subset set consistently outperforms fully-relaxed on this toy data. Data is generated as
[r cos(ψ), r sin(ψ)] where the radius r is drawn from a truncated exponential distribution with density
2 exp(−r)ı[log 2,∞)(r) and ψ is uniform over the set of angles [−π

2 ,
π
2 ] for the source and different subsets

for the target as indicated in the legend. For each run m = 100 positive points are drawn and the size of
the unlabeled sample is varied from n = 100 to n = 800 while are all from the third class. The solutions
are obtained using the known number of positives n+ out of the n source points, setting c = n

n+
for our

semi-relaxed approach and s = n+
n for the fully-relaxed partial optimal transport. Confidence intervals show

±1 standard deviations of the accuracy across 100 runs.
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F Appendix: Neural Network Model Architectures

For semi-supervised learning, we used neural networks to both perform the classification and provide a
learning representation space in which to perform the optimal transport to assign pseudo-labels to both
unlabeled points. For the CIFAR-10 data set, we used the ResNet-18 (He et al., 2016) architecture. For
MNIST and Fashion-MNIST, we used custom, but simple, model architectures. Both architectures contain
two convolutional layers, followed by three fully-connected layers. The model used to train Fashion-MNIST
(FMNIST) classifier contains additional batch-normalization layer between the convolutional layers. Opti-
mization algorithms along with related hyper-parameters are in Section 3.4. The code below details the
exact architectures along with types and shapes of all transformations.

1 import torch
2 import torch .nn as nn
3 import torch .nn. functional as F
4

5 class MNIST_classifier (nn. Module ):
6 def __init__ (self):
7 super (). __init__ ()
8 self. conv1 = nn. Conv2d ( in_channels =1, out_channels =5, kernel_size =(5 ,5))
9 self. conv2 = nn. Conv2d ( in_channels =5, out_channels =1, kernel_size =(5 ,5))

10 self.fc1 = nn. Linear (400 , 128)
11 self.fc2 = nn. Linear (128 , 64)
12 self.fc3 = nn. Linear (64 , 10)
13

14 def forward (self , x):
15 x = F.relu(self. conv1 (x))
16 x = F.relu(self. conv2 (x))
17 x = torch . flatten (x, 1)
18 x = F.relu(self.fc1(x))
19 x_rep = F.relu(self.fc2(x))
20 x = self.fc3( x_rep )
21 return x, x_rep
22

23 class FMNIST_classifier (nn. Module ):
24 def __init__ (self):
25 super (). __init__ ()
26 self. conv1 = nn. Conv2d ( in_channels =1, out_channels =32 , kernel_size =(5 , 5))
27 self. batchN1 = nn. BatchNorm2d ( num_features =32)
28 self. conv2 = nn. Conv2d ( in_channels =32 , out_channels =64 , kernel_size =(5 , 5))
29 self.fc1 = nn. Linear ( in_features =64*4*4 , out_features =128)
30 self.fc2 = nn. Linear ( in_features =128 , out_features =64)
31 self.fc3 = nn. Linear ( in_features =64 , out_features =10)
32

33 def forward (self , x):
34 x = self. conv1 (x)
35 x = F.relu(F. max_pool2d ( input =x, kernel_size =2, stride =2))
36 x = self. batchN1 (x)
37 x = self. conv2 (x)
38 x = F.relu(F. max_pool2d ( input =x, kernel_size =2, stride =2))
39 x = torch . flatten (x, 1)
40 x = F.relu(self.fc1(x))
41 x_rep = self.fc2(x)
42 x = self.fc3( x_rep )
43 return x, x_rep

Listing 1: Models used for training classifiers for MNIST and Fashion-MNIST
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