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Abstract

The widespread adoption of diffusion models for creative uses such as image, video,
and audio synthesis has raised serious legal and ethical concerns surrounding the
use of training data and its regulation. Due to the size and complexity of these
models, the effect of training data is difficult to characterize with existing methods,
confounding regulatory efforts. In this work we propose a novel approach to trace
the impact of training data using an encoded ensemble of diffusion models. In
our approach, individual models in an ensemble are trained on encoded subsets of
the overall training data to permit the identification of important training samples.
The resulting ensemble allows us to efficiently remove the impact of any training
sample. We demonstrate the viability of these ensembles for assessing influence
and consider the regulatory implications of this work.

1 Introduction

Diffusion models have emerged as powerful tools for modeling and sampling from complex natural
distributions. These models have garnered significant attention and achieved remarkable results in a
wide array of applications. The widespread adoption of diffusion models for creative uses, such as
image, video, and audio synthesis, has raised ethical and legal attention surrounding the use of works
of authorship as part of training data.

In this work, we propose the use of encoded ensembles of diffusion models to trace the contribution of
training data. We do this by training the individual members of the ensemble on carefully engineered
splits that encode training data in a way that allows us remove the influence of training points
by removing ensemble members, which in turn allows us to simulate the effects of leave-one-out
retraining.

Contrary to previous approaches, our approach is able to compute ablation based counterfactuals
without the need for retraining or approximate methods, both of which limit the applicability of
leave-one-out-training approach in generative models, which are too large to efficiently retrain and
too complex to approximate [Ho et al., 2020, Rombach et al., 2022]. In addition, we also provide a
method for approximate influence calculation, which makes database-scale influence calculations
tractable for diffusion models.

1.1 Related Work

Diffusion models were originally introduced to machine learning by Sohl-Dickstein et al. [2015], and
were improved by Ho et al. [2020], whose models are the foundation for our models.

Workshop on Regulatable Machine Learning at the 37th Conference on Neural Information Processing Systems
(RegML @ NeurIPS 2023).



Leave-one-out retraining is an established paradigm for understanding training data influence, where
we analyze a counterfactual scenario where a model is retrained without a given piece of training
data. Past approaches have considered influence as either a function of the final resulting model [Koh
and Liang, 2017], or the entire training trajectory [Pruthi et al., 2020]. Our method takes the first
approach of considering a final model produced in a counterfactual setting.

Fully computing the counterfactual scenario is computationally infeasible, therefore its approximation
is an active area of research [Hammoudeh and Lowd, 2022]. However, existing approximation
techniques do not scale well to large and complex models [Basu et al., 2020]. Furthermore, many
existing approaches are adapted for supervised learning, with relatively fewer works that attempt
to analyze influence for unsupervised generative models [Terashita et al., 2021]. Our approach by
contrast applies to large and complex generative diffusion models.

2 Contribution

We provide a novel approach to quantify the influence of training data to the output of diffusion
models. Furthermore, we propose a methodology that can scale efficiently to training sets with sizes
commensurate with those used to train modern generative models [Schuhmann et al., 2022, Ramesh
et al., 2022].

2.1 Regulatory Motivation

The framework that we present in this paper traces the causal effect of training images to the
resulting model output. This is relevant for several regulatory goals surrounding data provenance and
attribution–such as for explainability, privacy, and intellectual property. Our attribution technique
could also aid in the discovery of candidate works. Model developers and creative workers alike
may be unaware of the contribution of individual copyrighted works to a given output image. Our
approach to attribution could aid in the discovery of candidate works that contribute to a given model
output. Importantly, this work presents a start at developing technical infrastructure for authors of
works used in model training to participate in the market for their work Menell [2012].

3 Results

Rather than tracing influence in a single model, we will instead trace influence through an ensemble
of models. One novel finding of our work is that diffusion models can be combined in an ensemble,
with each diffusion ensemble member trained on the same or distinct subsets of training data. Each
ensemble member is trained as described in Ho et al. [2020]. We sample from the ensemble by
averaging the outputs of the models at each denoising step and treating the average as through it were
the output of a single model.

To ensure that we can trace influence, the ensemble must be what we refer to as an encoded ensemble.
We define an encoded ensemble as an ensemble of models with the following property:

Definition 1. Given a point x in the overall training set, define S(x) as the set of models in the
ensemble whose training split included x. Then the ensemble is an encoded ensemble if the set
difference S(x) \ S(x′) is not the empty set of any x, x′ in the overall training set.

We can then remove the influence of any training point by removing all members of the ensemble
that was trained on it. If the ensemble is indeed an encoded ensemble, then there exists no other data
point whose influence is fully erased. This then allows us to compute counterfactuals by rerunning
a diffusion process with the same exogenous noise but on the ablated ensemble. This process is
illustrated in Figure 1a. We further demonstrate the validity of this approach by showing that images
generated by the counterfactual model behave as expected in the simplified setting where we remove
the influence of entire classes, which is provided in Figure 1b and c.

An ensemble that satisfies Definition 1 can be constructed in the following way: assign each datapoint
x in the training set a bit vector of length n of some fixed Hamming weight. Include that datapoint in
the training split of the ith model if and only if the bit vector is 1 at the ith position. This construction
results in an ensemble of models that satisfies Definition 1.
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a)

b)

c)

Figure 1: Overview of our method and its viability in producing counterfactuals
a) We split our data such that, for each piece of training data, there exists some subset of the trained
ensembles that has, collectively, seen every other piece of training data except the one in question.
This allows us to efficiently simulate retraining by ablating the ensemble. These ablated ensembles
can then be used to generate counterfactual samples, which can then be used to assess influence.
b) As control, we consider all images of a given MNIST LeCun et al. [2010] class to be a single
training sample. Note that we also remove images that belong to classes 5, 7, and 9. We then ablate
classes as described in a). The top row corresponds to generated samples, while the lower rows
correspond to counterfactuals of the top row with certain classes ablated. Visually inspecting these
cherry picked examples shows that ablating a class has more significant consequences on generated
images that are of that class, compared to ablating a different class which in most cases leaves the
generated sample mostly unchanged.
c) Since examples in b) are cherry picked, we conduct a more quantitative evaluation, where 3000
generated samples are classified. Influence of a class is measured by ablating that class and measuring
the distance of the counterfactual to the original, measured using both LPIPS Zhang et al. [2018] (top)
and Euclidean distance (bottom). In both cases the predicted class has significantly more influence
on generated images than other classes (the Mann-Whitney U test gives p ≤ 10−300 for both pairs of
distributions).

3.1 Database Scale Influence Tracing

While an encoded ensemble allows us to trivially produce a counterfactual model, we still need to
run a full diffusion run to produce a counterfactual sample. This can be very expensive. To mitigate
the costs involved, we estimate the effects of ensemble ablation by differentially downweighting
the removed models and upweighting the unremoved models, and then linearly extrapolate to the
point where the weights are zero for the removed models and sum to one for the remaining models.
We call the process of removing training data influence by weighting ensemble members synthetic
ablation. Synthetic ablation can be accomplished via a Jacobian-vector product, and computing the
Jacobian requires n diffusion runs with forward mode automatic differentiation, where n is the size
of the ensemble. Once computed, the Jacobian can be reused for the entire training set, enabling
database-scale evaluation. Results are presented in Figure 2. We can see that when the training set is
small, attribution is mostly quite obvious since the model directly copies the training set. For larger
training sets, the models become more creative (note how in Figure 2b some of the digits are not
quite digits). This can make the attributions far less intuitive. We note that this is consistent with prior
findings that show training set copying becomes less prevalent at larger training set sizes [Somepalli
et al., 2022].
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b)
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Figure 2: Methods and experiments
Given a set of generated images, we use our method of differentially downweighting ensemble
members to compute leave-one-out counterfactuals over the entire training set. For each generated
image, we take the counterfactual with the largest Euclidean distance to the original image to be the
most influential. The generated image is shown above the most influential training image in the above
figure.
a) We show the attributed image for 16 images generated from an encoded ensemble of 16 models
trained on a dataset of 300 randomly selected images from MNIST.
b) We show the attributed image for 16 images generated from an encoded ensemble of 16 models
trained on the 10000 images from MNIST’s validation split.
c) We show the attributed image for 16 images generated from an encoded ensemble of 20 models
trained on the 60000 images from CIFAR-10 [Krizhevsky et al., 2009].

4 Limitations and Ongoing Work

The proposed approach in this work is to construct a model that has attributability build into it as a
feature. It is not a black box method that is meant to be applicable to an existing model. The adoption
of this method therefore requires the training of an ensemble of new models.

Currently, we demonstrate attribution for unconditional pixel space diffusion models. The same
methods can be applied to text conditioned latent diffusion models, which are currently the subject of
regulatory concern [Jiang et al., 2023].
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