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Abstract

Explainability has become a crucial concern in001
today’s world, aiming to enhance transparency002
in machine learning and deep learning mod-003
els. Information retrieval is no exception to004
this trend. In existing literature on explainabil-005
ity of information retrieval, the emphasis has006
predominantly been on illustrating the concept007
of relevance concerning a retrieval model. The008
questions addressed include why a document009
is relevant to a query, why one document ex-010
hibits higher relevance than another, or why a011
specific set of documents is deemed relevant012
for a query.013

However, limited attention has been given to014
understanding why a particular document is015
not favored (e.g. not within top-K) with re-016
spect to a query and a retrieval model. In017
an effort to address this gap, our work fo-018
cus on the question of what terms need to be019
added within a document to improve its rank-020
ing. This in turn answers the question of which021
words played a role in not being favored in022
the document by a retrieval model for a par-023
ticular query. We use a counterfactual frame-024
work to solve the above-mentioned research025
problem. To the best of our knowledge, we026
mark the first attempt to tackle this specific027
counterfactual problem (i.e. examining the028
absence of which words can affect the rank-029
ing of a document). Our experiments show030
the effectiveness of our proposed approach in031
predicting counterfactuals for both statistical032
(e.g. BM25) and deep-learning-based models033
(e.g. DRMM, DSSM, ColBERT, MonoT5).034
The code implementation of our proposed ap-035
proach is available in https://anonymous.036
4open.science/r/CfIR-v2.037

1 Introduction038

The requirement of transparency of AI models has039

made explainability crucial, and this applies to In-040

formation Retrieval (IR) models as well (Anand041

et al., 2022). The target audience plays a signifi- 042

cant role in achieving explainability for an infor- 043

mation retrieval model, as the units of explanation 044

or questions may differ based on the end user. For 045

instance, a healthcare specialist, who is a domain 046

expert but not necessarily an information retrieval 047

specialist, might want to understand the reasons 048

behind a ranked suggestion produced by a retrieval 049

model in terms of words used (Singh and Anand, 050

2019). On the other hand, an IR practitioner may 051

be more interested in understanding whether dif- 052

ferent IR axioms are followed by a retrieval model 053

or not (Bondarenko et al., 2022). 054

This study focuses on the perspective of Infor- 055

mation Retrieval (IR) practitioners. To be more 056

specific, we introduce a counterfactual framework 057

designed for information retrieval models, cater- 058

ing to the needs of IR practitioners. Existing lit- 059

erature in explainable IR (ExIR) addresses ques- 060

tions like why a particular document is relevant 061

with respect to a query (Singh and Anand, 2019), 062

between a pair of documents why one document 063

is more relevant to the query (Penha et al., 2022) 064

compared to the other and why a list of docu- 065

ments relevant to a query (Lyu and Anand, 2023). 066

Broadly speaking, all the above-mentioned ques- 067

tions mainly focus on explaining the relevance of 068

a document or a list of documents from different 069

perspectives. 070

However, there is limited attention to explain 071

the question like the absence of which words ren- 072

ders a document unfavorable to a retrieval model 073

(i.e. not within top-K) remains unexplored. The 074

above-mentioned explanation can give an idea to 075

an IR practitioner about how to modify a retrieval 076

model. For example, if it is observed that a 077

retrieval model (e.g. especially neural network 078

based retrieval models) does not favor documents 079

because of not having words which are not so re- 080

lated to query topic then the setting of the retrieval 081

model needs to be changed so that it gives more 082
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importance to the semantic similarity feature.083

With the motivation described above, the funda-084

mental research question which we address in this085

research work is described as follows.086

• RQ1: What are the terms that should be087

added to a document which can push the doc-088

ument to a higher rank with respect to a par-089

ticular retrieval model?090

We would like to note that we have framed RQ1091

as a counterfactual setup in our research scope.092

Similar to existing research in counterfactual ex-093

planations in AI (Kanamori et al., 2021; Van Loov-094

eren and Klaise, 2021), we also attempt to change095

the output of model with the provided explana-096

tions (i.e. change the rank of a document in IR097

models). Our experimental results show that on098

an average in 70% cases the solution provided by099

the counterfactual setup improves the ranking of100

a document with respect to a query and a ranking101

model.102

Our Contributions The main contributions of103

this paper are as follows.104

• Propose a model-agnostic novel counterfac-105

tual framework for retrieval models.106

• Estimated a set of terms that can explain why107

a document is not within top-K with respect108

to a query and a retrieval model.109

• Provide a comprehensive analysis with exist-110

ing state-of-the-art IR models.111

The rest of the paper is organized as follows.112

Section 2 describes Related work. Section 3 de-113

scribes the counterfactual framework used in our114

work, Section 4 describes the experimental setup115

and Section 5 discuss about results and ablation116

study. Section 6 concludes with this paper.117

2 Related Work118

Existing research related to this work can be119

broadly categorized into three different areas: a)120

Counterfactual Explainability in general AI, b)121

Explainability in IR and c) Search engine opti-122

mization. Each method are described as follows.123

2.1 Counterfactual Explanations124

The xAI field gained significant momentum with125

the development of the Local Interpretable Model-126

agnostic Explanations (LIME) method (Ribeiro127

et al., 2016), which offers a way to explain any 128

classification model. While models like LIME 129

explain why a model predicts a particular out- 130

put, counterfactual explainers address the ques- 131

tion of what changes in input features would 132

be needed to alter the output. Counterfactual 133

xAI was first brought into the limelight in early 134

2010s with seminal works of Judea Pearl (2018). 135

Karimi et al. (2020) provided a practical frame- 136

work named Model-Agnostic Counterfactual Ex- 137

planations (MACE) for generating counterfac- 138

tual explanations for any model. Later series 139

of models (Kanamori et al., 2021; Van Loov- 140

eren and Klaise, 2021; Parmentier and Vidal, 141

2021; Carreira-Perpiñán and Hada, 2021; Pawel- 142

czyk et al., 2022; Hamman et al., 2023) based on 143

optimization framework were proposed for coun- 144

terfactual explanation. In our research scope, we 145

use Counterfactual Explanation framework pro- 146

posed in (Mothilal et al., 2020). 147

2.2 Explainability in IR 148

Pointwise Explanations Here the explainer shows 149

the important features responsible for the rele- 150

vance score predicted by a retrieval model for a 151

query-document pair. Popular techniques include 152

locally approximating the relevance scores pre- 153

dicted by the retrieval model using a regression 154

model (Singh and Anand, 2019). 155

Pairwise Explanations Here explainers predict 156

why a particular document was favored by a rank- 157

ing model compared to others. The work in (Xu 158

et al., 2024) proposed a counterfactual explanation 159

method to compare the ranking of a pair of docu- 160

ments with respect to a particular query. 161

Listwise Explanations Here the focus is on ex- 162

plaining the key features for a ranked list of doc- 163

uments and a query. Listwise explanations (Yu 164

et al., 2022; Lyu and Anand, 2023) aim to capture 165

a more global perspective compared to pointwise 166

and pairwise explanations. The study in (Lyu and 167

Anand, 2023) proposed an approach which com- 168

bines the output of different explainers to capture 169

the different aspects of relevance. The study in (Yu 170

et al., 2022) trained a transformer model to gener- 171

ate explanation terms for a query and a ranked list 172

of documents. 173

Generative Explanation Unlike previously 174

mentioned methods, which focus on analyzing 175

existing features or model internals, generative 176

explanations (Singh and Anand, 2020; Lyu and 177

Anand, 2023) leverage natural language process- 178
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ing to create new text content, like summaries179

or justifications, that directly address the user’s180

query and information needs. Model-agnostic ap-181

proaches (Singh and Anand, 2020) have been pro-182

posed to interpret the intent of the query as under-183

stood by a black box ranker.184

From the above mentioned category of expla-185

nations in IR, we focus on pointwise explanation186

in our research scope. In pointwise explanation,187

rather than explaining what are the words which188

are relevant in a document for a particular query189

we address the the research quetion what are the190

words which are required to improve the ranking191

of the document with respect to a query.192

Search Engine Optimization The study in193

(Egri and Bayrak, 2014; Erdmann et al., 2022)194

uses different features like commercial cost, links195

to optimize the performance of the search en-196

gine. A major difference of the work in (Egri197

and Bayrak, 2014; Erdmann et al., 2022) with our198

work is we only consider the words present in a199

document as a feature. Our objective is to improve200

the ranking of a particular document concerning a201

specific query and a retrieval model rather than im-202

proving the ranking of a document concerning any203

query belonging to a particular topic.204

3 Counterfactual Framework for205

Information Retrieval (CFIR)206

In this section, we first outline the counterfac-207

tual setup proposed in (Mothilal et al., 2020), fol-208

lowed by a detailed explanation of the counter-209

factual setup in IR. The work in (Mothilal et al.,210

2020) focused on identifying counterfactuals in211

regression and classification scenarios. Primarily212

the research question addressed in (Mothilal et al.,213

2020), is identifying which features in the input214

instance need to be modified to change the output215

of a trained model.216

Counterfactual Setup (CF Setup) The coun-217

terfactual generator described in (Mothilal et al.,218

2020), takes as input a trained machine learn-219

ing model f (generally a classification or regres-220

sion model), an instance, x for which we want221

to generate counterfactual examples and the num-222

ber of different counterfactual examples that need223

to be generated k and the output is k number of224

counterfactuals (denoted as {c1, c2 . . . , ck}) for x.225

Each ci is designed to alter the prediction for x in226

f . The main assumptions in the above-mentioned227

setup are that the machine learning model (i.e. 228

f ) should be differentiable and the output of the 229

model should not change over time. 230

The loss function for the counterfactual genera- 231

tor tries to minimize three different criteria to gen- 232

erate counterfactuals. They are 233

• Criteria 1: Minimizing the distance between 234

the desired outcome y′ and the prediction 235

of the model f for a counterfactual example 236

(f(ci)). 237

• Criteria 2: Minimizing the distance between 238

the generated counterfactual (ci) and the orig- 239

inal input x. Broadly speaking, a counter- 240

factual example closer to the original input 241

should be more useful for a user. 242

• Criteria 3: Increasing diversity between 243

generated counterfactuals. 244

Based on the above-mentioned criteria the 245

loss function for the counterfactual generator 246

(C(f, x, k)) is described as follows. 247

C(f, x, k) = {c1, c2 . . . ck}

= argmin
c1,...ck

(
1

k

k∑
i=1

yloss(f(ci), y)+

λ1

k

k∑
i=1

dist(ci, x) − λ2div(c1, . . . , ck)

) (1) 248

Equation 1 essentially finds a set k number of 249

cis for which the sum of all the three criteria is 250

minimized. In Equation 1, yloss(.) takes care of 251

the first criterion, dist(ci, x) takes care of the sec- 252

ond criterion and div takes care of the third crite- 253

rion as discussed above. λ1 and λ2 in Equation 254

1 are hyperparameters that balance the contribu- 255

tion of second and third parts of loss function (i.e. 256

controlling diversity and feasibility). The detailed 257

description of the computation of yloss, dist and 258

div function in Equation 1 is given in Equations 259

5, 6 and 7 respectively in Appendix 9.4. The loss 260

function in Equation 1 is optimized using the gra- 261

dient descent method. 262

3.1 Mapping Retrieval to CF Setup 263

In IR, the end user is generally interested in the 264

ranking of documents within top-K. Hence to 265

align with the counterfactual setup (specifically in- 266

put f in Equation 1) described in Section 3, we 267

aim to build on a classifier where we are interested 268

in finding the counterfactuals that can push a doc- 269

ument within top-K. The specifics of the classifi- 270

cation setup are given below. 271
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Figure 1: Counterfactual Explanation Model Description

Classifier Setup Existing work in xAI devel-272

oped a simple model which can approximate the273

decision boundary of the original complex model274

in a small region (Ribeiro et al., 2016) to explain275

the original model. In that direction, the objective276

of the classifier in our research scope is to locally277

approximate the behavior of a retrieval model M ,278

for a query q and a subset of documents retrieved279

for the query q. More specifically, we are in-280

terested in approximating the behavior of the re-281

trieval model M in determining whether a docu-282

ment is retrieved within the top-K results or not. In283

contrast to (Ribeiro et al., 2016) we build a binary284

classification model instead of a regression model.285

The binary classifier predicts whether a document286

d will be ranked within the top-K results or not for287

a specific query q and retrieval model M .288

For each document d for which we want to gen-289

erate counterfactuals, we train separate classifier.290

In the classifier setup, the top-K documents for a291

query q and model M represent class 1 and any292

other document not belonging to this class repre-293

sents class 0. Theoretically speaking, if a corpus294

had N number of documents, then there will be295

N−K documents which should have class label 0296

and N−K is a very large number in general which297

can cause class imbalance issue. To avoid this is-298

sue, for the 0 class, for each document d for which299

we want to generate a counterfactual, we choose a300

set of closest neighbors in the set of N −K doc-301

uments and the size of the neighborhood should302

be similar to K. Consequently, there is no class303

imbalance issue in our classifier setup. In the clas-304

sifier setup, K serves as a predefined threshold,305

typically set to values such as 10, 20, or 30.306

Feature Vector for Classifier The classifier307

function (i.e. the instance of f in Equation 1) takes308

as input a word based feature vector corresponding 309

to a document (i.e. the instance of x in Equation 310

1). Generating the feature vector for the classi- 311

fier using all the words from documents retrieved 312

for a query can pose challenges. Consequently, 313

we adopted a filtering strategy, where we selec- 314

tively choose the most significant n words from 315

each document d using a function named Imp(d). 316

We create a vocabulary set V by taking the union 317

of the top n important words present in each of 318

the top-K documents of the ranked list. Mathe- 319

matically, V = ∪K
i=1{

∑n
j=1,wj∈Imp(di)

wj}. We 320

explored three different mechanisms (described in 321

Section 4) to implement Imp(d). The dimen- 322

sion of the feature vector required for the classi- 323

fier setup is set to the size of the vocabulary set 324

(i.e. |V |), where each position within the feature 325

vector maps to a unique word in the set V . The 326

feature vector representation of d is represented as 327

dvec = {tfd
1 , tf

d
2 . . . , tfd

|V |} where tfd
i represents 328

the term frequency of the word wi in d. Appendix 329

9.2 depicts a step-by-step algorithm to construct 330

the feature vector for the classifier and Figure 6 in 331

Appendix 9.2 shows one sample feature vector for 332

the classifier. Equation 2, defines the instance of f 333

(as given in Equation 1) in the retrieval setup. 334

f : R
|V | → {0, 1} (2) 335

In Equation 2, for each document d, f takes dvec 336

as input and predicts whether the class label as 0 or 337

1. Once the classifier is trained, we use this clas- 338

sifier to train the counterfactual model described 339

in Equation 1 to generate the counterfactuals. Al- 340

though Equation 1 generates k different counter- 341

factuals, we perform post-processing (as described 342

in step 5 in Algorithm 1) in the retrieval setup to 343

eventually generate one counterfactual sample (i.e. 344

c) which is a |V | dimensional vector. Algorithm 1 345
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shows step by step execution of the counterfactual346

explanation generator. Algorithm 1 shows how the347

potential counterfactual examples (c1, . . . ck) are348

randomly initialized. The counterfactual output in349

the retrieval setup (i.e. c) should change the classi-350

fier prediction from 0 to 1 or 1 to 0. In our research351

scope, we are primarily focused on the scenario352

where the classifier label is changed from 0 to 1353

(i.e. modified document should be within top K).354

The set of words corresponding to the counterfac-355

tual explanation of d are the new words that have356

been added to dvec in the output of Algorithm 1357

(i.e. c). Mathematically, the set of counterfactual358

explanations (CFEXP (d)) for a document d can359

be written as follows.360

CFEXP (d) = ∪|V |
j=1{∪

|cj−tfd
j |

i=0 {wj}} (3)361

In Equation 3 cj is term frequency of wj in the362

counterfactual vector c and tfd
j is the term fre-363

quency of the word wj in the original document d.364

Figure 1 shows the schematic diagram for counter-365

factual setup with the workflow between the dif-366

ferent components (i.e. classifier and counterfac-367

tual generator) within it.

Algorithm 1: CF Explanation Generator
Input : Classifier function: f, Feature Vector:

dvec = {tf1, tf2, . . . , tf|V |},
Number of Counterfactuals:k

Output : {c ∈ R|V |}
Initialization:

for i← 1 to k do
for j ← 1 to |V | do

c0i,j = r ∼ Random(.)

/* c0i,j is the jth

coordinate of ci at 0th iteration
*/

end for
end for

1 for t← 0 to maxIter do
2 Compute the loss 1

k

∑k
i=1 yloss(f(cti), y) +

λ1
k

∑k
i=1 dist(cti, x)− λ2div(ct1, . . . , c

t
k))

3 Update cti’s using gradient descent
4 end for
5 return c c is a |V | dimensional vector randomly

chosen from the subset of cmaxIter
i ’s for which

cmaxIter
i,j ≥ tfd

j ∀j = 1, . . . , |V |

368

4 Experiment Setup369

Dataset We use three ranking datasets for our370

experiments: MS MARCO passage dataset for371

short documents (Bajaj et al., 2016) and MS372

MARCO document ranking dataset for longer373

documents (Craswell et al., 2023) and TREC Ro-374

bust (Voorhees, 2005) dataset. The MS MARCO375

passage and document ranking datasets contain 376

queries from Bing1 and the queries of TREC Ro- 377

bust are manually chosen. For each dataset, we 378

randomly selected 100 queries from the test set 379

and chose 5 documents not ranked in the top 10 380

results for each query, resulting in a test set of 250 381

query-document pairs.The details of the dataset 382

are given in Table 1. 383

MS MARCO
Passage

MS MARCO
Document

TREC
Robust

Query Avg Length 5.9 6.9 7.18
Document Avg Length 64.9 1134.2 150.12
Query #Instances 100 1000 100
Document #Instances 250 250 250

Table 1: Dataset Details for Counterfactual Setup

Retrieval Models The five different retrieval 384

models used in our experiment are described as 385

follows. 386

BM25: BM252 is a statistical retrieval model 387

where the similarity between a query and a doc- 388

ument is computed based on the term frequency 389

of the query words present in the document, doc- 390

ument frequency of the query words and also the 391

document length. 392

DRMM: Deep Relevance Matching Model 393

(DRMM) Guo et al. (2016) is a neural retrieval 394

model where the semantic similarity between each 395

pair of tokens corresponding to a query and a doc- 396

ument is computed to estimate the final relevance 397

score of a document. 398

DSSM: Deep Semantic Similarity Model 399

(DSSM) Huang et al. (2013) is another neural 400

retrieval model which uses word hashing tech- 401

niques to compute the semantic similarity between 402

a query and a document. 403

ColBERT: Contextualized Late Interaction 404

over BERT (ColBERT) (Khattab and Zaharia, 405

2020), is an advanced neural retrieval model 406

which exploits late interaction techniques based 407

on BERT (Devlin et al., 2019) based representa- 408

tions of both query and document for retrieval. 409

MonoT5: MonoT5 (Nogueira et al., 2020) is a 410

sequence-to-sequence model fine-tuned to predict 411

the relevance of a query-document pair. 412

Baselines To the best of our knowledge, this is 413

the first work which attempts to provide counter- 414

factual explanations in IR. Consequently, there ex- 415

ists no baseline for our proposed approach. How- 416

ever we have used a query word and top-K word 417

1https://bing.com
2https://en.wikipedia.org/wiki/Okapi_BM25
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based intuitive baseline to compare with our pro-418

posed approach. In query word baseline (QW ),419

we use query words not originally present in a420

document to enhance its ranking. For Top-K’421

(Top − K ′) baseline we use the top k′ words ex-422

tracted from top 5 documents corresponding to a423

query as relevance set. Words appearing in the424

relevance set but not appearing in a document are425

added to the document to improve its ranking. For426

different retrieval models we have corresponding427

versions of QW and Top−K ′ baselines.428

Evaluation Metrics There exists no standard429

evaluation framework for exIR approaches. The430

three different evaluation metrics in our experi-431

ment setup are described as follows.432

Fidelity (FD): Existing xAI approaches in IR433

use Fidelity (Anand et al., 2022) as one of the met-434

rics to evaluate the effectiveness of the proposed435

explainability approach. Intuitively speaking, Fi-436

delity measures the correctness of the features ob-437

tained from a xAI approach. In the context of the438

CFIR setup described in this work, we define this439

fidelity score as the number of times the words440

predicted by the counterfactual algorithm could441

actually improve the rank of a document. Let n be442

total number of query document pairs in our test443

case and x be number of query document pairs for444

which the the rank of the document improved after445

adding the counterfactuals obtained from the opti-446

mization setup described in Equation 1. Then the447

Fidelity score is mathematically defined with re-448

spect to a test dataset D and retrieval model M is449

defined as follows.450

FD(D,M) =
x

n
∗ 100 (4)451

Avg. New Words: Here we compute the av-452

erage number of new words added by the counter-453

factual approach for a set of query document pairs.454

Avg. Query Overlap: Here we report on an455

average how many of the words suggested by456

the counterfactual algorithm come from the query457

words.458

Parameters and Implementation Details The459

details of implementation about retrieval models460

are shown in Appendix 9.1. We employed two461

popular classical machine learning methods Lo-462

gistic Regression (LR) and Random Forest (RF)463

for the classifier described in Section 3.1. For464

Logistic Regression the learning rate was set to465

0.001. For Random Forest the number of estima- 466

tors were set to 100. We train a separate classifier 467

for each query and retrieval model. In total, for 468

each retrieval model there are 100 classifiers. As 469

described in Section 3.1, all the words present in a 470

document is not used as input to the classifier. We 471

use top 10 (n′ = 10) most important words from 472

a document. As described in Section 3.1, we ex- 473

plored three different ways to implement Imp(d) 474

function a) TF-IDF weight based word extraction, 475

b) BERT based keyword extraction (Grootendorst, 476

2020) and c) Similarity between the BERT repre- 477

sentation of query and the document tokens. We 478

found that BERT representation based similarity 479

computation worked the best for our approach. 480

More details on the implementation of Imp(d) 481

function are shown in Appendix 9.7. Then top n 482

words from each document are used to create the 483

vocabulary (|V |) for the classifier. More details 484

on the parameter configuration are shown in Ap- 485

pendix 9.5. 486

5 Results 487

Table 2 shows the performance of the counterfac- 488

tual approach across different retrieval models (i.e. 489

BM25, DRMM, DSSM, ColBERT, MonoT5). We 490

conducted experiments on MS MARCO passage 491

document and TREC Robust dataset to observe 492

the effectiveness of our proposed explanation ap- 493

proach for different types of documents. Mainly 494

four different observations can be made from Ta- 495

ble 2. Firstly, It can be clearly observed that 496

the CFIR model for each retrieval model has per- 497

formed better compared to its corresponding query 498

word or top-K’ words baseline in terms of Fi- 499

delity score(FD). The above-mentioned observa- 500

tion is consistent for both passages and long docu- 501

ments (i.e. both in MSMARCO passage and Doc- 502

ument). Secondly, it can be observed from Table 503

that mostly CFIR approach provided the highest 504

number of new terms (terms not already present 505

in the documents) as part of the explanation to im- 506

prove ranking. Consequently, we can say the over- 507

all set of explanation terms are more diverse for 508

CFIR approach compared to others. It can also be 509

also observed from Table 2 that the Fidelity scores 510

are generally better in the MS MARCO passages 511

compared to MSMARCO document and TREC 512

Robust dataset. One likely explanation for this 513

phenomenon is that documents in MSMARCO 514

document and TREC Robust are longer in length 515
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Model Description MS MARCO Passage MS MARCO Document Trec Robust

Retrieval Model Classifier FD(%) Avg. New
Words

Avg. Query
Overlap FD(%) Avg. New

Words
Avg. Query

Overlap FD(%) Avg. New
Words

Avg. Query
Overlap

QWBM25 NA 50% 5.61 100% 48% 6.14 100% 56% 6.12 100%
Top−K′

BM25 NA 42% 11.28 100% 40% 9.61 100% 41% 12.34 100%
CFIRBM25 RF 65% 10.64 66% 52% 16.81 56% 64% 11.12 57%
CFIRBM25 LR 69% 17.14 58% 57% 14.15 56% 58% 13.25 56%
QWDRMM NA 48% 5.12 100% 47% 6.14 100% 49% 7.12 100%
Top−K′

DRMM NA 42% 15.11 100% 31% 14.12 100% 33% 16.12 100%
CFIRDRMM RF 72% 11.31 48% 56% 8.12 46% 62% 12.56 47%
CFIRDRMM LR 68% 12.37 62% 62% 14.53 45% 65% 13.47 43%
QWDSMM NA 49% 5.32 100% 45% 6.64 100% 52% 7.12 100%
Top−K′

DSSM NA 35% 12.51 100% 32% 12.62 100% 34% 13.14 100%
CFIRDSSM RF 57% 11.52 58% 46% 18.14 57% 59% 12.46 100%
CFIRDSSM LR 62% 15.78 54% 53% 18.52 63% 58% 17.24 64%
QWColBERT NA 56% 4.78 100% 34% 5.64 100% 38% 6.14 100%
Top−K′

ColBERT NA 48% 15.63 100% 36% 13.42 100% 38% 11.32 100%
CFIRColBERT RF 72% 12.41 56% 72% 11.05 49% 71% 10.35 52%
CFIRColBERT LR 75% 14.12 61% 71% 10.23 62% 74% 16.45 65%
QWMonoT5 NA 52% 10.15 100% 54% 12.23 100% 63% 10.15 100%
Top−K′

MonoT5 NA 75% 14.11 100% 68% 10.13 100% 75% 11.12 100%
CFIRMonoT5 RF 80% 12.13 64% 72% 11.23 61% 73% 10.95 66%
CFIRMonoT5 LR 82% 13.15 65% 74% 12.23 63% 75% 11.45 68%

Table 2: CFIR model Performance for BM25, DRMM, DSSM and ColBERT, MonoT5 in MSMARCO Passage
and Document Collection and TREC Robust. The Best Performing Counterfactual Explanation Method for every
retrieval model is boldfaced; the overall best performance across all rows is underlined

Retrieval Model Query Text docId Explanation Terms

DRMM What law repealed prohibition ? 3686955 working, strict, Maine, 1929, law, resentment, New York City,
Irish, immigrant, prohibition, repeal, fall, Portland, temperance, riot, visit

DSSM What is the role of lipid in the cell? 6159679 phospholipid, fluidity, storage, triglyceride, fatty receptor
ColBERT what type of wave is electromagnetic? 5217641 directly ,oscillations, medium, wave, properties, speed

Table 3: Sample Explanation Terms by CFIR Model for DRMM, DSSM and ColBERT in MS MARCO passage

compared to passages. Consequently, it is easier516

for shorter documents to change the ranking com-517

pared to longer documents. Thirdly, another inter-518

esting observation from Table 2 is that the max-519

imum query word overlap by our proposed ap-520

proach is 63%. This implies that the counterfac-521

tual algorithm is suggesting new words that are522

not even present in a query. Fourthly, the perfor-523

mance of representation learning based retrieval524

models (i.e. ColBERT, MonoT5) are significantly525

better than the other models for Fidelity metric.526

One potential reason can be that, the counterfac-527

tual generator suggests words which are similar528

to the content of the document. Because of us-529

ing better embedding representation (BERT (De-530

vlin et al., 2019) and T5 compared to Word2Vec531

(Mikolov et al., 2013) in DRMM) these retrieval532

models give more priority to similar words than533

other retrieval models.534

There exists work (Liu et al., 2023; Wu et al.,535

2022a) in IR that focused on adversarial attacks,536

where content or embedding of a document is537

modified to improve its ranking. The key dis-538

tinction of our work from existing adversarial ap-539

proaches is that, instead of altering the document540

encoding or replacing words, we focus solely on541

adding new words to the document. However, for542

comparison, we have evaluated the performance 543

of CFIR against the PRADA (Wu et al., 2022a) 544

model which replaces certain words in a docu- 545

ment to improve its ranking. Table 8 in Appendix 546

9.6 shows that CFIR performs better than PRADA 547

for both ColBERT and MonoT5 in terms of Fi- 548

delity score. Table 3 shows some example terms 549

extracted by our proposed approach. The words 550

shown in Table 3 have improved the ranking of a 551

docID with respect to the queries shown. 552

Parameter Sensitivity Analysis In Table 2, we 553

observed that for most of the retrieval models the 554

performance of the counterfactual explainer fol- 555

lows similar trend both in MSMARCO passage 556

and document dataset (i.e. the best performing 557

model in terms of fidelity score is same in most 558

of the cases). As a result, we conducted param- 559

eter sensitivity experiments only on MSMARCO 560

passage dataset. Figure 2 (a) shows the variance 561

in Fidelity score with respect to the K value in 562

Top-K. In Figure 2 (b) we show the variance of 563

FD score with respect to the number of most sig- 564

nificant words (i.e. n) used to construct the doc- 565

ument vector. It is clearly visible from Figure 2 566

(b) that with an increase in the number of coun- 567

terfactuals, there is a decrease in the performance 568

7



(a) (b)

Figure 2: Counterfactual Classifier Performance Variance with Top-K and Counterfactual Performance Variance
with variation of number of Counterfactuals

Figure 3: Average Rank shift by CFIR for BM25,
DRMM, DSSM, ColBERT and MonoT5

of the counterfactual classifier. It can be observed569

that for n = 10 the best performance is achieved.570

Intuitively, as the number of words increases, the571

feature vector grows exponentially, making it chal-572

lenging to train the classifier effectively. Figure 3573

shows the average change in rank after introduc-574

ing the explanation terms suggested by the CFIR575

setup. Figure 3 essentially demonstrates the ac-576

tionability introduced by the counterfactual expla-577

nation terms. The two things to observe from Fig-578

ure 3 are firstly, the average rank shift is greater579

for documents than for passages. Table 2 shows580

that ColBERT achieved a significantly higher fi-581

delity score (16th row) and a larger average rank582

shift compared to the other models, as also seen in583

Figure 3. Figure 4 shows the average cosine simi-584

larity computed between documents and the corre-585

sponding explanation terms. For both documents586

and the explanation terms we use pretrained BERT587

representations to compute the similarity. It can588

Figure 4: Average Semantic Similarity between orig-
inal documents and the corresponding counterfactual
explanation Terms for BM25, DRMM, DSSM, Col-
BERT and MonoT5

be observed from Figure 4 that the cosine similar- 589

ity for the representation learning based retrieval 590

models (i.e. ColBERT, MonoT5) are higher than 591

the other retrieval models in general. 592

6 Conclusion 593

In this paper, we propose a counterfactual setup 594

for a query-document pair and a retrieval model. 595

We conducted experiments on both MS MARCO 596

passage and document ranking sets. Our experi- 597

ments show that the proposed approach on an av- 598

erage 70% cases for both in short and long docu- 599

ments could successfully improve the ranking. In 600

the future, we would like to explore different ex- 601

planation units for the counterfactual setup. 602

7 Limitations 603

One of the limitations of this work is that we as- 604

sume that top 10 or 20 words (based on tf-idf 605

8



weights) within a document play the most impor-606

tant part in improving the rank of a document.607

However, theoretically speaking we should con-608

sider all the words present in a document to de-609

termine the most influential words for a retrieval610

model. We have used top tf-idf words (Similar611

to statistical retrieval models) to reduce the com-612

putational complexity of our experiments and we613

have seen that increasing the number of top words614

doesn’t affect the performance of the model that615

much.616

8 Ethical Considerations617

In this work, we have used publicly available618

search query log and document collection to619

demonstrate counterfactual explanation. No sen-620

sitive data was used in this experiment. As a result621

of this there is no particular ethical concern asso-622

ciated with this work. If there is any kind of bias623

present in the search log data that effect can be ob-624

served within our approach. However mitigating625

that bias was beyond the scope of this work626
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9 Appendix 810

9.1 Retrieval Performance of IR Models 811

We use Lin et al. (2021) toolkit for implement- 812

ing BM25 and MonoT5. For DRMM and DSSM, 813

we use the implementation released by the study 814

in Guo et al. (2019). For passage ranking we 815

varied the parameters in a grid search and we 816

took the configuration producing best MRR@10 817

value on TREC DL (Craswell et al., 2021) test 818

set. For both DRMM and DSSM experiments 819

on MSMARCO data, the parameters were set as 820

suggested in (Wu et al., 2022b). The MRR@10 821

values are reported in Table 7 in Appendix 9.1. 822
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For DRMM and DSSM, we use randomly chosen823

100K query pairs from the MSMARCO training824

dataset to train the model.

MRR@10
Model MSMARCO Passage MSMARCO Document
BM25 0.1874 0.2184
DRMM 0.1623 0.1168
DSSM 0.1320 0.1168
ColBERT 0.3481 0.3469
MonoT5 0.3904 0.3827

Table 4: Retrieval Model Performance on MSMARCO
passage and document

825

9.2 Example of Input and Output to826

Classifier827

Given an input query, we employ a Lucene-828

Searcher with MSMARCO Index to retrieve the829

Top-K documents. The feature vector construction830

process follows these steps:831

For each document, we:832

1. Extract the top n words based on their Imp(d)833

values834

2. Construct a vocabulary V as the union of all835

top 10 words across documents836

3. Note that |V | typically falls in the range of837

150-180 words838

The feature vector for each document has di-839

mension |V |, where each component represents840

the value from the Imp(d) of the corresponding841

word from the vocabulary. Formally:842

dvecdvecdvecdvec ∈ R|V |843

Labels are assigned according to the following844

criterion:845

label =

{
1 for top K documents

0 for remaining documents
846

Example feature vectors and their correspond-847

ing counterfactuals generated using (Mothilal848

et al., 2020) are shown in Table 6. Since |V| is 150849

in our experiments, hence in Table 6 we have only850

shown the term frequencies of the words present851

in each document. For other words the terms852

freaquency values will be zero in dvec.853

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 5: Comparison of CFIR with Existing ExIR Ap-
proaches

9.3 Existing EXIR approaches vs. CFIR 854

The existing literature aims to explain the signifi- 855

cance of a document, a set of documents, or a pair 856

of documents through various explanation meth- 857

ods. Nonetheless, our proposed approach diverges 858

fundamentally from prior work in that we seek to 859

demonstrate how the absence or frequency of cer- 860

tain tokens impacts document relevance. In this 861

section, we examine whether there is any intersec- 862

tion between the two sets of tokens described ear- 863

lier. 864

Pointwise Explanation Approach As outlined 865

in Section 2.2, existing pointwise explanation 866

methods elucidate why a specific document aligns 867

with a given query within a retrieval model. Sim- 868

ilarly, our proposed approach operates on individ- 869

ual documents and queries, albeit with a distinct 870

objective. Here, we analyze the overlap between 871

the explanations generated by the pointwise expla- 872

nation method and those derived from our model, 873

as presented in Table 7. This comparison was con- 874

ducted on 50 pairs of documents. 875

Listwise Explanation Approach In Section 2, 876

it is explained that listwise explanations typically 877

aim to demonstrate the relevance of a list of docu- 878

ments to a given query. In listwise setup, one set of 879

explanation terms are extracted for a list of docu- 880

ments, a query, and a retrieval model. Conversely, 881

in our approach, we generate distinct explanations 882

for each query-word pair. Therefore, to compare 883

listwise explanations with our method, we aggre- 884

gate all individual explanations obtained for each 885

document-query pair in the list to create a unified 886

explanation set for the entire list corresponding to 887

a query. The resulting overlap is presented in Ta- 888

ble 7. 889

9.4 Counterfactual Optimization Framework 890

The different parts of Equation 1 are described 891

here. The yloss in Equation 1 is a hinge loss func- 892

tion as defined in Equation 5. In Equation 5 z is 893

−1 when y = 0 otherwise, z = 1. logit(f(c)) is 894

the logit values obtained from the ML model when 895

the counterfactual c is given as input. 896
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docID Feature Vector
3686955 [prohibition:2.0, amendment:2.0, under:1.0, dwindled:1.0, eighteenth:1.0, repeal:1.0, repealed:3.0, states:1.0, 1933: 1.0, ratification: 1.0]
6159679 [membrane:5.0, lipids:3.0, remainder:2.0, proteins:3.0, biochemical:2.0, 80:2.0, role:2.0, percent:2.0]
5217641 [waves:6.0, transverse:5.0, electromagnetic:3.0, oscillations:2.0, vibrations:2.0, travel:2.0, radiation:2.0, angles:2.0, transfer:2.0, types:3.0]

Table 6: Sample Feature Vector Corresponding to three different documents

Existing Explanation Methods Word Overlap
PointWise Explanation (Singh and Anand, 2019) 21.46%
ListWise Explanation (Lyu and Anand, 2023) 9.57%

Table 7: Comparison of CFIR with Existing ExIR Ap-
proaches

yloss = max(0, 1− z ∗ logit(f(c))) (5)897

The distance function (dist(ci, x)) in Equation898

1 is computed using the formula given in Equation899

6. In Equation 6, dcat represents the number of900

categorical variables used in the counterfactual in-901

put. In Equation 6, the value of I is equal to 1 if902

the corresponding value of the categorical variable903

is same in both the counterfactual input c and the904

original input x, otherwise it is set to 0.905

dist(c, x) =

dcat∑
p=1

I(cp ̸= xp) (6)906

The diversity in above equation is defined by the907

formula described in Equation 7. In equation 7,908

Ki,j is equal to 1
1+dist(ci,cj)

. dist(ci, cj) calculates909

the distance between two counterfactuals ci and910

cj .911

div(c1, . . . , ck) =
∑
i,j

det(Ki,j) (7)912

9.5 Parameters for Counterfactual Setup913

The value of λ1 and λ2 is set to 1 and 0.5 re-914

spectively in Equation 1. The value of k in Equa-915

tion 1 is set to k = 3. In all our experiments in916

Table 2, we have observed that for K = 3 and917

onward we have always found a counterfactual918

explanation for each query-document pair where919

only words were added for the desired counterfac-920

tual outcome.921

9.6 Adversarial Attacks vs. Counterfactual922

Explanation923

Here we show the performance of our proposed924

counterfactual explanation approach with an exist-925

ing adversarial model named PRADA (Wu et al.,926

2022a). We use the MSMARCO passage dataset927

Retrieval Model FD in PRADA FD in CFIR
ColBERT 74% 75%
MonoT5 80% 82%

Table 8: Performance of CFIR vs. Adversarial Attack
Model PRADA (Wu et al., 2022a)

Imp(d) Approach FD
TFIDF 74%
KeyBERT 70%
BERTSim 75%

Table 9: Performance of Different Approaches in
Imp(d).

as the target corpus. We use same test set (as de- 928

scribed in Table 1) as used in the first column of 929

Table 2 in this experiment. Table 8 shows the re- 930

sults in terms of Fidelity score. 931

9.7 Implementation of Imp(d) 932

We explored three ways to compute the top n 933

words from each document. Each one of them is 934

described as follows. 935

TF-IDF Approach: In this approach we choose 936

top n words from a document based on their TF- 937

IDF weight. 938

KEYBERT Approach: In this approach we use 939

the model proposed in (Grootendorst, 2020) to ex- 940

tract keywords from a string. 941

BERT-Based Similarity(BERTSim): In this 942

approach we compute the similarity between the 943

BERT based representation of the query text and 944

each token of the document and then we sort all 945

the tokens based on the similarity. 946

Table 9 shows the performance of the above- 947

mentioned three approaches in MSMARCO pas- 948

sage dataset and ColBERT retrieval model. n = 949

10 for the experiments shown in Table 9. From 950

Table 9, we can conclude that the BERT-based 951

similarity approach works the best for the Imp(d) 952

function. hence for all the results reported in Table 953

2, we use the BERTSim approach in the Imp(d) 954

function. 955
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