
1

From Medical LLMs to Versatile Medical Agents:
A Comprehensive Survey

Yucheng Zhou, Huan Zheng, Dubing Chen, Hongji Yang, Wencheng Han, and Jianbing Shen

Abstract—The integration of Large Language Models (LLMs) into healthcare has catalyzed a significant technological leap, evolving
from text-based Medical LLMs to Multimodal Medical LLMs (MLLMs) capable of interpreting complex clinical imaging. Despite these
advancements, current models predominantly function as passive knowledge engines, proficient in answering queries but lacking
the autonomy to navigate the dynamic, longitudinal nature of real-world patient care. This limitation has spurred a paradigm shift
toward Medical Agents: proactive systems engineered to sense, reason, plan, and execute actions within clinical environments. In this
survey, we provide a comprehensive roadmap of this evolutionary trajectory. We first review the foundational architectures and training
strategies of state-of-the-art Medical LLMs and MLLMs. Subsequently, we formalize the construction of Medical Agentic Systems,
distinguishing between the cognitive frameworks required for independent Single-Agent Systems and the collaborative paradigms
of Multi-Agent Systems that simulate multidisciplinary clinical teams. Central to our analysis is the evolution of medical reasoning,
which we categorize into three distinct stages: Core Reasoning for internal deliberation, Augmented Reasoning for tool-mediated
and multimodal grounding, and Collective Reasoning for distributed medical intelligence. Finally, the survey examines the necessary
transition in evaluation methodologies, from static benchmarks to interactive simulations, and discusses pressing open challenges,
offering a forward-looking perspective on building reliable, safe, and clinically impactful medical AI. Project sources: https://github.com/
yczhou001/Awesome-Medical-LLM-Agent.

Index Terms—Medical Large Language Models, Medical Agents, LLM Reasoning, Multimodal AI for Healthcare, Medical Multi-Agents
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1 INTRODUCTION

The integration of Artificial Intelligence into healthcare has
undergone a transformative evolution. Initially, the emergence
of Large Language Models (LLMs) marked a significant leap
in processing biomedical knowledge. Models such as Med-
PaLM [1], [2] and PMC-LLaMA [3] demonstrated expert-
level proficiency in medical question answering by leveraging
vast textual corpora. Recognizing that clinical practice is
inherently multimodal, relying on radiology, pathology, and
vital signs, this paradigm expanded into Multimodal Medical
LLMs (MLLMs). By fusing vision and language encoders,
systems like LLaVA-Med [4] and Med-Flamingo [5] enabled
automated report generation and visual diagnostic assistance,
bridging the gap between textual records and pixel-level evi-
dence.

Despite these capabilities, existing LLMs and MLLMs
largely remain passive information processors [6], [7]. They
excel at answering queries given a static context (“What is
the diagnosis?”) but lack the agency to navigate the dynamic,
longitudinal, and interactive nature of real-world clinical care.
A physician’s role extends beyond knowledge retrieval; it
involves active information seeking, tracking long-term patient
states, utilizing tools (e.g., ordering labs, prescribing drugs),
and coordinating with other specialists. The inability of stan-
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dard models to plan, execute, and self-correct limits their
utility to that of a sophisticated search engine rather than an
autonomous clinical partner.

This limitation has catalyzed a paradigm shift from respon-
sive models to proactive Medical Agents, intelligent systems
endowed with the capacity to sense, reason, and act. Un-
like their predecessors, Medical Agents are architected with
a perception-action loop, maintaining a memory of patient
history, formulating multi-step plans, and executing actions
through external tools [8], [9]. Furthermore, this evolution
is not limited to individual cognition. Inspired by Multidis-
ciplinary Teams (MDTs) in hospitals, recent research has
pivoted towards Medical Multi-Agent Systems (MAS), where
specialized agents (e.g., a Diagnostician, a Pharmacist, and a
Radiologist) collaborate, debate, and negotiate to solve com-
plex medical problems, creating a form of collective clinical
intelligence [10], [11].

The engine driving this transition from static models to
autonomous agents is the evolution of medical reasoning. We
observe a clear trajectory in how reasoning is enhanced: from
Core Reasoning that improves internal deliberation via tech-
niques like Chain-of-Thought [12]; to Augmented Reasoning
that grounds agents in reality through Retrieval-Augmented
Generation (RAG) and tool use [13]; and finally to Collective
Reasoning, where intelligence emerges from the interaction
and consensus of multiple agents [14]. This progression is
critical for transforming AI from a black-box predictor into a
transparent, reliable, and verifiable participant in the medical
workflow.

Contributions. To the best of our knowledge, this is the first
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Fig. 1. The evolutionary landscape of Medical AI. This figure illustrates the comprehensive progression from
foundational Medical LLMs and Multimodal LLMs (VLMs) (green branches) to proactive Medical Agentic Systems
(blue branches), categorized into single-agent and multi-agent architectures. The rightmost branches (orange)
depict the concurrent development of specialized benchmarks and simulation environments essential for evaluating
these advanced capabilities. Representative models and frameworks are mapped onto their respective evolutionary
branches, highlighting the rapid expansion of the field.

survey that systematically bridges the gap between Medical
LLMs and Medical Agentic Systems. Our key contributions
are summarized as follows:

• We chart the evolutionary path from static Medical LLMs
and MLLMs to autonomous Medical Agents, identifying
the limitations of passive models that necessitated this
paradigm shift.

• We propose a structured classification for Medical Agen-
tic Systems, distinguishing between the cognitive archi-
tectures of Single-Agent systems and the collaboration
paradigms of Multi-Agent frameworks.

• We introduce a three-stage taxonomy for medical rea-
soning, Core, Augmented, and Collective, providing a
theoretical basis for understanding how AI intelligence
is scaling in healthcare.

• Beyond models, we extensively survey the enabling
ecosystem, including tool-use environments, simulation
platforms, and the next-generation evaluation benchmarks
required for agentic capabilities.

Paper Organization. The remainder of this survey is
organized as follows. Section 2 reviews the foundational
Medical LLMs and Multimodal models. Section 3 formalizes
the construction of Medical Agentic Systems, detailing both
single- and multi-agent architectures. Section 4 explores the
evolution of reasoning techniques that power these agents.
Section 5 discusses clinical applications and the shift in
evaluation paradigms. Finally, Section 6 outlines challenges
and future research directions.

2 MEDICAL LARGE LANGUAGE MODELS

The adaptation of Large Language Models (LLMs) to the
medical domain represents a significant research frontier,
driven by the potential to transform clinical workflows, aug-
ment diagnostic processes, and democratize access to med-
ical knowledge [20]. This endeavor is non-trivial, as the
medical field is characterized by its distinct epistemological
complexity, stringent requirements for factual accuracy, and
the imperative for safety and reliability [1]. Consequently,
the development of medical LLMs necessitates specialized
methodologies that extend beyond the direct application of
general-purpose models, a challenge that has spurred a wealth
of innovation [36].

This section provides a systematic overview of the progress
in this domain. We first examine the development of unimodal
LLMs, which focus on the interpretation and generation of
clinical text. We then transition to the more recent and complex
domain of multimodal LLMs, which integrate visual informa-
tion from medical imaging with textual understanding. Our
analysis will focus on the evolution of model architectures,
training paradigms, and the increasing specialization required
for clinical viability, thereby establishing the technical foun-
dations for the medical agents discussed subsequently.

2.1 Medical LLMs

The foundational efforts in medical LLMs have centered on
leveraging their inherent capacity for processing text. The
primary objective is to develop models that can comprehend
and generate nuanced clinical language as found in electronic
health records (EHRs), biomedical literature, and clinical
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TABLE 1
Representative medical LLMs and their characteristics.

Model Name Base Model Parameter (B) Training Dataset Training Method Release
Med-PaLM [1] PaLM 540 Medical QA SFT 22/12
ChatDoctor [15] LLaMA 7 Patient–doctor Dialogues SFT 23/03
Baize [16] LLaMA 7 Quora, MedQuAD SFT 23/04
MedAlpaca [17] LLaMA 7 / 13 Medical QA and Dialogues SFT 23/04
PMC-LLaMA [3] LLaMA 7 / 13 Biomedical academic papers PT, SFT 23/04
DoctorGLM [18] ChatGLM 6 Chinese Medical Dialogues SFT 23/04
Med-PaLM 2 [2] PaLM 2 340 Medical QA SFT 23/05
HuatuoGPT [19] BLOOMZ 7 Conversation data and Instruction SFT, RL 23/05
GatorTronGPT [20] GPT-3 5 / 20 Clinical Text from UF Health, Pile PT 23/06
ClinicalGPT [21] BLOOM 7 Three MedQA, MD-EHR, MedDialog SFT, RL 23/06
Zhongjing [22] Ziya-LLaMA 13 Medical books, health records, clinical reports PT, SFT, RL 23/08
CPLLM [23] LLaMA 2 13 eICU-CRD, MIMIC-IV SFT 23/09
BianQue [24] ChatGLM 6 BianQueCorpus SFT 23/10
Qilin-Med [25] Baichuan 7 Medical QA, plain texts, knowledge graphs PT, SFT, RL 23/10
AlpaCare [26] LLaMA 7 / 13 MedInstruct-52k SFT 23/10
HuatuoGPT-II [27] Baichuan 2 7 / 13 Web Corpus, Books, Literature, Encyclopedia SFT 23/11
MEDITRON [28] LLaMA 2 7 / 70 GAP-Replay, MedMCQA, PubMedQA, MedQA PT, SFT 23/11
AMIE [29] PaLM 2 340 MedQA, MultiMedBench, MIMIC-III, RealWorld Dialogue SFT 24/01
OncoGPT [30] LLaMA 7 Oncology conversations SFT 24/02
BioMistral [31] Mistral 7 PubMed Central PT, SFT 24/02
BiMediX [32] Mistral 8x7 1.3 million English-Arabic dataset SFT 24/02
Me-LLaMA [33] LLaMA 2 13 / 70 Pile, MIMIC-III, MIMIC-IV, MIMIC-CXR, RedPajama PT, SFT 24/02
Apollo [34] Qwen 7 ApolloCorpora PT, SFT 24/03
BioMedLM [35] Transformer 2.7 PubMed Center, Pile PT, SFT 24/03
Aloe-Alpha [36] LLaMA-3 8 Medical QA, CoT, synthetic data PT, SFT, RL 24/05
MedGo [37] Qwen2 72 14B tokens unsupervised, CMCQA, drug-instruction PT, SFT, RL 24/10
FineMedLM-o1 [38] LLaMA 3.1 8 FineMed SFT, RL 25/01
MedS3 [39] LLaMA 3.1 8 Hybrid Data SFT, RL 25/01
Hengqin-RA-v1 [40] LLaMA 7 HQ-GCM-RA-C1 SFT 25/01
Hypnos [41] LLaMA 7 Medical QA, Synthetic QA SFT 25/01
Citrus [42] LLaMA 3 / Qwen 2.5 70 Expert reasoning corpus, diagnostic dialogue (JMED) PT, SFT, RL 25/02
ELMTEX [43] LLaMA 3.1 / 3.2 1 / 3 / 8 English clinical summaries (60k), German translations (24k) SFT 25/02
Baichuan-M1 [44] Baichuan 14 20T general + medical tokens SFT, RL 25/02
MedicalGLM [45] ChatGLM 6 Pediatric QA, MKP dataset SFT 25/03
Med-U1 [46] Qwen2.5 3 / 7 Hybrid Data RL 25/06
MIRIAD [47] LLaMA 3.1 8 5.82M medical QA pairs SFT 25/06

dialogues. The evolution of these models can be categorized by
their core development strategies and the advanced techniques
used to refine their clinical capabilities.

2.1.1 From Generalists to Specialists
Three principal strategies have emerged for adapting LLMs to
the medical domain, differing in their computational require-
ments and the depth of domain-specific integration.

Supervised Fine-Tuning (SFT). A primary paradigm for
domain adaptation is the supervised fine-tuning of general-
purpose foundation models. This approach capitalizes on the
extensive world knowledge and linguistic capabilities of pre-
trained models, such as LLaMA or ChatGLM, and specializes
them using curated medical datasets. This has been effective
for developing conversational systems fine-tuned on patient-
doctor dialogues [15], [17], [24], including computationally ef-
ficient methods for non-English languages [18]. The quality of
the tuning data is paramount; for instance, high-quality multi-
turn dialogue corpora have been generated through automated

self-chat protocols to train models like Baize [16].

Domain-Specific Continued Pre-training. To imbue mod-
els with a more profound and comprehensive domain-specific
lexicon and knowledge base, a second strategy involves
continued pre-training (CPT) on large-scale medical corpora
before SFT. This methodology has been successfully ap-
plied by further training foundational models on extensive
biomedical literature, such as PubMed, resulting in specialized
base models like PMC-LLaMA [3], MEDITRON [28], and
BioMistral [31]. This intensive exposure to domain literature
establishes a robust knowledge foundation, which has been
shown to improve performance on downstream clinical tasks.
The culmination of this approach can be seen in large-scale
efforts such as Me-LLaMA [33], which utilized a 129-billion-
token medical corpus for pre-training.

De Novo Training. A third, albeit resource-intensive, path-
way involves training models from scratch (de novo) on
domain-specific corpora. This approach aims to create models
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whose architectures and learned representations are optimally
tailored to the unique characteristics of medical data. Notable
examples include GatorTronGPT [20], trained on a massive
clinical and general text corpus, and BioMedLM [35], which
demonstrated the effectiveness of this approach even at a
smaller scale (2.7B parameters). The state-of-the-art in this
category is represented by Baichuan-M1 [44], trained on
approximately 20 trillion tokens to achieve a balance of
specialized medical expertise and broad general capabilities.

2.1.2 Enhancing Clinical Acumen: Training Techniques

Beyond initial adaptation, significant research has focused
on methodologies to elevate model performance from simple
knowledge recall to sophisticated clinical reasoning and safe
application.

Instruction Tuning and Data-Centric Paradigms. Instruc-
tion tuning has proven critical for aligning model behavior
with the specific formats and expectations of clinical tasks.
Seminal work on Med-PaLM and its successor, Med-PaLM 2,
demonstrated substantial performance improvements on stan-
dardized medical qualifying exams through this technique [1],
[2]. The efficacy of this method is highly dependent on the
quality of the instruction dataset, a principle demonstrated by
AlpaCare [26], which achieved significant improvements using
the MedInstruct-52k dataset. Data-centric innovations, such as
the unified one-stage training protocol of HuatuoGPT-II [27],
have also emerged to improve the efficiency and stability of
knowledge integration.

Knowledge Grounding and Reasoning Enhancement. A
fundamental limitation of LLMs is their reliance on static,
parametric knowledge, which can lead to factual inaccuracies
or “hallucinations” [48]. To address this, Retrieval-Augmented
Generation (RAG) has been adopted, equipping models with
mechanisms for real-time information retrieval from external
knowledge sources, a technique utilized by models like Chat-
Doctor [15] and Qilin-Med [25]. The development of large-
scale, high-quality knowledge sources, such as the MIRIAD
dataset of 5.82 million question-response pairs derived from
peer-reviewed literature, is instrumental for grounding model
outputs in evidence-based medicine [47].

Alignment with Human Preferences and Reasoning. En-
suring that model outputs are not only factually correct but also
safe and exhibit sound reasoning is a paramount concern. To
this end, alignment techniques such as Direct Preference Opti-
mization (DPO) and Reinforcement Learning from Human/AI
Feedback (RLHF/RLAIF) have been employed [38], [36].
Models like HuatuoGPT [19] and Zhongjing [22] specifically
utilized RL to align with expert preferences. More advanced
paradigms seek to explicitly structure the model’s reasoning
process. These include frameworks that incentivize unified
reasoning across diverse tasks through reinforcement learn-
ing [46], or employ structured search methods to construct
verifiable, step-by-step logical chains, a concept termed “Slow
Thinking” [39]. Other research aims to close the gap between
AI and expert cognition by training models on synthetic data
that explicitly mimics physicians’ cognitive pathways [42].

2.1.3 Specialization and Application Frontiers
The maturation of the field is marked by a trend towards spe-
cialization, with models being developed for specific linguistic
contexts, medical disciplines, and clinical functions.

Linguistic and Regional Specialization. To ensure global
equity and clinical relevance, models are being developed for
diverse linguistic and cultural contexts. This includes systems
tailored for Chinese medical dialogue [18], [37], Traditional
Chinese Medicine [22], [40], and the Arabic language through
bilingual Mixture-of-Experts architectures [32]. Large-scale
initiatives like the Apollo project aim to democratize medical
AI by supporting multiple major world languages [34].

Sub-Discipline Specialization. Models are increasingly be-
ing focused on specific medical sub-disciplines to provide
deeper, more relevant expertise. Examples include systems
designed for oncology conversations [30], anesthesiology de-
cision support [41], and pediatric question answering [45].
This specialization allows for training on highly specific data,
leading to greater accuracy and utility within a defined clinical
scope.

Functional Specialization. Beyond conversational roles,
LLMs are being functionally specialized for structured clinical
tasks. Research has demonstrated their efficacy in clinical
prediction, such as forecasting disease onset or hospital read-
mission [23]. Another critical function is structured informa-
tion extraction from unstructured clinical notes, for which
dedicated workflows are being developed to enhance data
interoperability and support clinical validation [43].

2.2 Multimodal Medical LLMs
A significant portion of diagnostic data in medicine is visual.
Multimodal Large Language Models (MLLMs), which inte-
grate vision and language processing [79], [80], represent a
critical evolution towards a more comprehensive clinical AI.
These models aim to reason jointly over medical images and
associated textual information.

2.2.1 Architectural Blueprint: Vision-Language Fusion
The design of medical MLLMs has converged on a modular
architecture that effectively combines vision and language
processing components.

The De Facto Architecture. The predominant architecture
for medical MLLMs is a tripartite design consisting of: (1)
a Vision Encoder for feature extraction; (2) an LLM for
reasoning; and (3) a Connector module to align the two
modalities. This modularity allows for leveraging powerful,
independently pre-trained components. This design is instan-
tiated in numerous works [4], [54], [57], including systems
optimized for efficiency by freezing LLM parameters during
training [56] or by adopting a linear-attention design [81].

Adaptation to Diverse Imaging Modalities. A key archi-
tectural challenge lies in adapting to the wide array of medical
imaging modalities. For 2D images, specialized models have
been developed for radiography [50], digital pathology [52],
[62], and dermatology [65], [67]. The analysis of volumetric
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TABLE 2
Overview of medical vision-language models.

Model Name Vision Encoder LLM Backbone Training Dataset Release
MedBLIP [49] EVA-CLIP-ViT BioMedLM MedNLI, NACC, OASIS 23/05
XrayGLM [50] ViT-G ChatGLM MIMIC-CXR, OpenI 23/05
MedVInT [51] PMC-CLIP-ViT PMC-LLaMA PMC-VQA 23/05
PathAsst [52] PathCLIP-ViT Vicuna PathCap, PathInstruct 23/05
PCLMed [53] EVA-CLIP-ViT ChatGLM ImageCLEF 2023 caption prediction 23/06
LLaVA-Med [4] CLIP-ViT LLaMA PMC-15M, VQA-RAD, SLAKE, PathVQA 23/06
XrayGPT [54] MedCLIP-ViT Vicuna MIMIC-CXR, OpenI 23/06
Med-Flamingo [5] CLIP-ViT LLaMA MTB, PMC-OA 23/07
Med-PaLM M [29] ViT-e, ViT-22B PaLM MultiMedBench 23/07
RadFM [55] 3D ViT Med-LLaMA-13B RadMD, RadMD 23/08
R2GenGPT [56] Swin Transformer LLaMA 2 IU Xray, MIMIC-CXR 23/09
Qilin-Med-VL [57] ViT LLaMA-2-Chinese Med-VL 23/10
MAIRA-1 [58] RAD-DINO Vicuna MIMIC-CXR 23/11
PeFoM-Med [59] EVA-CLIP-ViT LLaMA-2 PMC-OA, VQA-RAD 24/01
CheXagent [60] EVA-CLIP-ViT Mistral KInstruct 24/01
M3D-La-Med [61] 3D ViT LLaMA-2 M3D-Data 24/03
PathChat [62] UNI LLaMA 2 Med, WSI 24/06
HuatuoGPT-Vision [63] CLIP-ViT Yi-1.5 MedVision, HuatuoGPT-II 24/06
miniGPT-Med [64] EVA-CLIP-ViT LLaMA 2 MIMIC, NLST, SLAKE, RSNA, RadVQA 24/07
SkinGPT-4 [65] ViT LLaMA 2 ISICON, Dermnet 24/07
LLaVA-Med++ [66] CLIP-ViT LLaMA 2 PMC-Trinity-25M, VQA-RAD, SLAKE, PathVQA 24/08
MpoxVLM [67] CLIP + ViT LLaMA-2-7B Mpox skin lesion VQA 24/11
UMed-LVLM [68] PMC-CLIP-ViT MedVInT MAU dataset 25/01
MedVLM-R1 [69] ViT (Qwen2-VL-2B) Qwen2-VL-2B Radiology VQA 25/02
HealthGPT [70] CLIP-L/14 phi-4 Unified comprehension & generation dataset 25/02
RetinalGPT [71] ViT LLaMA Retinal image analysis 25/03
Med-R1 [72] ViT (Qwen2-VL-2B) Qwen2-VL-2B Multi-modal medical VQA 25/04
PathVLM-R1 [73] ViT (Qwen2.5-VL-7B) Qwen2.5-VL-7B Pathology VQA 25/04
QoQ-Med [74] ViT (Qwen2.5-VL) + ECG-JEPA Qwen2.5-VL 1D ECG, 2D/3D medical images, text 25/05
Reg2RG [75] ViT3D + Mask Encoder LLaMA2-7B Region-grounded CT report generation 25/05
ChestGPT [76] ViT (EVA-ViT) LLaMA-2 Chest X-ray disease detection 25/07
MCA-RG [77] ResNet-50 LLaMA2-7B Radiology Report 25/07
MedGemma [78] MedSigLIP Gemma 3 4B / 27B Multimodal medical reasoning data 25/07

3D data, such as CT and MRI, requires more complex vision
backbones. Solutions have included novel modules to bridge
3D data with 2D encoders [49] or the direct integration of
3D-aware vision transformers [55], [61].

Towards a Generalist Biomedical AI. The ultimate objec-
tive is a unified model capable of processing and reasoning
over the full spectrum of biomedical data. Pioneering work
produced systems that can jointly process text, medical im-
ages, and genomics within a single framework [29]. More
recent architectures are expanding this to include other data
types, such as time-series ECG signals, demonstrating the
feasibility of a truly generalist, all-modality clinical reasoning
model [74].

2.2.2 Core Capabilities and Clinical Applications

The integration of vision enables MLLMs to perform a range
of clinically relevant tasks that are inaccessible to their uni-
modal counterparts.

Automated Report Generation. A principal application

is the automation of radiology report generation. Initial ap-
proaches focused on generating descriptive text from global
image features [53], [58]. More sophisticated methods now
enhance clinical accuracy by explicitly aligning visual features
with a medical concept library [77] or by grounding the gen-
erated text in specific anatomical regions of interest, thereby
improving the report’s fidelity and interpretability [75].

Interactive Diagnostic Assistance. MLLMs can function
as interactive assistants for clinicians, facilitating visual ques-
tion answering (VQA). The development of large-scale VQA
datasets has been instrumental for training such models [51].
This has led to the creation of specialized conversational
assistants for disciplines like pathology [62] and ophthalmol-
ogy [71], as well as few-shot learners capable of generating
rationales for their answers [5].

Abnormality Detection and Localization. For diagnostic
utility, identifying and localizing abnormalities is crucial.
MLLMs are being designed to output not just a diagnosis but
also spatial coordinates, often as bounding boxes, correspond-
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ing to pathological findings [64], [76]. Training paradigms
are also being refined to explicitly improve this capability,
for instance, by incorporating an “abnormal-aware” feedback
mechanism that rewards the model for correctly attending to
and identifying pathological regions [68].

2.2.3 Data Imperative and Training Paradigms
Progress in medical MLLMs is fundamentally coupled with
advancements in data curation and the sophistication of train-
ing strategies.

The Role of Large-Scale Annotated Datasets. The per-
formance of MLLMs is contingent upon the availability of
large-scale, high-quality, paired image-text data. The field has
progressed from leveraging existing figure-caption pairs in
biomedical literature to the systematic construction of massive
datasets. An important innovation is the use of powerful
MLLMs themselves to re-format and de-noise web-crawled
data, creating high-quality VQA pairs at scale [63]. The cur-
rent state-of-the-art in data curation involves building datasets
with multi-granular annotations, providing both image-level
labels and fine-grained, region-of-interest annotations, which
enables the training of more precise and versatile foundation
models [66].

Evolution of Training Strategies. Training paradigms have
evolved in sophistication. While a two-stage process of vision-
language pre-training followed by instruction fine-tuning re-
mains a common and effective strategy [4], [60], Parameter-
Efficient Fine-Tuning (PEFT) methods are increasingly used to
reduce the substantial computational burden [82]. A significant
recent trend is the adoption of reinforcement learning to move
beyond simple pattern matching towards explicit reasoning.
RL-based frameworks are being used to guide models to
generate interpretable, human-aligned reasoning paths, which
is considered a critical step for enhancing the trustworthiness
and clinical adoption of these systems [69], [73], [72].

2.3 From Foundational Models to Autonomous
Agents: A Necessary Leap
The rapid development of unimodal and multimodal medical
LLMs has equipped the field with powerful tools for knowl-
edge synthesis and data interpretation. Through advanced
training paradigms, these models can achieve expert-level per-
formance on a range of specialized tasks. However, their role
remains that of a sophisticated assistant, not an autonomous
partner. They can answer complex questions about a given
clinical context, but they cannot independently formulate a
diagnostic plan, actively seek out new information using
external tools, or manage a patient’s care over time. This
fundamental limitation in agency, the capacity to sense, reason,
and act proactively, motivates the critical evolutionary leap
from knowledge-rich models to goal-oriented Medical Agents,
which we will explore in the next section.

3 MEDICAL AGENTIC SYSTEM CONSTRUC-
TION
This section provides a comprehensive overview of Medical
Agentic Systems, detailing their fundamental concepts, the

Medical Multi-Agent System

Patient Medical MAS Results

Manager Agent

Planning Agent

Medical Agentic System

Patient Agentic System Results

Perception

Plan
Action

Autonomy

Medical Single-Agent System

Patient Medical SAS Results

Planner

Medical Tools

Memory

Fig. 2. The architectural progression toward au-
tonomous Medical Agents. The diagram charts the
paradigm shift from basic components to complex sys-
tems. It begins with the fundamental Medical Single-
Agent System, which integrates planning, memory, and
tools. This evolves into the more sophisticated Medi-
cal Multi-Agent System, where multiple agents collab-
orate under coordination to handle complex workflows.
Both architectures are implementations of the overarching
Medical Agentic System, defined by its autonomous
perception-plan-act loop.

core components of an individual agent, and the prevalent
architectural designs that enable complex, collaborative be-
haviors.

3.1 Conceptual Foundations: From Language Mod-
els to Agentic Systems
The paradigm shift from passive, information-processing mod-
els to proactive, autonomous agents represents a fundamen-
tal advancement in medical AI. This evolution necessitates
a clear conceptual framework to systematically analyze the
capabilities and architectures of these emerging systems. This
subsection delineates the foundational concepts, establishing
a clear distinction between Medical Large Language Models
(LLMs) as knowledge engines and Medical Agents as goal-
oriented actors within broader agentic systems.

3.1.1 Definition

Medical LLM. The foundation of this field is the Medical
Large Language Model (Medical LLM), a sophisticated AI
model, typically based on a transformer architecture, that has
been trained or fine-tuned on vast corpora of medical literature
and clinical data. Its primary strength lies in understanding and
generating medical text, enabling it to answer questions, sum-
marize records, and assist in documentation [83], [84]. Some
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Fig. 3. Core capabilities unlocked by the paradigm shift
to autonomous Medical Agents, centered on the principle
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proved Process Transparency ensuring traceable and
auditable reasoning; (3) Continuous Evolution through
ongoing learning and adaptation; and (4) Collaborative
Reasoning in multi-agent systems to solve complex clin-
ical problems.

are enhanced with vision capabilities, becoming multimodal
models [85]. However, a Medical LLM is fundamentally a
reactive tool; it processes inputs and generates outputs but
requires explicit, step-by-step human guidance for complex
tasks. Even when augmented with retrieval capabilities (RAG),
which grounds its knowledge, it primarily functions as a
powerful reasoning engine on provided context, lacking true
autonomy and the ability to execute multi-step plans [13].

Medical Agent. A Medical Agent represents a significant
leap forward. It is an AI system that uses a Medical LLM
as its core reasoning engine, but is further endowed with a
framework for autonomous operation. Unlike a passive LLM
that merely reacts to queries, a Medical Agent is proactive: it
can perceive its clinical environment, autonomously formulate
multi-step plans, maintain memory of past interactions, and
actively leverage external tools to achieve specific objec-
tives [83]. This shift from reactive information processing
to proactive problem-solving is the defining characteristic of
agency.

Medical Agentic System. This is the overarching term
for any system built around one or more Medical Agents.
A Single-agent System features one agent working au-
tonomously to complete a task. A Multi-agent System
(MAS) involves multiple agents collaborating, representing the
most sophisticated architectural paradigm. The key distinction
throughout this spectrum is the degree of agency, the capacity
to operate proactively and autonomously to effect change or

Agent Persona and 

Medical Specialization

Medical Task PlanningMemory Mechanism

External Medical 

Tool and Knowledge

Agent Persona

Medical Specialization

Role Definition

Experiential Learning

Long-Term MemoryShort-Term Memory Task DecompositionPlan Orchestration

Tool UtilizationModel Integration

Hierarchical Planning

Knowledge Retrieval

Fig. 4. Architectural blueprint of a Medical Single-
Agent System (SAS). The core components include a
cognitive engine for Medical Task Planning and a dual
Memory Mechanism for both short-term context and
long-term learning. The agent’s behavior is defined by its
Persona and Medical Specialization, and its capabilities
are extended via Tool Utilization to interact with external
data and knowledge sources.

achieve goals within an environment.

3.1.2 Significance
The shift towards agentic systems offers capabilities that are
critical for real-world healthcare applications and addresses
the limitations of passive LLMs:

Enhanced Autonomy. Agents can independently plan and
execute multi-step clinical workflows, such as performing a
differential diagnosis or managing a patient’s care pathway, by
dynamically interacting with their environment and tools [9],
[86]. This moves beyond simple Q&A to actively participating
in and driving clinical processes.

Better Medical Tool Utilization. Agents excel at dy-
namically selecting and utilizing a diverse array of external
medical tools, from live databases and clinical calculators to
specialized AI models for image analysis. This ensures their
outputs are grounded in current, verifiable, and quantitative
data, overcoming the static knowledge limitations of LLMs
and reducing factual errors [87], [88], [89].

Collaborative Reasoning. Multi-agent systems simulate the
collaborative intelligence of human multidisciplinary teams
(MDTs). This architecture facilitates a richer reasoning pro-
cess through structured debate, role-playing, and consensus-
building, allowing for the exploration of diverse hypotheses
and the mitigation of individual cognitive biases, a feat difficult
for a monolithic LLM to achieve [90], [91], [11].

Continuous Evolution. Agentic frameworks can be de-
signed for continuous learning. By interacting within simulated
environments and reflecting on outcomes, agents can refine
their strategies and improve performance over time. This is
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Fig. 5. Core collaboration paradigms for a Medical Multi-
Agent System (MAS). (1) Centralized Collaboration
employs a ‘Manager Agent‘ to orchestrate the workflow
in a top-down manner. (2) Decentralized Collaboration
enables emergent consensus through peer-to-peer agent
interaction without a central controller. (3) The Hybrid
Architecture strategically balances centralized coordi-
nation with flexible, direct inter-agent communication for
enhanced adaptability.

a key feature for systems that must adapt to new medical
knowledge and evolving clinical standards [10], [92].

Improved Process Transparency. By design, agents oper-
ate through explicit steps of planning and action. This creates
a traceable log of their “thought process”, offering greater
transparency into the decision-making pipeline. This audit trail
is crucial for building trust, enabling clinical scrutiny, and
aligning with regulatory requirements in high-stakes medical
applications [8], [93].

3.2 Single-agent System
To operationalize abstract reasoning capabilities into concrete
clinical actions, a Medical Agent is typically constructed
from several core cognitive components. These components
collectively enable its autonomous and intelligent behavior.

3.2.1 Agent Persona and Medical Specialization
The foundation of a medical agent is its defined persona and
degree of medical specialization. This involves establishing
the agent’s identity, such as a general practitioner, oncologist,
radiologist, or geneticist, and endowing it with the requisite
domain knowledge and communication style for that role [94],
[95]. This is often achieved through tailored system prompts
that define the agent’s expertise and responsibilities, or by

providing access to specific knowledge bases relevant to its
designated function [90], [11]. For example, an agent’s persona
can determine whether it communicates in technical jargon for
a specialist audience or in patient-friendly language, a critical
aspect for applications like generating simplified medical
reports [96]. Furthermore, systems like PIORS demonstrate the
use of diverse, batch-generated patient personas to create more
realistic and challenging training scenarios for conversational
agents [97].

3.2.2 Medical Task Planning
A core capability is proficiency in medical task planning
and orchestration, which serves as the direct operational
manifestation of the agent’s reasoning process. This entails
decomposing complex medical objectives into a sequence of
manageable sub-goals or executable actions. Frameworks like
ReAct or Chain-of-Thought are often used to structure this
process [98], [99]. For instance, ClinicalAgent uses a LEAST-
TO-MOST strategy to break down the complex problem
of clinical trial analysis into feasibility, safety, and efficacy
assessments [8]. Some systems adopt hierarchical planning;
MedAgent-Pro first generates a high-level, disease-specific
diagnostic plan based on clinical guidelines, and then a patient-
level reasoning module executes the relevant steps from that
plan [100]. Orchestration involves managing this plan, which
in multi-agent systems means delegating steps to the most
appropriate specialized agents, such as a central “DDxDriver”
coordinating knowledge retrieval and diagnosis agents in a
dynamic, iterative loop to refine a differential diagnosis [14].

3.2.3 Memory Mechanism
To enable context retention and continuous improvement,
agents incorporate sophisticated memory mechanisms, which
are typically divided into two main types. Short-term mem-
ory is responsible for maintaining context within a single,
ongoing consultation. Long-term memory, in contrast, is
the mechanism crucial for experiential learning, allowing an
agent to store, retrieve, and learn from past cases [9]. This
is implemented in various ways to build a foundation for
improvement. For example, MDTeamGPT maintains separate
knowledge bases for correct consultations (“CorrectKB”) and
analyzed failures (“ChainKB”) to enable reflection and pre-
vent repeated errors [101]. Similarly, MedAgentSim uses an
“Experience Records Buffer” to store corrected misdiagnoses,
allowing the agent to learn from its mistakes [92]. In systems
like Agent Hospital, agents evolve by expanding a “Medical
Case Base” with successful treatments and an “Experience
Base” with rules learned from failures, directly mimicking
how human doctors gain expertise through experience [10].
This learning capacity, enabled by long-term memory, is vital
for creating agents that can adapt and improve over time [102].

3.2.4 External Medical Tool and Knowledge
An agent’s “agency” is most clearly demonstrated through its
ability to interact with and leverage external medical tools
and knowledge. This capability is enabled by a tool-use
mechanism that defines the repertoire of actions an agent can
perform. Seamless integration with these external resources
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is critical, involving a process where the agent autonomously
selects the appropriate tool for a sub-task, formats the input
parameters, executes the action, and correctly interprets the
output. This enables the agent to access a wide range of
capabilities and information, such as querying web APIs
and structured databases like DrugBank or OncoKB for up-
to-date medical knowledge [87], [103]; calling specialized
AI models for tasks like image segmentation (MedSAM)
or bioinformatics analysis (Phenomizer) [88], [104], [90];
and generating code to perform clinical calculations, conduct
statistical analysis, or interact with rich knowledge sources like
EHRs [89], [9]. This tool-use capability is fundamental to an
agent’s problem-solving ability, extending its reach far beyond
the static, inherent knowledge of its core LLM [93].

3.3 Medical Multi-agent System
While single-agent systems represent a significant step towards
autonomous medical AI, their monolithic nature can struggle
to replicate the collaborative intelligence essential to modern
healthcare. Clinical decision-making, particularly for complex
cases, and it usually relies on the converged expertise of
multidisciplinary teams. This real-world paradigm motivates
the shift towards multi-agent systems (MAS), which are ar-
chitected to emulate the collaborative dynamics of a clinical
team.

Compared to a single-agent system, an MAS introduces a
fundamental evolution across its core functions. Instead of
a single persona, an MAS comprises multiple agents with
highly specialized roles (e.g., a radiologist, an oncologist),
enabling deeper and more focused expertise. Task planning
evolves from a linear decomposition of steps into a sophisti-
cated process of coordination and delegation, often managed
by a coordinator agent. Memory can be transformed into a
shared context, akin to a patient’s electronic health record,
that all agents contribute to and reference. Finally, specialized
agents can leverage more targeted external tools, enhancing
both precision and efficiency. This collaborative architecture
is designed to achieve a more robust, accurate, and transparent
reasoning process by mitigating the cognitive biases of a
single model and integrating diverse expert perspectives. These
systems emulate real-world clinical workflows by structuring
how agents interact and share information, with collaboration
paradigms broadly categorized into centralized, decentralized,
and hybrid architectures, each offering distinct advantages for
specific medical scenarios.

3.3.1 Centralized Collaboration
In a centralized collaboration model, a single coordinator
or manager agent orchestrates the workflow, directing tasks
and synthesizing information from other specialized agents.
This “hub-and-spoke” architecture ensures a controlled, inter-
pretable, and often sequential reasoning process, making it
ideal for tasks that require structured problem decomposition
and integration of diverse data sources.

A common implementation involves a master agent that
manages a team of subordinate specialist agents. For instance,
the ColaCare framework utilizes a MetaAgent to collect initial

reviews from multiple DoctorAgents, synthesize them into a
preliminary report, and then moderate a multi-round debate
to reach a consensus on EHR data analysis [105]. Similarly,
MAM employs a Director agent to orchestrate a debate among
specialists (e.g., Radiologist, General Practitioner), synthesize
their opinions, and formulate the final diagnosis [106]. This
approach is also evident in systems like ClinicalAgent, where
a Planning Agent first decomposes a complex clinical trial
problem into sub-tasks (feasibility, safety, efficacy) and a
final Reasoning Agent aggregates the findings from special-
ized agents to produce a holistic conclusion [8]. The central
orchestrator ensures that the final decision is grounded in a
comprehensive analysis, mirroring the role of a lead physician
or a case manager in a clinical setting.

3.3.2 Decentralized Collaboration
Decentralized collaboration models foster a more dynamic,
peer-to-peer interaction among agents without a single, author-
itative controller. This “round-table” approach emulates the
collaborative reasoning of a Multidisciplinary Team (MDT),
where consensus emerges from structured debate and dis-
cussion among specialists. This architecture is particularly
effective for complex diagnostic challenges, such as rare
diseases, where integrating multiple expert perspectives can
mitigate individual model biases and lead to more accurate
outcomes.

Many frameworks are explicitly designed to mirror an MDT
case conference. In the MAC framework, multiple Doctor
Agents and a Supervisor Agent engage in a multi-round
conversation to diagnose complex and rare diseases, with the
supervisor facilitating the debate rather than dictating the out-
come [107]. Likewise, MedAgents and RareAgents assemble
teams of specialist agents who analyze a case from their unique
perspectives, debate hypotheses, and work towards a consensus
diagnosis or treatment plan [11], [90]. Communication can be
managed through structured protocols to enhance efficiency;
for example, MDTeamGPT uses a “residual discussion struc-
ture” where agents only see summaries of previous rounds,
reducing cognitive load while fostering a focused debate [101].
In these systems, the final decision is a product of collective
intelligence, emerging from the dynamic interplay of expert
opinions.

3.3.3 Hybrid Architecture
Hybrid architectures strategically combine elements of both
centralized and decentralized models to balance control
with flexibility. A prominent hybrid model is the sequential
pipeline, where tasks are processed through a series of special-
ized agents in a predefined order. While the overall workflow is
centrally controlled by the sequence, each agent operates with
a degree of autonomy within its specific stage. This structure
is ideal for standardizing and optimizing established clinical
protocols.

For example, the Rx Strategist system verifies prescriptions
through a rigid pipeline of agents for Feature Extraction,
Indication Verification, and Dosage Verification, where each
agent’s output serves as the input for the next [93]. A
more complex pipeline is demonstrated by PathFinder, which
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emulates a pathologist’s workflow for analyzing whole-slide
images through a sequence of Triage, Navigation, Description,
and Diagnosis agents [108]. Similarly, the Multi-Agent Inpa-
tient Pathways (MAP) system simulates the entire inpatient
journey with a sequence of specialized agents: a Triage Agent,
a Diagnosis Agent, and a Treatment Agent, all overseen by a
Chief Agent [109]. These pipeline-based systems enforce a
logical progression of tasks while still leveraging the special-
ized expertise of individual agents at each step, providing a
robust and structured approach to complex medical decision-
making.

Finally, some of the most ambitious architectures use these
collaborative principles to construct full-scale digital simulacra
of healthcare environments. Systems like Agent Hospital [10],
AI Hospital [110], and MedAgentSim [92] populate a virtual
hospital with dozens of autonomous agents that collaborate
to manage the entire patient lifecycle. Such environments
serve as invaluable sandboxes for training and validating agent
behaviors in a safe, controlled, and scalable manner.

3.4 From Architecture to Engine
Medical Agentic Systems, whether single or multi-agent,
provide the necessary architectural “body” that allows AI to
operate autonomously in dynamic clinical settings. They fur-
nish the mechanisms for planning, remembering, acting, and
collaborating. However, the intelligence and reliability of this
body depend entirely on the sophistication of its core “engine”:
medical reasoning. Without advanced reasoning capabilities,
even the most complex agentic architecture cannot effectively
navigate the nuances of real-world medical decision-making.
The following section will delve into the evolutionary trajec-
tory of these reasoning techniques, exploring how they have
advanced from simple prompt engineering to complex, self-
evolving learning paradigms.

3.5 Medical Agentic System
A Medical Agentic System marks a fundamental paradigm
shift, evolving AI from passive, information-retrieving Large
Language Models (LLMs) into proactive, goal-oriented frame-
works. The core innovation lies in agency: a capacity that
extends beyond merely reacting to queries. Instead, agents can
autonomously perceive their environment, formulate multi-
step plans, maintain memory of past interactions, and exe-
cute actions by leveraging external tools to achieve specific
objectives [83]. This proactive, self-directed nature is what
allows agentic systems to effectively model and navigate
the complexities of real-world clinical workflows, which are
inherently dynamic, uncertain, and multi-faceted.

The value of this agency is demonstrated across critical clin-
ical applications. For instance, agents can proactively gather
information by dynamically optimizing questioning strategies
in dialogues, as seen in DoctorAgent-RL [111]. They can also
act as expert orchestrators that coordinate specialized tools,
such as the image analysis models managed by MMedAgent
and ADAgent, to form a cohesive diagnosis [88], [112]. Fur-
thermore, agents like MedAgent-Pro can enforce adherence to
evidence-based medicine by autonomously retrieving clinical

guidelines and executing a procedural plan, ensuring their
reasoning is both transparent and grounded in established
standards [100].

4 REASONING EVOLUTION IN MED AGENTS

The architectural frameworks described in the previous chapter
provide the “body” for Medical Agents, enabling them to
plan, act, and interact. This chapter focuses on the “engine”
that drives this body, an engine specifically designed to
perform one of the most complex cognitive tasks: medical
reasoning. Traditionally, this is the process by which health-
care professionals diagnose, prognose, and manage patient
health issues [115], [116], [117], [118], [119]. The reasoning
paradigm in LLM-based agents is engineered to emulate this
clinical workflow, advancing AI’s reliability and interpretabil-
ity in high-stakes medical applications by strategically de-
composing complex problems into manageable, interconnected
steps [120], [121], [122], [123], [124], [103], [125], [126].

This chapter charts this evolution across three distinct stages
of increasing sophistication. Our exploration begins inwardly,
with the foundational techniques that enhance an agent’s
core reasoning by improving its internal deliberation. From
this foundation, the agent’s capabilities expand outwardly in
a pivotal leap to augmented reasoning, where it learns to
connect with the external world by retrieving knowledge, using
tools, and interpreting visual data. Finally, we examine the
pinnacle of this evolution: a shift from individual cognition to
collective reasoning, where collaborative intelligence emerges
from the interaction of multiple specialized agents. These three
evolutionary stages are summarized in Table 3.

4.1 Core Reasoning: Enhancing a Single Agent’s
Internal Deliberation
The foundation of an agent’s intelligence lies in its core
reasoning capability, the ability to process information and
formulate a logical path to a conclusion without external
assistance. These inference-time techniques enhance medical
reasoning without updating model parameters by structuring
the generation process to elicit more deliberate thought.

The foundational method is Chain-of-Thought (CoT)
prompting, which encourages the model to generate interme-
diate steps before the final answer, mimicking a clinician’s
“thinking aloud” process [12], [127], [128], [129]. Generating
this structured rationale before the conclusion, as opposed to
providing a direct answer, has been shown to significantly
improve performance on complex medical tasks [130], [131],
[98], [113], [132], [133], [134], [42]. For instance, models
like Med-PaLM 2 [113] and MedPrompt [133] leverage CoT
to achieve expert-level performance on medical question-
answering benchmarks. This reasoning is often guided by In-
Context Learning (ICL), which adapts the model to a specific
task by providing few-shot examples within the prompt [132].
For instance, by showing an LLM examples of how to extract
structured information like symptoms or medication history
from clinical narratives, its ability to perform that task on new
notes is greatly improved [135], [136], [43], [137], and it can
also be applied to tasks like radiology report generation [77].
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TABLE 3
The Evolutionary Stages of Reasoning in Medical Agents. This taxonomy outlines the progression from enhancing an

individual agent’s internal thought processes to orchestrating complex, collaborative intelligence across multiple
agents.

Reasoning Stage Core Principle Key Techniques Representative Work

Core Reasoning
(Internal Deliberation)

Enhancing the deliberation process of a single agent
by structuring its thought process, generating multiple
reasoning paths, or iteratively refining its own outputs.

Chain-of-Thought,
In-Context Learning,
Self-Consistency,
Self-Correction

Med-PaLM 2 [113],
DrHouse [86],
EnsReas [114]

Augmented Reasoning
(External Grounding)

Grounding the agent’s reasoning by connecting it to
the external world, including dynamic knowledge bases,
functional tools, and perceptual visual data.

Retrieval-Augmented
Generation (RAG),
Tool Use,
Vision Augmentation

Almanac [13],
EHRAgent [9],
Med-Flamingo [5]

Collective Reasoning
(Multi-Agent Collaboration)

Decomposing a complex problem to be solved by a col-
laborative team of specialized agents who communicate,
debate, and deliberate to reach a consensus.

Multi-Agent Debate &
Orchestration

MedAgents [11],
Agent Hospital [10],
MedDxAgent [14]

To further bolster reliability, methods like Self-
Consistency [138] and Ensemble Reasoning [114] generate
multiple reasoning chains and select the most frequent or
well-reasoned answer via voting or reconciliation. This
approach has proven particularly effective in improving
accuracy for complex diagnostic tasks [138], [136], [139].
Furthermore, iterative self-correction allows an agent to reflect
on and refine its outputs, correcting errors before finalizing
a decision, as exemplified in systems that iteratively refine
diagnoses based on new information [140], [86].

4.2 Augmented Reasoning: Connecting to the Exter-
nal World

While core reasoning techniques refine an agent’s internal
thought process, their effectiveness is ultimately bound by
the static knowledge within the LLM’s parameters. The next
crucial step in the evolution of reasoning is to empower agents
to break free from these confines and interact with the external
world. This augmented reasoning paradigm connects agents to
external knowledge, tools, and perceptual data, dramatically
expanding their capabilities and grounding their outputs in
real-world, verifiable information.

4.2.1 Knowledge Augmentation via Retrieval

A primary method to augment reasoning is through Retrieval-
Augmented Generation (RAG), which expands agents’ ca-
pabilities by grounding their outputs in verifiable, up-to-
date evidence [13], [8], [86], [9]. RAG systems, such as
Almanac [13] and Health-LLM [141], enable agents to retrieve
information from vast medical literature, such as domain-
specific information, clinical guidelines, or electronic health
records (EHRs) [87], [142], [9]. This ensures responses are
grounded in the latest evidence and reduces the risk of
generating incorrect or outdated information, a critical safety
feature for medical applications.

4.2.2 Functional Augmentation via Tool Use

Beyond retrieving static information, agents can achieve a
higher level of reasoning by using external tools to perform
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Fig. 6. Operational workflow of a tool-using medical
agent.

actions and calculations. Figure 6 illustrates the general work-
flow of such an agent, which operates in a cycle of perceiving,
reasoning, and acting. This paradigm shift allows models to in-
teract with knowledge bases, calculators, and clinical systems,
enhancing factuality, timeliness, and reasoning capabilities [8],
[9], [86], [143], [144], [145]. In the medical domain, agents
can integrate with tools like medical calculators for clinical
scoring [89], [146], [147], code interpreters for complex
data analysis [9], [145], and web search to access the latest
biomedical information [87], [86]. However, training an agent
to reliably use tools introduces unique challenges that require
specialized training paradigms.

Training Paradigms for Tool-Using Medical Agents.
Training an LLM to effectively use tools requires specialized
methods that teach the model to generate a sequence of
thoughts and actions, a tool-use trajectory, that leads to a
correct solution [148], [149]. Two primary strategies have
become prominent for this purpose. The most direct method is
through imitation learning, by fine-tuning the LLM on expert-
demonstrated trajectories [150], [145]. This process teaches
the model to generate specific tool-calling syntax, interpret
the returned information, and synthesize it to address complex
clinical queries [151], [152], [153].

A more advanced approach involves learning from the
feedback generated by executing tool calls, allowing the agent
to explore, adapt, and learn from its own mistakes. This
process is often formalized using Reinforcement Learning
(RL), where the agent’s action (a tool call) is executed, and
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Fig. 7. Two primary strategies for medical visual reason-
ing. (a): Extracted features from the LLM are passed to
an additional vision decoder for prediction. (b): The LLM
directly generates predictions as part of its text sequence.

the outcome provides a learning signal. This enables the agent
to develop more robust and generalizable problem-solving
skills than imitation learning alone, as demonstrated in systems
designed for complex reasoning and error recovery [154], [69],
[155], [156], [111].

Medical Data Curation for Tool-Using Agents. Con-
structing datasets for tool-using agents is significantly more
complex than for standard instruction tuning, as it requires
capturing the entire reasoning and action process [157]. The
gold standard is the manual creation of tool-use trajectories
by clinical experts [147], [154]. To scale data creation, a
common strategy is to use powerful teacher models (e.g.,
GPT-4) to generate synthetic tool-use examples, which are
then rigorously reviewed and corrected by human experts.
This human-in-the-loop approach, used to build datasets like
those for MedAgentGym, effectively balances scalability with
quality [145]. Another scalable method involves programmat-
ically converting existing medical resources, like questions
from medical benchmarks or problems from textbooks, into
tool-use datasets [158], [159], [147].

4.2.3 Perceptual Augmentation via Vision
In medicine, reasoning is inherently multimodal, relying heav-
ily on visual data. Vision augmentation equips agents with
the ability to perceive and interpret medical images, a critical
step towards emulating a clinician’s diagnostic workflow. This
includes 2D images such as X-rays and pathological slides, as
well as 3D volumes like CT and MRI scans. The integration
of visual data is paramount for enabling comprehensive diag-
nostic support and robust multimodal reasoning [160], [161],
[162], with crucial applications in radiology [163], [162], [54],
[64], ophthalmology [164], and pathology [108], [165].

Grounded Medical Visual Reasoning. While many mul-
timodal models focus on textual outputs like VQA or report
generation [54], [77], [64], [166], a significant advancement
lies in grounded visual reasoning. This involves tasks like
object detection or segmentation, which provide precise spatial
information about clinical findings. Two primary strategies
have emerged for this, as illustrated in Figure 7. The first
involves training the LLM to directly generate spatial coordi-
nates or mask representations as part of its text sequence [104],
[88], [76]. A more common approach uses the LLM as a high-
level reasoning engine while delegating the dense prediction
task to a separate, specialized visual decoder (e.g., a UNet-
style head), which allows each component to be optimized for

its respective task [167], [168]. The training paradigm for these
models typically involves a multi-task objective, combining a
language loss with a vision-specific loss (e.g., Dice or IoU
loss).

Medical Visual Data Curation. The collection and prepa-
ration of medical visual data present unique challenges. Data
is typically sourced from hospital Picture Archiving and
Communication Systems (PACS) and public datasets [169],
[163], [54]. The primary bottleneck is annotation. While expert
labeling by clinicians is the gold standard, it is exceptionally
time-consuming and expensive [168], [165], [164]. To alleviate
this, automated and hybrid methods are increasingly used,
where foundational models generate initial annotations that
are then refined by human experts in a “human-in-the-loop”
approach [170], [171], [172], [168], [173]. A crucial final step
is the accurate alignment of visual data with corresponding
textual information, such as radiology reports, which is foun-
dational for training powerful models like Med-Flamingo [5]
and HuatuoGPT-Vision [161].

4.2.4 The Data Imperative for Advanced Reasoning
It is crucial to recognize that the evolution from core to
augmented and collective reasoning is fundamentally driven
by the sophistication of the underlying data. Each leap in
reasoning capability requires a corresponding leap in data
curation and construction methodology. Figure 8 provides a
comprehensive overview of these data pipelines, synthesizing
the distinct requirements for the major AI paradigms covered
in this survey. The first two quadrants illustrate the data needed
to build the foundational models themselves: Textual Data for
unimodal LLMs (in Section 2) and Visual Medical Data for
the multimodal capabilities central to augmented reasoning.
The latter two quadrants show the shift towards more complex,
process-oriented data required for advanced agentic behaviors:
Tool-Use Trajectories for training tool-proficient agents and
Collaborative Data for enabling the multi-agent systems we
will discuss next.

4.3 Collective Reasoning: Collaborative Intelligence
in Medical Multi-Agent Systems
The most advanced paradigm for medical reasoning transcends
the capabilities of a single agent and moves towards orchestrat-
ing collaborative intelligence within multi-agent systems. By
decomposing a complex medical problem into sub-problems
handled by specialized agents, these systems emulate the
multidisciplinary teams (MDTs) of human experts, aiming to
achieve more robust, accurate, and interpretable medical deci-
sions [103], [11], [10], [14], [94], [156], [106], [174]. Training
these collaborative systems requires specialized paradigms that
foster effective communication, coordination, and consensus-
building [160].

4.3.1 Training Paradigms for Collaborative Policies
Teaching agents to collaborate effectively involves training
them not just on task execution but also on interaction pro-
tocols. The most direct method is Supervised Fine-Tuning on
Collaborative Trajectories, where the system learns to imitate
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Fig. 9. Pipeline of orchestrating collaborative intelligence
in multi-agent medical systems.

expert-demonstrated interactions from a dataset of collabora-
tive dialogues. This is foundational for teaching agents specific
roles and communication patterns [175], [145].

A more powerful paradigm is Multi-Agent Reinforcement
Learning (MARL), where agents learn optimal behaviors
through trial and error in a shared environment [156], [111].
The problem is often modeled as a Decentralized Partially
Observable Markov Decision Process (Dec-POMDP), and
agents are trained to maximize a shared reward. This approach
is exemplified in systems like DoctorAgent-RL [111] for
optimizing clinical dialogues, enabling agents to develop more
sophisticated and adaptive collaborative strategies.

Another emerging approach is Self-Evolving and Debate-
Based Learning. Frameworks like Agent Hospital [10] pro-
pose “evolvable medical agents” that adapt through simulated
practice and debate against previous versions of themselves.
This iterative refinement forces agents to constantly improve

their reasoning to outperform their predecessors, enhancing
collective reasoning quality without explicit reward modeling.

4.3.2 Medical Data Curation for Collaborative Training

The primary bottleneck for training collaborative agents is
acquiring high-quality datasets that reflect their interactions.
To overcome the scarcity of real-world data, researchers have
developed sophisticated simulation platforms. Frameworks
like Agent Hospital [10], AI Hospital [110], and Agent-
Clinic [178] create virtual clinical environments to program-
matically generate complex cases and record the entire multi-
agent interaction trajectory. This provides a scalable method
for creating rich, structured training data suitable for both SFT
and MARL [179], [180], [181].

Another potent strategy involves using powerful “teacher”
LLMs to generate synthetic collaborative dialogues. By assign-
ing different specialist personas to LLM instances, developers
can create plausible multi-turn consultations that serve as train-
ing examples [175], [11]. These synthetic datasets are often
combined with curated real-world data, such as MDT meeting
transcripts. The development of comprehensive benchmarks
like MedAgentBoard [182], ClinicalLab [183], and 3MD-
Bench [184] is crucial for standardizing the evaluation of
these complex, collaborative tasks, ensuring that multi-agent
systems are robustly validated and aligned with the realities
of clinical practice.
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TABLE 4
A Taxonomy of Medical Agent Applications by Clinical Domain. This classification maps emerging agentic capabilities

to specific healthcare workflows, highlighting the transition from technical proficiency to clinical utility.

Clinical Domain Agentic Function Key Clinical Tasks & Enablers Representative
Work

Clinical Diagnosis &
Consultation

Active Diagnostician Interactive Anamnesis: Simulating dynamic patient-doctor
inquiry to refine symptom intake.
Multimodal Synthesis: Correlating radiological/pathological
findings with clinical history.
Reasoning Trajectories: Utilizing Chain-of-Thought for
differential diagnosis.

ChatDoctor[15]
MedDxAgent[14]
ClinicalAgent[8]
LLaVA-Med[4]
PathFinder[108]

Therapeutic Planning &
Precision Medicine

Evidence-Based Planner Safety Verification: Leveraging external knowledge bases (e.g.,
DrugBank) to validate interactions.
Genomic Targeting: Querying live oncology databases to match
profiles with therapies.
Protocol Matching: Automating clinical trial eligibility
screening via logic reasoning.

GeneGPT[87]
ClinicalAgent[8]
Rx Strategist[93]
MedAgents[11]

Administrative Workflow &
Documentation

Intelligent Assistant Automated Documentation: Synthesizing structured discharge
summaries from longitudinal records.
Health Literacy Support: Translating technical reports into
patient-accessible narratives.
Data Interoperability: Parsing unstructured EHRs into
standardized formats.

MeQSum[176]
Sudarshan et al.[96]
RadGraph[177]
EHRAgent[9]

Medical Education &
System Simulation

Simulation Environment Pedagogical Simulation: Deploying “Patient Agents” for
risk-free diagnostic training.
Operational Optimization: Modeling hospital workflows
(admission-to-discharge) to identify inefficiencies.
In Silico Trials: Validating clinical pathways within synthetic
multi-agent ecosystems.

Agent Hospital[10]
AI Hospital[110]
AgentClinic[178]
MedAgentSim[92]

TABLE 5
The Evolution of Evaluation Paradigms for Medical AI. This framework delineates the progression from assessing

static knowledge competence to validating dynamic clinical performance and safety.

Evaluation Domain Assessment Methodology Key Metrics & Benchmarks

Domain Competence
(Medical Knowledge)

Static Question Answering: Assessing performance
on standardized, multiple-choice licensing exams or
text generation tasks from fixed datasets.

Metrics: Accuracy, F1-Score, ROUGE [185], BERTScore [186].
Benchmarks: MedQA [2], PubMedQA [187], MMLU (Medi-
cal) [188], MedMCQA [189], MMLU-Pro [190].

Clinical Utility
(Reasoning & Action)

Interactive, Task-Oriented Simulation: Measuring
an agent’s ability to navigate dynamic environments,
utilize tools, and achieve complex clinical goals.

Metrics: Task Success Rate, Diagnostic Efficiency (e.g., turns to
diagnosis), Reasoning Validity.
Benchmarks: CliBench [191], MedAgentBench [192], MedA-
gentBoard [182], AgentClinic [178], ClinicalBench [193], Med-
Chain [179].

Safety & Viability
(Real-World Validation)

Human-in-the-Loop (HITL) Validation: Involving
clinical experts to assess the safety, reliability, and
ethical alignment of AI outputs and behaviors.

Methods: Expert Review (e.g., scoring rubrics), Clinical Turing
Tests, LLM-as-a-Judge [194] (as a scalable proxy for preliminary
screening).

5 MEDICAL APPLICATIONS AND EVALUATION

The evolution from passive Medical Large Language Models
to proactive Medical Agents signifies a fundamental paradigm
shift in clinical artificial intelligence. While foundational
models function primarily as static knowledge repositories,
agentic systems are architected to navigate the complexities
of real-world medical workflows autonomously. Consequently,
to capture the practical implications of this technological leap,
we delineate the landscape of applications through the lens of
clinical scenarios rather than model architectures. By adopting
this workflow-centric perspective, we elucidate how specific
agentic capabilities, such as active information seeking and
tool utilization, address persistent bottlenecks in diagnosis,

treatment, and healthcare administration. This section details
these clinical domains and subsequently examines the neces-
sary evolution of evaluation paradigms required to validate
such autonomous systems.

5.1 Clinical Applications of Medical Agents

We structure the application landscape into four cardinal
domains: Diagnosis, Therapeutics, Administration, and Edu-
cation. Table 4 provides a systematic overview of how agentic
behaviors are deployed across these sectors.
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5.1.1 Clinical Diagnosis and Consultation
The diagnostic process is fundamentally iterative and mul-
timodal, demanding capabilities that extend beyond static
question answering. Interactive Diagnostic Support: In con-
trast to the reactive nature of standard LLMs, agents such
as MedDxAgent [14] and DoctorAgent-RL [111] are engi-
neered for active inquiry. These systems emulate the clin-
ical anamnesis process, dynamically formulating follow-up
questions to clarify ambiguity and narrow the differential
diagnosis, thereby replicating the hypothesis-verification loop
of a human clinician. Multimodal Clinical Synthesis: In
specialized fields like pathology and radiology, agents serve as
visual reasoning partners. Systems including PathFinder [108]
and LLaVA-Med [4] demonstrate the capacity to identify
regions of interest within imaging data and semantically align
these visual features with textual patient history, facilitating a
holistic diagnostic assessment.

5.1.2 Therapeutic Planning and Precision Medicine
The formulation of treatment plans requires strict adherence
to evidence-based protocols and real-time data verification,
a requirement that necessitates Tool-Augmented Reasoning.
Evidence-Based Prescribing: By integrating with external
tools, agents can bridge the gap between parametric knowledge
and dynamic pharmaceutical data. For instance, Rx Strate-
gist [93] queries live databases (e.g., FDA guidelines) to verify
drug-drug interactions and dosage appropriateness, mitigating
the risk of hallucinations inherent in static models. Precision
Oncology and Genomics: In data-intensive domains, agents
like GeneGPT [87] utilize API calls to access specialized
knowledge bases such as OncoKB. This capability allows
for the precise interpretation of genomic variants and the
recommendation of targeted therapies, effectively operational-
izing vast biomedical databases for individual patient care.
Clinical Trial Optimization: Furthermore, agents like Clini-
calAgent [8] apply logical planning modules to screen patient
records against complex trial eligibility criteria, streamlining
the recruitment process for investigational treatments.

5.1.3 Administrative Workflow and Documentation
The administrative burden on clinicians is a primary driver
of professional burnout. Medical agents offer a solution
by functioning as intelligent, context-aware assistants. Au-
tomated Clinical Documentation: Beyond generic summa-
rization, agents are capable of generating domain-specific
documentation, such as hospital discharge summaries and
insurance pre-authorization forms, by synthesizing dispersed
information from the Electronic Health Record (EHR) [176],
[9]. Enhancing Patient Communication: Medical Agents
are also deployed to bridge the communication gap between
clinicians and patients. By translating complex radiological
or pathological reports into layperson-accessible language,
systems discussed by Sudarshan et al. [96] aim to improve
health literacy and patient engagement.

5.1.4 Medical Education and System Simulation
The advent of Multi-Agent Systems (MAS) enables the con-
struction of sophisticated simulation environments for training

and operations research. Immersive Pedagogical Platforms:
Frameworks such as AgentClinic [178] and Agent Hospi-
tal [10] function as high-fidelity “sandboxes.” These systems
deploy diverse “Patient Agents” capable of simulating specific
pathologies and personality traits, allowing medical trainees
to practice diagnostic interviewing and decision-making in a
risk-free environment. Healthcare Systems Modeling: At the
macro level, MAS facilitates the digital twinning of healthcare
facilities. By simulating the interactions between doctor, nurse,
and patient agents, researchers can model patient flow and
resource allocation [110], [195], providing an empirical basis
for optimizing hospital operations before real-world imple-
mentation.

5.2 Evolution of Medical Evaluation Paradigms

As the scope of medical AI expands from passive information
retrieval to autonomous decision-making, evaluation method-
ologies must undergo a parallel transformation. The traditional
reliance on static accuracy metrics is increasingly insufficient
for assessing medical agents designed to navigate dynamic,
multi-step clinical workflows. Consequently, we propose a
hierarchical evaluation framework that moves beyond assess-
ing what the model knows to validating what the agent can
do and ensuring it operates safely. This progression mirrors
the medical training continuum: from standardized knowledge
exams to simulated clinical practice, and ultimately, supervised
real-world validation.

5.2.1 Evaluating Foundational Medical Knowledge

The first layer of assessment focuses on the model’s internal
knowledge base, analogous to a medical licensing examina-
tion. Evaluation at this stage primarily relies on static bench-
marks comprising multiple-choice questions sourced from
professional boards. Datasets such as MedQA [2], MedM-
CQA [189], and the medical subdomains of MMLU [188]
serve as the standard proxies for this capability. As illustrated
in Table 6, leading models have recently achieved expert-
level accuracy on these tests. However, while these metrics are
necessary to verify domain competence, they are insufficient
predictors of clinical utility. High performance on static QA
demonstrates rote memorization and pattern matching but
does not guarantee the ability to synthesize information or
execute complex reasoning in a dynamic clinical environment,
highlighting a critical gap between competence (knowing) and
performance (doing).

5.2.2 Evaluating Clinical Utility and Agentic Reasoning

To bridge the gap between static knowledge and prac-
tice, evaluation must shift towards interactive, task-oriented
benchmarks that simulate real-world clinical workflows. This
level of assessment focuses on clinical utility, the capacity
of an agent to formulate plausible, actionable plans that
positively influence patient outcomes. Benchmarks such as
“CliBench” [191] represent this shift, moving beyond abstract
questions to case-based decision-making. As shown in Table 7,
the performance drop observed when models transition from
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TABLE 6
The results of LLM/Agents in static QA. ∗ denotes the results come from [196], † denotes the results come from

[197], ‡ denotes the results come from [2].

Model MedQA PubMedQA MedMCQA MMLU-An MMLU-CK MMLU-CB MMLU-CM MMLU-MG MMLU-PM
Close Source

GPT-4∗ [198] 78.9 75.2 69.5 80.0 86.0 95.1 76.9 91.0 93.0
GPT-3.5∗ [132] 50.8 71.6 50.1 56.3 69.8 72.2 61.3 70.0 70.2
Gemini-Pro† [199] 67.0 70.7 62.2 76.9 78.6 89.5 79.3 81.8 83.8
Gemini-2.5-Pro [196] 92.6 75.8 81.1 91.1 91.7 98.6 89.0 96.0 96.3
Flan-PaLM [200] 67.6 79.0 57.6 63.7 80.4 88.9 76.3 75.0 83.8
Med-PaLM 2‡ [2] 86.5 81.8 72.3 84.4 88.7 95.8 83.2 92.0 95.2

Open Source
Deepseek-R1§ [201] 90.1 77.2 78.8 91.1 91.7 98.6 90.8 99.0 95.6
Llama3-8b [202] 59.7 74.8 57.5 68.9 74.7 78.5 61.9 83.0 70.2
Llama3-Instruct-8b [202] 60.7 74.6 56.9 62.2 70.9 73.6 65.3 82.0 74.6
Gemma-7b [203] 48.7 75.6 49.3 58.5 69.4 77.1 60.7 70.0 63.2
Mistral-7b-v0.1 [204] 50.8 75.4 48.2 55.6 68.7 68.1 59.5 71.0 68.4
BioMistral-7b [31] 46.1 71.0 41.5 51.1 63.8 61.1 53.8 66.0 52.9
OpenBioLLM-8b [205] 58.9 74.1 56.9 69.8 76.1 84.2 68.0 86.1 78.2
OpenBioLLM-70b [205] 78.2 78.9 74.0 83.9 92.9 93.8 85.8 93.3 93.8
Apollo-7B [34] 55.2 39.8 53.8 61.5 62.3 70.8 55.5 72.0 69.1
Meditron-70b [28] 57.1 76.6 46.9 53.3 66.8 76.4 63.0 69.0 71.7
MedAlpaca-7b [17] 41.7 72.8 37.5 57.0 57.4 65.3 54.3 69.0 67.3
ClinicalGPT [21] 26.1 63.8 28.2 30.4 30.6 25.0 24.3 27.0 19.5
MedGemma-4b [78] 64.4 73.4 55.7 59.3 71.3 70.8 65.3 83.0 76.8
MedGemma-27b [78] 87.7 76.8 74.2 83.7 86.0 96.5 86.1 97.0 93.4

An = Anatomy, CK = Clinical Knowledge, CB = College Biology, CM = College Medicine, MG = Medical Genetics, PM = Professional Medicine

TABLE 7
Performance evaluation on CliBench (Values represent

the F1-Score (%)). Results are sourced from [191].

Model Diagnosis Procedures Prescriptions
GPT-4o [206] 46.02 13.15 63.55
GPT-3.5 turbo [132] 39.03 13.28 52.57
Llama3-8b [202] 15.62 12.71 46.69
Llama3-Instruct-70b [202] 41.03 12.48 63.08
OpenBioLLM-8b [205] 17.78 8.76 43.72
Meditron-7b [28] 9.17 5.84 23.68
Asclepius-7b [207] 7.38 9.30 18.49
BioMistral-7b [31] 14.41 9.68 36.76

QA to these tasks underscores the complexity of applying
knowledge in context.

Furthermore, advanced evaluation platforms like “MedA-
gentBench” [192] and “MedAgentBoard” [182] introduce
multi-turn scenarios that rigorously test specific agentic capa-
bilities, including information gathering, tool utilization, and
strategic planning. In these environments, simple accuracy
metrics are replaced by process-oriented metrics such as
“Task Success Rate”, “Diagnostic Efficiency” (e.g., number
of turns to correct diagnosis), and the logical coherence of the
reasoning trajectory. This shift is essential for validating an
agent’s ability to function as an autonomous clinical partner
rather than a mere search engine.

5.2.3 The Gold Standard: Human-in-the-Loop Clinical
Validation

Ultimately, in the high-stakes domain of healthcare, algo-
rithmic metrics cannot fully capture the nuances of clinical
viability. “Human-in-the-Loop” (HITL) validation remains the
indispensable gold standard for ensuring patient safety and
system trustworthiness [208]. This process involves qualified
medical professionals rigorously reviewing agent outputs not
only for factual correctness but also for safety, ethical align-
ment, and empathetic communication, qualities that automated
metrics struggle to quantify.

HITL methodologies range from structured reviews us-
ing standardized scoring rubrics to holistic assessments such
as Clinical Turing Tests, where experts evaluate the indis-
tinguishability of AI-generated plans from human-generated
ones. While expert review is resource-intensive and challeng-
ing to scale, it is the only reliable mechanism to detect subtle
errors that could lead to adverse events. Emerging research is
exploring the use of “LLM-as-a-Judge” frameworks [194] as
scalable surrogates for preliminary evaluation; however, these
methods require careful calibration against human baselines
and cannot yet replace the critical judgment of expert clini-
cians in the final validation phase.

6 FUTURE DIRECTIONS AND CHALLENGES

The evolution from Medical LLMs to Agentic Systems rep-
resents a paradigm shift from passive knowledge retrieval to
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active clinical management. While current prototypes demon-
strate technical feasibility, bridging the gap between in silico
pilots and bedside utility requires addressing fundamental
clinical needs. To transform these agents into reliable partners
for precision medicine, the field must prioritize evidence-based
validation, longitudinal continuity, and deep pathophysiolog-
ical reasoning. We delineate three pivotal frontiers essential
for the clinical translation and maturation of Medical Agentic
Systems.

6.1 The Reliability Frontier: Evidence Grounding
and Process Transparency
In clinical practice, the black-box nature of neural networks
conflicts with the imperative for explainability and account-
ability. Future agents must transition from probabilistic gen-
eration to verifiable, evidence-based reasoning to mitigate
iatrogenic risks.

6.1.1 Evidence-Based Tool Augmentation
Relying solely on internal parametric knowledge poses a
significant risk of hallucination. To ensure safety, agents
must adopt an Evidence-Based Tool Augmentation architec-
ture [86], [87]. Instead of generating medical facts directly,
agents should function as orchestrators that leverage verified
external tools, such as querying live pharmacological databases
(e.g., DrugBank) for contraindications or accessing up-to-
date Clinical Practice Guidelines (CPGs). This separation of
reasoning (the agent) from knowledge (the tool) ensures that
every decision is grounded in retrievable, standard-of-care data
sources, establishing a robust “safety guardrail” for clinical
logic.

6.1.2 Diagnostic Auditability and Traceability
For an AI system to be integrated into the clinical workflow,
its decision-making process must be fully auditable [8]. Future
research should focus on agents that produce structured rea-
soning trajectories rather than simple outputs. This involves
making the diagnostic logic transparent: explicitly citing the
evidence for ruling in/out a differential diagnosis and mapping
symptoms to specific diagnostic criteria. Such “Chain-of-
Diagnosis” transparency enables clinicians to review, verify,
and trust the agent’s logic, satisfying the rigorous requirements
for medical liability and ethical oversight.

6.2 The Ecological Validity Frontier: From Simula-
tion to Bedside
A significant bottleneck in deploying medical agents is the
“Sim-to-Real” gap. Current agents are often evaluated on
sanitized, “textbook” cases, which fail to reflect the stochastic-
ity and complexity of real-world hospital environments [10],
[178].

6.2.1 Handling Atypical and Comorbid Presentations
Real-world patients rarely present with the clean, singular
symptom profiles found in standardized exams. Future agents
must be stress-tested on atypical presentations and multi-
morbid scenarios where symptoms of one condition mask

another. Developing High-Fidelity Medical World Models that
simulate noise, missing data, and conflicting lab results is
essential. Agents must demonstrate the capability to navigate
uncertainty and refine hypotheses dynamically, rather than
forcing a fit to a standard pattern [94].

6.2.2 Longitudinal Patient Trajectory Management
Chronic disease management requires monitoring a patient’s
state over months or years, not just a single interaction. We
must advance from episodic Q&A to Longitudinal Patient Tra-
jectory Management [9], [209]. This requires agents to main-
tain a persistent memory of the patient’s history, distinguishing
between acute fluctuations and long-term deterioration. The
challenge lies in identifying clinically significant trends within
vast temporal EHR data, enabling proactive interventions for
conditions like heart failure or diabetes progression.

6.3 The Cognitive Frontier: Precision Phenotyping
and Etiological Depth
The transformative potential of Medical Agents lies in aug-
menting the depth of clinical inquiry. Future systems must
transcend simple symptom matching to achieve Deep Patho-
physiological Reasoning, moving from descriptive diagnosis
to mechanistic understanding.

6.3.1 Deep Pathophysiological Stratification
Standard diagnosis often stops at a broad label (e.g., “Sepsis”).
Future agents, particularly Multi-Agent Systems, should aim
for Deep Stratification, dissecting diseases into specific phe-
notypes, clinical stages, and risk layers [11]. By integrating
multi-omics data and clinical history, agents can facilitate
Precision Phenotyping, guiding therapy based on specific
biological subtypes rather than generic protocols.

6.3.2 Multi-Scale Mechanistic Explanation
True clinical understanding requires connecting symptoms to
underlying biology. Future architectures must strive for Multi-
Scale Reasoning, capable of explaining a diagnosis vertically
from the molecular level (genetic variants) to the organ level
(pathology) and finally to the systemic level (clinical presen-
tation) [87], [88]. This integration allows for robust decision-
making in complex cases, such as oncology or rare genetic
disorders, where understanding the etiology, the pathway from
gene to phenotype, is critical for selecting targeted therapies.

Taken together, the future of Medical Agentic Systems lies
in their ability to reconcile the “messiness” of real-world
biology with the rigor of evidence-based medicine. Their
success will depend on becoming transparent, safe, and deeply
knowledgeable partners in the preservation of human health.

7 CONCLUSION

In this survey, we have systematically charted the evolution
from static Medical Large Language Models to dynamic Med-
ical Agentic Systems. This transition represents a fundamental
shift from the passive retrieval of biomedical knowledge
to the active orchestration of clinical reasoning, multimodal
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perception, and tool-mediated action. We formalized the archi-
tectural blueprints underpinning this evolution, ranging from
the cognitive mechanisms of single-agent systems to the emer-
gent collective intelligence of multi-agent frameworks. While
foundation models have achieved expert-level proficiency in
question answering, navigating the stochastic and high-stakes
environment of real-world healthcare requires distinct agentic
competencies. Essential capabilities identified include robust
state tracking, symbolic guardrails for safety verification, and
the synergy of heterogeneous inputs from text, imaging, and
electronic health records. Looking forward, the realization
of autonomous clinical partners hinges on bridging the gap
between probabilistic generation and deterministic execution.
Future research must rigorously address challenges in formal
verification, simulation-to-real transfer, and cognitive align-
ment. Ultimately, the systems surveyed herein represent the
precursors to a new era of machine intelligence, one that does
not merely process medical data but actively collaborates in
the preservation of human health.
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“Autonomous artificial intelligence agents for clinical decision making
in oncology,” arXiv preprint arXiv:2404.04667, 2024.

[104] A. Hoopes, V. I. Butoi, J. V. Guttag, and A. V. Dalca, “Voxelprompt:
A vision-language agent for grounded medical image analysis,” arXiv
preprint arXiv:2410.08397, 2024.

[105] Z. Wang, Y. Zhu, H. Zhao, X. Zheng, D. Sui, T. Wang, W. Tang,
Y. Wang, E. Harrison, C. Pan et al., “Colacare: Enhancing electronic
health record modeling through large language model-driven multi-
agent collaboration,” in Proceedings of the ACM on Web Conference
2025, 2025, pp. 2250–2261.

[106] Y. Zhou, L. Song, and J. Shen, “Mam: Modular multi-agent framework
for multi-modal medical diagnosis via role-specialized collaboration,”
arXiv preprint arXiv:2506.19835, 2025.

[107] X. Chen, H. Yi, M. You, W. Liu, L. Wang, H. Li, X. Zhang, Y. Guo,
L. Fan, G. Chen et al., “Enhancing diagnostic capability with multi-
agents conversational large language models,” NPJ digital medicine,
vol. 8, no. 1, p. 159, 2025.

[108] F. Ghezloo, M. S. Seyfioglu, R. Soraki, W. O. Ikezogwo, B. Li,
T. Vivekanandan, J. G. Elmore, R. Krishna, and L. Shapiro, “Pathfinder:
A multi-modal multi-agent system for medical diagnostic decision-
making applied to histopathology,” arXiv preprint arXiv:2502.08916,
2025.

[109] Z. Chen, Z. Peng, X. Liang, C. Wang, P. Liang, L. Zeng,
M. Ju, and Y. Yuan, “Map: Evaluation and multi-agent enhancement
of large language models for inpatient pathways,” arXiv preprint
arXiv:2503.13205, 2025.

[110] Z. Fan, J. Tang, W. Chen, S. Wang, Z. Wei, J. Xi, F. Huang, and
J. Zhou, “Ai hospital: Benchmarking large language models in a multi-
agent medical interaction simulator,” arXiv preprint arXiv:2402.09742,
2024.

[111] Y. Feng, J. Wang, L. Zhou, and Y. Li, “Doctoragent-rl: A multi-agent
collaborative reinforcement learning system for multi-turn clinical
dialogue,” arXiv preprint arXiv:2505.19630, 2025.

[112] W. Hou, G. Yang, Y. Du, Y. Lau, L. Liu, J. He, L. Long, and S. Wang,
“Adagent: Llm agent for alzheimer’s disease analysis with collaborative
coordinator,” arXiv preprint arXiv:2506.11150, 2025.

[113] H. Nori, Y. T. Lee, S. Zhang, D. Carignan, R. Edgar, N. Fusi, N. King,
J. Larson, Y. Li, W. Liu et al., “Can generalist foundation models
outcompete special-purpose tuning? case study in medicine,” arXiv
preprint arXiv:2311.16452, 2023.

[114] C.-H. Chang, M. M. Lucas, Y. Lee, C. C. Yang, and G. Lu-Yao,
“Beyond self-consistency: Ensemble reasoning boosts consistency and
accuracy of llms in cancer staging,” in International Conference on
Artificial Intelligence in Medicine. Springer, 2024, pp. 224–228.

https://arxiv.org/abs/2502.11211
https://arxiv.org/abs/2405.07960


21

[115] M. Graber, “Diagnostic errors in medicine: a case of neglect,” The joint
commission journal on quality and patient safety, vol. 31, no. 2, pp.
106–113, 2005.

[116] M. Abrandt Dahlgren, K. Valeskog, K. Johansson, and S. Edelbring,
“Understanding clinical reasoning: A phenomenographic study with
entry-level physiotherapy students,” Physiotherapy Theory and Prac-
tice, vol. 38, no. 13, pp. 2817–2826, 2022.

[117] M. Young, A. Thomas, S. Lubarsky, T. Ballard, D. Gordon, L. D.
Gruppen, E. Holmboe, T. Ratcliffe, J. Rencic, L. Schuwirth et al.,
“Drawing boundaries: the difficulty in defining clinical reasoning,”
Academic Medicine, vol. 93, no. 7, pp. 990–995, 2018.

[118] S. Mamede, T. van Gog, K. van den Berge, R. M. Rikers, J. L. van
Saase, C. van Guldener, and H. G. Schmidt, “Effect of availability
bias and reflective reasoning on diagnostic accuracy among internal
medicine residents,” Jama, vol. 304, no. 11, pp. 1198–1203, 2010.

[119] J. Higgs, G. M. Jensen, S. Loftus, F. V. Trede, and S. Grace, Clinical
Reasoning in the Health Professions E-Book: clinical Reasoning in the
Health Professions E-Book. Elsevier Health Sciences, 2024.
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