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Abstract

In federated learning (FL), models must converge quickly under tight commu-
nication budgets while generalizing across non-IID client distributions. These
twin requirements have naturally led to two widely used techniques: client/server
momentum to accelerate progress, and sharpness-aware minimization (SAM) to
prefer flat solutions. However, simply combining momentum and SAM leaves
two structural issues unresolved in non-IID FL. We identify and formalize two
failure modes: local–global curvature misalignment (local SAM directions need
not reflect the global loss geometry) and momentum-echo oscillation (late-stage
instability caused by accumulated momentum). To our knowledge, these failure
modes have not been jointly articulated and addressed in the FL literature.
We propose FedWMSAM to address both failure modes. First, we construct
a momentum-guided global perturbation from server-aggregated momentum to
align clients’ SAM directions with the global descent geometry, enabling a single-
backprop SAM approximation that preserves efficiency. Second, we couple momen-
tum and SAM via a cosine-similarity adaptive rule, yielding an early-momentum,
late-SAM two-phase training schedule. We provide a non-IID convergence bound
that explicitly models the perturbation-induced variance σ2

ρ = σ2 + (Lρ)2 and its
dependence on (S,K,R,N) on the theory side. We conduct extensive experiments
on multiple datasets and model architectures, and the results validate the effec-
tiveness, adaptability, and robustness of our method, demonstrating its superiority
in addressing the optimization challenges of Federated Learning. Our code is
available at https://github.com/Li-Tian-Le/NeurlPS_FedWMSAM.
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1 Introduction

Federated Learning (FL) [1] has emerged as a promising distributed learning paradigm that enables
multiple clients to collaboratively train a shared global model while keeping their local data decen-
tralized, thus preserving privacy. In particular, under the edge computing setting, FL has shown great
potential in a wide range of real-world applications, including personal mobile sensing systems [2],
healthcare data analytics [3, 4], and industrial Internet of Things scenarios [5–7].

FL in edge computing has several unique attributes. To reduce communication costs, the number of
local iterations must increase. Concurrently, partial participation is often used due to the unstable
connectivity of IoT devices. These two factors exacerbate the harmful effects of data heterogeneity [8–
10] in real-world applications, intensifying client drift [11], where local updates deviate significantly
from the global objective, degrading model performance and generalization.

Local multi-round training increases the drift caused by data heterogeneity, while partial participation
further magnifies its effects. Based on where the drift originates, current methods for mitigating client
drift can be categorized into the following levels: Methods at the data level attempt to balance data
distribution through techniques such as data augmentation [12, 13] or resampling [8, 14], but these
methods may incur high computational costs and risk overfitting. Gradient-level approaches, including
proximal methods [9], gradient correction [11], and regularization terms [15], aim to adjust local
gradients, but gradient distortion may hinder convergence. Techniques for model aggregation [16–18]
alter the server’s aggregation strategy, requiring the collection of additional information that may
conflict with the privacy principles central to FL. At the same time, cryptographic PPFL (e.g., HE)
offers an alternative at the cost of efficiency [19, 20].

Moreover, on the one hand, these methods focus solely on addressing client drift, with little consider-
ation for convergence speed, while fewer training rounds could enhance real-world applicability. On
the other hand, when heterogeneity is high, the loss surface resulting from aggregating models trained
with Empirical Risk Minimization (ERM) becomes sharp, limiting the models’ generalization in
practical applications. Moreover, in non-IID FL, we observe two structural failure modes when simply
porting SAM and/or momentum: (i) local–global curvature misalignment—local SAM directions
need not reflect the global loss geometry; (ii) momentum-echo oscillation—late-stage instability
caused by accumulated momentum. These motivate a design that can both align local updates to the
global geometry and adaptively damp momentum as training progresses.

To solve this problem, we aim to design a fast and flat FL algorithm. Two mainstream lines address the
twin goals in FL: momentum [21–25] for speed and SAM [26–28] for flatness. However, under non-IID
data, each line has structural drawbacks: momentum can amplify late-stage instability/overfitting [29],
while SAM requires an extra backward pass and, more importantly, its local perturbation directions
need not reflect the global loss geometry (the local–global curvature misalignment diagnosed above).
Momentum-only designs tailored to long-tailed heterogeneity (e.g., FedWCM [24, 25]) improve
robustness but do not enforce global flatness.

A straightforward combination exists—MoFedSAM inserts SAM into FedCM [26, 22]—yet naively
plugging SAM into a momentum pipeline leaves the two failure modes unresolved in non-IID settings
(misalignment persists, late-stage momentum oscillation is not damped). This motivates a design
that both aligns local updates to the global geometry and adaptively damps momentum as training
progresses, we instantiate this next as FedWMSAM.

To address the aforementioned issues and achieve fast and flat training in FL, we propose FedWM-
SAM (Federated Learning with Weighted Momentum–SAM), which integrates momentum with
SAM in a principled way.

• Firstly, we introduce personalized momentum and use the server-aggregated momentum as
a global geometric carrier to build a momentum-guided global perturbation, aligning local
SAM directions with the global descent geometry; the perturbation is implemented with a
single backpropagation (no extra backward pass).

• Secondly, we dynamically adjust the perturbation along this global direction during local
steps (e.g., x̂r

b = xr + b∆r), enabling each client to explore globally flatter regions without
increasing per-round cost.
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• Thirdly, we couple momentum and SAM via a cosine-similarity adaptive weight αr, which
yields an early-momentum / late-SAM two-phase schedule—speeding up early progress
while damping late-stage momentum oscillations under non-IID data.

Our main contributions are summarized as follows:
• Mechanism. We identify and formalize two failure modes in non-IID FL—local–global curvature

misalignment and momentum-echo oscillation—and correct them via a momentum-guided global
perturbation and a cosine-adaptive coupling.

• Method & Efficiency. FedWMSAM aligns local SAM directions using server-aggregated
momentum and implements the perturbation with a single backpropagation, yielding an early-
momentum / late-SAM two-phase schedule and fast-then-flat training with near-FedAvg per-round
cost.

• Theory. We provide a non-IID convergence bound that explicitly models the perturbation-induced

variance σ2
ρ = σ2 + (Lρ)2 and its dependence on (S,K,R,N): Õ

(√
L∆σ2

ρ

SKR + L∆
R

(
1+ N2/3

S

))
.

• Empirics. Across three datasets and twelve heterogeneity settings, FedWMSAM is best or on par
in most cases and shows the largest gains under strong non-IID settings, reaching target accuracies
in fewer rounds at similar per-round time, and the trends match our mechanism and theory.

2 Related Work
2.1 Heterogeneous Federated Learning
Federated learning (FL) often encounters the challenge of client drift. Existing solutions can be
divided into three levels: data, gradient, and aggregation. At the data level, resampling strategies [14]
adjust local sampling probabilities to balance class distributions, generative models like GANs [12]
and VAEs [13] synthesize balanced datasets, and data-sharing approaches [8] distribute small portions
of global data to clients. At the gradient level, methods such as SCAFFOLD [11] reduce variance
using control variates, FedDyn [15] applies dynamic regularization, FedProx [9] stabilizes updates
with proximal terms, and FedCM [22] aligns updates via momentum correction. At the aggregation
level, Hierarchical FL [17] applies multi-level aggregation for large-scale networks, Clustered
FL [16] groups clients with similar data distributions for localized optimization, and works like Client
Selection [30] and Client Weighting [18] adjust the influence of clients based on their contribution to
the global model. However, these works focus solely on addressing heterogeneity data, neglecting
speed and model generalization.

2.2 Momentum-Based Federated Learning
Utilizing historical gradient information via momentum has proven effective for accelerating conver-
gence and handling data heterogeneity in FL. The fundamental idea is to constrain current updates by
past directions, smoothing out oscillations. MIME [21] and FedCM [22] compute a global momen-
tum on the server and distribute it for stricter consistency, while AdaBest [31], FedADC [32], and
ComFed [33] adaptively calculate local momentum on clients and synchronize each round. Methods
like MFL [34] and FedMIM [23] entirely apply momentum on-device to reduce communication.
In parallel, momentum-based designs specifically tailored for long-tailed non-IID heterogeneity,
such as FedWCM [24, 25], provide an efficient complementary approach. Although momentum
mechanisms significantly improve early-stage convergence in non-IID scenarios, they can sometimes
hinder late-stage fine-tuning, causing notable performance fluctuations.

2.3 SAM-Based Federated Learning
Model generalization is closely tied to finding flatter regions of the loss surface, motivating Sharpness-
Aware Minimization (SAM) [35]. SAM actively seeks flatter optima and reduces overfitting risks
by perturbing the model around local minima. In the federated setting, works like FedSAM [26],
MoFedSAM [26], and FedGAMMA [27] plug SAM optimizers into FedAvg, FedCM, or SCAFFOLD
but do not explicitly refine the global flatness search. FedSMOO [28] integrates FedDyn regularization
to minimize local-global bias, whereas FedLESAM [36] estimates global perturbations based on
local-server discrepancies. More recently, FedGloss [37] extends FedSMOO by leveraging the
global pseudo-gradient from the previous round to reduce communication costs, while FedSFA [38]
selectively applies SAM perturbations using historical information to lower computational cost.
While these approaches enhance generalization, exploring flat minima inevitably slows convergence,
and SAM’s two backward passes increase computational overhead, further complicating its practical
deployment in heterogeneous FL.
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3 Preliminaries

3.1 Federated Learning
Federated Learning (FL) [1] enables multiple clients to train a global model collaboratively while
preserving data privacy. The objective is minw F (w) =

∑K
k=1

nk

n Fk(w), where Fk(w) is the local
loss at client k, nk is client k’s data size, and n =

∑K
k=1 nk. Parameter w denotes the global model.

3.2 Momentum Method
A standard form is: vrk=α grk+(1−α)∆r, where vrk is the momentum at client k in round r, α is the
momentum factor, grk is the local gradient, and ∆r is the global momentum. Methods like MIME and
FedCM employ this scheme to coordinate and stabilize local optimization under non-IID conditions.

3.3 SAM Method
Sharpness-Aware Minimization (SAM) [35] improves generalization by identifying flatter regions
of the loss function. Its objective is: minw FSAM(w) = minw max∥δ∥2≤ρ [E(L(w + δ)− L(w))].
Implementation typically involves two steps: (1) compute δ = ρ ∇F (w)

∥∇F (w)∥ and (2) update model
parameters w based on the perturbed gradient L(w + δ). This forces the model to converge to flatter
minima by explicitly considering the worst-case local perturbation.

3.4 Motivation
The core challenge of applying SAM in federated learning lies in a fundamental mismatch: SAM
computes perturbations based on local data, but aims to find flat minima in the global landscape
(Figure 1). Due to data heterogeneity, these local perturbations often fail to accurately reflect the
global geometry, thereby limiting the effectiveness of SAM in federated settings.

To resolve this contradiction, existing methods attempt to either reduce the discrepancy between local
and global models or improve the estimation of global-aware perturbations using local information.
However, as analyzed in Appendix A, these approaches still fall short in fully bridging the local-
global gap, motivating the need for a more unified and efficient solution. This motivates us to propose
a new approach that more effectively integrates SAM with federated optimization.

4 Method

Figure 1: The core of SAMs.

This section presents our FedWMSAM algorithm, which
fuses personalized momentum and SAM for federated
optimization. Section 4.1 highlights our methodology
and illustrates the three key components (personalized
momentum, global perturbation estimation, and dynamic
weighting). Section 4.2 then details the implementation,
including pseudocode, the computation of personalized
momentum ∆k

r and dynamic weight αr.

4.1 Methodology
(a) Personalized momentum for local–global discrep-
ancy. We use the diagram in Figure 2 (a) to illustrate the concept of personalized momentum. In
FedCM [22], momentum utilizes the previous gradients to guide the next round of local training,
which can effectively accelerate model convergence, as the black dashed line shows. However,
it is worth noting that although each client has different data distributions, they share the same
momentum. Although momentum mitigates part of the bias introduced by local gradients, the drift
caused by data heterogeneity recurs in every communication round and cannot be fully corrected by
momentum alone. Based on this, we introduce a correction term c from SCAFFOLD to estimate the
bias caused by local data using historical experience. Unlike the original SCAFFOLD [11], which
requires uploading local correction terms in each round for global averaging and redistribution, our
approach only requires the server to compute the correction term based on the differences in gradients
uploaded by clients. This correction term crk in the green dashed line is then aggregated with the
momentum ∆r to form personalized momentum ∆k

r , as shown in the red dashed line, effectively
saving communication bandwidth.
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Figure 2: FedWMSAM idea: (a) personalized momentum reduces local-global discrepancy; (b) local
model vs. momentum-based model difference guides global perturbation estimation; (c) a dynamic
weighting adjusts momentum v.s. SAM based on gradient–momentum similarity.

(b) Global perturbation estimated from momentum. Performing true SAM in a federated setting
is challenging because clients have access only to their local data. Yet they must collaboratively
explore the flat region of the global loss landscape. More information about the global loss function
is necessary for local SAM. We observe that it is the momentum that carries information about the
direction in which the global model is moving. As shown in Figure 2(b), by adding the momentum
∆r to the received model xr, we can infer the position of the global model x̂r

b , where the subscript b
denotes the current batch. It is important to note that the momentum here is personalized, and the
correction term helps eliminate the intrinsic perturbation drift caused by local data distributions.

At each step, we calculate the difference between the current model and the inferred global model,
using ∇b in light blue dashed line as the perturbation direction, based on the analysis that the direction
of deviation from the global model indicates regions of higher loss. By doing this, we eliminate
the need for an additional backpropagation step to compute the perturbation while improving the
estimation of the global perturbation.

(c) Dynamic Weighting via Gradient–Momentum Similarity. Although momentum accelerates
early convergence and SAM improves final accuracy, their roles vary throughout the training process.
An overly significant momentum can hinder late-stage fine-tuning, while pure SAM is relatively slow,
as shown in Figure 3. Inspired by experiments conducted by Andriushchenko et al. [39], which show
that switching from ERM to SAM at different epochs can lead to varying test errors, we realized that
it is crucial to determine the optimal time to increase the weight of SAM.

Figure 3: Momentum vs SAM in FL.

We observe that the cosine similarity between clients’ di-
rections and the global signal increases early and stabilizes
later (see Appendix B), so we increase αr monotonically
with the similarity—yielding early-momentum, late-SAM.
This allows us to rely more on momentum during the early
stages and gradually weaken its influence to better explore
the global flat region in the final stages. Figure 2 (c) shows
how momentum is helpful to speed up initially in the pur-
ple line, then gradually yields to SAM for robust final
convergence in the green line.

4.2 Proposed Algorithm

In this section, we describe the components and procedures of the FedWMSAM algorithm. First, we
provide an overview of the method, followed by detailed explanations of each component. Algorithm 1
summarizes the overall procedure.

4.2.1 Algorithm Overview

At each communication round r, the server selects a subset of clients Pr and computes each client’s
personalized momentum. The server then broadcasts the global model xr, the personalized mo-
mentum ∆k

r , and the momentum factor αr to the selected clients. Each client updates its model
using the global momentum and performs local updates with SAM perturbation. The momentum
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factor is adapted based on cosine similarity, and personalized corrections are refined following the
SCAFFOLD-like method to reduce local-global drift. Next, we explain each of these steps in detail.

4.2.2 Personalized Momentum Calculation

At each round r, the server computes the personalized momentum for each selected client k by:

∆k
r = ∆r +

αr

1− αr
ck, (1)

where ∆r is the global momentum, αr is the momentum factor, and ck is the local correction for
client k. This step ensures the alignment of the global and local updates. The coefficient αr

1−αr
arises

because, during the local updates, the momentum term is combined with the gradient as:

vrb+1,k = αr g
r
b,k + (1− αr)∆

k
r . (2)

We want the correction term ck to affect the gradient grb,k directly, so the coefficient αr

1−αr
is used to

scale ck in the global momentum computation. This adjustment ensures that ck has the same effect on
the gradient as it would in the local update, enabling a consistent blend of global and local dynamics
in the personalized momentum. This transformation decouples the correction term from momentum,
reducing the need to transmit separate vectors for momentum and correction and saving bandwidth.

4.2.3 Adaptive Momentum Factor
After each round, we update the momentum factor αr+1 based on the cosine similarity between the
global momentum and each client’s personalized momentum. For efficiency, we compute the similar-
ity using sim(∆r,∆

k
r ), which we empirically find to be a good proxy for the gradient–momentum

similarity without incurring extra backpropagation (see Appendix B). The updated momentum factor
is:

α̂r+1 =
1

|Pr|
∑
k∈Pr

sim(∆r, ∆
k
r ), (3)

and the final update is:

αr+1 = (1− λ)αr + λ min
(
max

(
α̂r+1, 0.1

)
, 0.9

)
, (4)

where λ controls the speed of adaptation. The choice of the bounds for αr+1, specifically within the
range [0.1, 0.9), is motivated by several factors. Based on the analysis in [22], a momentum factor
of 0.1 yields the best performance. This setting ensures that the momentum gradually decreases
over time, allowing the SAM perturbation to become more prominent in later rounds. Therefore,
the upper bound of 0.9 ensures that momentum remains sufficiently large, maintaining its influence
on the calculation of SAM, which relies on the momentum term. The lower bound 0.1 prevents the
momentum weight 1− αr from vanishing too early, while the upper bound 0.9 avoids over-reliance
on momentum so that SAM can dominate in later rounds. More discussion of this choice of the value
can be found in Appendix B.

4.2.4 Correction Term Updates
Finally, the server updates the personalized correction terms ck and cg using a SCAFFOLD-inspired
strategy [11]. These updates help reduce local-global drift and refine the correction offsets for each
client and are calculated as:

cr+1
k = crk − crg −

1

ηlB
∆r

k, cr+1
g = crg +

1

|Pr|
∑
k∈Pr

(cr+1
k − crk). (5)

4.3 Convergence Analysis

We provide a non-IID convergence guarantee for FedWMSAM, with a rate of Õ
(√

L∆σ2
ρ/(SKR)+

L∆
R

(
1 + N2/3

S

))
. Our analysis builds upon the SCAFFOLD-M framework [40], and explicitly

accounts for the perturbation-induced variance σ2
ρ = σ2 + (Lρ)2, with two key extensions: an

adaptive personalized momentum term and the integration of SAM. Notably, we show that the
variance induced by SAM is bounded by the perturbation strength ρ. The complete proof and
comparisons with related convergence rates are presented in Appendix A.
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Algorithm 1 FedWMSAM
Require: Initial model x0, global momentum ∆0, correctors cg, ck, momentum factor α0 = 0.1,
learning rates ηl, ηg , perturbation magnitude ρ, communication rounds R, local iters B

1: for r = 0 to R− 1 do
2: for each client k ∈ Pr in parallel do
3: Compute ∆k

r using Eq. (1)
4: ∆r

k = CLIENTUPDATE(xr,∆
k
r , αr)

5: end for
6: ∆r+1 = 1

ηl |Pr|
∑

k∈Pr
∆r

k

7: xr+1 = xr − ηg∆r+1

8: Compute αr+1 using Eq. (3) and (4)
9: Update cg, ck using Eq. (5)

10: end for
Ensure: Return updated model xR

11: CLIENTUPDATE(xr,∆
k
r , αr):

12: xr
0,k = xr

13: for b = 0 to B − 1 do
14: δrb+1,k = (xr + b∆k

r )− xr
b,k

15: grb,k = ∇L(xr
b,k + ρ δrb+1,k/∥δrb+1,k∥)

16: vrb+1,k = αr g
r
b,k + (1− αr)∆

k
r

17: xr
b+1,k = xr

b,k − ηl v
r
b+1,k

18: end for
19: ∆r

k = xr
B,k − xr

Ensure: Return Client update ∆r
k

5 Experiment

5.1 Experimental Setups

We propose FedWMSAM and compare it with existing SOTA federated SAM methods, including
FedSAM [26], MoFedSAM [26], FedGAMMA [27], and FedSMOO [28], as well as FedLESAM [36]
and its two variants, FedLESAM-S and FedLESAM-D. Since our method incorporates momentum
and correction terms, we also compare it with classical federated optimization baselines such as
FedAvg [1], FedCM [22], and SCAFFOLD [11]. By default, we set pk,c ∼ Dir(β), where pk,c
denotes the class distribution of client k over class c, and β = 0.1. The main experiments are
conducted with 100 clients, 10% participation per round, a batch size of 50, a local learning rate
ηl = 0.1, a global learning rate ηg = 1, and five local epochs, running for 500 communication rounds.
For Fashion-MNIST [41], we use a Multi-Layer Perceptron (MLP) architecture. For CIFAR-10 [42],
we use ResNet-18 [43] as the backbone, ResNet-34 [43] for CIFAR-100 [42], and ResNet-50 [43]
for OfficeHome. Each domain in OfficeHome is divided into one client with 10% data sample rate
and 100% active ratio. The perturbation magnitude ρ is set to 0.01 for FedSAM, FedGAMMA,
FedLESAM, and our FedWMSAM, while FedSMOO and MoFedSAM use ρ = 0.1 by default.
Additional experimental settings are detailed in the corresponding figures and tables. All experiments
were implemented in PyTorch and conducted on a workstation with four NVIDIA GeForce RTX
3090 GPUs.

5.2 Overall Performance Evaluation

Table 1: Performance comparison of SOTA methods under Dirichlet and Pathological splits after 500
Rounds in different datasets.

Method Fashion-MNIST CIFAR-10 CIFAR-100

#Partition Dirichlet Pathological Dirichlet Pathological Dirichlet Pathological

#Coefficient β = 0.6 β = 0.1 γ = 6 γ = 3 β = 0.6 β = 0.1 γ = 6 γ = 3 β = 0.6 β = 0.1 γ = 20 γ = 10

FedAvg 0.8684 0.8226 0.8625 0.8150 0.7886 0.7005 0.7873 0.6426 0.3917 0.3815 0.3968 0.3631
FedCM 0.8283 0.7333 0.8047 0.6630 0.8126 0.7229 0.8167 0.7025 0.4635 0.4290 0.4394 0.3940
SCAFFOLD 0.8789 0.8351 0.8785 0.8311 0.8232 0.7428 0.8179 0.6786 0.4855 0.4437 0.4647 0.4133
FedSAM 0.8683 0.8261 0.8673 0.8045 0.7963 0.6963 0.7908 0.6503 0.4083 0.3790 0.3933 0.3553
MoFedSAM 0.8278 0.7489 0.8141 0.6822 0.8339 0.7386 0.8334 0.7327 0.4859 0.4472 0.4619 0.4279
FedGAMMA 0.8708 0.8298 0.8716 0.8303 0.8292 0.7218 0.8043 0.6105 0.4837 0.4474 0.1739 0.0198
FedSMOO 0.8846 0.8337 0.8745 0.8296 0.8410 0.7507 0.8382 0.7099 0.3225 0.2987 0.4620 0.3006
FedLESAM(-S/-D) 0.8689 0.8375 0.8732 0.8209 0.8165 0.7284 0.8127 0.6381 0.4260 0.4114 0.4298 0.3914
FedWMSAM (ours) 0.8756 0.8464 0.8805 0.8531 0.8356 0.7664 0.8443 0.7446 0.4908 0.4646 0.4786 0.4383

Note 1: We report the best accuracy among FedLESAM, FedLESAM-S, and FedLESAM-D in one row.
Note 2: γ represents the number of classes allocated to each client in the pathological distribution.

Accuracy Evaluation. Table 1 summarizes results across three datasets and twelve heterogeneity
settings. FedWMSAM is best or second-best in most cases, with the advantage most pronounced
under stronger non-IID settings (β=0.1 and pathological splits). Specifically, on CIFAR-10/100 at
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β=0.1 we achieve 76.64%/46.46%, improving over baseline FedAvg by +6.59/+8.31 points. Simi-
larly, under scenarios where γ = 3 for CIFAR-10 and γ = 10 for CIFAR-100, FedWMSAM attains
accuracies of 74.46% and 43.83%, surpassing FedAvg by +10.2 and +7.52 points, respectively.

Table 2: Accuracy on OfficeHome target domains
after 500 rounds (10% sample, 100% active).

Method Art Clipart Product Real World

FedAvg 0.9909 0.9569 0.9725 0.9633
FedCM 0.9316 0.8013 0.8783 0.8411
SCAFFOLD 0.9934 0.9610 0.9745 0.9749
FedSAM 0.9851 0.9402 0.9576 0.9685
MoFedSAM 0.9921 0.9458 0.9653 0.9566
FedGamma 0.9934 0.9557 0.9758 0.9605
FedSMOO 0.9868 0.9563 0.9753 0.9629
FedLESAM 0.9930 0.9626 0.9783 0.9713
FedWMSAM 0.9942 0.9650 0.9790 0.9717

The results show that on easier splits, such
as CIFAR-10 at β=0.6, the difference com-
pared to the strongest SAM baseline is
smaller. These gains concentrate where the lo-
cal–global curvature misalignment is more se-
vere, supporting our momentum-guided global
perturbation design. Moreover, improvements
emerge precisely where our non-IID bound
predicts larger variance terms (low sampling
S and greater heterogeneity). Under stronger
non-IID conditions, our improvements be-
come more significant, indicating that align-
ment, rather than sheer capacity, drives these enhancements.

To demonstrate the adaptability of our method to the heterogeneity of real-world data, we conducted
experiments on the OfficeHome dataset. As shown in Table 2, FedWMSAM is best on 3/4 domains
(Art/Clipart/Product) and achieves the best average, slightly trailing SCAFFOLD on Real-World. This
suggests that aligning local updates to a global direction transfers across domains, complementing
variance-reduction methods under specific domains.
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Figure 4: Performance comparison on CIFAR-10 (left) and CIFAR-100 (right).

Table 3: Rounds to reach different accuracy levels
and client computation time.

Method 0.7 0.72 0.74 0.76 0.78 Time(s)

FedAvg 254 348 432 - - 14.57
FedCM 97 132 255 426 - 14.67
SCAFFOLD 189 241 301 376 - 17.44
FedSAM 247 303 403 - - 26.90
MoFedSAM 97 132 169 255 426 29.73
FedGAMMA 208 241 300 374 - 29.72
FedSMOO 134 167 201 255 382 29.77
FedLESAM 241 303 433 - - 14.66
FedLESAM-D 149 187 211 255 - 16.96
FedLESAM-S 205 247 313 432 - 16.71
FedWMSAM 97 114 153 241 356 15.03

Convergence Efficiency. We compare the
convergence rate of FedWMSAM in Figure 4
and Table 3. The results indicate that Fed-
WMSAM achieves the target accuracy sig-
nificantly faster than other methods and dra-
matically reduces training time compared to
classical SAM-based methods. In detail,
FedWMSAM matches the fastest early-stage
baselines at 0.70 (97 rounds, on par with
FedCM/MoFedSAM) and then surpasses them
at higher targets (114/153/241/356 rounds
to 0.72/0.74/0.76/0.78). Per-round client
time is near FedAvg/FedLESAM (15.03s
vs. 14.57–16.96s) and markedly lower than
double-backprop SAM-family methods (26.9–29.8s).

Mechanistically, the cosine-similarity adaptive coupling induces an early-momentum, late-SAM
two-phase behavior that dampens momentum-echo oscillation, yielding the observed fast-then-flat
trajectories.

Generalization Illustration. To intuitively illustrate the generalization ability of our method, we
present the t-SNE visualization of the global models trained by four FL algorithms on CIFAR-
10: FedAvg, FedSAM, MoFedSAM, and our FedWMSAM. As shown in Figure 5, 13, and 12,
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FedWMSAM achieves better class separation and more compact clusters, consistent with flatter
minima and reduced inter-client discrepancy, indicating improved generalization under non-IID
settings, echoing the fast & flat objective in our theory. More results and discussions are provided in
Appendix C.
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Figure 5: t-SNE visualization results of client embeddings using selected FL algorithms.

5.3 Sensitivity Analysis

To validate the adaptability of our method to various experimental settings, we study sensitivity along
three axes: (i) local epochs, (ii) number of clients, and (iii) client sampling rate, comparing it with
FedAvg and SAM-family baselines ( MoFedSAM, FedSAM, and FedSMOO).

Table 4: Comparison under different local epochs.
Method Epoch 1 Epoch 5 Epoch 10 Epoch 20

FedAvg 0.6003 0.7005 0.6988 0.6879
MoFedSAM 0.7237 0.7386 0.6997 0.6776
FedSAM 0.5515 0.6963 0.6862 0.6903
FedSMOO 0.7888 0.7507 0.7538 0.7472
FedWMSAM (Ours) 0.7484 0.7664 0.7662 0.7515

Local epochs. Table 4 shows the comparison with different local epoch settings. Unlike other
methods, FedWMSAM maintains the highest accuracy across most settings for K ∈ {5, 10, 20}
and shows no clear drop in accuracy as the number of local epochs increases, indicating stable
optimization with larger local computations for dynamically estimating global perturbations.

Number of clients. Figure 6 (left) illustrates the comparison under different client numbers.
FedWMSAM is best or on par across the range and consistently leads once the population is ≥ 75.
At minimal populations, MoFedSAM can be unstable (e.g., 0.2161 at 20 clients), while FedSMOO is
competitive only in the mid range (e.g., 50 clients).

Client sampling rate. Figure 6 (right) presents the comparison under varying sampling rates.
FedWMSAM outperforms others across most sampling rates, even when participation is sparse; as
the rate increases (e.g., ≥80%), all methods plateau and the gap narrows. Accuracy saturates beyond
20%. Gains are most pronounced when participation is sparse or heterogeneity is stronger (few
clients / low sampling), consistent with our momentum-guided global perturbation and cosine-based
adaptive coupling.
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Figure 6: Performance comparison across different numbers of clients and sampling rates.
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5.4 Ablation Study
Table 5: Ablation of key modules in FedWMSAM.

Mom. SAM Weighted Acc. Imp.

✓ ✓ ✓ 0.7664 4.35%
✓ ✓ × 0.7556 3.27%
× ✓ ✓ 0.7265 0.36%
✓ × ✓ 0.7326 0.97%
✓ × × 0.7478 2.49%
× ✓ × 0.7430 2.01%
× × × 0.7229 -

We conducted ablation studies on our method
and the perturbation coefficient ρ to val-
idate its systematic design and parameter
choices. We ablate three modules: person-
alized momentum (Mom.), momentum-guided
SAM (SAM, single backprop), and the cosine-
adaptive weight (Weighted; αr). The bottom
row (×/×/×) corresponds to FedCM (no per-
sonalized momentum, no SAM, no adaptive coupling), and the “Imp.” is computed over FedCM.

Table 5 presents the performance of different component combinations. The personalized momentum
primarily reduces local-global bias, which accounts for the significant gains observed with the
Mom.-only approach.

The cosine-adaptive rule serves as a data-driven damping mechanism. When both Mom.& SAM exist,
it facilitates an early-Mon. and late-SAM schedule. This combination helps suppress momentum
echo and enhances the final performance plateau. In contrast, when SAM is not present, the same
gate may diminish the momentum’s acceleration and bring only marginal benefit. Overall, the three
modules work together complementarily: Mom. fixes bias, SAM supplies flatness, and Weighted
harmonizes the two.

Table 6: Ablation study results of ρ.

Method ρ 0.005 0.01 0.05 0.1 0.5

FedAvg 0.7005 0.7005 0.7005 0.7005 0.7005
MoFedSAM 0.7355 0.7386 0.7102 0.5562 0.1000

FedWMSAM (ours) 0.7659 0.7664 0.7563 0.7244 0.5905

We further vary the perturbation magni-
tude ρ. Table 6 shows that accuracy peaks
around ρ=0.01, and FedWMSAM de-
grades gracefully as ρ increases (0.7664
→ 0.7563 → 0.7244 → 0.5905 from 0.01
→ 0.05 → 0.1→ 0.5), whereas MoFed-
SAM collapses at large ρ (0.7102 → 0.5562 → 0.1000).

Our momentum-guided perturbation aligns the SAM direction with the global geometry. The cosine-
adaptive weight reduces SAM’s contribution when there is misalignment or noise. This results in a
milder effective perturbation during noisy rounds, which corresponds to the bound’s dependence on
σ2
ρ = σ2 + (Lρ)2. As ρ increases, the noise term also rises, but the adaptive gate mitigates its effect,

preventing the catastrophic failure observed in MoFedSAM.

5.5 Supplementary Experiments

We provide additional experiments in Appendix B and Appendix C. Appendix B includes studies
on the cosine-based computation of αr and the effect of decay coefficient λ. Appendix C presents
additional results and visualizations across datasets and partitioning settings, offering more detailed
comparisons that support the robustness of FedWMSAM.

6 Conclusion

In this paper, we addressed why naively combining momentum and SAM under non-IID FL under-
performs by identifying and formalizing two failure modes: local–global curvature misalignment
and momentum-echo oscillation. We introduced FedWMSAM, which (i) builds a momentum-guided
global perturbation to align local SAM directions with the global descent geometry (single back-
prop), and (ii) couples momentum and SAM via a cosine-similarity adaptive rule that yields an
early-momentum / late-SAM two-phase schedule. On the theory side, we gave a non-IID convergence
bound that explicitly models the perturbation-induced variance σ2

ρ=σ2+(Lρ)2 and its dependence on
(S,K,R,N). Empirically, across three datasets and twelve heterogeneity settings, FedWMSAM is
best or on-par in most cases, with the largest gains in strong non-IID, and it reaches target accuracies
in fewer rounds while maintaining near-FedAvg per-round cost, realizing the intended fast-and-flat
optimization.

10



Acknowledgments

This work was supported in part by the Guangdong Provincial Key Laboratory of Integrated Com-
munication, Sensing and Computation for Ubiquitous Internet of Things (No. 2023B1212010007);
the National Natural Science Foundation of China (NSFC) under Grants 62372307, 62472366, and
U2001207; the Guangdong Natural Science Foundation under Grant 2024A1515011691; the Project
of DEGP under Grants 2023KCXTD042 and 2024GCZX003; the Shenzhen Science and Technology
Foundation under Grants JCYJ20230808105906014 and ZDSYS20190902092853047; the Shenzhen
Science and Technology Program under Grant RCYX20231211090129039; and the 111 Center (No.
D25008).

References
[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[2] Yongzhi Huang, Kaixin Chen, Yandao Huang, Lu Wang, and Kaishun Wu. Vi-liquid: unknown
liquid identification with your smartphone vibration. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, MobiCom ’21, page 174–187,
New York, NY, USA, 2021. Association for Computing Machinery.

[3] Harry Hallock, Serena Elizabeth Marshall, Peter AC ’t Hoen, Jan F Nygård, Bert Hoorne,
Cameron Fox, and Sharmini Alagaratnam. Federated networks for distributed analysis of health
data. Frontiers in Public Health, 9:712569, 2021.

[4] Yongzhi Huang, Jiayi Zhao, and Kaishun Wu. Reconstructing ear canal channels for fine-grained
detection of tympanic membrane changes. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 9(3):1–48, 2025.

[5] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019.

[6] Siyang Jiang, Bufang Yang, Lilin Xu, Mu Yuan, Yeerzhati Abudunuer, Kaiwei Liu, Liekang
Zeng, Hongkai Chen, Zhenyu Yan, Xiaofan Jiang, et al. An llm-empowered low-resolution
vision system for on-device human behavior understanding. arXiv preprint arXiv:2505.01743,
2025.

[7] Yongzhi Huang, Kaixin Chen, Lu Wang, Yinying Dong, Qianyi Huang, and Kaishun Wu. Lili:
liquor quality monitoring based on light signals. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, MobiCom ’21, page 256–268, New York,
NY, USA, 2021. Association for Computing Machinery.

[8] Yue Zhao, Meng Li, Liangzhen Lai, et al. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[9] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated optimization in
heterogeneous networks. In Proceedings of Machine Learning and Systems 2020, 2020.

[10] Rongguang Ye, Yantong Guo, Xian Shuai, Rongye Ye, Siyang Jiang, and Hui Jiang. Licam:
Long-tailed instance segmentation with real-time classification accuracy monitoring. Journal of
Circuits, Systems and Computers, 32(02):2350032, 2023.

[11] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning.
In Proceedings of the 37th International Conference on Machine Learning. PMLR, 2020.

[12] Mohammad Rasouli, Tao Sun, and Ram Rajagopal. Fedgan: Federated generative adversarial
networks for distributed data. arXiv preprint arXiv:2006.07228, 2020.

11



[13] Haomiao Yang, Mengyu Ge, Kunlan Xiang, Xuejun Bai, and Hongwei Li. Fedvae:
Communication-efficient federated learning with non-iid private data. IEEE Systems Jour-
nal, 17(3):4798–4808, 2023.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[15] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N What-
mough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. arXiv
preprint arXiv:2111.04263, 2021.

[16] Felix Sattler, Klaus-Robert Mu, and Michael Wiegand. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, 2020.

[17] Xingyu Liu, Xiang Zhang, Yinjie Fan, Yue Wang, Wei Sun, and Ruimin Zheng. Client-edge-
cloud hierarchical federated learning. In IEEE International Conference on Communications
(ICC), pages 1–6. IEEE, 2020.

[18] Zezhong Ma, Mengying Zhao, Xiaojun Cai, and Zhiping Jia. Fast-convergent federated learning
with class-weighted aggregation. Journal of Systems Architecture, 117:102125, 2021.

[19] Qipeng Xie, Siyang Jiang, Linshan Jiang, Yongzhi Huang, Zhihe Zhao, Salabat Khan, Wangchen
Dai, Zhe Liu, and Kaishun Wu. Efficiency optimization techniques in privacy-preserving
federated learning with homomorphic encryption: A brief survey. IEEE Internet of Things
Journal, 11(14):24569–24580, 2024.

[20] Siyang Jiang, Hao Yang, Qipeng Xie, Chuan Ma, Sen Wang, Zhe Liu, Tao Xiang, and Guoliang
Xing. Towards compute-efficient byzantine-robust federated learning with fully homomorphic
encryption. Nature Machine Intelligence, pages 1–12, 2025.

[21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in federated
learning. Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.

[22] Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with
client-level momentum. arXiv preprint arXiv:2106.10874, 2021.

[23] Yixing Liu, Yan Sun, Zhengtao Ding, Li Shen, Bo Liu, and Dacheng Tao. Enhance local
consistency in federated learning: A multi-step inertial momentum approach. arXiv preprint
arXiv:2302.05726, 2023.

[24] Tianle Li, Yongzhi Huang, Linshan Jiang, Qipeng Xie, Chang Liu, Wenfeng Du, Lu Wang,
and Kaishun Wu. Fedwcm: Unleashing the potential of momentum-based federated learning
in long-tailed scenarios. in Proceedings of the 54th International Conference on Parallel
Processing (ICPP’25), 2025.

[25] Tianle Li, Yongzhi Huang, Linshan Jiang, Qipeng Xie, Chang Liu, Wenfeng Du, Lu Wang, and
Kaishun Wu. Fedwcm: Unleashing the potential of momentum-based federated learning in
long-tailed scenarios. arXiv preprint arXiv:2507.14980, 2025.

[26] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. In International conference on machine learning, pages
18250–18280. PMLR, 2022.

[27] Rong Dai, Xun Yang, Yan Sun, Li Shen, Xinmei Tian, Meng Wang, and Yongdong Zhang.
Fedgamma: Federated learning with global sharpness-aware minimization. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[28] Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized
sharpness aware minimization in federated learning: Approaching global consistency and
smooth landscape. In International Conference on Machine Learning, pages 32991–33013.
PMLR, 2023.

12



[29] Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification by keeping
the good and removing the bad momentum causal effect. Advances in neural information
processing systems, 33:1513–1524, 2020.

[30] Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Optimal importance sampling for federated
learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3095–3099. IEEE, 2021.

[31] Farshid Varno, Marzie Saghayi, Laya Rafiee Sevyeri, Sharut Gupta, Stan Matwin, and Moham-
mad Havaei. Adabest: Minimizing client drift in federated learning via adaptive bias estimation.
In European Conference on Computer Vision, pages 710–726. Springer, 2022.

[32] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated federated learning
with drift control. In 2021 IEEE International Symposium on Information Theory (ISIT), pages
467–472. IEEE, 2021.

[33] Hiep Nguyen, Lam Phan, Harikrishna Warrier, and Yogesh Gupta. Federated learning for non-iid
data via client variance reduction and adaptive server update. arXiv preprint arXiv:2207.08391,
2022.

[34] Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momen-
tum gradient descent. IEEE Transactions on Parallel and Distributed Systems, 31(8):1754–1766,
2020.

[35] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations (ICLR), 2021.

[36] Ziqing Fan, Shengchao Hu, Jiangchao Yao, Gang Niu, Ya Zhang, Masashi Sugiyama, and
Yanfeng Wang. Locally estimated global perturbations are better than local perturbations for
federated sharpness-aware minimization. arXiv preprint arXiv:2405.18890, 2024.

[37] Debora Caldarola, Pietro Cagnasso, Barbara Caputo, and Marco Ciccone. Beyond local
sharpness: Communication-efficient global sharpness-aware minimization for federated learning.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 25187–
25197, 2025.

[38] Xinda Xing, Qiugang Zhan, Xiurui Xie, Yuning Yang, Qiang Wang, and Guisong Liu. Flexible
sharpness-aware personalized federated learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 21707–21715, 2025.

[39] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware
minimization. In International Conference on Machine Learning, pages 639–668. PMLR, 2022.

[40] Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-iid
federated learning simply and provably. arXiv preprint arXiv:2306.16504, 2023.

[41] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[42] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[44] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

13



A Convergence Proof and Analysis

A.1 Proof of Convergence for FedWMSAM

A.1.1 Notations and Definitions

Let F0 = ∅ and F r,k
i := σ

(
{xr,j

i }0≤j≤k ∪ Fr

)
and Fr+1 := σ

(⋃
i F

r,K
i

)
for all r ≥ 0, where

σ(·) indicates the σ-algebra. Let Er[·] := E[· | Fr] be the expectation, conditioned on the filtration
Fr, with respect to the random variables {Sr, {ξr,ki }1≤i≤N,0≤k<K} in the r-th iteration. We also use
E[·] to denote the global expectation over all randomness in algorithms.

Throughout the proofs, we use
∑

i to represent the sum over i ∈ {1, . . . , N}, while
∑

i∈Sr
denotes

the sum over i ∈ Sr. Similarly, we use
∑

k to represent the sum over k ∈ {0, . . . ,K − 1}. For all
r ≥ 0, we define the following auxiliary variables to facilitate proofs:

Er := E[∥∇f(xr)− gr+1∥2],

Ur :=
1

NK

∑
i

∑
k

E[∥xr,k
i + δr,ki − xr∥2],

ζr,ki := E[xr,k+1
i − xr,k

i + δr,ki | F r,k
i ],

Ξr :=
1

N

N∑
i=1

E[∥ζr,0i ∥2],

Vr :=
1

N

N∑
i=1

E[∥cri −∇fi(x
r−1)∥2].

Throughout the appendix, we let ∆ := f(x0) − f∗, G0 := 1
N

∑
i ∥∇fi(x

0)∥2, x−1 := x0, and
E−1 := E[∥∇f(x0)− g0∥2]. We will use the following foundational lemma for all our algorithms.

Assumption 1 (Standard Smoothness). Each local objective fi is L-smooth, i.e., ∥∇fi(x) −
∇fi(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rd and 1 ≤ i ≤ N .

Assumption 2 (Stochastic Gradient). There exists σ ≥ 0 such that for any x ∈ Rd and 1 ≤ i ≤ N ,
Eξi [∇F (x; ξi)] = ∇fi(x) and Eξi [∥∇F (x; ξi)−∇fi(x)∥2] ≤ σ2, where ξi

iid∼ Di.

A.1.2 Preliminary Lemmas

Lemma 1. Under Assumption 1, if γL ≤ 1
24 , the following holds for all r ≥ 0:

E[f(xr+1)] ≤ E[f(xr)]− 11γ

24
E[∥∇f(xr)∥2] + 13γ

24
Er.

Proof. Since f is L-smooth, we have

f(xr+1) ≤ f(xr) + ⟨∇f(xr), xr+1 − xr⟩+ L

2
∥xr+1 − xr∥2,

= f(xr)− γ∥∇f(xr)∥2 + γ⟨∇f(xr),∇f(xr)− gr+1⟩+ Lγ2

2
∥gr+1∥2.

Since xr+1 = xr − γgr+1, using Young’s inequality, we further have

f(xr+1) ≤ f(xr)− γ

2
∥∇f(xr)∥2+ γ

2
∥∇f(xr)−gr+1∥2+Lγ2(∥∇f(xr)∥2+∥∇f(xr)−gr+1∥2),

≤ f(xr)− 11γ

24
∥∇f(xr)∥2 + 13γ

24
∥∇f(xr)− gr+1∥2,

where the last inequality is due to γL ≤ 1
24 . Taking the global expectation completes the proof.
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Lemma 2 ( [11]). Suppose {X1, · · · , Xτ} ⊂ Rd are random variables that are potentially dependent.
If their marginal means and variances satisfy E[Xi] = µi and E[∥Xi−µi∥2] ≤ σ2, then it holds that

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2

+ τ2σ2.

If they are correlated in the Markov way such that E[Xi | Xi−1, · · · , X1] = µi and E[∥Xi − µi∥2 |
µi] ≤ σ2, i.e., the variables {Xi − µi} form a martingale. Then the following tighter bound holds:

E

∥∥∥∥∥
τ∑

i=1

Xi

∥∥∥∥∥
2
 ≤ 2E

∥∥∥∥∥
τ∑

i=1

µi

∥∥∥∥∥
2
+ 2τσ2.

Lemma 3. Given vectors v1, · · · , vN ∈ Rd and v̄ = 1
N

∑N
i=1 vi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = ∥v̄∥2 + N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2.

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ Sr, we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1S ∑
i∈S

vi

∥∥∥∥∥
2
 = E

∥∥∥∥∥ 1S
N∑
i=1

vi1{i ∈ S}

∥∥∥∥∥
2


=
1

S2
E

∑
i

∥vi∥21{i ∈ S}+ 2
∑
i<j

v⊤i vj1{i, j ∈ S}


=

1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)
· 2
∑
i<j

v⊤i vj

=
1

SN

N∑
i=1

∥vi∥2 +
1

S2

S(S − 1)

N(N − 1)

∥∥∥∥∥
N∑
i=1

vi

∥∥∥∥∥
2

−
N∑
i=1

∥vi∥2


=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi∥2 +
N(S − 1)

S(N − 1)
∥v̄∥2

=
N − S

S(N − 1)

1

N

N∑
i=1

∥vi − v̄∥2 + ∥v̄∥2.

Lemma 4 (Perturbation-Induced Gradient Variance). Suppose each local objective fi is L-smooth
(Assumption 1), and the stochastic gradient ∇F (x; ξi) is unbiased with variance at most σ2 (As-
sumption 2). Then for any x ∈ Rd, any client i, and any perturbation vector δ with ∥δ∥ ≤ ρ, we
have

Eξi

∥∥∇F
(
x+ δ; ξi

)
− ∇fi(x)

∥∥2 ≤ σ2 + (Lρ)2.

Proof. By definition, the random gradient can be decomposed as

∇F
(
x+ δ; ξi

)
− ∇fi(x) =

(
∇F (x+ δ; ξi)−∇fi(x+ δ)

)
︸ ︷︷ ︸

(A) stochastic deviation

+
(
∇fi(x+ δ)−∇fi(x)

)
︸ ︷︷ ︸

(B) Lipschitz shift

.

We denote these two terms by A and B, respectively. Then∥∥∇F (x+ δ; ξi)−∇fi(x)
∥∥2 = ∥A+B∥2 = ∥A∥2 + ∥B∥2 + 2 ⟨A, B⟩.
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From Assumption 2 (Stochastic Gradient), we know

Eξi [A] = Eξi

[
∇F (x+ δ; ξi)−∇fi(x+ δ)

]
= 0,

and
Eξi

[
∥A∥2

]
≤ σ2.

By Assumption 1 (L-smoothness), we have

∥∇fi(x+ δ)−∇fi(x)∥ ≤ L ∥ δ ∥ ≤ Lρ.

Hence,
∥B∥2 ≤ (Lρ)2.

Since B is deterministic w.r.t. ξi, we have Eξi [A ] = 0, so

Eξi [⟨A, B⟩] = ⟨Eξi [A], B⟩ = 0.

Thus in expectation,

Eξi

[
∥A+B∥2

]
= Eξi

[
∥A∥2

]
+ ∥B∥2 + 2Eξi⟨A,B⟩ ≤ σ2 + (Lρ)2.

Putting it all together gives

Eξi

[
∥∇F (x+ δ; ξi)−∇fi(x)∥2

]
≤ σ2 + (Lρ)2,

as claimed.

A.1.3 Proof of FedWMSAM

Following the sketch of SCAFFOLD-M [40], we proceed to prove the convergence of FedWMSAM.
We begin by considering the following lemma:
Lemma 5. If γL ≤ 1

2αr
, the following holds for r ≥ 1:

Er ≤
(
1− 8αr

9

)
Er−1+16αr(γL)

2E[∥∇f(xr−1)∥2]+
4α2

rσ
2
ρ

SK
+10αrL

2Ur +6α2
r

N − S

S(N − 1)
Vr,

where σ2
ρ denotes σ2 + (Lρ)2. In addition,

E0 ≤ (1− αr)E−1 +
4α2

rσ
2
ρ

SK
+ 8αrL

2U0 + 4α2
r

N − S

S(N − 1)
V0.

Proof. According to the definition of personalized momentum in FedWMSAM, denoting gir as the
personalized momentum of client i in round r, we have

Er = E[∥∇f(xr)− gr+1∥2]

= E

[
∥(1− αr)(∇f(xr)− gir) + αr

(
∇f(xr)− 1

K

∑
i

∑
k

∇F (xi
r,k; ξ

i
r,k)

)
∥2
]

= E

[
∥(1− αr)(∇f(xr)− (gr +

αr

1− αr
(cri − cr)) + αr

(
∇f(xr)− 1

K

∑
i

∑
k

∇F (xi
r,k; ξ

i
r,k)

)
∥2
]

= E

[
∥(1− αr)(∇f(xr)− gr) + αr

(
∇f(xr)− 1

K

∑
i

∑
k

∇F (xi
r,k; ξ

i
r,k)− (cri − cr)

)
∥2
]
.

Note that 1
N

∑N
i=1 c

r
i = cr holds for any r ≥ 0. Using Lemma 3, Er can be expressed as:

Er = E


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i,k

gr,ki

∥∥∥∥∥∥
2
+α2

r(N − S)

S(N − 1)

1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

gr,ki − 1

NK

∑
j,k

gr,kj

∥∥∥∥∥∥
2
 .
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To simplify, we define:

Λ1 := E


∥∥∥∥∥∥(1− αr) (∇f(xr)− gr) + αr

 1

NK

∑
i,k

∇F (xr,k
i + δr,ki ; ξr,ki )−∇f(xr)

∥∥∥∥∥∥
2
 ,

Λ2 :=
1

N

N∑
i=1

E


∥∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i + δr,ki ; ξr,ki )− 1

NK

∑
j,k

∇F (xr,k
j + δr,kj ; ξr,kj )− (cri − cr)

∥∥∥∥∥∥
2
 .

Thus, Er can be rewritten as:

Er = Λ1 + α2
r

N − S

S(N − 1)
Λ2.

For r ≥ 1, expand Λ1 we can get,

Λ1 = E
[
∥(1− αr)(∇f(xr)− gr)∥2

]
+ α2

rE


∥∥∥∥∥∥∇f(xr)− 1

NK

∑
i,k

∇F (xr,k
i + δr,ki ; ξr,ki )

∥∥∥∥∥∥
2


+2αrE

⟨(1− αr)(∇f(xr)− gr),∇f(xr)− 1

NK

∑
i,k

∇F (xr,k
i + δr,ki )⟩

 .

Note that {∇F (xr,k
i + δr,ki ; ξr,ki )}0≤k<K are sequentially correlated. Applying the AM-GM inequal-

ity, Lemma 2 and 4, we have

Λ1 ≤
(
1 + α2

r

)
E[∥(1− αr)(∇f(xr)− gr)∥2] + 2αrL

2Ur + 2α2
r

(
σ2 + (Lρ)2

NK
+ L2Ur

)
.

Let σ2
ρ denote σ2 + (Lρ)2, which corresponds to the variance of the client’s gradient after the

perturbation is added. Using the AM-GM inequality again and Assumption 1, we have

Λ1 ≤ (1− αr)
2
(
1 + α2

r

)
Er−1 +

(
1 +

αr

2

)
L2E[∥xr − xr−1∥2] +

2α2
rσ

2
ρ

NK
+ 4αrL

2Ur.

Finally,

Λ1 ≤
(
1− 8αr

9

)
Er−1 + 4γ2αrL

2E[∥∇f(xr−1)∥2] +
2α2

rσ
2
ρ

NK
+ 4αrL

2Ur,

where we plug in ∥xr − xr−1∥2 ≤ 2γ2(∥∇f(xr−1)∥2 + ∥gr −∇f(xr−1)∥2) and use γL ≤ αr

6 in
the last inequality. Similarly for r = 0,

Λ1 ≤
(
1 + α2

r

)
E[∥(1− αr)(∇f(x0)− g0)∥2] + 2αrL

2U0 + 2α2
r

(
σ2
ρ

NK
+ L2U0

)

≤ (1− αr)E−1 +
2α2

rσ
2
ρ

NK
+ 4αrL

2U0.

Besides, by the AM-GM inequality and Lemma 1 and 4,

Λ2 ≤ 1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i + δr,ki ; ξr,ki )− cri

∥∥∥∥∥
2
 (6)

≤ 2Kσ2
ρ + 2

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇fi(x
r,k
i + δr,ki )− cri

∥∥∥∥∥
2
 (7)

≤ 2Kσ2
ρ + 6(L2Ur + L2E[∥xr − xr−1∥2] + Vr). (8)
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Since E[∥xr − xr−1∥2] ≤ 2γ2(Er−1 + E[∥∇f(xr−1)∥2]) and
(

α2
r

2 + 6α2
r

N−S
S(N−1)

)
2(γL)2 ≤

16αr

9 (γL)2 ≤ αr

9 ,

we have

Er ≤
(
1− 8αr

9

)
Er−1+16αr(γL)

2E[∥∇f(xr−1)∥2]+
4α2

rσ
2
ρ

SK
+10αrL

2Ur +6α2
r

N − S

S(N − 1)
Vr.

The case is similar for r = 0,

E0 ≤ (1− αr) E−1 +
2α2

rσ
2
ρ

NK
+ 4αrL

2U0.

Lemma 6. If γL ≤
√

1
2αr

and ηKL ≤ 1
αr

, it holds for all r ≥ 1 that

Ur ≤ η2K2
(
8e(Er−1 + 2E[∥∇f(xr−1)∥2] + α2

rVr) + α2
rσ

2
ρ(K

−1 + 2(αrηKL)2)
)
.

Proof. Recall that ζr,ki = E[xr,k+1
i − xr,k

i | Fr,k
i ] = −η(αr∇fi(x

r,k
i ) + (1−αr)g

r −αr(c
r
i − cr))

and
Var[xr,k+1

i − xr,k
i | Fr,k

i ] ≤ α2
rη

2σ2
ρ.

Then, from the definition of Ur as the expected squared difference between each local model after K
local updates and the averaged model, we have:

Ur =
1

N

N∑
i=1

E
[
∥xr,K

i − x̄r,K∥2
]
≤ 2eK2Ξr +Kη2α2

rσ
2
ρ(1 + 2K3L2η2α2

r),

where the bound follows by analyzing the variance and bias accumulation over K local steps.

Next, we estimate Ξr, the average squared norm of the update direction:

Ξr =
η2

N

N∑
i=1

E[∥αr∇fi(x
r) + (1− αr)g

r − αr(c
r
i − cr)∥2]

=
η2

N

N∑
i=1

E
[∥∥αr(∇fi(x

r)−∇fi(x
r−1)) + (1− αr)(g

r −∇f(xr−1))

− αr(c
r
i − cr −∇fi(x

r−1) +∇f(xr−1)) +∇f(xr−1)
∥∥2]

≤ 4η2
(
α2
rL

2E[∥xr − xr−1∥2] + (1− αr)
2Er−1 + α2

rVr + E[∥∇f(xr−1)∥2]
)

≤ 4η2
(
Er−1 + 2E[∥∇f(xr−1)∥2] + α2

rVr

)
.

Substituting the bound of Ξr back into the expression for Ur, we obtain:

Ur ≤ 2eK2Ξr +Kη2α2
rσ

2
ρ(1 + 2K3L2η2α2

r)

≤ 8eη2K2(Er−1 + 2E[∥∇f(xr−1)∥2] + α2
rVr) + η2K2α2

rσ
2
ρ

(
K−1 + 2(αrηKL)2

)
,

which proves the lemma.

Lemma 7. Under the same conditions as Lemma 6, if αrηKL ≤ 1
24K1/4 and ηK ≤ 5γ

NS , then we
have

R−1∑
r=0

Vr ≤ 3N

S

(
V0 +

4S

NK
σ2
ρ +

8N

S
(γL)2

R−2∑
r=−1

(Er + E[∥∇f(xr)∥2])

)
.

Proof. Since

cr+1
i =

{
cri , with probability 1− S

N ,
1
K

∑
k ∇F (xr,k

i + δr,ki ; ξr,ki ), with probability S
N ,

18



Using Young’s inequality repeatedly, we have

Vr+1 =

(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

1

N

N∑
i=1

E

∥∥∥∥∥ 1

K

∑
k

∇F (xr,k
i + δr,ki ; ξr,ki )−∇fi(x

r)

∥∥∥∥∥
2


≤
(
1− S

N

)
1

N

N∑
i=1

E[∥cri −∇fi(x
r)∥2] + S

N

(
2Kσ2

ρ + 2L2Ur

)
≤
(
1− S

N

)
1

N

N∑
i=1

E
[(

1 +
S

2N

)
∥cri −∇fi(x

r−1)∥2 +
(
1 +

2N

S

)
L2∥xr − xr−1∥2

]

+
2S

N

(
σ2
ρ

K
+ L2Ur

)

≤
(
1− 2S

N

)
Vr +

2N

S
L2E[∥xr − xr−1∥2] +

2Nσ2
ρ

KS
+

2S

N
L2Ur.

Here we apply Lemma 1 to obtain the second inequality. Combining this with Lemma6, we have

Vr+1 ≤
(
1− 2S

N
+ 16e

S

N
(αrηKL)2

)
Vr + 2σ2

ρ

(
N

KS
+

2S

N
(αrηKL)2(K − 1 + 2(αrηKL)2)

)
+

(
4S

N
(γL)2 +

32eS

N
(ηKL)2

)
(Er−1 + E[∥∇f(xr−1)∥2]).

Finally,

Vr+1 ≤
(
1− 3S

N

)
Vr +

4S

NK
σ2
ρ +

8S

N
(γL)2(Er−1 + E[∥∇f(xr−1)∥2]),

where we apply the upper bound of η. Therefore, we finish the proof by summing up over r from 0 to
R− 1 and rearranging the inequality.

Theorem 1. Under Assumption 1 and 2, if we take g0 = 0, c0i = 1
B

∑B
b=1 ∇F (x0; ξbi ) with

{ξbi }Bb=1
iid∼ Di, c0 = 1

N

∑N
i=1 c

0
i , and set

γ =
αr

L
, αr = min

{
c,

S

N2/3
,

√
L∆SK

σ2
ρR

,

√
L∆S2

G0N

}
,

ηKL ≲ min

{
1√
S
,

1

αrK1/4
,

√
S

N

}
, B =

⌈
NK

SR

⌉
,

then FedWMSAM converges as

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2
ρ

SKR
+

L∆

R

(
1 +

N2/3

S

)
.
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Proof. By Lemma 5, summing over r from 0 to R− 1 and plugging Lemma 6 and 7 in, we have

R−1∑
r=0

Er ≤
(
1− 8αr

9

) R−2∑
r=−1

Er + 16αr(γL)
2
R−2∑
r=0

E[∥∇f(xr)∥2]

+
4α2

rσ
2
ρ

SK
R+ 10αrL

2
R−1∑
r=0

Ur + 6α2
r

N − S

S(N − 1)

R−1∑
r=0

Vr

≤
(
1− 8αr

9
+ 80eαr(ηKL)2

) R−2∑
r=−1

Er +
(
16αr(γL)

2 + 160eαr(ηKL)2
)R−2∑

r=0

E[∥∇f(xr)∥2]

+ α2
rσ

2
ρR

(
4

SK
+ 10(ηKL)2(K − 1 + 2(αrηKL)2)

)
+ α2

r

(
6

N − S

S(N − 1)
+ 80eαr(ηKL)2

)R−1∑
r=0

Vr

≤
(
1− 7αr

9

) R−2∑
r=−1

Er +
(
16αr(γL)

2 +
αr

9

)R−2∑
r=0

E[∥∇f(xr)∥2]

+
80α2

rσ
2
ρ

SK
R+

30α2
rN

S2
V0.

Here the coefficients in the last inequality are derived by the following bounds:



160eαr(ηKL)2 + 24

(
αrγLN

S

)2(
6(N − S)

S(N − 1)
+ 80eαr(ηKL)2

)
≤ αr

9
,

10(ηKL)2(K − 1 + 2(αrηKL)2) + 960eαrK
−1(ηKL)2 ≤ 4

SK
,

80eαr(ηKL)2 ≤ S

4
.

which can be guaranteed by 
γL ≲

S3/2

α
1/2
r N

,

ηKL ≲
1

S1/2
.

Therefore,

R−1∑
r=0

Er ≤ 7αr

9
E−1 +

2

7

R−2∑
r=−1

E[∥∇f(xr)∥2] + 270αrN

7S2
V0 +

720αrσ
2
ρ

7SK
R.

Combining this inequality with Lemma1, we obtain

γ

L
E[f(xR)− f(x0)] ≤ −1

7

R−1∑
r=0

E[∥∇f(xr)∥2] + 39αr

56
E−1 +

585αrN

28S2
V0 +

390αrσ
2
ρ

7SK
R.
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Finally, noticing that g0 = 0 implies E−1 ≤ 2L∆ and ci =
1
B

∑
b ∇F (x0; ξbi ) implies V0 ≤ σ2

ρ

B ≤
σ2
ρSR

NK , we reach

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲ L∆

γLR
+

E−1

αrR
+

αrN

S2R
V0 +

αrσ
2
ρ

SK

≲
L∆

αrR
+

L∆

S3/2R
N1/2 +

αrσ
2
ρ

SK

≲
L∆

R

(
1 +

N2/3

S

)
+

√
L∆σ2

ρ

SKR
.

A.2 Comparison of Convergence Rates

Table 7 summarizes the theoretical convergence rates of FedWMSAM and several representative
federated optimization algorithms under non-convex settings. These methods differ in their design
focuses—some emphasize global convergence guarantees, while others incorporate mechanisms for
bias correction or perturbation modeling.

Table 7: Theoretical convergence rates of FedWMSAM and related federated optimization algorithms
under non-convex settings.

Method Convergence Rate (in expectation)

FedWMSAM (Ours)
1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2
ρ

SKR
+

L∆

R

(
1 +

N2/3

S

)
FedAvg [1]

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≤ O
(

1√
KR

)
+ bias terms

Scaffold [11]
1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≤ O
(

1

KR
+

1

R
+

1

K

)
FedCM [22] E[∥∇f(xr)∥2] ≤ O

(
1√
KR

)
+ momentum terms

FedSAM [26]
1

T

T∑
t=1

E[∥∇f(wt)∥2] ≤ O
(

1√
TEN

)
+ perturbation terms

MoFedSAM [26]
1

T

T∑
t=1

E[∥∇f(wt)∥2] ≤ O
(

1√
TEN

)
+ mom.&per. terms

FedLESAM [36]
1

T

T∑
t=1

E[∥∇f(wt)∥2] ≤ O
(

1√
TEN

)
+ perturbation terms

FedSMOO [28]
1

T

T∑
t=1

E[∥∇f(wt)∥2] ≤
1

ζβT

(
κf +

3βLκr

n
+

72β2L2mδ0
n

)

Our proposed FedWMSAM achieves the following convergence bound:

1

R

R−1∑
r=0

E[∥∇f(xr)∥2] ≲
√

L∆σ2
ρ

SKR
+

L∆

R

(
1 +

N2/3

S

)
,

where the first term captures the influence of gradient noise introduced by sharpness-aware perturba-
tions, and the second term reflects the effects of client sampling and system heterogeneity.

This result highlights three key aspects of FedWMSAM:

1. It explicitly models the impact of perturbation-induced gradient variance σ2
ρ, improving

robustness in sharp-loss regions;
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2. It incorporates the effects of core federated parameters, including local steps K, communi-
cation rounds R, sampled clients S, and total data size N ;

3. It employs a momentum-driven adaptive reweighting strategy that enhances convergence
stability, particularly under non-IID and long-tailed client distributions.

Under standard assumptions (e.g., smoothness and bounded variance), the convergence rate of
FedWMSAM is comparable to or potentially sharper than that of FedAvg, Scaffold, and FedSAM-
like methods. Importantly, it achieves a favorable trade-off between variance reduction and bias
mitigation, which is especially beneficial in realistic federated learning scenarios where client data
distributions are heterogeneous and participation is imbalanced.

Table 8: Comparison of additional theoretical properties across methods.
Method Non-IID Support Bias Control Gradient Noise Aware
FedAvg No No No

FedCM No No No

Scaffold Yes Yes No

FedSAM Partial No Yes

MoFedSAM Partial No Yes

FedLESAM Yes Yes Yes

FedSMOO Yes Yes Yes

FedWMSAM (Ours) Yes Yes Yes

Table 8 complements the convergence rate analysis by qualitatively comparing theoretical attributes
of the listed methods. “Non-IID Support” refers to whether a method explicitly addresses statistical
heterogeneity across clients. “Bias Control” denotes the ability to mitigate client drift or sampling
bias, often via correction mechanisms. “Gradient Noise Aware” indicates whether a method takes
into account the influence of stochastic or perturbation-induced noise in gradient estimation.

FedWMSAM stands out by simultaneously addressing all three aspects. In contrast, methods like
FedAvg and FedCM offer simplicity but lack explicit mechanisms for bias correction or heterogeneity
handling. Scaffold effectively controls client drift through control variates but does not incorpo-
rate perturbation modeling. FedSAM-like methods consider gradient noise via sharpness-aware
perturbations, but their support for non-IID settings is indirect and lacks dedicated bias correction.

Overall, FedWMSAM provides a unified approach that combines variance reduction, non-IID
robustness, and perturbation modeling, resulting in a theoretically grounded and practically effective
convergence guarantee for challenging federated learning environments.
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B Ablation Study

B.1 Rationale Behind Using Cosine Similarity for αr Calculation: Experimental Validation

To evaluate the appropriateness of using the Mean Cosine Similarity between the Local Gradient
and Momentum as an indicator of the training phase, we conducted an experiment to analyze its
correlation with test accuracy trends over time.

Figure 7: Mean Cosine Similarity between Local Gradient and Momentum

The training process typically enters its later stages when the test accuracy stabilizes. We examined
the relationship between the cosine similarity and accuracy by plotting their respective trends. As
shown in Figure 7, the cosine similarity increases rapidly around the 50th round and reaches a steady
state after around 200 rounds. This aligns with the accuracy curve shown in Figure 8, where accuracy
also rises quickly before 50 rounds, decelerates between 50 and 200 rounds, and then stabilizes after
200 rounds.

From this analysis, we observe a negative correlation between the Mean Cosine Similarity and
the speed of accuracy improvement. Specifically, the slope of the accuracy curve appears to be
approximately one minus the cosine similarity.

Figure 8: Test Accuracy

To further explore this relationship, we plotted one minus the cosine similarity value in Figure 9. The
plot clearly demonstrates that a higher cosine similarity corresponds to a more rapid increase in test
accuracy, while lower similarity values indicate slower accuracy growth.

Based on these findings, we established a clear connection between test accuracy and cosine similarity,
which can be used to estimate the training period. As discussed previously, the momentum should
have a more substantial influence in the earlier stages of training and diminish in importance later.
Therefore, we chose the Mean Cosine Similarity as the basis for calculating the weighting factor αr,
thereby enabling us to dynamically adjust the role of momentum during training.

B.2 Impact of Decay Coefficient λ on αr Update and Performance Optimization

The decay factor λ plays a pivotal role in controlling the rate of change for αr during the update
process:
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Figure 9: One Minus Mean Cosine Similarity

αr+1 = (1− λ)αr + λ min
(
max

(
α̂r+1, 0.1

)
, 0.9

)
This update equation allows for a smooth adjustment of αr, with λ determining how quickly αr adapts
to new values. However, as observed, the Mean Cosine Similarity shows significant fluctuations,
which can negatively affect the model’s training. Therefore, selecting an optimal value for λ is crucial
for ensuring stable and effective training.

To assess the impact of λ, we trained the model with different values of λ and analyzed both accuracy
and changes in αr.

Figure 10: Test Accuracy for Different λ Values on CIFAR-10 under Dirichlet β = 0.1

As shown in Figure 10, the setting λ = 0.01 consistently outperforms other values throughout
training, achieving higher overall accuracy.

Figure 11: Variation of αr Across Training Rounds for Different λ Values on CIFAR-10 under
Dirichlet β = 0.1

Additionally, we observed the evolution of αr over the rounds, which is shown in Figure 11. This
figure shows how different λ values affect the rate of change in αr, demonstrating that λ significantly
influences the training dynamics.
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We further evaluated the performance by calculating the number of rounds required to reach various
accuracy levels for each λ value. As shown in Table 9, the value λ = 0.01 consistently required fewer
rounds to reach higher accuracy levels, making it the most efficient choice in most cases.

Table 9: Rounds to Achieve Different Accuracy Levels for Various λ Values
λ 0.68 0.7 0.72 0.74 0.76 0.78

1 119 144 170 224 343 -
0.5 118 152 170 241 313 -
0.1 99 123 153 208 311 -
0.05 97 113 153 207 292 -
0.01 72 98 114 153 241 356
0.005 72 98 114 153 234 382

In summary, the choice of decay factor λ is crucial for balancing model stability and training speed.
Based on our findings, λ = 0.01 strikes the best balance, yielding faster convergence and improved
model performance.

B.3 Limitation Analysis

Dataset-Specific Sensitivity of λ. The choice of the decay factor λ, which governs the update
dynamics of αr, plays a critical role in training stability and performance. However, our findings
suggest that the optimal value of λ may vary across different datasets and distribution settings. This
sensitivity could pose challenges for practitioners seeking to apply the method in diverse real-world
scenarios, as it introduces an additional layer of hyperparameter tuning.

Instability Caused by Cosine Similarity Fluctuations. The use of Mean Cosine Similarity as an
indicator of training-phase progression enables adaptive momentum adjustment. Nevertheless, this
metric exhibits significant short-term fluctuations, which may lead to unstable or overly aggressive
updates in αr, particularly in early training rounds. While we mitigate this using a smoothing
mechanism via λ, the inherent volatility of cosine similarity remains a potential source of instability.

Limited Scope of Experimental Evaluation. Our experimental validation primarily focuses on
image classification tasks under IID and non-IID settings. While the proposed method demon-
strates strong performance in these benchmarks, its applicability to other types of federated learning
problems—such as natural language processing or graph learning—remains unexplored. Broader
validation across tasks and modalities would strengthen the generalizability of our approach.

Lack of Theoretical Justification for Momentum-Guided SAM. Although our work introduces a
novel use of momentum to guide the SAM update direction and empirically validates its effectiveness,
we fall short of providing a rigorous theoretical analysis to substantiate the superiority of this strategy.
The current theoretical contribution is limited to convergence guarantees, without a formal justification
of how momentum-driven perturbations improve generalization or optimization efficiency in federated
settings.
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C Visualization Results

C.1 t-SNE Visualization Comparison

To gain deeper insight into the representations learned by different methods, we visualize the
feature embeddings of the global models using t-SNE [44]. Specifically, we compare FedAvg [1],
FedCM [22], Scaffold [11], FedSAM [26], MoFedSAM [26],FedLESAM [36], FedSMOO [28] and
our proposed FedWMSAM across different training stages.

Figure 12 presents the t-SNE plots of model embeddings after 200 communication rounds on the
CIFAR-10 dataset using ResNet-18. Compared to other baselines, FedWMSAM yields more clearly
separated and compact clusters. This suggests that our method encourages more discriminative
feature representations and facilitates better client-level generalization, even in early training stages.
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Figure 12: t-SNE visualization of global model embeddings after 200 communication rounds.

To further assess the quality and stability of the learned representations at convergence, we visu-
alize the embeddings after 1000 communication rounds in Figure 13. The clusters produced by
FedWMSAM remain well-separated and exhibit relatively uniform spatial distribution, indicating
enhanced inter-class separability and flatter decision boundaries. We attribute this behavior to the
momentum-driven adaptive reweighting and perturbation-aware updates, which help guide the opti-
mization toward flatter, more generalizable minima. It is worth noting that although FedSMOO [28]
achieves comparable cluster separation, this advantage comes at over twice the computational and
communication overhead as our method.
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Figure 13: t-SNE visualization of global model embeddings after 1000 communication rounds.
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C.2 Performance Analysis and Comparative Evaluation

In this section, we present a detailed analysis of the experimental results, accompanied by vi-
sualizations to compare the performance of our proposed FedWMSAM method against several
state-of-the-art approaches.

We begin by presenting the results on CIFAR-10, as shown in Figures 14 and 15. The blue and
green lines represent the FedWMSAM method, which demonstrates superior performance, with
faster convergence and higher accuracy than other methods. The experiments were conducted with
Dirichlet distribution parameters β = 0.1 and pathological heterogeneity γ = 3.

Figure 14: Test Accuracy on CIFAR-10 under Dirichlet β = 0.1

Figure 15: Test Accuracy on CIFAR-10 under Pathological γ = 3
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Next, Figures 16 and 17 illustrate the results on CIFAR-100. The orange, gray, and pink lines
represent the FedWMSAM method under different experimental conditions. In these experiments,
the data were split using Dirichlet β = 0.1 and pathological γ = 10. Notably, under extreme
heterogeneity with γ = 10 (as shown in Figure 17), the gray line representing our method clearly
outperforms all other methods in terms of both convergence speed and accuracy, demonstrating the
robustness of FedWMSAM in challenging scenarios.

Figure 16: Test Accuracy on CIFAR-100 under Dirichlet β = 0.1

Figure 17: Test Accuracy on CIFAR-100 under Pathological γ = 10

This analysis highlights the effectiveness of FedWMSAM, particularly under heterogeneous condi-
tions, and demonstrates its ability to achieve faster convergence and superior accuracy compared to
alternative methods across a range of datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
We provide an empirical analysis in Appendix B showing that our method’s performance
can be sensitive to hyperparameter choices, potentially limiting generalizability across tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides the full set of assumptions and a complete proof in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an anonymous code repository that includes all the necessary
scripts and detailed instructions in the README to reproduce the main experimental
results reported in the paper. https://github.com/Li-Tian-Le/NeurlPS_FedWMSAM/
README.md
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, with sufficient in-
structions to faithfully reproduce the main experimental results. https://github.com/
Li-Tian-Le/NeurlPS_FedWMSAM

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each experiment three times with different seeds and observe low
variance, indicating stable performance, though error bars are not plotted.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For each experiment, the paper provides sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets such as CIFAR-10 (MIT License) in our
experiments. In addition, we build our implementation on top of the open-source framework
[FL-Simulator](https://github.com/woodenchild95/FL-Simulator), which is licensed under
the MIT License. We properly acknowledge the original authors and respect all license
terms. Our proposed method and algorithm are implemented independently by the authors
within this framework.

• The answer NA means that the paper does not use existing assets.

36



• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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