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Abstract

We consider the problem of computing stationary points in min-max optimiza-
tion, with a focus on the special case of Nash equilibria in (two-)team zero-sum
games. We first show that computing e-Nash equilibria in 3-player adversarial
team games—wherein a team of 2 players competes against a single adversary—
is CLS-complete, resolving the complexity of Nash equilibria in such settings.
Our proof proceeds by reducing from symmetric e-Nash equilibria in symmetric,
identical-payoff, two-player games, by suitably leveraging the adversarial player so
as to enforce symmetry—without disturbing the structure of the game. In particular,
the class of instances we construct comprises solely polymatrix games, thereby
also settling a question left open by Hollender, Maystre, and Nagarajan (2024).
Moreover, we establish that computing symmetric (first-order) equilibria in sym-
metric min-max optimization is PPAD-complete, even for quadratic functions.
Building on this reduction, we show that computing symmetric e-Nash equilibria
in symmetric, 6-player (3 vs. 3) team zero-sum games is also PPAD-complete,
even for € = poly(1/n). As a corollary, this precludes the existence of symmetric
dynamics—which includes many of the algorithms considered in the literature—
converging to stationary points. Finally, we prove that computing a non-symmetric
poly(1/n)-equilibrium in symmetric min-max optimization is FNP-hard.

1 Introduction

We consider computing local equilibria in constrained min-max optimization problems of the form

glelgglggf(w,y), )
where X C R% and )) C R% are convex and compact constraint sets, and f : X' x)) — R is a smooth
objective function. Tracing all the way back to Von Neumann’s celebrated minimax theorem [von
Neumann, 1928] and the inception of game theory, such problems are attracting renewed interest in
recent years propelled by a variety of modern machine learning applications, such as generative model-
ing [Goodfellow et al., 2014], reinforcement learning [Daskalakis et al., 2020, Bai and Jin, 2020, Wei
et al., 2021], and adversarial robustness [Madry et al., 2018, Cohen et al., 2019, Bai et al., 2021, Car-
lini et al., 2019]. Another prominent class of problems encompassed by (1) concerns computing Nash
equilibria in (two-)team zero-sum games [Zhang et al., 2023, 2021, Basilico et al., 2017, von Stengel
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and Koller, 1997, Carminati et al., 2023, Orzech and Rinard, 2023, Farina et al., 2018, Zhang and An,
2020, Celli and Gatti, 2018, Schulman and Vazirani, 2017], which is a primary focus of this paper.

Perhaps the most natural solution concept—guaranteed to always exist—pertaining to (1), when f
is nonconvex-nonconcave, is a pair of strategies (x*, y*) such that both players (approximately)
satisfy the associated first-order optimality conditions [Tsaknakis and Hong, 2021, Jordan et al.,
2023, Ostrovskii et al., 2021, Nouiehed et al., 2019], as formalized in the definition below.

Definition 1.1. A point (x*,y*) € X X ) is an e-first-order Nash equilibrium of (1) if
<a3 - m*avwf(x*7y*)> Z —e and <y - y*,Vyf(w*,y*» S € V(a;y) € X X y

Definition 1.1 can be equivalently recast as a variational inequality (VI) problem: if z = (x,y)
and F': z — F(z) = (Vo f(x,y), —Vy f(x,y)), we are searching for a point z* € Z =X x Y
such that (z — z*, F(2*)) > —2¢ for all z € Z. Yet another equivalent definition is instead based
on approximate fixed points of gradient descent/ascent (GDA); namely, Definition 1.1 amounts to
bounding the gradient mappings

le* -y (z* =V f(x*, y"))| <€,y —y(y*+Vy f(x*,y*))| <€ (Fixed points of GDA)

for some approximation parameter ¢ > 0 that is (polynomially) dependent on ¢ > 0, where || - ||
is the (Euclidean) ¢ norm and II(-) is the projection operator. Other definitions that differentiate
between the order of play between players—based on the notion of a Stackelberg equilibrium—have
also been considered in the literature [Jin et al., 2020].

The complexity of min-max optimization is well-understood in certain special cases, such as when f
is convex-concave (e.g., Korpelevich [1976], Mertikopoulos et al. [2019], Cai et al. [2022], Choud-
hury et al. [2023], Gorbunov et al. [2022], and references therein), or more broadly, nonconvex-
concave [Lin et al., 2020, Xu et al., 2023, Luo et al., 2020]. However, the complexity of general
min-max optimization problems, when the objective function f is nonconvex-nonconcave, has re-
mained wide open despite intense efforts in recent years. Daskalakis et al. [2021] made progress
by establishing certain hardness results targeting the more challenging setting in which there is a
Jjoint (that is, coupled) set of constraints. In fact, it turns out that their lower bounds apply even for
linear-nonconcave objective functions (cf. Bernasconi et al. [2024]), showing that their hardness result
is driven by the presence of joint constraints—indeed, under uncoupled constraints, many efficient
algorithms attaining Definition 1.1 (for linear-nonconcave problems) have been documented in the
literature. In the context of min-max optimization, the most well-studied setting posits that players
have independent constraints; this is the primary focus of our paper.

1.1 Our results

We establish new complexity lower bounds in min-max optimization for computing equilibria in the
sense of Definition 1.1; our main results are gathered in Table 1.

Table 1: The main results of this paper. NE stands for Nash equilibrium and FONE for first-order
Nash equilibrium (Definition 1.1). We also abbreviate symmetric to “sym.” (second column).

Class of problems Eq. concept Complexity Even for
Adversarial team games e-NE CLS-complete (Theorem 1.3) 3-player (2 vs 1), polymatrix
L sym. e-FONE PPAD-complete (Theorem 1.7)  polymatrix, team 0-sum, € = 1/n¢
Symmetric min-max .
non-sym. e-FONE NP-hard (Theorem 1.6) quadratics, € = 1/n¢

Adversarial team games We first examine an important special case of (1): adversarial team
games [von Stengel and Koller, 1997]. Here, a team of n players with identical interests is competing
against a single adversarial player. (In such settings, Definition 1.1 captures precisely the Nash
equilibria of the game.) The computational complexity of this problem was placed by Anagnostides
et al. [2023] in the complexity class CLS—which stands for continuous local search [Daskalakis and
Papadimitriou, 2011]. Further, by virtue of a result of Babichenko and Rubinstein [2021], computing
Nash equilibria in adversarial team games when n > 1 is CLS-complete. In the context of this prior
work, an important question left open by Anagnostides et al. [2023] concerns the case where n is a
small constant, a regime not captured by the hardness result of Babichenko and Rubinstein [2021]



pertaining to identical-interest games—in such games, one can simply identify the strategy leading to
the highest payoff, which is tractable when n is small.

We show that even when n = 2, computing an e-Nash equilibrium in adversarial team games is
CLS-complete. (The case where n = 1 amounts to two-player zero-sum games, known to be in P.)

Theorem 1.2. Computing an e-Nash equilibrium in 3-player (that is, 2 vs. 1) adversarial team games
is CLS-complete.

Coupled with earlier results, Theorem 1.2 completely characterizes the complexity landscape for
computing Nash equilibria in adversarial team games.

Our proof is based on a recent hardness result of Ghosh and Hollender [2024] (cf. Tewolde et al.
[2025]), who proved that computing a symmetric e-Nash equilibrium in a symmetric two-player game
with identical payoffs is CLS-complete. The key idea in our reduction is that one can leverage the
adversarial player so as to enforce symmetry between the team players, without affecting the equilibria
of the original game; the basic gadget underpinning this reduction is analyzed in Section 3.1.

Incidentally, our CLS-hardness reduction hinges on a polymatrix adversarial team game, thereby
addressing another open question left recently by Hollender et al. [2025].

Theorem 1.3. Theorem 1.2 holds even when one restricts to polymatrix, 3-player adversarial team
games.

We complement the above hardness result by further characterizing the complexity of deciding
whether an adversarial team game admits a unique (approximate) Nash equilibrium (Theorem 3.5).

Symmetric min-max optimization As we have seen, symmetry plays a key role in the proof
of Theorem 1.2, but that result places no restrictions on whether the equilibrium is symmetric or
not—this is indeed the crux of the argument. The next problem we consider concerns computing
symmetric equilibria in symmetric min-max optimization problems, in the following natural sense.

Definition 1.4 (Symmetric min-max optimization). A function f : X x ) — R is called antisym-

metricif X = ) and

flx,y) =—fly, =) V(z,y)eX x).
Furthermore, a point (z,y) € X x Y is called symmetric if * = y. The associated min-max
optimization problem is called symmetric if the underlying function f is antisymmetric.’?

Symmetric zero-sum games are ubiquitous in the literature and in practical applications alike. Many
popular recreational games used for Al benchmarking, such as poker and battleship, are symmetric
when roles are assigned at random; the symmetry assumption is particularly natural as it ensures that
no player has an a priori advantage before the game begins.

The study of symmetric equilibria has a long history in the development of game theory, propelled by
Nash’s pathbreaking PhD thesis [Nash, 1950] (cf: Gale et al. [1951]), and has remained a popular
research topic ever since [Tewolde et al., 2025, Emmons et al., 2022, Garg et al., 2018, Ghosh and
Hollender, 2024, Mehta, 2014]. Classic examples in game theory, including rock—paper—scissors
and matching pennies, are also symmetric; these games were already discussed in the original work
of von Neumann [1928].

It is not hard to see that symmetric min-max optimization problems, in the sense of Definition 1.4,
always admit symmetric first-order Nash equilibria. What is more, we show that computing such a
symmetric equilibrium is in the complexity class PPAD [Papadimitriou, 1994]; this is based on an
argument of Etessami and Yannakakis [2010], and complements Daskalakis et al. [2021], who proved
that the problem of computing approximate fixed points of gradient descent/ascent—which they refer
to as GDAFIXEDPOINT—Ilies in PPAD. In a celebrated series of work, it was shown that PPAD
captures the complexity of computing Nash equilibria in finite games [Daskalakis et al., 2009, Chen
et al., 2009]. In this context, we establish that PPAD also characterizes the complexity of computing
symmetric first-order Nash equilibria in symmetric min-max optimization problems:

Theorem 1.5. Computing a symmetric 1/n°-approximate first-order Nash equilibrium in symmetric
n-dimensional min-max optimization is PPAD-complete for any constant ¢ > 0.

The nomenclature of this definition is consistent with the usual terminology in the context of (two-player)
Zero-sum games: a symmetric zero-sum game is one in which the the underlying game matrix A is antisymmetric
(that is, skew-symmetric), so that (@, Ay) = —(y, Az) for all (x,y).



Barring major complexity breakthroughs, Theorem 1.5 precludes the existence of algorithms with
complexity polynomial in the dimension and 1/e€, where € > 0 measures the precision (per Defini-
tion 1.1), under the symmetry constraint of Definition 1.4. This stands in contrast to (nonconvex)
minimization problems, wherein gradient descent converges to stationary points at a rate of poly(1/¢);
even in the regime where ¢ = 1/exp(n), computing a stationary point of a smooth function is
in CLS [Daskalakis and Papadimitriou, 2011], which is a subclass of PPAD [Fearnley et al., 2023].
In fact, our reduction also rules out the existence of polynomial-time algorithms even when e = ©(1)
under some well-believed complexity assumptions (Corollary 4.3).

The proof of Theorem 1.5 is elementary, and is based on the PPAD-hardness of computing symmetric
Nash equilibria in symmetric two-player games. Importantly, our reduction gives an immediate, and
significantly simpler, proof (Theorem 4.4) of the PPAD-hardness result of Daskalakis et al. [2021],
while being applicable even with respect to quadratic and anti-symmetric functions defined on a
product of simplexes.

Independent and concurrent work Bernasconi et al. [2024] also considerably simplified the
proof of Daskalakis et al. [2021]. Our hardness result hinges on the intermediate problem of finding
a Nash equilibrium in symmetric two-player games [Chen et al., 2009], whereas Bernasconi et al.
[2024] showed their hardness result via the problem of finding a Nash equilibrium in (multi-player)
polymatrix two-action games. The main qualitative difference between the two is that ours applies
to simplex domains while the result of Bernasconi et al. [2024] to box domains. The basic idea of
both reductions then is that one can enforce the symmetry constraint & ~ y via coupled constraints.

As a byproduct of Theorem 1.5 and the result of Bernasconi et al. [2024], it follows that any sym-
metric dynamics—whereby both players follow the same online algorithm, as formalized in Defini-
tion 4.5—cannot converge to a first-order Nash equilibrium in polynomial time, subject to PPAD # P
(Theorem 4.6). This already captures many natural dynamics for which prior papers in the litera-
ture (e.g., Kalogiannis et al. [2023b]) have painstakingly shown lack of convergence; Theorem 4.6
provides a complexity-theoretic justification for such prior results, while precluding a much broader
family of algorithms.

The complexity of non-symmetric equilibria Remaining on symmetric min-max optimization,
one natural question arising from Theorem 1.5 concerns the complexity of non-symmetric equilibria—
defined as having distance at least § > 0. Unlike their symmetric counterparts, non-symmetric
first-order Nash equilibria are not guaranteed to exist. In fact, we establish the following result.

Theorem 1.6. For a symmetric min-max optimization problem, constants c1,co > 0, and e = n~=,

it is NP-hard to distinguish between the following two cases under the promise that one of them holds:

* any e-first-order Nash equilibrium (x*,y*) satisfies ||x* — y*|| < n~, and
* there is an e-first-order Nash equilibrium (x*,y*) such that ||z* — y*|| > Q(1).

The main technical piece is Theorem 4.7, which concerns symmetric, identical-interest, two-player
games. It significantly refines the hardness result of McLennan and Tourky [2010] by accounting
even for poly(1/n)-Nash equilibria.

Team zero-sum games Finally, building on the reduction of Theorem 1.5 coupled with the gad-
get behind Theorem 1.2, we establish similar complexity results for team zero-sum games, which
generalize adversarial team games by allowing the presence of multiple adversaries. In particular, a
symmetric two-team zero-sum game and a symmetric equilibrium thereof are in accordance with Def-
inition 1.4—no symmetry constraints are imposed within the same team, but only across teams. We
obtain a result significantly refining Theorem 1.5.

Theorem 1.7. Computing a symmetric 1/n°-Nash equilibrium in symmetric, 6-player (3 vs. 3) team
zero-sum polymatrix games is PPAD-complete for some constant ¢ > 0.

Unlike our reduction in Theorem 1.5 that comprises quadratic terms, the crux in team zero-sum
games is that one needs to employ solely multilinear terms. The basic idea is to again use the gadget
underpinning Theorem 1.2, which enforces symmetry without affecting the equilibria of the game,
thereby (approximately) reproducing the objective function that establishes Theorem 1.5.

It is interesting to note that the class of polymatrix games we construct to prove Theorem 1.7 belongs
to a certain family introduced by Cai and Daskalakis [2011]: one can partition the players into 2



groups so that any pairwise interaction between players of the same group is a coordination game,
whereas any pairwise interaction across groups is a zero-sum game. Cai and Daskalakis [2011]
showed that computing a Nash equilibrium is PPAD-hard in the more general case where there
are 3 groups of players. While the complexity of that problem under 2 groups remains wide open,
Theorem 1.7 shows PPAD-hardness for computing symmetric Nash equilibria in such games.

Taken together, our results bring us closer to characterizing the complexity of computing equilibria in
min-max optimization.

1.2 Further related work

Adpversarial team games have been the subject of much research tracing back to the influential work
of von Stengel and Koller [1997], who introduced the concept of a team maxmin equilibrium (TME);
a TME can be viewed as the best Nash equilibrium for the team. Notwithstanding its intrinsic appeal,
it turns out that computing a TME is FNP-hard [Borgs et al., 2010]. Indeed, unlike two-player
zero-sum games, team zero-sum games generally exhibit a duality gap—characterized in the work
of Schulman and Vazirani [2017].

This realization has shifted the focus of contemporary research to exploring more permissive solution
concepts. One popular such relaxation is TMECor, which enables team players to ex ante correlate
their strategies [Zhang et al., 2023, 2021, Basilico et al., 2017, Carminati et al., 2022, Farina et al.,
2018, Zhang and An, 2020, Celli and Gatti, 2018]. Yet, in the context of extensive-form games,
computing a TMECor remains intractable; Zhang et al. [2023] provided an exact characterization
of its complexity. Team zero-sum games can be thought of as two-player zero-sum games but with
imperfect recall, and many natural problems immediately become hard without perfect recall (e.g.,
Tewolde et al. [2023]). Parameterized algorithms have been developed for computing a TMECor
based on some natural measure of shared information [Zhang et al., 2023, Carminati et al., 2022].
Beyond adversarial team games, Carminati et al. [2023] recently explored hidden-role games, wherein
there is uncertainty regarding which players belong in the same team, a feature that often manifests
itself in popular recreational games—and used certain cryptographic primitives to solve them.

In contrast, this paper focuses on the usual Nash equilibrium concept, being thereby orthogonal
to the above line of work. One drawback of Nash equilibria in adversarial team games is that the
(worst-case) value of the team can be significantly lower compared to TME [Basilico et al., 2017]. On
the other hand, Anagnostides et al. [2023] showed that e-Nash equilibria in adversarial team games
admit an FPTAS, which stands in stark contrast to TME, and indeed, Nash equilibria in general
games [Daskalakis et al., 2009, Chen et al., 2009]. This was further strengthened by Kalogiannis
et al. [2023a, 2024] for computing e-Nash equilibria in adversarial team Markov games—the natural
generalization to Markov (aka. stochastic) games.

Related to Definition 1.1 is the natural notion of a local min-max equilibrium [Daskalakis and
Panageas, 2018, Daskalakis et al., 2021]. It is easy to see that any local min-max equilibrium—with
respect to a sufficiently large neighborhood of (z*, y*)—must satisfy Definition 1.1 [Daskalakis
et al., 2021]. Unlike first-order Nash equilibria, local min-max equilibria are not guaranteed to exist.

Finally, Mehta et al. [2015] showed that in two-player symmetric games, deciding whether a non-
symmetric Nash equilibrium exists is NP-hard, which directly relates to our Theorem 1.6.

2 Preliminaries

Notation We use boldface lowercase letters, such as x, y, z, to represent vectors, and boldface
capital letters, such as A, C, for matrices. We denote by z; the ith coordinate of a vector x € R™. We
use the shorthand notation [n] := {1,2,...,n}. A" := {@ € R%,: Y "' | a; = 1} is the probability
simplex on R™. For i € [n], e; € A™ is the ith unit vector. (-,-) denotes the inner product. For a
vector x € R", ||z|2 = /(x, ) is its Euclidean norm. For m < n, zy...,,j € R™ is the vector
containing the first m coordinates of . We sometimes use the O(-), O(+), Q(+) notation to suppress
absolute constants. A continuously differentiable function f is L-smooth if its gradient is L-Lipschitz
continuous with respect to || - ||2; that is, ||V f(x) — Vf(z')||2 < L||x — &'||2 for all z, x'.



Two-player games In a two-player game, represented in normal-form game, each player has a
finite set, let [n], of actions. Under a pair of actions (4, j) € [n] x [n], the utility of the row player is
given by R; ;, where R € Q™" is the payoff matrix of the row player. Further, we let C € Q™*"
be the payoff matrix of the column player. Players are allowed to randomize by selecting mixed
strategies—points in A™. Under a pair of mixed strategies (x,y) € A™ x A", the expected utility of
the players is given by (x, Ry) and (x, Cy), respectively. The canonical solution concept in such
games is the Nash equilibrium [Nash, 1951], which is recalled below.

Definition 2.1. A pair of strategies (x*, y*) is an e-Nash equilibrium of (R, C) if
(z*,Ry") > (z,Ry") —¢ and (x*,Cy*)> (z",Cy)—c V(x,y)c A" x A"

Symmetric two-player games One of our reductions is based on symmetric two-player games,
meaning that R = C . A basic fact is that any symmetric game admits a symmetric Nash equilibrium
(x*, x*). Further, computing a Nash equilibrium in a general game can be reduced to computing a
symmetric Nash equilibrium in a symmetric game [Nisan et al., 2007, Theorem 2.4]. In conjunction
with the hardness result of Chen et al. [2009], we state the following consequence.

Theorem 2.2 (Chen et al., 2009). Computing a symmetric '/n°-Nash equilibrium in a symmetric
two-player game is PPAD-hard for any constant ¢ > (.

Team zero-sum games A (two-)team zero-sum game is a multi-player game—represented in
normal form for the purposes of this paper—in which the players’ utilities have a certain structure;
namely, we can partition the players into two (disjoint) subsets, such that each player within the same
team shares the same utility, whereas players in different teams have opposite utilities—under any
possible combination of actions. An adversarial team game is a specific type of team zero-sum game
wherein one team consists of a single player. As in Definition 2.1 for two-player games, an e-Nash
equilibrium is a tuple of strategies such that no unilateral deviation yields more than an € additive
improvement in the utility of the deviator.

3 Complexity of adversarial team games
We begin by examining equilibrium computation in adversarial team games.

3.1 CLS-completeness for 3-player games

Computing e-Nash equilibria in adversarial team games was placed in CLS by Anagnostides et al.
[2023], but whether CLS tightly characterizes the complexity of that problem remained open—that
was only known when the number of players is large, so that the hardness result of Babichenko and
Rubinstein [2021] can kick in. Our reduction here answers this question in the affirmative.

We rely on a recent hardness result of Ghosh and Hollender [2024] concerning symmetric, two-player
games with identical payoffs. We summarize their main result below.

Theorem 3.1 (Ghosh and Hollender, 2024). Computing an e-Nash equilibrium in a symmetric,
identical-payoffs, two-player game is CLS-complete.

Now, let A € Q"*™ be the common payoff matrix of a two-player game, which satisfies A = AT
so that the game is symmetric. Without loss of generality, we will assume that A; ; < —1 for all
i,j € [n]. We denote by A i, and A .y the minimum and maximum entry of A, respectively (which
satisfy Apax, Amin < —1). The basic idea of our proof is to suitably use the adversarial player so as
to force the other two players to play roughly the same strategy (Lemma 3.2), while (approximately)
maintaining the structure of the game (Lemma 3.3). The formal proofs are in Section A.1.

Definition of the adversarial team game Based on A, we construct a 3-player adversarial team
game as follows. The utility function of the adversary reads

Amin -
u(e,y,z) = (z, Ay) + % Z (zi(zi = i) + 2nti(yi — @) + 22n41|Amin]. - (2)
i=1

The adversary selects a strategy z € A2"+1 while the team players, who endeavor to minimize (2),
select strategies © € A™ and y € A", respectively. (While the range of the utilities in (2) grows with
1/e, normalizing to [—1, 1] maintains all of the consequences by suitably adjusting the approximation.)



The first important lemma establishes that, in equilibrium,  ~ y. The basic argument proceeds as
follows. By construction of (2), the adversary would be able to secure a large payoff whenever there
is a coordinate ¢ € [n] such that |z; — y;| > 0—Dby virtue of the second term in (2). But that cannot
happen in equilibrium, for Player x (or symmetrically Player ¢) can simply neutralize that term in
the adversary’s utility by playing x = y.

Lemma 3.2 (Equilibrium forces symmetry). Consider an €*-Nash equilibrium (z*,y*, z*) of the
adversarial team game (2) with € < /2. Then, ||z* — y*||_ < 2e.

Having established that « ~ vy, the next step is to make sure that the adversarial player does not
distort the original game by much. In particular, we need to make sure that the effect of the second
term in (2) is negligible. We do so by showing that 25,41 ~ 1 (Lemma 3.3).

The argument here is more subtle; roughly speaking, it goes as follows. Suppose that z; > 0 or
Zn+i > 0 for some i € [n]. Since Player z is approximately best responding, it would then follow
that |y — x| > 0—otherwise Player z would prefer to switch to action 2n+ 1. But, if |y —x7| > 0,
Player x could profitably deviate by reallocating probability mass by either removing from or adding
to ¢ (depending on whether y;” — ;7 > 0), which leads to a contradiction.

Lemma 3.3 (Most probability mass in as,,1). Given any e2-Nash equilibrium (z*,y*, z*) of the
adversarial team game (2) with € < 1/10, z; < 9e for all j € [2n]. In particular, 29,41 > 1 — 18ne.

By combining Lemmas 3.2 and 3.3, we can complete the reduction from symmetric two-player games
with common payoffs to 3-player adversarial team games, as stated below.

Theorem 3.4. Given any e2-Nash equilibrium (x*,y*, z*) in the adversarial team game (2), with
e < 110, (y*,y*) is a symmetric (21n + 1)|Anin|e-Nash equilibrium of the symmetric, two-player
game (A, A) (thatis, A = AT).

3.2 The complexity of determining uniqueness

Another natural question concerns the complexity of determining whether an adversarial team game
admits a unique Nash equilibrium. Our next theorem establishes NP-hardness for a version of that
problem that accounts for approximate Nash equilibria.

Theorem 3.5. For polymatrix, 3-player adversarial team games, constants ci,co > 0, and e = n=,
it is NP-hard to distinguish between the following two cases under the promise that one of them holds:

* any two e-Nash equilibria have {1 -distance at most n~°2, and
* there are two e-Nash equilibria that have {1-distance Q(1).

We will discuss more about the proof of this theorem later in Section 4.2 when we examine the
complexity of computing non-symmetric equilibria in symmetric min-max optimization problems.
It is also interesting to point out that an adversatial team game can have a unique Nash equilibrium
supported on irrational numbers, as we show in Section A.2.

4 Complexity of equilibria in symmetric min-max optimization

This section characterizes the complexity of computing symmetric first-order Nash equilibria (Defini-
tion 1.1) in symmetric min-max optimization problems in the sense of Definition 1.4; namely, when
fle,y)=—f(y,x) forall (x,y) € X x Yand X = ).

4.1 Problem definitions and hardness results for symmetric equilibria

Given a continuously differentiable function f : D — R, we set Fgpa : D — D to be

FGDA(wa y) = H [33 - wa(w7 y)vy + vyf(wvy)] for ((L‘, y) € D’
D

the norm of which measures the fixed-point gap and corresponds to the update rule of GDA with
stepsize equal to one; we recall that Player « is the minimizer, while Player y is the maximizer. The
domain D is a compact subset of R? for some d € N. Moreover, the projection operator [] is applied



jointly on D.> When D can be expressed as a Cartesian product X x ), the domain set is called
uncoupled (and the projection can be done independently), otherwise it is called coupled (or joint).

We begin by introducing the problem of computing fixed points of gradient descent/ascent (GDA)
for domains expressed as the Cartesian product of polytopes, modifying the computational problem
GDAFIXEDPOINT introduced by Daskalakis et al. [2021].

GDAFIXEDPOINT Problem.
INPUT:

* Precision parameter € > 0 and smoothness parameter L,

* Polynomial-time Turing machine C evaluating a L-smooth function f : X'x) — R and its
gradient Vf : X x Y — R%, where X = {x: A,z < b, }and Y = {y : Ayy < by} are
nonempty, bounded polytopes described by input matrices A, € R™=*d A, € R >
and vectors b, € R™=,b, € R™v, with d := d, + d,,.

OUTPUT: A point (z*,y*) € X x Y such that ||(z*,y*) — Fepa(z*, y*)|, < e

Based on GDAFIXEDPOINT, we introduce the problem SYMGDAFIXEDPOINT, which captures
the problem of computing symmetric (approximate) fixed points of GDA for symmetric min-max
optimization problems. We define our computational problems as promise problems.

SYMGDAFIXEDPOINT Problem.
INPUT:

* Precision parameter € > 0 and smoothness parameter L,

* Polynomial-time Turing machine C; evaluating a L-smooth, antisymmetric function f :
X x X — R and its gradient Vf : X x X — R??, where ¥ = {z : Ax < b}isa
nonempty, bounded polytope described by an input matrix A € R™*% and vector b € R™.

OUTPUT: A point (x*,x*) € X x X such that ||(x*,x*) — Fgpa(x*, x*)|, <e.

We start by showing that SYMGDAFIXEDPOINT also lies in PPAD; the fact that GDAFIXEDPOINT
is in PPAD—even under coupled domains—was shown to be the case by Daskalakis et al. [2021].
The detailed proof is included in the appendix.

Lemma 4.1. SYMGDAFIXEDPOINT is a total search problem and lies in PPAD.

Having established that SYMGDAFIXEDPOINT belongs in PPAD, we now state the first main
hardness result of this section.

Theorem 4.2 (Complexity for symmetric equilibrium). SYMGDAFIXEDPOINT is PPAD-complete,
even for quadratic functions.

The basic idea of the proof is to consider the objective

1 1
where A is symmetric and C is skew-symmetric. Theorem 4.2 then follows from some elementary
calculations, as we show in Section A.3.

For symmetric first-order Nash equilibria, our argument establishes PPAD-hardness for any € < 1/n¢,
where ¢ > 0 (as claimed in Theorem 1.5). Moreover, leveraging the hardness result of Rubinstein
[2016], we can also immediately obtain constant inapproximability under the so-called exponential-
time hypothesis (ETH) for PPAD—which postulates than any algorithm for solving ENDOFALINE,

the prototypical PPAD-complete problem, requires 29(7) (ime.
Corollary 4.3. Computing an @(1)-appr0x{mate first-order Nash equilibrium in symmetric n-
dimensional min-max optimization requires n**°¢™) time, assuming ETH for PPAD.

3This is the “safe” version of GDA because it ensures that the mapping always lies in D. One could also
project independently on D(y) = {z’ : («’,y) € D} and D(z) = {y’ : (z,y’) € D}; see Daskalakis et al.
[2021] for further details and the polynomial equivalence for finding fixed points for both versions.



The argument of Theorem 4.2 can be slightly modified to imply the main result of Daskalakis et al.
[2021]—with simplex instead of box constraints—as stated below.

Theorem 4.4 (PPAD-hardness for coupled domains). The problem GDAFIXEDPOINT is PPAD-hard
when the domain is a joint polytope, even for quadratic functions.

The main idea is to add coupled constraints in order to force symmetry: —§ < x; — y; < § for all
i € [n], where, if € is the approximation accuracy, 0 is of order © (61/ 4). Compared to the equilibrium
studied in Daskalakis et al. [2021], the symmetric equilibrium considered in our work is stronger in
that it accounts for all deviations, not merely ones on the coupled feasibility set. We present the proof
of Theorem 4.4 in Section A.3.

Hardness results for symmetric dynamics Another interesting consequence of Theorem 4.2 is
that it precludes convergence under a broad class of algorithms in general min-max optimization.

Definition 4.5 (Symmetric learning algorithms for min-max). Let T € N. A deterministic,
polynomial-time learning algorithm A proceeds as follows for any time ¢ € [T]. It outputs a
strategy as a function of the history () it has observed so far (where H(") := () ), and then receives
as feedback g(*). It then updates H(*+1) := (H®) g(*)). A symmetric learning algorithm in min-max

optimization consists of Player & employing algorithm A with history H = = (Vaof(z®, y t)))
and Player y employing the same algorithm with history H?(,t) = (=Vy f(2®, yONT,

Note that a consequence of the above definition is that both players initialize from the same strategy.
Many natural and well-studied algorithms in min-max optimization adhere to Definition 4.5. Besides
the obvious example of gradient descent/ascent, we mention extragradient descent(/ascent), opti-
mistic gradient descent(/ascent), and optimistic multiplicative weights—all assumed to be executed
simultaneously. A simple non-example is alternating gradient descent(/ascent) [Wibisono et al., 2022,
Bailey et al., 2020], wherein players do not update their strategies simultaneously.

Theorem 4.6. No symmetric learning algorithm (per Definition 4.5) can converge to e-first-order
Nash equilibria in min-max optimization in polynomial time when € = 1/n°, unless PPAD = P.

This is a consequence of our argument in Theorem 4.2: under Definition 4.5 and the min-max

optimization problem (3), it follows inductively that 2*) = y(*) and H = ’Hg(f) forall ¢t € [T]. But
computing a symmetric first-order Nash equilibrium is PPAD-hard when € = 1/n® (Theorem 4.2).

Assuming that P # PPAD, Theorem 4.6, and in particular its instantiation in team zero-sum games
(Theorem 1.7), significantly generalizes some impossibility results shown by Kalogiannis et al.
[2023b] concerning certain algorithms, such as optimistic gradient descent(/ascent)—our hardness
result goes much further, precluding any algorithm subject to Definition 4.5, albeit being conditional.

4.2 The complexity of non-symmetric fixed points

An immediate question raised by Theorem 4.2 concerns the computational complexity of finding
non-symmetric fixed points of GDA for symmetric min-max optimization problems. Since totality
is not guaranteed, unlike SYMGDAFIXEDPOINT, we cannot hope to prove membership in PPAD.
In fact, we show that finding a non-symmetric fixed point of GDA is FNP-hard. To do so, we first
define formally the computational problem of interest.

NONSYMGDAFIXEDPOINT Problem.
INPUT:

* Parameters €, > 0 and Lipschitz constant L and

* Polynomial-time Turing machine C; evaluating a L-smooth antisymmetric function f :
X x X — R and its gradient Vf : X x X — R4, where X = {z : Az < b}isa
nonempty, bounded polytope described by a matrix A € R™*? and vector b € R™.

OuTPUT: A point (z*,y*) € X x X such that |lz*—y*||, > ¢ and
|(x*, y*) — Fapa(x*,y*)|, < eif it exists, otherwise return NO.

We establish that NONSYMGDAFIXEDPOINT is FNP-hard. Our reduction builds on the hardness
result of McLennan and Tourky [2010]—in turn based on earlier work by Gilboa and Zemel [1989],



Conitzer and Sandholm [2008]—which we significantly refine in order to account for poly(1/n)-Nash
equilibria. Our result, which forms the basis for Theorem 1.6 and Theorem 3.5, is summarized below.

Theorem 4.7. For symmetric, identical-interest, two-player games, constants ci,co > 0, and
€ = n~ %, it is NP-hard to distinguish between the following two cases under the promise that one of

them holds:

* any two symmetric e-Nash equilibria have (1 -distance at most n~°2, and
* there are two symmetric e-Nash equilibria that have {1 -distance Q(1).

The proof of Theorem 1.6 now follows by considering the antisymmetric function f(x,y) =
y ' By — « " Bz for a suitable matrix B (defined per the hard instance from Theorem 4.7 based on
k-clique). FNP-hardness follows similarly by considering a search version of maximum clique.

Finally, the proof of Theorem 3.5 that was claimed earlier follows immediately by combining
Theorem 4.7 with the reduction of Section 3.1, and in particular, Lemmas 3.2 and 3.3.

4.3 Team zero-sum games

Our previous hardness result concerning symmetric min-max optimization problems does not have
any immediate implications for (normal-form) team zero-sum games since the class of hard instances
we constructed earlier contains a quadratic term. Our next result provides such a hardness result by
combining the basic gadget we introduced in Section 3.1 in the context of adversarial team games;
the basic pieces of the argument are similar to the ones we described in Section 3.1, and so the proof
is deferred to Section A.5. Our goal is to prove the following.

Theorem 1.7. Computing a symmetric 1/n°-Nash equilibrium in symmetric, 6-player (3 vs. 3) team
zero-sum polymatrix games is PPAD-complete for some constant ¢ > 0.

Let us describe the class of 3 vs. 3 team zero-sum games upon which our hardness result is based on.
Based on (2), we define the auxiliary function

|Amin‘ "
Z(Zi(ﬂ?i = ¥i) + Znti(Yi — i) + |Amin| 22041
=1

§: A" X A" x A" 5 (z,y,2)
€

In what follows, the 3 players of the one team will be identified with (¢, y, z), while the 3 players of
the other team with (&, g, 2). We define the utility of the latter team to be

U(:IC, Y, z, "%a g7 2) = <1E, Ay> - <ia Ag> + <:I?, C:ﬁ> + (5(%7 Y, ‘2) - 5(3}7 yAa 2)7 (4)

where A is symmetric and C is skew-symmetric. The rest of the argument follows Section 3.1.

S Conclusion and open problems

We have provided a number of new complexity results concerning min-max optimization in general,
and team zero-sum games in particular (see Table 1). There are many interesting avenues for future re-
search. The complexity of computing first-order Nash equilibria (equivalently, the GDAFIXEDPOINT
problem) remains wide open, but our hardness results suggest a possible approach: as we have seen,
in symmetric min-max optimization, computing either symmetric or non-symmetric equilibria is
intractable, so it would be enough if one could establish this using the same underlying function—that
is, somehow combine our two reductions into one. It would also be interesting to see whether
our hardness results can be extended to more structured min-max optimization problems, such as
adversarial training and GANS.
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A Omitted proofs
This section contains the proofs omitted from the main body.

A.1 Proofs from Section 3.1

We begin by stating and proving a simple auxiliary lemma.
Lemma A.1. Let (x},x* ;) be an €2-Nash equilibrium of a normal-form game, and a; any action of
player i. If ui(ag, x* ;) < u;(a;,x* ;) — cfor some ¢ > 0 and k € [n], then z} (ar) < €/e.

2
Proof. For the sake of contradiction, suppose that x}(ax) > < for some k € [n] such that
wi(ak, z*;) < u;(aj, z* ;) —c. Consider the strategy A" > &} = ] + 2z} (ar)e; — x] (ar)ex. Then,
we have

wi(x), ;) — ui(x], x ;) = o] (ap)ui(ay, ©°;) — 27 (ap)uilar, 27;)
> cx; (ag)
> 62.

That is, deviating to @/ yields a utility benefit strictly larger than €2, which contradicts the assumption
that (x}, x* ;) is an €*-Nash equilibrium. O

‘We move on to the proof of Lemma 3.2.

Proof of Lemma 3.2. For the sake of contradiction, suppose that x} — y > 2¢ for some ¢ € [n] (the
case where y; — &7 > 2¢ is symmetric, and can be treated analogously). Player z could then choose
action a; (with probability 1), which secures a utility of

|Amin|

u(w*ay*’ai) = <$*,Ay*> + .’L‘: - y;) > <:L'*7Ay*> + 2|-Amin|7

since x; — y; > 2e. At the same time, Player z could choose action as,,1, which secures a utility of
w(x*, y*, azny1) = (%, Ay*) + [Anin|. So,

u(m*a y*7 ai) - u(m*a 9*7 a2n+1) Z |Amin‘~
Applying Lemma A.1,

62

231 < A <é ®)

Also, using the fact that (x*, y*, z*) is an €2-Nash equilibrium,
u(w*, y*a Z*) Z u(w*v y*a ai) - 62

Z <w*7Ay*> + 2|*Amin| - 52

Z Amin + 2|1Amin| - 62

= ‘Amin| - 627 (6)
since we have assumed that A ,;,, < 0. Now, consider the deviation of Player « (from strategy *)
to x’ := y*. Then, u(z’, y*, 2*) = (y*, Ay*) + 23,1 - |Amin|- Thus, combining with (6) and (5),

u(@' y*, 2*) —u(x®, y*, 2%) < (¥*, Ay") + 25,01 [Amin] — |[Amin| + €

S <y*7Ay*> + 62 : |Amin‘ - |Amin‘ + 62

S Amax - |Amin‘ + 62(|1Amin| + 1)

<-1<—€, ©)
where we used that A ,.x, Amin < —1 and €2 < 1/2. But (7) contradicts the fact that (x*, y*, 2*) is

an e2-Nash equilibrium since deviating to =’ yields a utility improvement (equivalently, decrease in
cost) strictly larger than €2. This completes the proof. O
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We proceed with the proof of Lemma 3.3.

Proof of Lemma 3.3. From Lemma 3.2 it holds that ||z* — y*|| , < 2e. Leti € [n]. We assume that
1 is such that 7 — y; > 0; the contrary case is symmetric. We consider two cases. First, suppose that
|z — yf| < ¢/2. Then, we have

* * * * Amin * *
u(m Y aa2n+1) —u(az Y 7ai) > |Amin‘ - |76‘(x1 _yz)
1 1
Z 7‘Amin| 2 g
2 2

Thus, by Lemma A.1, we conclude that z; < 262, Similarly,
|Amin|

U(m*,’y*,azn-s-l) - U(w*,y*,anﬂ) Z |Amin| - (y* - Z‘:) Z ‘Amin| Z 17

(2

since x} — y; > 0. Again, Lemma A.1 implies that 2,,; < €.

It thus suffices to treat the case where |z} —y}| > ¢/2 (assuming that x7 —y > 0). It follows that there

exists j € [n] such that 27 — ¢ < 0. In addition, we observe that u(z*, y*, aznt1) = (z*, Ay*) +

[Amin| > (z*, Ay*) + 1, whereas u(z*, y*,qa;) < (z*, Ay*) and u(x*, y*, ant;) < (x*, Ay*).
As a result, Lemma A.1 implies that z7;, ; < ® and 2} < €.

Now, consider the deviation
A"sa =" + (yf —xi)ei + (¢] —yi)ej;
that is, &’ is the strategy that results from « by reallocating (z} — y;) probability mass from action

a; to action a;. The difference u(x’, y*, z*) — u(x*, y*, 2*) can be expressed as

Amin * * * * * * * *
(' —x*, Ay*) + % (2F (2 — 2}) + 27 (@ —af) + 2 (2] — ) + 2y (2] — x;))

* A i * * * * * * * *
= (' —x*, Ay >+‘7r€mn| (2 (v; —af) + 2 (2 =) + 2 (@] —y) + 2ng (Y — ;)

Amin
< 4de|Anin| + | | (zz* . (,%) +€2- 2+ 26) ®)
€

1
§<—<2zj—43—~%>|AmmL 9)
where (8) uses the following:

Sy <=
oz —y! < 2¢(Lemma 3.2);
© zh,; <€ andzf <€ and

o (@ —x*, Ay*) < |2’ — 2| 1]|AY*]|lco < 2|z — yF||Amin| < 4€|Apin| (since A has
negative entries);

Moreover, given that (x*, y*, z*) is assumed to be an €2-Nash equilibrium, we have

—u(z,y*, 2*) +u(z, y*, z*) < 2 (10)
(The utility of Player « is given by —u.) Combining (10) and (9),
1
<25—48—4§LAmJ§62 (11)
* 2 1
= z; <8+ 10e §96fore§1—0. (12)

In summary, when z] — y; > 0, we have shown that 2z < 9¢ and z;; 1 < €2. The case where
y; —x7 > 0 can be treated similarly. O
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We continue with the proof of Theorem 3.4, which combines Lemmas 3.2 and 3.3 to complete the
CLS-hardness reduction of Section 3.1.

Theorem 3.4. Given any >-Nash equilibrium (x*,y*, z*) in the adversarial team game (2), with
e < Yo, (y*,y*) is a symmetric (21n + 1)|Ayin|e-Nash equilibrium of the symmetric, two-player
game (A, A) (thatis, A = AT).

Proof. Since (x*,y*, z*) is an €2-Nash equilibrium, we have that for any for any deviation y’ € A™
of Player y,

n

Amin * *
(", Ay") < (z", Ay') + % (Z zi(@] = y) + zntilyi — ] )) + e (13)
i=1

Moreover, by considering a deviation of Player x again to y’,

n

* * * Amin * *
@ Ay) < (v Ay + el (Z 2yl —u7) + Zarily — yé)) e 4
i=1

Adding (13) and (14), and using the fact that A is a symmetric matrix,

* * * * Amin - * * * *
2e’, Ay") < (0 Al +y)) + o (Zzim 4)+ 2l —m) 22
=1
/ * . ‘Amin|
< (', A(2y")) + 2en|Amin| + ———

<2(y', Ay*) + (381 + 2)|Aminle, (16)

(2n - 9¢ - 2€) + 26> (15)

where in (15) we use Lemmas 3.2 and 3.3. Also,
(y", Ay") = (=", Ay") + (y" — =", Ay")
< (2", Ay") + 26n| Apinl. (17)
Finally, combining (16) and (17), we conclude that for any ¢y’ € A™,
(", Ay") < (¥, Ay") + (2In + 1)|Apine.

This concludes the proof. O

We now restate Theorem 1.2, which establishes the main complexity implication of Theorem 3.1.

Theorem 1.2. Computing an e-Nash equilibrium in 3-player (that is, 2 vs. 1) adversarial team games
is CLS-complete.

Proof. CLS-hardness follows directly from Theorem 3.4 and Theorem 3.1 (due to Ghosh and Hollen-
der [2024]). The inclusion was shown by Anagnostides et al. [2023]. O]

A.2 TIrrational Nash equilibria in adversarial team games

We next describe an interesting property for adversarial team games. Namely, similar to general-sum
3-player games [Nash, 1950], there exist adversarial team games that admit a unique irrational Nash
equilibrium, as stated below.

Proposition A.2 (Berthelsen and Hansen, 2019). There exists a 3-player adversarial team game with
a unique Nash equilibrium that is supported on irrationals.

Although the paper of Berthelsen and Hansen [2019] provides such an instance, no proof is given.
Here, as a complement to their work, we provide a relatively simple and general way to analyze the
irrational Nash equilibrium in 3-player adversarial team games.

We consider a 3-player adversarial team game in which the utility function of the adversary u :
{1,2} x {1,2} x {1,2} : (x,y, z) — Rreads
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1 1 3 10 100
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2 2 L 1 3

The proof of this result makes use of a characterization of Nash equilibria in 2 x 2 two-player
zero-sum games, stated below; for the proof, we refer to, for example, Sun [2022, Theorem 1.2].

Lemma A.3. Let A € R**2 such that
(A171 — A172)(A272 — A271) > 0 and (Al,l — A2,1)(A272 — A172) > 0.

Then, the two-player zero-sum game mingeaz max,caz(x, Az) admits a unique (exact) Nash
equilibrium with value
v Ai11As2— A1pAs ),

o A1 —Ao— Ay + A2,2.

Furthermore, the unique Nash equilibrium (x*, z*) satisfies

o — ( Asr— Ay A1 —Asp )
A1 —Ai2— Ay + A2,2’ A1 —Ais—Ax1 +As»

= ( Aso— Ay A — Ay >
Aig—Aip— Ay + A2,2, Ain—Aip— Az +Ay ’

Proof of Proposition A.2. By construction of the adversarial team game, the mixed extension of the
utility can be expressed as
1

- — 3 .
100y2> + 2222 (3y2 + y1)

2121 (Y1 + 3y2) + 212 d L + z22 2
121 \Y1 Y2 122 1Oyl 10292 221 10091

Suppose that we fix y € A2, Then, Players = and y are engaged in a (two-player) zero-sum game
with payoff matrix

1+2ys 35 — o
A(y) = 10 . 18
(y) |:19090 — Yo 14+ 2y2 ( )

‘We now invoke Lemma A.3. Indeed, we have

(At~ AW AW22 ~ Alwan) = (34 5 ) (34 155) >0 (9

and

100 10
that is, the precondition of Lemma A.3 is satisfied, and so the value of (18) reads

— 109 + 2
v(y) = min max(x, A(y)z) = 09 + 5890y + 3000y3 ’
BEATZEAT 110 + 6000y

(AW — Ao 1)(AW)2z — Aly)ra) = (3y2 ; 1) (3y2 N 1) S0 Qo)

2

It is easy to verify that v is a strictly convex function in [0, 1], and admits a unique minimum cor-

responding to y* = (%, 9‘?@%) , which is irrational. Now, suppose that (z*,y*, z*)

is a Nash equilibrium of the adversarial team game. We will first argue that (x*,z*) is the
unique Nash equilibrium of A(y*). Indeed, suppose that there exists ' € A? such that
(@', A(y*)z*) < (x*, A(y*)z*), or equivalently, u(z’,y*, z*) < u(z*,y*, z*); this is a con-
tradiction since (x*, y*, z*) is assumed to be a Nash equilibrium. Similar reasoning applies with
respect to Player z. Thus, (x*, z*) is a Nash equilibrium of A(y*), and thereby uniquely deter-
mined by y*—by Lemma A.3 coupled with (19) and (20). Furthermore, given the value of y*, we

get that * = (%, %) and z* = (%, %) Now, consider the utility of Player y
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when playing the first action a; or the second action as; plugging in the value of £* and z*, we

* *) _ 578493
have u(z*, ey, 2*) = >S5

(z*,y*, z*) is a Nash equilibrium.

and u(z*, eq, 2*) = %. Since u(x*, e1, z*) = u(x*, eq, z*),

Moreover, suppose there exists another Nash equilibrium (x’,y’,2’) that is different from
(x*,y*, z*). As shown above, (', z) is the unique equilibrium of the zero-sum game induced by
y’. Thus, if we have two different Nash equilibria, it implies that y’ # y*. We consider the following
three cases:

* First, let y’ be a (fully) mixed strategy. Since x’ and 2’ forms the unique NE in of A(y’),
we have

, [ 14300y, 10+ 300y}
11+ 600y, 11 + 600y5 )’

o (1043005 1+ 300y,
11 + 600y," 11+ 600y )

Further, for Player y,

u(a:’ e z/) _ 1199 + 130800y2 + 3501000y§
e 10(11 + 600y2)? ’
) . 589 + 196800ys + 530100032
u(a: ,€2,2 ) =
10(11 + 600y,)2

Since ¢’ is a mixed strategy, we have u(a’, e, 2’) = u(a’, es, 2’); solving the equality we

gety' = (%7 9\?@%) , which contradicts the assumption that y’ # y*.
« Ify' = (1,0), we have u(x’, e1, 2’) = 1592 and u(z’, e, 2’) = 2% Thus, it follows that

by unilaterally deviating to play (0, 1), Player y can decrease the utility of the adversary,
contradicting the fact that (x’, y’, z’) is a Nash equilibrium.

* Finally, suppose that y’ = (0,1). Similarly to the second case, we get u(x’,e1,2’") <
u(x’, ea, '), which is a contradiction.

Thus, we conclude that (x*, y*, 2*) is the unique Nash equilibrium of the 3-player adversarial team
game defined above, completing the proof. O

A natural question arising from Proposition A.2 concerns the complexity of determining whether an
adversarial team game admits a unique Nash equilibrium. Theorem 3.5—that was presented earlier in
the main body—establishes NP-hardness for a version of that problem that accounts for approximate
Nash equilibria.

A.3 Proofs from Section 4.1
We continue with the proofs from Section 4.1. We first apply Brouwer’s fixed point theorem to show
that symmetric min-max optimization problems always admit a symmetric equilibrium.

Lemma A.4. Let X be a convex and compact set. Then, any L-smooth, antisymmetric function
(Definition 1.4) f : X x X — R admits a symmetric first-order Nash equilibrium (x*, x*).

Proof. We define the function M : X — X to be

M(zx') = H [:c’ —Vaf(z,y) (22)

X

(w,y>=<w',w')} )

Given that f is L-smooth, we conclude that M (2') is (L + 1)-Lipschitz, hence continuous. Therefore,
from Brouwer’s fixed point theorem, there exists an * so that M (x*) = a*. Moreover, the symmetry
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for all w € X; as a result,
z,y)=(w,w)

of f implies that V, f(x, y) =—Vaf(z,y)

z,y)=(w,w)

Tzt = HX T — va:f(m>y)

= HX "+ Vyf(:c,y)

(@,y)=(z*,2*)

(z,y)=(z*,z*)

Therefore, (x*, x*) is a first-order Nash equilibrium of the symmetric min-max problem with function
I O

We now present the proof of Lemma 4.1
Proof of Lemma 4.1. We first define the function (as in Lemma A.4) M : X — X as

M) =] |¢f - Vaf(o.v)

X

(m7y)—(w’7m')} ’

where we recall that IT is the projection operator on X. Assuming that the input function f is L-
smooth, it follows that M («') is (L + 1)-Lipschitz. Furthermore, projecting on the polytope X takes
polynomial time, and so M is polynomial-time computable. As a result, we can use Etessami and
Yannakakis [2010, Proposition 2, part 2] (see also Fearnley et al. [2023, Proposition D.1]), where
it was shown that finding an e-approximate fixed point of a Brouwer function that is efficiently
computable and continuous, when the domain is a bounded polytope, lies in PPAD. O

We proceed with the proof of Theorem 4.2
Proof of Theorem 4.2. We P-time reduce the problem of finding approximate symmetric NE in

two-player symmetric games to SYMGDAFIXEDPOINT. Given any two-player symmetric game
with payoff matrices (R, R ") of size n x n, we set

1 1
A= 3 (R+R") (symmetric matrix) and C := 5 (R — R") (skew-symmetric matrix). (23)
We define the quadratic, antisymmetric function
1 1

2 2
with domain A™ x A™. Indeed, to see that f is antisymmetric, one can observe that
1 1 1 1
f(ya ZE) = §<QZ, A:B> - §<y7 Ay> + <$7 Cy> = §<CL‘, ACL‘> - §<y7Ay> - <y7 CT$> = _f($7 y)

Assuming that all entries of R lie in [—1, 1], it follows that the singular values of A and C are
bounded by n. As aresult f and V,f = —Ax — Cy,V,f = Ay + Czx are polynomial time
computable and continuous, and V, f, V,, f are L-Lipschitz for L < 2n, thus f is 4n-smooth.

We assume « is the minimizer and y is the maximizer, and let (x*, *) be an e-approximate fixed
point of GDA. We shall show that (x*, x*) is an 4ne-approximate NE of the symmetric two-player
game (R,RT). Since (z*,x*) is an e-approximate fixed point of GDA, we can use Lemma A.5 and
obtain the following variational inequalities:

max 0T (Az* +Cx*) <e(2n+1),
o +EEA,|8],<1

implying that (since the diameter of A™ is /2 in {3)
(x —x*, (A +C)z*) < V2e(2n+1) forany x € A™. (VI for NE)

Now, we observe that (VI for NE) implies that (z*, x*) is a v/2¢ (2n + 1)-approximate symmetric
NE in the two-player symmetric game with payoff matrices (A + C, A — C) (recall Definition (2.1)).

Since v/2¢ (2n + 1) < 4ne for n > 2, our claim follows.

By Theorem 2.2 and Lemma 4.1, we conclude that SYMGDAFIXEDPOINT is PPAD-complete, even
for quadratic functions that are O(n)-smooth, O(n)-Lipschitz and € < 1/n*+¢, for any ¢ > 0. O
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We next state a standard lemma that connects first-order optimality with the fixed-point gap of
gradient ascent.

Lemma A.5 ([Ghadimi and Lan, 2016], Lemma 3 for ¢ = 1). Let f(x) be an L-smooth function in
x € A", Define the gradient mapping

Gla) = [[{z + Vol (@)} — 2.
An

If[|G(x*) ||y < € that is, x* is an e-approximate fixed point of gradient ascent with stepsize equal to
one, then

a 0T Vaf(x*) <e(L+1).
m*+661£1n,}ﬁ5\|2g1 wf (@) < )

Similarly, the next lemma makes such a connection for min-max optimization problems with coupled
constraints; it is mostly extracted from Daskalakis et al. [2021, Section B.2].

Lemma A.6. Let f(x,y) be a G-Lipschitz, L-smooth function defined in some polytope domain
D C A™ x A" of diameter D. Define the mapping

G(z,y) = [[{z - Vol (@, ¥),y + Vyf(z.v)} — (z.v).
D

If||G(x*, y*)|ly < € thatis, (x*,y*) is an e-approximate fixed point of (the safe version) of GDA
with stepsize equal to one, then

(x—a*, Vo f(x*,y")) > —VeK forx € D(y*) and (y—y*,Vy f(z*,y")) < VeK fory € D(z"),
where D(z*) = {y : (z*,y) € D}, D(y*) = {z: (z,y*) € D} and K = (L + 1)1/ (G + 4V/2).
Proof. Let (za,ya) = (2 — Vo f(x*,y*), y* + Vy f(x*, y*)). In Daskalakis et al. [2021, Claim
B.2], it was shown that for all (x,y) € D, we have

(@a,ya) — (&%, 97), (z,y) — (27, y")) < (G +2D)e.

Using the above inequality, it was concluded that (x*,y*) is an approximate fixed point of the
“unsafe” version of GDA; specifically,

o' — [[ {z" - Vof(x",y")}|| < V(G +2D)e
D(y*)
and

vy — [ v+ Vs y7)}|| < V(G +2D)e.

D(x*)

We now use Lemma A.5 for both inequalities above, together the fact that D = 2+/2, to conclude that

(€ —x*, Vo f(x*,y*)) > —\/(G+4V2)e(L + 1) for x € D(y*),
and
(y —y*, Vyf(x*,y*)) < /(G +4V2)e(L + 1) fory € D(z*).

We proceed to establish Theorem 4.4.

Proof of Theorem 4.4. The proof follows similar steps with Theorem 4.2, namely, we P-time
reduce the problem of finding approximate symmetric NE in two-player symmetric games to
GDAFIXEDPOINT with coupled domains. Given a two-player symmetric game with payoff matrices
(R,R7)ofsizenxn,wesetA =1 (R+R"),C:=1(R—R") and define again the quadratic,
antisymmetric function

1

Sy Ay) — 3 (@, Az) + (y,Ca).

f(z,y) = 5
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Moreover, given a parameter 6 > 0 (to be specified shortly), we define the joint domain of f to be
D:={(x,y) e A" x A" : =6 < ax; —y; < dforalli € [n]}. (joint Domain)

Let (x*,y*) be an e-approximate fixed point of GDA. We will show that (f‘%, %) is an

O(€'/*)-approximate (symmetric) NE of the game (R,R.") for an appropriate choice of 6.

We set D(x*) = {y : (*,y) € D} and D(y*) = {x : (x,y*) € D}. In words, D(x*) and D(y*)

capture the allowed deviations for y and @ respectively. It also holds that f is G-Lipschitz continuous

with G = 4n and also 4n-smooth (using the same reasoning as in Theorem 4.2).

Since (x*, y*) is an e-approximate fixed point of GDA, using Lemma A.6, the following VIs must

hold for some positive constant X < 10 and n sufficiently large:

(x —x*, —Ax* + CTy*) > —Kn3/2\/e for any x € D(y*) and

(y — y*, Ay* + Cz*) < Kn3/2\/e forany y € D(z*). 25)

LetD = {z €A™ Hz - m*%HOO < %} . By triangle inequality, it follows that D C D(y*) N

D(x*). We express the VIs of (25) using a single variable z and common deviation domain:
(z—x*,—Az* + CTy*) > —Kn3/?\/eand (z — y*, Ay* + Cx*) < Kn>/2\/e for any z € D.
Multiplying the first inequality by —1/2 and the second with 1/2 and adding them up gives

* * * * 1
<z - % (A+ C)”’”‘;y> < g @ -y A —yh) + Knve o)

Since z*,y* € D, it follows that (x* — y*, A(x* — y*)) < n|jz* — y*||3 < n?6%. Combining this
fact with (26), we conclude that

<z - #, (A+ C)m;ry> < n?6% + Kn®/?\/e forany z € D. (VImedian)

(VImedian) shows that by deviating from <%y*, %”*) to some z in D, the payoff cannot increase

by more than (n?§? + Kn®/2./€) in the two-player symmetric game with matrices (R, R").

We consider any pure strategy e; for j € [n]. If Hej - w*% < g then e; € D and it is

oo
z*+y*
2

captured by (VImedian). Suppose that He i — > g and consider the point z’ € D on the

o0

line segment between e; and z 27”* that intersects the boundary of D. It holds that e; — m*;y* =

c ( o Tty ) for some positive ¢ < % (it cannot be larger because otherwise the infinity norm of

2
" +y”
2

the difference between e; and
A™). Therefore,

would exceed one, which is impossible as they both belong to

* * * * 2K 3/2
<ej - %, (A + C):c—;—y> < 2n%5 + #ﬁ for any pure strategy j. (27)

From (27), we conclude that m*% is (2n25 + M)—appmxima’[e NE of the symmetric

two-player game (R, RT). We choose § = ¢!/*n~1/4 and we get that £ is an O(n7/¢!/4)-
approximate NE for (R, R'T), and thus the hardness result holds for ¢ of order O (#) for any
constant ¢ > 0. We note that if instead of an e-approximate fixed point of GDA, we were given
an e-approximate first-order NE, then the hardness result would hold for any € of order # with

c>0. O
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Figure 1: An example of matrix A = A(G) (right) for graph G (left).

A.4 Proofs from Section 4.2

The main result we want to show is restated below.

Theorem 1.6. For a symmetric min-max optimization problem, constants c1,co > 0, and € = n=°,
it is NP-hard to distinguish between the following two cases under the promise that one of them holds:

* any e-first-order Nash equilibrium (x*,y*) satisfies |x* — y*|| < n~°2, and
o there is an e-first-order Nash equilibrium (x*,y™*) such that |x* — y*|| > Q(1).

Our reduction builds on the hardness result of McLennan and Tourky [2010]—in turn based on earlier
work by Gilboa and Zemel [1989], Conitzer and Sandholm [2008]—which we significantly refine in
order to account for poly(1/n)-Nash equilibria. We begin by describing their basic approach. Let
G = ([n], E) be an n-node, undirected, unweighted graph, and construct

-1 ifiv =y,
A, ;=<0 if{i,j} €FE, (28)
—2 otherwise.
(Figure 1 depicts an illustrative example.) Based on this matrix, McLennan and Tourky [2010]
consider the symmetric, identical-payoff, two-player game (A, A)—by construction, A = AT, and
so this game is indeed symmetric. They were able to show the following key property.
Lemma A.7 ([McLennan and Tourky, 2010]). Ler Cy C [n] be a maximum clique of G with size

k and z* = 1 > icc, €i- Then, (x*,x*) is a Nash equilibrium of (A, A) that attains value —1.
Furthermore, any symmetric Nash equilibrium not in the form described above has value at most
1

k—1°

The idea now is to construct a new symmetric, identical-payoff game (B, B), for

A1,1 te A1,n r
B—=| : o i i (29)
An,l An,n r
r r \%
where V i= —f andr = (-1 — 77) = _2(215%11)1;' Coupled with Lemma A.7, this new game

yields the following NP-hardness result.

Theorem A.8 ([McLennan and Tourky, 2010]). It is NP-hard to determine whether a symmetric,
identical-payoff, two-player game has a unique symmetric Nash equilibrium.

Our goal here is to prove a stronger result, Theorem 4.7, that characterizes the set of e-Nash equilibria
even for € = 1/n°; this will form the basis for our hardness result in min-max optimization and
adversarial team games. To do so, we first derive some basic properties of game (29).

Game (29) always admits the trivial (symmetric) Nash equilibrium (e, 1, €,,11). Now, consider any
symmetric Nash equilibrium (*, 2*) with 7, |, # 1. If 27, = 0, it follows that (mﬁn] , w’["im”])
is a Nash equilibrium of (A, A), which in turn implies that G admits a clique of size k; this follows

from Lemma A.7, together with the fact that —1/(k—1) < r < —1/k.

We now analyze the case where x| € (0, 1). It then follows that (2[1...n)/(1~a ), ®(1-n)/ (1~} ,))
is a (symmetric) Nash equilibrium of (A, A). Furthermore, the utility of playing action a1 is
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(1—a} )r+a),,V >r. By Lemma A.7, it follows that (®{1...n)/(1~2}, ), ®[1-.n)/(1~2},)) has
a value of V' and GG admits a clique of size k. As a result, the utility of playing any action a;, with
i € supp(z*)andi #n+1,is (1 -z 1)V 4}, . Atthe same time, the utility of playing action
any1 reads (1 — a1 )r + 25, V. Equating those two quantities, it follows that z , , = 1/2.

In summary, G contains a clique of size k if and only if game (29) admits a unique symmetric Nash
equilibrium, which implies Theorem A.8. What is more, we have shown a stronger property. Namely,
any symmetric Nash equilibrium of (B, B) has to be in one of the following forms:

1. (x*,z*) with z* = ep41;
2. (x*,z*) withz* :== ¢ > icc, €i» where Cy, C [n] is a clique in G of size k;
3. (x*, %) with &* := Je, 1+ 5; > ;cc, €i» Where Gy, C [n] is a clique in G of size k.

In particular, the equilibria in Items 2 or 3—which exist iff G contains a clique of size k—are always
far from the one in Item 1. However, this characterization only applies to exact Nash equilibria.
In any two-player game T', when ¢ is sufficiently small with log(1/€) < poly(|T'|), Etessami and
Yannakakis [2010] have shown that any e-Nash equilibrium is within ¢;-distance § from an exact
one, and so the above characterization can be applied; unfortunately, this does not apply (for general
games) in the regime we are interested, namely € = poly(1/n).

We address this challenge by refining the result of McLennan and Tourky [2010]. Our main result,
which forms the basis for Theorem 1.6 and Theorem 3.5, is recalled below.

Theorem A.9. For symmetric, identical-interest, two-player games, constants ci,co > 0, and
e = n~ %, it is NP-hard to distinguish between the following two cases:

* any two symmetric e-Nash equilibria have (1 -distance at most n~°2, and
* there are two symmetric e-Nash equilibria that have (1 -distance €)(1).

Our reduction proceeds similarly, but defines A to be the adjacency matrix of G’ with § € (0,1) in
each diagonal entry. Using A, we show that we can refine Lemma A.7 of McLennan and Tourky
[2010]. Before we state the key property we prove in Lemma A.11, we recall the following definition.
Definition A.10 (Well-supported NE). A symmetric strategy profile (z, x) is an e-well-supported
Nash equilibrium of the symmetric, identical-payoff game (A, A) if for all ¢ € [n],

z; >0 = (Az); > mz[u?(xw)j —e.
JEN

Lemma A.11. Suppose that the maximum clique in G is of size k. For any symmetric e—well—sugported
NE (&, 2) of (A, A) not supported on a clique of size k, we have u(&, &) < 1— £+ & — 20, 4 2¢.

Equipped with this property, we will see shortly that a similar argument to the one described earlier
concerning game (29) establishes Theorem 4.7. We proceed now with the proof of Theorem 1.6.

Proof of Theorem 1.6. It suffices to consider the antisymmetric function f (z,y) =y By—z Bz,

where symmetric matrix B is defined as in (29), using our new matrix A instead of A (see (32)). Any
e-first-order Nash equilibrium (x*, y*) of this (separable) min-max optimization problem induces,
two symmetric e-Nash equilibria—namely, (x*, *) and (y*, y*)—in the symmetric, identical-
interest, game (B, B). Using Theorem 4.7, the claim follows. O

In what follows, our goal is to establish Theorem 4.7, which forms the basis for Theorems 1.6 and 3.5.

. . ~ ! -~ . . . .
We consider the symmetric game (A, A ), where A € R"*" is a symmetric matrix. In particular,

since A = KT, the two players in the game share the same payoff matrix. The payoff matrix A is
constructed based on an underlying graph G = ([n], E) and a parameter ¢ € (0, 1) as follows:

6 ifi=j,
i = 1 if(i,j) € FE,
0 otherwise.

A
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Lemma A.12. Let (&,&) be an e-well-supported NE of the game where & is supported on a
max clique of size k, denoted as Cy, then the value w(&, &) is at least 1 — 1 + % - (%g)e and

- k—§ 1
& —x*|| < =5¢ where z* = 1 Zieck e;.
Proof. Since & is supported on CY, let ¢ be a coordinate that * puts the least probability mass on;
that is, 7 € argmin; .o, @;. Considering the utility of playing action a;, we have
u(ep, &) =& -6+ (1= &) - 1=1—&; + &0.

Moreover, let j € C); be a coordinate such that &; > % It should hold that

u(e],:&):lf(lf(;)ijglf +

9
.

el

Since (&, &) is an e-well-supported NE, we have
u(ej, &) > ule;, &) — e

1 6
= 1—%4—%4-621—@1‘4—3%(5

u(@, &) > ule;, &) —e

2(i+1i6-(k— )~5+<1—i—1i5-(k—1))—e

Assumption A.13. For the rest of this subsection, we set the parameters as follows:
e n>k>10;
ce<(1-6)/6n7;
e 5:=1/2.

(Using the symbolic value of § is more convenient in our derivations below.)
Proof of Lemma A.11. We letx* = % Zieck e;. The proof considers the following three cases:

* The symmetric e-well-supported NE (i, &) has support size less than k.
* The symmetric e-well-supported NE (&, &) has support size greater than k.

* The symmetric e-well-supported NE (&, &) has support size equal to k but is not supported
on a clique.

We proceed to show that for any of the three cases above, we would not be able to have a symmetric

e-well-supported NE that achieves value greater than 1 — % + % — 71/324 + 2¢, which is a contradiction.

* For the first case, since the support has size less than k, we can find a coordinate i € [n]
such that &; > ﬁ Therefore, the value of playing that action is

1 5
u(es &) <1— —— 4+ —>
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Since (&, &) is a symmetric e-well-supported NE, we have

u(@, @) < ue;, &) + €

IS S
P R A
15 2
<1140 9
S TRt E  nmm e

where in the last step we use Assumption A.13.

* For the second case, suppose |supp(&)| = m > k. By Lemma A.16, since the maximum
clique size is k, we can find a set S C supp(&) with at least m — k + 1 elements such that
for each coordinate ¢ € S, we can find a coordinate j € S such that Ki, i= Kj,i = 0. Now
we consider the utility of playing action a; and a;, we have

u(ei,:ﬁ): Z i‘l'Xz‘7l+i‘i'(5+i‘j-K1‘)j‘,
lesupp(@)—{4,j}
u(ej,zE): Z aA?l-Xj’l—‘r:i‘j-(S-i-i‘i-Xi’j.

lesupp(&)—{i,5}

Since (&, &) is a symmetric e-well-supported NE, we have

QATZ'XM—Fii'é—FJA}j'Kz‘JZ Z .i‘l'Kj,l—‘rij'(Sﬁ-ii'Ki’j—G

lesupp(®)—{i,j} lesupp(@)—{i,j}
= S Ay Y w Ay d-d 0
lesupp(®)—{i,5} lesupp(®)—{i,5}

Now, by moving all the probability mass from action j to action i, we form a new strategy
' =&+, e —&;-e;such that

u(az’7 iL'/) — u(:f:, i) = Q.i'j Z i‘l -Xu — Z i‘l -Xj’l + jS . .ﬁj -0
lesupp(@)—{4,j} lesupp(2)—{4,j}
ZQ.fﬁj'((i‘j—ii)6—€)+2§3i'i‘j'5
> 2830 — 2. (30)

Suppose there is a coordinate ¢ € S such that z; > #; then, from (30), we have

u(#, @) < (@’ @) = 2+ (—5)? 5+ 2

nk?2
1 5 2
—1--42_ 2.
TR

Ifz; < nlﬁ for any i € S, then there exists a coordinate [ ¢ S such that Z; >

1—(m—k+1) — S 1 L Th iderine the utili hen plavi .
2 ¢ + z=. Then, considering the utility when playing action ay,

T m—(m—k+1)
. 1 1 1 1
(e, @) <1 (1= —15) +0- (7 + 13)
—1_1+§_i+£
Tk Rk k2 k2
1 5 2
<l-oty e 31)

where in (31) we used Assumption A.13.

Since the [th action is played with positive probability and (&, &) is an e-well-supported NE,

we have u(#, ) < u(e;, &) +e<1—§+ % - n’g’;; + 2e.
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* For the third case, since the support is not on a clique, the exists at least coordinates ¢, j such

that &; > 0,%; > 0,and A; ; = A;; = 0. Similarly as case two, if &; > —> or &; > —,
then we have
L 1
u(@, &) <ulx*,z*)—2- (%) <0+ 2€
1 n 0 20 49
=1—-—4+—-——=+2¢
kE k  n2kt
_9._1
If #; < -7 and &; < —, then there exists an coordinate [ such that & > ! :7’;2 >
+ + 7= Same as (31), we conclude that u(&, &) is at most 1 — § + % - % + 2e.
The proof is complete. ]
We now construct a new symmetric identical payoff game (B, B), where B is defined as
Xl 1 X1,n r
B—| @ - Sl (32)
Ay - An,n T
r r v
Above, V =1 — % + % andr =1 — % + % — # + 3e. Similarly to our discussion after

Theorem A.8, it follows that the symmetric (exact) Nash equilibria of this game can only be in one of
the following forms:

1. (z*,z*) with z* == ep41;
2. (2, @) with &* == £ 37, e, where C, C [n] is a clique in G of size k ;
3. (x*, %) with &* := Je, 1 + 55 > ;cc, €i» where Gy C [n] is a clique in G of size k .

‘We now show the following lemma.

Lemma A.14. For any e-well-supported NE (&, &) in game (B, B), it holds that | & — z*|| ., < 2n°,
where (x*, x*) is an exact NE in one of the three cases above (1,2,3).

Proof. First, we observe that since V' > r, clearly (€,41,€n+1) is a e-well-supported NE; in

this case, ||’ — *||, = 0. Furthermore, since r = 1 — ¢ + % — ﬁ + 3¢, the game does

not attain any e-NE with value less than 1 — % + % — # + 2e. Suppose the game admits an

symmetric e-well-supported NE (&, &) where & is supported only on the first n actions. Since
w(@,®) >1—++2 - Fr+2>1—++2 — 2 4 2 taking =* as in (2), we conclude that
|2 — x*||, < %=3e < 2nS from Lemma A.11.

We proceed to the case where there is a mixed symmetric e-well-supported Nash (&, &) between
the last action and the rest of actions such that 0 < Z,+; < 1. Denote Z,+1 = « and 7(:) to

denote the renormalization operation. Since (7(Z(1...n]), 7(£[1...,))) is a symmetric strategy profile,
from McLennan and Tourky [2010, Proposition 4], we conclude that there is at least one coordinate
i € supp(€) — {n + 1} such that

. 1 6
uA (ei,n(iL‘[l...n])) <1- z + 7= V,

where w4 is the utility when the payoff matrix is A. Since (7(&[1...)), (&[1...])) is an e-well-
supported NE, we have
up(€e;, &) > up(ent1, &) —¢€
= (l-a) V4+a-r>1Q-a)r+aV —e¢
1 €
- a<-4—" 33
a<g 50V —1) (33)

where u g is the utility function when the payoff matrix is B. Plugging in the value of V and r and
using Assumption A.13, we find that o < % + 2nSe < %
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Now, observe that for any action in the support other than the last action a;, the utility of playing such
action up(a;, €) = ua(ai, &[1...,)) + ra. Since (&, &) is an e-well-supported Nash Equilibrium, we
have up(a;, &) > max; up(a;, &) — € for all pairs (i, ) € supp(&). Since a < 2, it follows that
ua (ai,n(&)1...n))) = max;jua (aj,n(&p...n))) — 3¢ for any pairs (i, j) € supp(&) — {n+1}. Thus,
we conclude that (n(i'[l‘..n]), N(Z[1...m) )) forms a symmetric 3e-well-supported Nash Equilibrium

in game (A, A). Further, the value of playing the last action is (1 — a)r + aV > r, and so the
only situation where there is a mixed Nash between the last action and the rest actions is when
wa (((#[1...n]), M(&[1...n]))) =7 — €. Therefore, by Lemma A.12 and Lemma A.11, we conclude
that &;...,,] is supported on a clique of size k. There exits at least one coordinate i € [n], with 0 < Z;

and &; > 1, such that

)

ua(ei,n(Zp..n))) > 1— =V
Since (&, &) is an e-well-supported Nash, we have u(e;, &) < u(e,+1,&) + ¢, and so this gives
l-a) V4+a-r<(l-a) r+a-V+e (34)
€
= > - 35
C=5 T v -1 (35)

Using Assumption A.13 and combining with (33),

n « +n .
€ €

By taking «* as in (3), we conclude that ||& — z*|| _ < 2nCe. O

Theorem A.15. For any e-NE (x,x) in game (B, B), it holds that ||x — x*||, < n°®\/€, where
(z*, x*) is an exact NE in one of the forms specified above (1,2,3).

Proof. Chen et al. [2009, Lemma 3.2] showed that from any ¢2/8-NE (z,v) in any two player
bimatrix game, one can construct (in polynomial time) an e-well-supported NE (', y’) such that
le — 2|, < {and |ly —y'|| < §. Setting ¢’ := % for the € defined in Lemma A.14, the proof
follows. O

The proof of Theorem 4.7 follows directly by observing that having two symmetric ¢-NE (x, ) and
(y,y) such that ||z — y|| > 2n°,/e would imply that the game (B, B) has two distinct exact NE,
which in turn implies that there is a clique of size k in the graph.

We next state and prove an auxiliary lemma that was used earlier.

Lemma A.16. For any graph G = (V, E) with n vertices, if the maximum clique has size k, then we
can form a set S C 'V of size at least n — k + 1 such that for any vertex i € S, there exists a vertex
j € S such that i and j are not connected.

Proof. Suppose the largest set S we can form has cardinality |S| < n — k + 1, this implies there is a
set 8’ =V — S with at least n — (n — k) = k vertices such that each vertex in S’ is connected to all
other vertices in G. However if this is the case, there is at least one vertex v ¢ S’ that are connected
to all vertices in S’. This contradicts the fact that maximum clique has size k. O

We proceed now with the proof of Theorem 1.6.

Proof of Theorem 1.6. Tt suffices to consider the antisymmetric function f(x,y) =y By —z Bz,
where symmetric matrix B is defined as in (29), using our new matrix A instead of A (see (32)). Any
e-first-order Nash equilibrium (x*, y*) of this (separable) min-max optimization problem induces,
two symmetric e-Nash equilibria—namely, (x*, *) and (y*,y*)—in the symmetric, identical-
interest, game (B, B). Using Theorem 4.7, the claim follows. O
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A.5 Proofs from Section 4.3

We conclude with the missing proofs from Section 4.3. We first introduce two lemmas which are
useful in later proofs.

The first key lemma, which mirrors Lemma 3.2, shows that, in an approximate Nash equilibrium of (4),
x ~ y and & ~ y. This is crucial as it allows us to construct—up to some small error—quadratic
terms in the utility function, as in our hardness result for symmetric min-max optimization.

Lemma A.17. Let (m*’y*7z*7§j*7g*,£*) be an 62_1\/'(15,/,1 eqmllbrmm Of (4) with 62 S 1/2. Then,
2" — y*|loo < 2€and ||2* — || < 2e.

Proof. For the sake of contradiction, suppose that || z* — y*|o > 2¢. Without loss of generality, let
us further assume that there is some coordinate ¢ such that 27 — y > 2¢. The payoff difference for
Player 2 when playing the ith action compared to action as,, 1 reads

ik A ko | A min|
u(w*?y*7Z*7x*7y*aai) - u(x*7y*az*7w*7y*aa/2n+l> = 1:”1 . ('r;k - y;k) - |Amin|
> IAmin|-
. A~ 2 . A A A
By Lemma A.1, it follows that 25, | < ﬁ < €2. Moreover, given that (z*, y*, z*, £*, §*, %)

is an €2-Nash equilibrium, we have
u(m*7y*7Z*7£*7:’3*72*) Zu(w*ay*wz*a:% 3 7
— (2%, Ay*) — (&", AG") + (z*, C&")

A
Bl ey~ 5(8,9,2) -

> Apin — (&%, Ag") + (2*, C&) + 2 Apin| — (2,9, 2) — €
= |Anin| — (@, AY") + (2", CZ*) — 6(2,9, 2) — €%
Now, considering the deviation of Player y to ¢y’ := x*,
< (z", Az") + 6Q‘Amin| — |Amin| + ¢
< —242¢2

_627

* ! % Ak Ak A% * * % Ak Ak A%
u<w yYy,2 ,,Y , 2 )—U(QZ Yy ,z2,,Y ,=2 )

A

which contradicts the fact that (x*, y*, z*, 2%, 9*, £*) is an €2-Nash equilibrium. We conclude that
lz* — y*|| ., < 2¢; the proof for the fact that ||Z* — §*|| ., < 2e follows similarly. O

Next, following the argument of Lemma 3.3, we show that, in equilibrium, Players z and 2 place
most of their probability mass on action a1, thereby having only a small effect on the game
between Players « and y vs. & and gy.

Lemma A.18. Let (x*,y*, 2%, &%, 9", 2%) be an €2-Nash equilibrium of (4) with ¢ < 1/10. Then,
zj,2; < 9eforall j € [2n)].

Proof. We will prove that z; < 9¢ for all j € [2n]; the corresponding claim for Player 2 follows
similarly. Fix ¢ € [n]. Lemma A.17 shows that |y — x| < 2e. We shall consider two cases.

First, suppose that |y — x¥| < ¢/2. Then,

* * - ~ * * * - ~ A' i *
’LL(ZB ,y*,z Y 7y*,a2n+1)—u(:l: Yy 2 ,T 7y*7ai) > |Amm| - ‘ I€nm| ( ;k_yl)
> ‘Amin| > 1
- 2 -2

By Lemma A.1, it follows that 2; < 2¢2, and similar reasoning yields 2,,,; < 2¢2. On the other
hand, suppose that |y — x| > /2. Without loss of generality, we can assume that y} — =7 > 0; the
contrary case is symmetric. Since x* € A™ and y* € A", there is some coordinate j € [n] such that
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y; — a% < 0. As before, by Lemma A.1, it follows that 27 < €? and 2;;  ; < €*. Now, we consider
the deviation

A" sy =y + (x] —y))ei + (i —z])e;.

Then, we have

u(w*7y’,z*,m* y* 73*)_ ( *’y* Z*,Zi'ﬁ*,y*,ZA*)
Anir
= (o Aly ) + Aol

(5 (27 —y) — (2 —y) + 2 (2 — )y — (25 — )
|Amm‘

€

* * Amm *
=(z*, A(y' —y )>+%( Sur —u) 2 =)+ A — ) + 2 (G — b))

( n+z(yz (y;k - ‘r;k)) + ZnJr](y ‘T - (y] - mg)))

Amln
<Ade|Apin| + —— l | ( 2 e+ 25, (—%)—I—EQ-ZE)

1
< - (2 Zn4i 46 —46) ‘Amin|-

At the same time, since (x*, y*, 2*, &

*

,U*, 2*) is an €2-Nash equilibrium, we have
7y*7£*)_u(m*ay* Z :ﬁ y*aﬁ*) Z_e2~
Thus,
1 2% 2 2 2%
3oni ~ de” —de | [Anin| < €€ = 2, < 9e.
We conclude that 27 < €% and 27, ; < 9e. The case where 2} — y; > 0 can be treated similarly. [

Armed with those two basic lemmas, we are ready to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. Suppose that (z*,y*, z*, £*,9*, £*) is an ¢2-Nash equilibrium. We have
that for any y’ € A",

* * Amln = 3 *
(", Ay") < (=", Ay') ‘ | (Zz (yi — i) + 2y — yi)> +é. (36)

Moreover, considering a deviation from z* to y’,

(", Ay") + (z7, Cz") <(y',Ay") + (y', Ca")
|Amm‘ 2% / * 2%k * / 2
. ; 2y — o)) + 2w — i) | + € 37

Summing (36) and (37),
2(x", Ay") + (z",Ca") < (y,A(z" +y")) + (y',Ca")

|Amm|
Z yz - 1‘ + Zn+z( Ly —Y; ) + 262

<2(x*, Ay') + (y', C&*) + 2en|Apin| + IAm”"( 2n - 9e - 2€) + 26>
<2(z*,Ay') + (y,Cd >+(38n+2)|Amin|e. (38)

Moreover,
(", Ax™) = (", Ay") + (&, A(x" — y")) < (", Ay™) + 2| Apin|ne. 39)

Combining (38) and (39), we get that for all y’ € A™,

1 1
(x*, Az*) + §<:v*, Cz*) < (y',Az*) + §<y’, Cz*) + (21n + 1)|Apinle. (40)
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Similarly, we can show that for all &’ € A™,

1 1
(~&", A®") + (2", Ca") = —(@, Ad") + 5(2",C&) — (21n+ | Amule.  (41)

Taking ¥’ = &’ in (40) and summing with (41), we get that for all ' € A",
1
<:i:’,Am*)+<:i:’,A:i:*>+§(<:i’, Cz*)+ (2, Cx™))+ (42n+2)|Apminle > (x*, Ax*)+ (2", Az*),

where we used the fact that C is skew-symmetric. Now, using the fact that the Nash equilibrium is
symmetric, so that x* = &*, we have

1
(2, Ax*) + 5(5;’, Cz*) + (21n + 1)|Ane > (¥, Ax™)

> (x*, Azx™) + %(m*, Cz™). (42)

Setting A := —1(R+ R")and C := R — R, (42) shows that

(@', Rx*) < (z*,Rx*) + (21n + 1)|Apin€
forany &’ € A"™; ergo, (x*, x*) is a symmetric (21n+ 1)| A in |e-Nash equilibrium of the symmetric
(two-player) game (R, RT), and the proof follows from Theorem 2.2. O
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Answer: [Yes]
Justification: We provide proofs for all the claims made in the abstract and introduction.
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made in the paper.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We do not foresee any direct societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The development of the paper does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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