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Abstract

This work is dedicated to the algorithm design in a competitive framework, with
the primary goal of learning a stable equilibrium. We consider the dynamic
price competition between two firms operating within an opaque marketplace,
where each firm lacks information about its competitor. The demand follows
the multinomial logit (MNL) choice model, which depends on the consumers’
observed price and their reference price, and consecutive periods in the repeated
games are connected by reference price updates. We use the notion of stationary
Nash equilibrium (SNE), defined as the fixed point of the equilibrium pricing
policy for the single-period game, to simultaneously capture the long-run market
equilibrium and stability. We propose the online projected gradient ascent algorithm
(OPGA), where the firms adjust prices using the first-order derivatives of their
log-revenues that can be obtained from the market feedback mechanism. Despite
the absence of typical properties required for the convergence of online games,
such as strong monotonicity and variational stability, we demonstrate that under
diminishing step-sizes, the price and reference price paths generated by OPGA
converge to the unique SNE, thereby achieving the no-regret learning and a stable
market. Moreover, with appropriate step-sizes, we prove that this convergence
exhibits a rate of O(1/t).

1 Introduction

The memory-based reference effect is a well-studied strategic consumer behavior in marketing and
economics literature, which refers to the phenomenon that consumers shape their price expectations
(known as reference prices) based on the past encounters and then use them to judge the current price
(see [1] for a review). A substantial body of empirical research has shown that the current demand
is significantly influenced by the historical prices through reference effects (see, e.g., [2, 3, 4, 5]).
Driven by the ubiquitous evidence, many studies have investigated various pricing strategies in the
presence of reference effects [6, 7, 8, 9]. However, the aforementioned works have all focused on the
case with a monopolistic seller, leaving the understanding of how the reference effect functions in a
competition relatively limited compared to its practical importance. This issue becomes even more
pronounced with the surge of e-commerce, as the increased availability of information incentivizes
consumers to make comparisons among different retailers.
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Moreover, we notice that in competitive markets, the pricing problem with reference effects is
further complicated by the lack of transparency, where firms are cautious about revealing confidential
information to their rivals. Although the rise of digital markets greatly accelerates data transmission
and promotes the information transparency, which is generally considered beneficial because of
the improvement in marketplace efficiency [10], many firms remain hesitant to fully embrace such
transparency for fear of losing their informational advantages. This concern is well-founded in
the literature, for example the work [11] demonstrates that dealers with lower transparency levels
generate higher profits than their more transparent counterparts, and [12] highlights that in reverse
auctions, transparency typically enables buyers to drive the price down to the firm’s marginal cost.
Hence, as recommended by [13], companies should focus on the strategic and selective disclosure of
information to enhance their competitive edge, rather than pursuing complete transparency.

Inspired by these real-world practices, in this article, we study the duopoly competition with reference
effects in an opaque market, where each firm has access to its own information but does not possess
any knowledge about its competitor, including their price, reference price, and demand. The consumer
demand follows the multinomial logit (MNL) choice model, which naturally reflects the cross-product
effects among substitutes. Furthermore, given the intertemporal characteristic of the memory-based
reference effect, we consider the game in a dynamic framework, i.e., the firms engage in repeated
competitions with consecutive periods linked by reference price updates. In this setting, it is natural
to question whether the firms can achieve some notion of stable equilibrium by employing common
online learning algorithms to sequentially set their prices. A vast majority of the literature on online
games with incomplete information targets the problem of finding no-regret algorithms that can direct
agents toward a Nash equilibrium, a stable state at which the agents have no incentive to revise their
actions (see, e.g., [14, 15, 16]). Yet, the Nash equilibrium alone is inadequate to determine the stable
state for our problem of interest, given the evolution of reference prices. For instance, even if an
equilibrium price is reached in one period, the reference price update makes it highly probable that
the firms will deviate from this equilibrium in subsequent periods. As a result, to jointly capture
the market equilibrium and stability, we consider the concept of stationary Nash equilibrium (SNE),
defined as the fixed point of the equilibrium pricing policy for the single-period game. Attaining this
long-term market stability is especially appealing for firms in a competitive environment, as a stable
market fosters favorable conditions for implementing efficient planning strategies and facilitating
upstream operations in supply chain management [17]. In contrast, fluctuating demands necessitate
more carefully crafted strategies for effective logistics management [18, 19, 20].

The concept of SNE has also been investigated in [21] and [22]. Specifically, [21] examines the
long-run market behavior in a duopoly competition with linear demand and a common reference
price for both products. However, compared to the MNL demand in our work, linear demand models
generally fall short in addressing interdependence among multiple products [4, 23, 24]. On the other
hand, [22] adopts the MNL demand with product-specific reference price formulation; yet, their
analysis of long-term market dynamics relies on complete information and is inapplicable to an
opaque market. In contrast, our work accommodates both the partial information setting and MNL
choice model. We summarize our main contributions below:

1. Formulation. We introduce a duopoly competition framework with an opaque market setup
that takes into account both cross-period and cross-product effects through consumer reference
effects and the MNL choice model. We use the notion of stationary Nash equilibrium (SNE) to
simultaneously depict the equilibrium price and market stability.

2. Algorithm and convergence. We propose a no-regret algorithm, namely the Online Projected
Gradient Ascent (OPGA), where each firm adjusts its posted price using the first-order derivative
of its log-revenue. When the firms execute OPGA with diminishing step-sizes, we show that
their prices and reference prices converge to the unique SNE, leading to the long-run market
equilibrium and stability. Furthermore, when the step-sizes decrease appropriately in the order of
Θ(1/t), we demonstrate that the prices and reference prices converge at a rate of O(1/t).

3. Analysis. We propose a novel analysis for the convergence of OPGA by exploiting characteristic
properties of the MNL demand model. General convergence results for online games typically
require restrictive assumptions such as strong monotonicity [25, 14, 16] or variational stability
[26, 15, 27, 28], as well as the convexity of the loss function [29, 30]. However, our problem lacks
these favorable properties, rendering the existing techniques inapplicable. Additionally, compared
to standard games where the underlying environment is static, the reference price evolution in this
work further perplexes the convergence analysis.
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4. Managerial insights. Our study illuminates a common issue in practice, where the firms are willing
to cooperate but are reluctant to divulge their information to others. The OPGA algorithm can
help address this issue by guiding the firms to achieve the SNE as if they had perfect information,
while still preserving their privacy.

2 Related literature

Our work on the dynamic competition with reference effects in an opaque market is related to the
several streams of literature.

Modeling of reference effect. The concept of reference effects can be traced back to the adaptation-
level theory proposed by [31], which states that consumers evaluate prices against the level they
have adapted to. Extensive research has been dedicated to the formulation of reference effects in
the marketing literature, where two mainstream models emerge: memory-based reference price and
stimulus-based reference price [4]. The memory-based reference model, also known as the internal
reference price, leverages historical prices to form the benchmark (see, e.g., [3, 32, 5]). On the
contrary, the stimulus-based reference model, or the external reference price, asserts that the price
judgment is established at the moment of purchase utilizing current external information such as the
prices of substitutable products, rather than drawing on past memories (see, e.g., [33, 2]). According
to the comparative analysis by [4], among different reference models, the memory-based model
that relies on a product’s own historical prices offers the best fit and strongest predictive power in
multi-product settings. Hence, our paper adopts this type of reference model, referred to as the
brand-specific past prices formulation in [4].

Dynamic pricing in monopolist market with reference effect. The research on reference effects has
recently garnered increasing attention in the field of operations research, particularly in monopolist
pricing problems. As memory-based reference effect models give rise to the intertemporal nature,
the price optimization problem is usually formulated as a dynamic program. Similar to our work,
their objectives typically involve determining the long-run market stability under the optimal or
heuristic pricing strategies. The classic studies by [7] and [6] show that in either discrete- or
continuous-time framework, the optimal pricing policy converges and leads to market stabilization
under both loss-neutral and loss-averse reference effects. More recent research on reference effects
primarily concentrates on the piecewise linear demand in single-product contexts and delves into more
comprehensive characterizations of myopic and optimal pricing policies (see, e.g., [34, 8]). Deviating
from the linear demand, [9] and [24] employ the logit demand and analyze the long-term market
behaviors under the optimal pricing policy, where the former emphasizes on consumer heterogeneity
and the later innovates in the multi-product setting.

While the common assumption in the aforementioned studies is that the firm knows the demand
function, another line of research tackles the problem under uncertain demand, where they couple
monopolistic dynamic pricing with reference effects and online demand learning [35, 36]. Although
these works include an online learning component, our paper distinguishes itself from them in
two aspects. Firstly, the uncertainty that needs to be learned is situated in different areas. The
works by [35] and [36] assume that the seller recognizes the structure of the demand function (i.e.,
linear demand) but requires to estimate the model’s responsiveness parameters. By contrast, in our
competitive framework, the firms are aware of their own demands but lack knowledge about their
rivals that should be learned. Secondly, the objectives of [35] and [36] are to design algorithms to
boost the total revenues from a monopolist perspective, whereas our algorithm aims to guide firms to
reach Nash equilibrium and market stability concurrently.

Price competition with reference effects. Our work is pertinent to the studies on price competition
with reference effects [37, 38, 21, 39, 22]. In particular, [38] is concerned with single-period price
competitions under various reference price formulations. The paper [37] expands the scope to a
dynamic competition with symmetric reference effects and linear demand, though their theoretical
analysis on unique subgame perfect Nash equilibrium is confined to a two-period horizon. The more
recent work [39] further extends the game to the multi-stage setting, where they obtain the Markov
perfect equilibrium for consumers who are either loss-averse or loss-neutral. Nonetheless, unlike
the discrete-time framework in [37] and this paper, [39] employs the continuous-time framework,
which significantly differs from its discrete-time counterpart in terms of analytical techniques. The
recent article [22] also studies the long-run market behavior and bears similarity to our work in
model formulations. However, a crucial difference exists: [22] assumes a transparent market setting,
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whereas we consider the more realistic scenario where the market is opaque and firms cannot access
information of their competitors.

More closely related to our work, the work [21] also looks into the long-run market stability of the
duopoly price competition in an opaque marketplace. However, there are two notable differences
between our paper and theirs. The key distinction lies in the selection of demand function. We
favor the logit demand over the linear demand used in [21], as the logit demand exhibits superior
performance in the presence of reference effects [23, 9]. However, the logit model imposes challenges
for convergence result since a crucial part of the analysis in [21] hinges on the demand linearity [21,
Lemma 9.1], which is not satisfied by the logit demand. Second, [21] assumes a uniform reference
price for both products, whereas we consider the product-specific reference price, which has the
best empirical performance as illustrated in [4]. These adaptations, even though beneficial to the
expressiveness and flexibility of the model, render the convergence analysis in [21] not generalizable
to our setting.

General convergence results for online games. Our paper is closely related to the study of online
games, where a typical research question is whether online learning algorithms can achieve the Nash
equilibrium for multiple agents who aim to minimize their local loss functions. In this section, we
review a few recent works in this field. For games with continuous actions, [14] and [40] show that
the online mirror descent converges to the Nash equilibrium in strongly monotone games. The work
[16] further relaxes the strong monotonicity assumption and examines the last-iterate convergence for
games with unconstrained action sets that satisfy the so-called “cocoercive” condition. In addition,
[26] and [15] establish the convergence of the dual averaging method under a more general condition
called global variational stability, which encompasses the cocoercive condition as a subcase. More
recently, [41, 27, 28] demonstrate that extra-gradient approaches, such as the optimistic gradient
method, can achieve faster convergence to the Nash equilibrium in monotone and variationally
stable games. We point out that in the cited literature above, either the assumption itself implies the
convexity of the local loss function such as the strong monotonicity or the convergence to the Nash
equilibrium additionally requires the loss function to be convex. By contrast, in our problem, the
revenue function of each firm is not concave in its price and does not satisfy either of the properties
listed above. Additionally, incorporating the reference effect further complicates the analysis, as the
standard notion of Nash equilibrium is insufficient to characterize convergence due to the dynamic
nature of reference price.

3 Problem formulation

3.1 MNL demand model with reference effects

We study a duopoly price competition with reference price effects, where two firms each offer a
substitutable product, labeled as H and L, respectively. Both firms set prices simultaneously in
each period throughout an infinite-time horizon. To accommodate the interaction between the two
products, we employ a multinomial logit (MNL) model, which inherently captures such cross-product
effects. The consumers’ utility at period t, which depends on the posted price pti and reference price
rti , is defined as:

Ui

(
pti, r

t
i

)
= ui

(
pti, r

t
i

)
+ ϵti = ai − bi · pti + ci ·

(
rti − pti

)
+ ϵti, ∀i ∈ {H,L}, (1)

where ui(p
t
i, r

t
i) is the deterministic component, and (ai, bi, ci) are the given parameters. In addition,

the notation ϵti denotes the random fluctuation following the i.i.d. standard Gumbel distribution.
According to the random utility maximization theory [42], the demand/market share at period t with
the posted price pt = (ptH , ptL) and reference price rt = (rtH , rtL) for product i ∈ {H,L} is given by
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)
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t
i)
)
+ exp
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u−i(pt−i, r

t
−i)
) , (2)

where the subscript −i denotes the other product besides product i. Consequently, the expected
revenue for each firm/product at period t can be expressed as

Πi(p
t, rt) = Πi

(
(pti, p

t
−i), (r

t
i , r

t
−i)
)
= pti · di(pt, rt), ∀i ∈ {H,L}. (3)

The interpretation of parameters (ai, bi, ci) in Eq. (1) is as follows. For product i ∈ {H,L}, ai refers
to product’s intrinsic value, bi represents consumers’ responsiveness to price, also known as price
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sensitivity, and ci corresponds to the reference price sensitivity. When the offered price exceeds the
internal reference price (rti < pti), consumers perceive it as a loss or surcharge, whereas the price
below this reference price (rti > pti) is regarded as a gain or discount. These sensitivity parameters
are assumed to be positive, i.e., bi, ci > 0 for i ∈ {H,L}, which aligns with consumer behaviors
towards substitutable products and has been widely adopted in similar pricing problems (see, e.g.,
[34, 8, 21, 24, 22]). Precisely, this assumption guarantees that an increase in pti would result in a
lower consumer utility for product i, which in turn reduces its demand di(p

t, rt) and increases the
demand of the competing product d−i(p

t, rt). Conversely, a rise in the reference price rti increases
the utility for product i, consequently influencing the consumer demands in the opposite direction.

We stipulate the feasible range for price and reference price to be P = [p, p], where p, p > 0 denote
the price lower bound and upper bound, respectively. This boundedness of prices is in accordance
with real-world price floors or price ceilings, whose validity is further reinforced by its frequent use
in the literature on price optimization with reference effects (see, e.g., [34, 8, 21]).

We formulate the reference price using the brand-specific past prices (PASTBRSP) model proposed
by [4], which posits that the reference price is product-specific and memory-based. This model is
preferred over other reference price models evaluated in [4], as it exhibits superior performance in
terms of fit and prediction. In particular, the reference price for product i is constructed by applying
exponential smoothing to its own historical prices, where the memory parameter α ∈ [0, 1] governs
the rate at which the reference price evolves. Starting with an initial reference price r0, the reference
price update for each product at period t can be described as

rt+1
i = α · rti + (1− α) · pti, ∀i ∈ {H,L}, t ≥ 0. (4)

The exponential smoothing technique is among the most prevalent and empirically substantiated
reference price update mechanism in the existing literature (see, e.g., [7, 1, 6, 34, 8]). We remark that
the theories established in this work are readily generalizable to the scenario of time-varying memory
parameters α, and we present the static setting only for the sake of brevity.

3.2 Opaque market setup

In this study, we consider the partial information setting where the firms possess no knowledge of
their competitors, their own reference prices, as well as the reference price update scheme. Each
firm i is only aware of its own sensitivity parameters bi, ci, and its previously posted price. Under
this configuration, the firms cannot directly compute their demands from the expression in Eq. (2).
However, it is legitimate to assume that each firm can access its own last-period demands through
market feedback, i.e., determining the demand as the received revenue divided by the posted price.
We point out that, in this non-transparent and non-cooperative market, the presence of feedback
mechanisms is crucial for price optimization.

3.3 Market equilibrium and stability

The goal of our paper is to find a simple and intuitive pricing mechanism for firms so that the market
equilibrium and stability can be achieved in the long-run while protecting firms’ privacy. Before
introducing the equilibrium notion considered in this work, we first define the equilibrium pricing
policy denoted by p⋆(r) =

(
p⋆H(r), p⋆L(r)

)
, which is a function that maps reference price to price

and achieves the pure strategy Nash equilibrium in the single-period game. Mathematically, the
equilibrium pricing policy satisfies that

p⋆i (r) = argmax
pi∈P

pi · di
(
(pi, p

⋆
−i(r)), r

)
, ∀i ∈ {H,L}. (5)

Next, we formally introduce the concept of stationary Nash equilibrium, which is utilized to jointly
characterize the market equilibrium and stability.

Definition 3.1 (Stationary Nash equilibrium) A point p⋆⋆ is considered a stationary Nash equilib-
rium (SNE) if p⋆(p⋆⋆) = p⋆⋆, i.e., the equilibrium price is equal to its reference price.

The notion of SNE has also been studied in [21, 22]. From Eq. (5) and Definition 3.1, we observe
that an SNE possesses the following two properties:
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• Equilibrium. The revenue function for each firm i ∈ {H,L} satisfies Πi

(
(pi, p

⋆⋆
−i),p

⋆⋆
)
≤

Πi

(
p⋆⋆,p⋆⋆

)
for all pi ∈ P , i.e., when the reference price and firm −i’s price are equal to the

SNE price, the best-response price for firm i is the SNE price p⋆⋆i .
• Stability. If the price and the reference price attain the SNE at some period t, the reference price

remains unchanged in the following period, i.e., pt = rt = p⋆⋆ implies that rt+1 = p⋆⋆.

As a result, when the market reaches the SNE, the firms have no incentive to deviate, and the market
remains stable in subsequent competitions. The following proposition states the uniqueness of the
SNE and characterizes the boundedness of the SNE.

Proposition 3.1 There exists a unique stationary Nash equilibrium, denoted by p⋆⋆ = (p⋆⋆H , p⋆⋆L ). In
addition, it holds that

1

bi + ci
< p⋆⋆i <

1

bi + ci
+

1

bi
W

(
bi

bi + ci
exp

(
ai −

bi
bi + ci

))
, ∀i ∈ {H,L}, (6)

where W (·) is the Lambert W function (see definition in Eq. (22)).

Without loss of generality, we assume that the feasible price range P2 = [p, p]2 is sufficiently large to
contain the unique SNE, i.e., p⋆⋆ ∈ [p, p]2. Proposition 3.1 provides a quantitative characterization
for this assumption: it suffices to choose the price lower bound p to be any real number between(
0,mini∈{H,L}{1/(bi + ci)}

]
, and the price upper bound p can be any value such that

p ≥ max
i∈{H,L}

{
1

bi + ci
+

1

bi
W

(
bi

bi + ci
exp

(
ai −

bi
bi + ci

))}
. (7)

This assumption is mild as the bound in Eq. (7) is independent of both the price and reference price,
and it does not grow exponentially fast with respect to any parameters. Hence, there is no need for p
to be excessively large. For example, when aH = aL = 10 and bH = bL = cH = cL = 1, Eq. (7)
becomes p ≥ 7.3785. We refer the reader to Appendix B for further discussions on the structure and
computation of the equilibrium pricing policy and SNE, as well as the proof of Proposition 3.1.

4 No-regret learning: Online Projected Gradient Ascent

In this section, we examine the long-term dynamics of the the price and reference price paths to
determine if the market stabilizes over time. As studied in [22], under perfect information, the firms
operating with full rationality will follow the equilibrium pricing policy in each period, while those
functioning with bounded rationality will adhere to the best-response pricing policy throughout the
planning horizon. In both situations, the market would stabilize in the long run. However, with partial
information, the firms are incapable of computing either the equilibrium or the best-response policies
due to the unavailability of reference prices and their competitor’s price. Thus, one viable strategy to
boost firms’ revenues is to dynamically modify prices in response to market feedback.

In light of the success of gradient-based algorithms in the online learning literature (see, e.g.,
[43, 44, 45]), we propose the Online Projected Gradient Ascent (OPGA) method, as outlined in
Algorithm 1. Specifically, in each period, both firms update their current prices using the first-order
derivatives of their log-revenues with the same learning rate (see Eq. (9)). It is noteworthy that the
difference between the derivatives of the log-revenue and the standard revenue is a scaling factor
equal to the revenue itself, i.e.,

∂ log
(
Πi(p, r)

)
∂pi

=
1

Πi(p, r)
·
∂
(
Πi(p, r)

)
∂pi

, ∀i ∈ {H,L}. (8)

Therefore, the price update in Algorithm 1 can be equivalently viewed as an adaptively regu-
larized gradient ascent using the standard revenue function, where the regularizer at period t is(
1/ΠH(pt, rt), 1/ΠL(p

t, rt)
)
.

We highlight that by leveraging the structure of MNL model, each firm i can obtain the derivative of
its log-revenue Dt

i in Eq. (9) through the market feedback mechanism, i.e., last-period demand. The
firms do not need to know their own reference price when executing the OPGA algorithm, and the
reference price update in Line 6 is automatically performed by the market. In fact, computing the
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Algorithm 1 Online Projected Gradient Ascent (OPGA)

1: Input: Initial reference price r0 = (r0H , r0L), initial price p0 = (p0H , p0L), and step-sizes {ηt}t≥0.
2: for t = 0, 1, 2, . . . do
3: for i ∈ {H,L} do
4: Compute derivative Dt

i from price and demand of firm i at period t:

Dt
i ←

∂ log
(
Πi(p

t, rt)
)

∂pi
=

1

pti
+ (bi + ci) · di(pt, rt)− (bi + ci). (9)

5: Update posted price: pt+1
i ← ProjP (pti + ηtDt

i).
6: Reference price update: rt+1 ← αrt + (1− α)pt.

derivative Di is identical to querying the first-order oracle, which is a common assumption in the
optimization literature [46]. Further, this derivative can also be acquired through a minor perturbation
of the posted price, even when the firms lack access to historical prices and market feedback, making
the algorithm applicable in a variety of scenarios.

There are two potential ways to analyze Algorithm 1 using well-established theories. Below, we
briefly introduce these methods and the underlying challenges, while referring readers to Appendix A
for a more detailed discussion.

• First, by adding two virtual firms to represent the reference price, the game can be converted into
a standard four-player online game, effectively eliminating the evolution of the underlying state
(reference price). However, the challenge in analyzing this four-player game arises from the fact
that, while real firms have the flexibility to dynamically adjust their step-sizes, the learning rate for
virtual firms is fixed to the constant (1− α), where α is the memory parameter for reference price
updates. This disparity hinders the direct application of the existing results from multi-agent online
learning literature, as these results typically require the step-sizes of all agents either diminish at
comparable rates or remain as a small enough constant [47, 48, 14, 15].

• The second approach involves translating the OPGA algorithm into a discrete nonlinear system
by treating (pt+1, rt+1) as a vector-valued function of (pt, rt), i.e., (pt+1, rt+1) = f(pt, rt) for
some function f(·). In this context, analyzing the convergence of Algorithm 1 is equivalent to
examining the stability of the fixed point of f(·), which is related to the spectral radius of the
Jacobian matrix∇f(p⋆⋆,p⋆⋆) [49, 50]. However, the SNE lacks a closed-form expression, making
it difficult to calculate the eigenvalues of∇f(p⋆⋆,p⋆⋆). In addition, the function f(·) is non-smooth
due to the presence of the projection operator and can become non-stationary when the firms adopt
time-varying step-sizes, such as diminishing step-sizes. Moreover, typical results in dynamical
systems only guarantee local convergence [51], i.e., the asymptotic stability of the fixed point,
whereas our goal is to establish the global convergence of both the price and reference price.

In the following section, we show that the OPGA algorithm with diminishing step-sizes converges
to the unique SNE by exploiting characteristic properties of our model. This convergence result
indicates that the OPGA algorithm provably achieves the no-regret learning, i.e., in the long run, the
algorithm performs at least as well as the best fixed action in hindsight. However, it is essential to
note that the reverse is not necessarily true: being no-regret does not guarantee the convergence at all,
let alone the convergence to an equilibrium (see, e.g., [52, 53]). In fact, beyond the finite games, the
agents may exhibit entirely unpredictable and chaotic behaviors under a no-regret policy [54].

5 Convergence results

In this section, we investigate the convergence properties of the OPGA algorithm. First, in Theorem
5.1, we establish the global convergence of the price path and reference price to the unique SNE under
diminishing step-sizes. Subsequently, in Theorem 5.2, we further show that this convergence exhibits
a rate of O(1/t), provided that the step-sizes are selected appropriately. The primary proofs for this
section can be found in Appendices C and D, while supporting lemmas are located in Appendix F.
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Theorem 5.1 (Global convergence) Let the step-sizes {ηt}t≥0 be a non-increasing sequence such
that limt→∞ ηt = 0 and

∑∞
t=0 η

t = ∞ hold. Then, the price paths and reference price paths
generated by Algorithm 1 converge to the unique stationary Nash equilibrium.

Theorem 5.1 demonstrates the global convergence of the OPGA algorithm to the SNE, thus ensuring
the market equilibrium and stability in the long-run. Compared to [22] that establishes the convergence
to SNE under the perfect information setting, Theorem 5.1 ensures that such convergence can also
be achieved in an opaque market where the firms are reluctant to share the information with their
competitors. The only condition we need for the convergence is diminishing step-sizes such that
limt→∞ ηt = 0 and

∑∞
t=0 η

t =∞. This assumption is widely adopted in the study of online games
(see, e.g., [15, 14, 40]). Since the firms will likely become more familiar with their competitors
through repeated competitions, it is reasonable for the firms to gradually become more conservative
in adjusting their prices and decrease their learning rates.

As discussed in Sections 2 and 4, the existing methods in the online game and dynamical system
literatures are not applicable to our problem due to the absence of standard structural properties and
the presence of the underlying dynamic state, i.e., reference price. Consequently, we develop a novel
analysis to prove Theorem 5.1, leveraging the characteristic properties of the MNL demand model.
We provide a proof sketch below, with the complete proof deferred to Appendix C. Our proof consists
of two primary parts:

• In Part 1 (Appendix C.1), we show that the price path {pt}t≥0 would enter the neighborhood
N1

ϵ :=
{
p ∈ P2 | ε(p) < ϵ

}
infinitely many times for any ϵ > 0, where ε(·) is a weighted ℓ1

distance function defined as ε(p) := |p⋆⋆H − pH |/(bH + cH) + |p⋆⋆L − pL|/(bL + cL). To prove
Part 1, we divide P2 into four quadrants with p⋆⋆ as the origin. Then, employing a contradiction-
based argument, we suppose that the price path only visits N1

ϵ finitely many times. Yet, we show
that this forces the price path to oscillate between adjacent quadrants and ultimately converge to
the SNE, which violates the initial assumption.

• In Part 2 (Appendix C.2), we show that when the price path {pt}t≥0 enters the ℓ2-neighborhood
N2

ϵ :=
{
p ∈ P2 | ∥p − p⋆⋆∥2 < ϵ

}
for some sufficiently small ϵ > 0 and with small enough

step-sizes, the price path will remain in N2
ϵ in subsequent periods. The proof of Part 2 relies on a

local property of the MNL demand model around the SNE, with which we demonstrate that the
price update provides adequate ascent to ensure the price path stays within the target neighborhood.

Owing to the equivalence between different distance functions in Euclidean spaces [55], these two
parts jointly imply the convergence of the price path to the SNE. Since the reference price is equal to
an exponential smoothing of the historical prices, the convergence of the reference price path follows
that of the price path.

It is worth noting that [21, Theorem 5.1] also employs a two-part proof and shows the asymptotic
convergence of online mirror descent [56, 57] to the SNE in the linear demand setting. However,
their analysis heavily depends on the linear structure of the demand, which ensures that a property
similar to the variational stability is globally satisfied [21, Lemma 9.1]. In contrast, such properties
no longer hold for the MNL demand model considered in this paper. Therefore, we come up with two
distinct distance functions for the two parts of the proof, respectively. Moreover, the proof by [21]
relies on an assumption concerning the relationship between responsiveness parameters, whereas our
convergence analysis only requires the minimum assumption that the responsiveness parameters are
positive (otherwise, the model becomes counter-intuitive for substitutable products).

Theorem 5.2 (Convergence rate) When both firms adopt Algorithm 1, there exists a sequence of
step-sizes {ηt}t≥0 with ηt = Θ(1/t) and constants dp, dr > 0 such that∥∥p⋆⋆ − pt

∥∥2
2
≤ dp

t
,
∥∥p⋆⋆ − rt

∥∥2
2
≤ dr

t
, ∀t ≥ 1. (10)

Theorem 5.2 improves the result of Theorem 5.1 by demonstrating the non-asymptotic convergence
rate for the price and reference price. Although non-concavity usually anticipates slower convergence,
our rate of O(1/t) matches [21, Theorem 5.2] that assumes linear demand and exhibits concavity.

The proof of Theorem 5.2 is primarily based on the local convergence rate when the price vector
remains in a specific neighborhood N2

ϵ0 of the SNE after some period Tϵ0 . As the choice ηt = Θ(1/t)
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ensures that limt→∞ ηt = 0 and
∑∞

t=0 η
t = ∞, the existence of such a period Tϵ0 is guaranteed

by Theorem 5.1. Utilizing an inductive argument, we first show that the difference between price
and reference price decreases at a faster rate of O(1/t2), i.e.,

∥∥rt − pt
∥∥2
2
= O

(
1/t2

)
, ∀t ≥ 1

(see Eq. (67)). Then, by exploiting a local property around the SNE (Lemma F.3), we use another
induction to establish the convergence rate of the price path after it enters the neighborhood N2

ϵ0 .
In the meanwhile, the convergence rate of the reference price path can be determined through a
triangular inequality:

∥∥p⋆⋆ − rt
∥∥2
2
=
∥∥p⋆⋆ − pt + pt − rt

∥∥2
2
≤ 2

∥∥p⋆⋆ − pt
∥∥2
2
+ 2
∥∥pt − rt

∥∥2
2
.

Finally, due to the boundedness of the feasible price range P2, we can obtain the global convergence
rate for all t ≥ 1 by choosing sufficiently large constants dp and dr.

Remark 5.3 (Constant step-sizes) The convergence analysis presented in this work can be readily
extended to accommodate constant step-sizes. Particularly, our theoretical framework supports the
selection of ηt ≡ O(ϵ0), where ϵ0 refers to the size of the neighborhood utilized in Theorem 5.2.
When ηt ≡ O(ϵ0), an approach akin to Part 1 can be employed to demonstrate that the price path
enters the neighborhood N1

ϵ infinitely many times for any ϵ ≥ O(ϵ0). Subsequently, by exploiting the
local property in a manner similar to Part 2, we can establish that once the price path enters the
neighborhood N2

ϵ for some ϵ = O(ϵ0), it will remain within that neighborhood.

(a) Convergence with ηt = 3/t. (b) Cyclic pattern with ηt = 1. (c) OPGA vs. equilibrium policy.

Figure 1: Price and reference price paths for Examples 1, 2, and 3, where the parameters are
(aH , bH , cH) = (8.70, 2.00, 0.82), (aL, bL, cL) = (4.30, 1.20, 0.32), (r0H , r0L) = (0.10, 2.95),
(p0H , p0L) = (4.85, 4.86), and α = 0.90.

We perform two numerical experiments, differentiated solely by their sequences of step-sizes, to
highlight the significance of step-sizes in achieving the convergence. In particular, Example 1 (see
Figure 1a) corroborates Theorem 5.1 by demonstrating that the price and reference price trajectories
converge to the unique SNE when we choose diminishing step-sizes that fulfill the criteria specified in
Theorem 5.1. By comparison, the over-large constant step-sizes employed in Example 2 (see Figure
1b) fails to ensure convergence, leading to cyclic patterns in the long run. Moreover, in Example 3
(see Figure 1c), we compare the OPGA algorithm and the repeated application of the equilibrium
pricing policy in Eq. (5) by plotting the reference price trajectories produced by both approaches.
Figure 1c conveys that the two algorithms reach the SNE at a comparable rate, which indicates that
the OPGA algorithm allows firms to attain the market equilibrium and stability as though they operate
under perfect information, while preventing excessive information disclosure.

6 Extensions

In previous sections, we assume that each firm i possesses accurate information regarding its sensitiv-
ity parameters (bi, ci) as well as its realized market share dti. This is equivalent to having access to an
exact first-order oracle. However, a more practical scenario to consider is one where the firm can
only obtain a rough approximation for its market share and needs to estimate the sensitivities from
historical data. This would bring extra noise to the computation of the first-order derivative Dt

i in Eq.
(9). In this section, we first elaborate on the feasibility of estimating the market share and sensitivities
from realistic data. Then, we discuss the impact of an inexact first-order oracle on the convergence.

We consider the approximation of market share and the calibration of sensitivities under both
uncensored and censored data cases. With uncensored data, both purchase and no-purchase data are
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available, a scenario analogous to firms selling substitute goods on third-party online retail platforms
like Amazon. The platform can track the non-purchase statistics by monitoring consumers who visited
its website but did not purchase any product. Consequently, this facilitates a direct estimation of the
total market size and, when complemented with sales quantities, allows for a precise computation of
the firm’s market share. Additionally, sensitivity parameters can be efficiently calibrated through the
classical Maximum Likelihood Estimation (MLE) method. Due to the concavity of the log-likelihood
function for the MNL model with respect to its parameters, many numerical algorithms (e.g., Newton-
Raphson, BHHH-2 [58], and the steepest ascent) are guaranteed to improve at each iteration and
achieve fast convergence [59, 60].

In many cases, the traditional transaction data only captures the realized demand, with non-purchases
typically unrecorded. This scenario is known as the censored data case. In this case, the sensitives and
the total market size of the MNL model can be estimated via the generalized expectation-maximization
(GEM) gradient method proposed by [59], which is an iterative algorithm that is inspired by the
expectation-maximization (EM) approach. The capability to approximate the sensitivity parameters,
the market share, and thereby the gradient Dt

i enhances the credibility and practicability of the OPGA
algorithm, suggesting its great potential for broader applications in retailing.

In the presence of approximation errors, firms cannot precisely compute the derivative Dt
i . Hence,

the convergence results in Section 5 are not directly applicable. Indeed, if the errors are disruptive
enough, one can anticipate Algorithm 1 to possibly not show any convergent behavior. However, if
the errors are uniformly bounded by some small number δ, the following theorem demonstrates that
both the price and reference price paths converge to a O(δ)-neighborhood of the unique SNE.

Theorem 6.1 (Inexact first-order oracle) Suppose both firms only have access to an inexact first-
order oracle such that |Dt

i−∂ log(Πi(p
t, rt))/∂pi| ≤ δ, ∀i ∈ {H,L} and ∀t ≥ 0. Let the step-sizes

{ηt}t≥0 be a non-increasing sequence such that limt→∞ ηt = 0 and
∑∞

t=0 η
t =∞ hold. Then, the

price paths reference price paths generated by Algorithm 1 converge to a neighborhood with radius
O(δ) of the unique SNE.

We remark that the inexact first-order oracle studied in our setting is different from the stochastic
gradient, which generally assumes a zero-mean noise with finite variance. In that case, it is possible
to derive the convergence to a limiting point in expectation or with high probability. In contrast, the
noise in Dt

i is a kind of approximation error without any distributional properties. Therefore, with
the step-sizes defined in Theorem 6.1, we expect the price and reference price paths to converge to
the neighborhood of the SNE, but continue to fluctuate around the neighborhood without admitting a
limiting point.

The proof of Theorem 6.1 is based upon Theorem 5.1. Specifically, we demonstrate that the inexact
gradient still guides the price path toward the SNE if the magnitude of the true gradient dominates
the noise. Conversely, if noise levels are comparable with the true gradient, we show that the price
path is already close to the SNE. The formal proof of Theorem 6.1 can be found in Appendix E

7 Conclusion and future work

This article considers the price competition with reference effects in an opaque market, where we
formulate the problem as an online game with an underlying dynamic state, known as reference
price. We accomplish the goal of simultaneously capturing the market equilibrium and stability via
proposing the no-regret algorithm named OPGA and providing the theoretical guarantee for its global
convergence to the SNE. In addition, under appropriate step-sizes, we show that the OPGA algorithm
has the convergence rate of O(1/t).
In this paper, we focus on the symmetric reference effects, where consumers exhibit equal sensitivity
to the gains and losses. As empirical studies suggest that consumers may display asymmetric reactions
[61, 32, 62], one possible extension involves accounting for asymmetric reference effects displayed
by loss-averse and gain-seeking consumers. Additionally, while our study considers the duopoly
competition between two firms, it would be valuable to explore the more general game involving n
players. Lastly, our research is based on a deterministic setting and pure strategy Nash equilibrium.
Another intriguing direction for future work is to investigate mixed-strategy learning [63] in dynamic
competition problems.
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Appendix A Discussion about alternative methods

As we briefly mentioned in Section 3, our problem can also be translated into a four-player online
game or a dynamical system. In this section, we will discuss these alternative methods and explain
why existing tools from the literature of online game and dynamical system cannot be applied.

A.1 Four-player online game formulation

By viewing the underlying state variables (rH , rL) as virtual players that undergo deterministic
transitions, we are able to convert our problem into a general four-player game. Specifically, we can
construct revenue functions Ri(pi, ri) for i ∈ {H,L} and a common sequence of step-sizes {ηtr}t≥0

for the two virtual players such that when firms H , L and virtual players implement OPGA using the
corresponding step-sizes, the resulting price path {pt}t≥0 and reference price path {rt}t≥0 recover
those generated by Algorithm 1. The functions Ri(·, ·),∀i ∈ {H,L} and step-sizes {ηtr}t≥0 are
specified as follows

Ri(pi, ri) = −
1

2
r2i + ri · pi, ∀i ∈ {H,L};

ηtr ≡ 1− α, ∀t ≥ 0.
(11)

Then, given the initial reference price r0 and initial price p0, the four players respectively update
their states through the online projected gradient ascent specified as follows, for t ≥ 0:

pt+1
H = ProjP

(
ptH + ηt ·

∂ log
(
ΠH(pt, rt)

)
∂pH

)
= ProjP

(
ptH + ηtDt

H

)
,

pt+1
L = ProjP

(
ptL + ηt ·

∂ log
(
ΠL(p

t, rt)
)

∂pL

)
= ProjP

(
ptL + ηtDt

L

)
,

rt+1
H = ProjP

(
rtH + ηtr ·

∂RH(ptH , rtH)

∂rH

)
= ProjP

(
αrtH + (1− α)ptH

)
,

rt+1
L = ProjP

(
rtL + ηtr ·

∂RL(p
t
L, r

t
L)

∂rL

)
= ProjP

(
αrtL + (1− α)ptL

)
.

(12)

It can be easily seen that the pure strategy Nash equilibrium of this four-player static game is equivalent
to the SNE of the original two-player dynamic game, as defined in Definition 3.1. However, even after
converting to the static game, no general convergence results are readily applicable in this setting.
One obstacle on the convergence analysis comes from the absence of critical properties, such as
monotonicity of the static game [14, 16] or variational stability at its Nash equilibrium [26, 15].

Meanwhile, anther obstacle stems from the asynchronous updates for real firms (price players) and
virtual firms (reference price players). While the real firms have the flexibility in adopting time-
varying step-sizes, the updates for the two virtual firms in Eq. (12) stick to the constant step-size
of (1− α). As a result, this rigidity of virtual players perplexes the analysis, given that the typical
convergence results of online games call for the step-sizes of multiple players to have the same pattern
(all diminishing or constant step-sizes) [47, 48, 14, 15].

A.2 Dynamical system formulation

The study of the limiting behavior of a competitive gradient-based learning algorithm is related to
dynamical system theories [64]. In fact, the update of Algorithm 1 can be viewed as a nonlinear
dynamical system. Assume a constant step-size is employed, i.e., ηt ≡ η, ∀t ≥ 0. Then, Lines 5 and
6 in Algorithm 1 are equivalent to the dynamical system

(pt+1, rt+1) = f(pt, rt), ∀t ≥ 0, (13)
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where f(·) is a vector-valued function defined as

f(p, r) :=



ProjP

(
pH + η

(
1

pH
+ (bH + cH) · dH(p, r)− (bH + cH)

))
ProjP

(
pL + η

(
1

pL
+ (bL + cL) · dL(p, r)− (bL + cL)

))
ProjP (αrH + (1− α)pH)

ProjP (αrL + (1− α)pL)


. (14)

Under the assumption that p⋆⋆ ∈ P2, it is evident that p⋆⋆ is the unique fixed point of the system in
Eq. (13). Generally, fixed points can be categorized into three classes:

• asymptotically stable, when all nearby solutions converge to it,

• stable, when all nearby solutions remain in close proximity,

• unstable, when almost all nearby solutions diverge away from the fixed point.

Hence, if we can demonstrate the asymptotic stability of p⋆⋆, we can at least prove the local
convergence of the price and reference price.

Standard dynamical systems theory [49, 50] states that p⋆⋆ is asymptotically stable if the spectral
radius of the Jacobian matrix∇f(p⋆⋆,p⋆⋆) is strictly less than one. However, computing the spectral
radius is not straightforward. The primary challenge stems from the fact that, while the entries of
∇f(p⋆⋆,p⋆⋆) contain p⋆⋆ and di(p

⋆⋆,p⋆⋆), there is no closed-form expression for p⋆⋆.

Apart from the above issue, it is worth noting that the function f(·) is not globally smooth due to the
presence of the projection operator. Furthermore, the function f(·) also depends on the step-size η.
When firms adopt time-varying step-sizes, the dynamical system in Eq. (13) becomes non-stationary,
i.e., (pt+1, rt+1) = f t(pt, rt). Although the sequence of functions f tt≥0 shares the same fixed
point, verifying the convergence (stability) of the system requires examining the spectral radius of
∇f t(p⋆⋆,p⋆⋆) for all t ≥ 0.

Most importantly, even if asymptotic stability holds, it can only guarantee local convergence of
Algorithm 1. Our goal, however, is to prove global convergence, such that both the price and
reference price converge to the SNE for arbitrary initializations.

Appendix B More details about SNE

B.1 Connection between equilibrium pricing policy and SNE

First, we further elaborate on the connection between equilibrium pricing policy and SNE. The work
[22] investigates the properties of equilibrium pricing policy under the full information setting. They
demonstrate that the policy p⋆(r) is a well-defined function since it outputs a unique equilibrium
price for every given reference price r. Further, for any given reference price r, the equilibrium
price

(
p⋆H(r), p⋆L(r)

)
is the unique solution to the following system of first-order equations [22, Eq.

(B.10)]: 
p⋆H(r) =

1

(bH + cH) ·
(
1− dH(p⋆(r), r)

) ,
p⋆L(r) =

1

(bL + cL) ·
(
1− dL(p⋆(r), r)

) . (15)

The intertemporal aspect of the memory-based reference effect prompts researchers to examine the
long-term consequence of repeatedly applying the equilibrium pricing policy in conjunction with
reference price updates. Theorem 4 in [22] confirms that in the complete information setting, the
price paths and reference price paths generated by the equilibrium pricing policy will converge to the
SNE in the long run. Moreover, based on Eq. (15) for the equilibrium pricing policy, the SNE p⋆⋆ is
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the unique solution of the following system of equations:
p⋆⋆H =

1

(bH + cH) ·
(
1− dH(p⋆⋆,p⋆⋆)

) =
1 + exp(aH − bH · p⋆⋆H ) + exp(aL − bL · p⋆⋆L )

(bH + cH) · (1 + exp(aL − bL · p⋆⋆L ))
,

p⋆⋆L =
1

(bL + cL) ·
(
1− dL(p⋆⋆,p⋆⋆)

) =
1 + exp(aH − bH · p⋆⋆H ) + exp(aL − bL · p⋆⋆L )

(bL + cL) · (1 + exp(aH − bH · p⋆⋆H ))
.

(16)
It can be seen from Eq. (16) that the value of SNE depends only on the model parameters.

B.2 Proof of Proposition 3.1

Proof. Firstly, the uniqueness of SNE has been established in the discussion in Appendix B.1. Below,
we show the boundedness of the SNE. By performing a transformation on Eq. (16), we obtain the
following inequality for p⋆⋆:

exp(ai − bi · p⋆⋆i )

(bi + ci)p⋆⋆i − 1
= 1 + exp(a−i − b−i · p⋆⋆−i) > 1, ∀i ∈ {H,L}. (17)

To make the above inequality valid, it immediately follows that

1

bi + ci
< p⋆⋆i <

1 + exp(ai − bi · p⋆⋆i )

bi + ci
, ∀i ∈ {H,L}. (18)

Now, we derive the upper bound for p⋆⋆i from the second inequality in Eq. (18). Since the quantity on
the right-hand side of Eq. (18) is monotone decreasing in p⋆⋆i , the value of p⋆⋆i must be upper-bounded
by the unique solution to the following equation with respect to pi:

pi =
1 + exp(ai − bi · pi)

bi + ci
. (19)

Define x := −bi/(bi + ci) + bi · pi. Then, one can easily verify that the above equation can be
converted into

x exp(x) =
bi

bi + ci
exp

(
ai −

bi
bi + ci

)
, (20)

which implies that

x = W

(
bi

bi + ci
exp

(
ai −

bi
bi + ci

))
, (21)

where W (·) is known as the Lambert W function [65]. For any value y ≥ 0, W (y) is defined as the
unique real solution to the equation

W (y) · exp
(
W (y)

)
= y. (22)

Hence, we have

p⋆⋆i < pi =
1

bi + ci
+

1

bi
W

(
bi

bi + ci
exp

(
ai −

bi
bi + ci

))
. (23)

Together with the lower bound provided in Eq. (18), this completest the proof. □

Appendix C Proof of Theorem 5.1

Proof. In this section, we present the proof of Theorem 5.1. By Lemma F.1, when the step-sizes in
Algorithm 1 are non-increasing and limt→∞ ηt = 0, the difference between reference price and price
converges to zero as t goes to infinity, i.e., limt→∞

(
rt − pt

)
= 0. Thus, we are left to verify that

the price path {pt}t≥0 converges to the unique SNE, denoted by p⋆⋆ (see Definition 3.1). Recall that
the uniqueness of the SNE is established in Proposition 3.1.

Consider the following weighted ℓ1-distance between a point p and the SNE p⋆⋆:

ε(p) :=
|p⋆⋆H − pH |
bH + cH

+
|p⋆⋆L − pL|
bL + cL

. (24)

In a nutshell, our proof contains the following two parts:
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• In Part 1 (Appendix C.1), we show that the price path {pt}t≥0 would enter the ℓ1-neighborhood
N1

ϵ0 :=
{
p ∈ P2 | ε(p) < ϵ0

}
infinitely many times for any ϵ0 > 0.

• In Part 2 (Appendix C.2), we show that when the price path {pt}t≥0 enters the ℓ2-neighborhood
N2

ϵ0 :=
{
p ∈ P2 | ∥p − p⋆⋆∥2 < ϵ0

}
for some sufficiently small ϵ0 > 0 with small enough

step-sizes, the price path will stay in N2
ϵ0 during subsequent periods.

Due to the diminishing step-sizes and the equivalence between ℓ1 and ℓ2 norms, Part 1 guarantees
that the price path would enter any ℓ2-neighborhood N2

ϵ0 of p⋆⋆ with arbitrarily small step-sizes.
Together with Part 2, this proves that for any sufficiently small ϵ0 > 0, there exists some Tϵ0 > 0
such that ∥pt − p⋆⋆∥2 ≤ ϵ0 for every t ≥ Tϵ0 , which implies the convergence to the SNE.

C.1 Proof of Part 1

We argue by contradiction. Suppose there eixsts ϵ0 > 0 such that {p}t≥0 only visits N1
ϵ0 finitely

many times. This is equivalent to say that ∃T ϵ0 such that {pt}t≥0 never visits N1
ϵ0 if t ≥ T ϵ0 .

Firstly, let Gi(p, r) be the scaled partial derivative of the log-revenue, defined as

Gi(p, r) :=
1

bi + ci
·
∂ log

(
Πi(p, r)

)
∂pi

=
1

(bi + ci)pi
+ di(p, r)− 1, ∀i ∈ {H,L}. (25)

For the ease of notation, we denote Pi := {p/(bi + ci) | p ∈ P} as the scaled price range. Then, the
price update in Line 5 of Algorithm 1 is equivalent to

pt+1
i

bi + ci
= ProjPi

(
pti

bi + ci
+ ηt

Dt
i

bi + ci

)
= ProjPi

(
pti

bi + ci
+ ηtGi(p

t, rt)

)
. (26)

Let sign(·) be the sign function defined as

sign(x) :=


1, if x > 0,

0, if x = 0,

−1, if x < 0.

(27)

Then, an essential observation from Eq. (26) is that: if sign(p⋆⋆i − pti) ·Gi(p
t, rt) > 0, we have that

sign(pt+1
i − pti) = sign

(
Gi(p

t, rt)
)
= sign(p⋆⋆i − pti), i.e., the update from pti to pt+1

i is toward the
direction of the SNE price p⋆⋆i . Conversely, if sign(p⋆⋆i − pti) ·Gi(p

t, rt) < 0, the update from pti to
pt+1
i is deviating from p⋆⋆i .

We separate the whole feasible price range into four quadrants with p⋆⋆ being the origin:

N1 :=
{
p ∈ P2 | pH > p⋆⋆H and pL ≥ p⋆⋆L

}
; N2 :=

{
p ∈ P2 | pH ≤ p⋆⋆H and pL > p⋆⋆L

}
;

N3 :=
{
p ∈ P2 | pH < p⋆⋆H and pL ≤ p⋆⋆L

}
; N4 :=

{
p ∈ P2 | pH ≥ p⋆⋆H and pL < p⋆⋆L

}
.

(28)

Below, we first show that when t is sufficiently large, prices in consecutive periods cannot always
stay within a same region. We prove it by a contradiction argument. Suppose that there exists
some period T ϵ0

1 > T ϵ0 , after which the price path {pt}t≥T
ϵ0
1

stays within a same region, i.e.,
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sign
(
p⋆⋆i − pt1i

)
= sign

(
p⋆⋆i − pt2i

)
, ∀t1, t2 ≥ T ϵ0

1 , ∀i ∈ {H,L}. Then, for t ≥ T ϵ0
1 , it holds that

ε(pt+1) =
|p⋆⋆H − pt+1

H |
bH + cH

+
|p⋆⋆L − pt+1

L |
bL + cL

=

∣∣∣∣ p⋆⋆H
bH + cH

− ProjPH

(
ηtGH(pt, rt) +

ptH
bH + cH

)∣∣∣∣
+

∣∣∣∣ p⋆⋆L
bL + cL

− ProjPL

(
ηtGL(p

t, rt) +
ptL

bL + cL

)∣∣∣∣
(∆1)

≤
∣∣∣∣ p⋆⋆H
bH + cH

− ηtGH(pt, rt)− ptH
bH + cH

∣∣∣∣+ ∣∣∣∣ p⋆⋆L
bL + cL

− ηtGL(p
t, rt)− ptL

bL + cL

∣∣∣∣
(∆2)
= sign

(
p⋆⋆H − ptH

)
·
(

p⋆⋆H
bH + cH

− ηtGH(pt, rt)− ptH
bH + cH

)
+ sign

(
p⋆⋆L − ptL

)
·
(

p⋆⋆L
bL + cL

− ηtGL(p
t, rt)− ptL

bL + cL

)

= sign
(
p⋆⋆H − ptH

)
·
(

p⋆⋆H
bH + cH

− ηtGH(pt,pt)− ptH
bH + cH

)
+ sign

(
p⋆⋆L − ptL

)
·
(

p⋆⋆L
bL + cL

− ηtGL(p
t,pt)− ptL

bL + cL

)
+ ηt

(∣∣∣GH(pt, rt)−GH(pt,pt)
∣∣∣+ ∣∣∣GL(p

t, rt)−GL(p
t,pt)

∣∣∣)
(∆3)

≤ sign
(
p⋆⋆H − ptH

)
·
(
p⋆⋆H − ptH
bH + cH

)
+ sign

(
p⋆⋆L − ptL

)
·
(
p⋆⋆L − ptL
bL + cL

)
− ηt

(
sign

(
p⋆⋆H − ptH

)
·GH(pt,pt) + sign

(
p⋆⋆L − ptL

)
·GL(p

t,pt)︸ ︷︷ ︸
G(pt)

)

+ 2ηt · ℓr∥rt − pt∥2

(∆4)
=
|p⋆⋆H − ptH |
bH + cH

+
|p⋆⋆L − ptL|
bL + cL

− ηtG(pt) + 2ηt · ℓr∥rt − pt∥2

= ε(pt)− ηt
(
G(pt)− 2ℓr∥rt − pt∥2

)
(∆5)

≤ ε(pt)− ηt
(
Mϵ0 − 2ℓr∥rt − pt∥2

)
, ∀t ≥ T ϵ0

1 ,
(29)

where we use the property of the projection operator in (∆1). The equality (∆2) follows since
sign

(
p⋆⋆i − pt+1

i

)
= sign (p⋆⋆i − pti) for i ∈ {H,L}, and the projection does not change the sign,

then we have

sign

(
p⋆⋆i

bi + ci
− ηtGi(p

t, rt)− pti
bi + ci

)
= sign

(
p⋆⋆i − pti

)
, ∀i ∈ {H,L}.

The inequality (∆3) results from Lemma F.5. In particular, since
∥∥∇rGi(p, r)

∥∥
2
≤ ℓr, where

ℓr = (1/4)
√
c2H + c2L, it follows that∣∣Gi(p

t, rt)−Gi(p
t,pt)

∣∣ ≤ ∥∥∇rGi(p, r)
∥∥
2
·
∥∥rt − pt

∥∥
2
≤ ℓr

∥∥rt − pt
∥∥
2
, ∀i ∈ {H,L}. (30)

In step (∆4), we introduce the function G(p), which is defined as

G(p) := sign(p⋆⋆H − pH) ·GH(p,p) + sign(p⋆⋆L − pL) ·GL(p,p), ∀p ∈ P2. (31)
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Finally, the last step (∆5) is due to Lemma F.2, which states that ∃Mϵ0 > 0 such that G(p) ≥Mϵ0
for every p ∈ P2 with ε(p) > ϵ0. Since for t ≥ T ϵ0

1 > T ϵ0 , we have ε(pt) ≥ ϵ0 by the premise, it
follows that G(pt) ≥Mϵ0 .

By Lemma F.1, the difference {rt − pt}t≥0 converges to 0 as t approaches to infinity . As a result,
we can always find T ϵ0

2 > 0 to ensure ∥rt −pt∥2 ≤Mϵ0/(4ℓr) for all t ≥ T ϵ0
2 . Then, the last line in

Eq. (29) can be further upper-bounded as

ε(pt+1) ≤ ε(pt)− ηt
(
Mϵ0 − 2ℓr∥rt − pt∥2

)
≤ ε(pt)− ηt

(
Mϵ0 −

1

2
Mϵ0

)
≤ ε(pt)− 1

2
ηtMϵ0 , ∀t ≥ T̂ ϵ0 := max{T ϵ0

1 , T ϵ0
2 }.

(32)

By a telescoping sum from any period T − 1 ≥ T̂ ϵ0 down to period T̂ ϵ0 , we have that

ε(pT ) ≤ ε(pT̂ ϵ0
)− Mϵ0

2

T−1∑
t=T̂ ϵ0

ηt. (33)

Since the step-sizes satisfy
∑∞

t=0 η
t =∞, we have that limT→∞(Mϵ0/2)

∑T−1

t=T̂ ϵ0
ηt =∞, which

further implies the contradiction that limT→∞ ε(pT )→ −∞. Thus, the prices in consecutive period
will not always stay in the same region, i.e., the price path {pt}t≥0 keeps oscillating between different
regions Nj for j ∈ {1, 2, 3, 4}.
Next, we prove that ∃T ϵ0

3 ≥ T ϵ0 such that the price path {pt}t≥T
ϵ0
3

only oscillates between adjacent

quadrants. Arguing by contradiction, we assume ηT
ϵ0
3 < ϵ0/(2MG), where MG is the upper bound

of
∣∣Gi(p, r)

∣∣ defined in Eq. (100) in Lemma F.5. If pt ∈ N1 (or N2) and pt+1 ∈ N3 (or N4), i.e.,
sign (p⋆⋆i − pti) ̸= sign

(
p⋆⋆i − pt+1

i

)
for both i ∈ {H,L}, then it automatically follows from the

update rule (see Eq. (26)) that

ε(pt+1) ≤ ηt ·
( ∣∣GH(pt, rt)

∣∣+ ∣∣GL(p
t, rt)

∣∣ )
≤ ϵ0

2MG
· 2MG = ϵ0,

(34)

which again contradicts the premise that {pt}t≥T ϵ0 never visits N1
ϵ0 . Thus, when t ≥ T ϵ0

3 , the price
path {pt}t≥T

ϵ0
3

only oscillates between adjacent quadrants.

Because of the following two established facts: (i) when t ≥ max{T ϵ0
2 , T ϵ0

3 }, the price path will not
remain in the same quadrant but can only oscillate between adjacent quadrants, and (ii) the step-sizes
{ηt}t≥0 decrease to 0 as t→∞, we conclude that the price path {p}t≥0 must visit the set

N̂ϵ1 :=

{
p ∈ P2

∣∣∣∣ |p⋆⋆H − pH |
bH + cH

< ϵ1 or
|p⋆⋆L − pL|
bL + cL

< ϵ1

}
(35)

infinitely many times for any ϵ1 > 0. Intuitively, set N̂ϵ1 can be understood as the boundary regions
between adjacent quadrants. We define Tϵ1 as the set of “jumping periods” from (N1 ∪N3) ∩ N̂ϵ1 to
(N2 ∪N4) ∩ N̂ϵ1 after T ϵ0 , i.e.,

Tϵ1 :=
{
t ≥ T ϵ0 | pt ∈ (N1 ∪N3) ∩ N̂ϵ1 and pt+1 ∈ (N2 ∪N4) ∩ N̂ϵ1

}
. (36)

Then, the above fact (i) implies that |Tϵ1 | =∞ for any ϵ1 > 0.

The key idea of the following proof is that if {pt}t≥0 visits N̂ϵ1 with some sufficiently small ϵ1 and a

relatively smaller step-size, it will stay in N̂ϵ1 and converge to N1
ϵ0 concurrently. This results in a

contradiction with our initial assumption that {pt}t≥0 never visits N1
ϵ0 when t ≥ T ϵ0 .

Let T ϵ1
1 ∈ Tϵ1 be a jumping period with ϵ1 ≪ ϵ0. Without loss of generality, suppose that

∣∣p⋆⋆H −
p
T

ϵ1
1

H

∣∣/(bH+cH) < ϵ1. Then, since pT
ϵ1
1 ̸∈ N1

ϵ0 , we accordingly have that
∣∣p⋆⋆L −pT ϵ1

1

L

∣∣/(bL+cL) >
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ϵ0 − ϵ1. By the update rule of price in Eq. (26), it holds that

∣∣p⋆⋆L − p
T

ϵ1
1 +1

L

∣∣
bL + cL

= sign
(
p⋆⋆L − p

T
ϵ1
1 +1

L

)
·
p⋆⋆L − p

T
ϵ1
1 +1

L

bL + cL

= sign
(
p⋆⋆L − p

T
ϵ1
1 +1

L

)
·

(
p⋆⋆L

bL + cL
− ProjPL

( p
T

ϵ1
1

L

bL + cL
+ ηT

ϵ1
1 GL

(
pT

ϵ1
1 , rT

ϵ1
1
)))

≤ sign
(
p⋆⋆L − p

T
ϵ1
1 +1

L

)
·

(
p⋆⋆L − p

T
ϵ1
1

L

bL + cL
− ηT

ϵ1
1 GL

(
pT

ϵ1
1 , rT

ϵ1
1
))

= sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·
p⋆⋆L − p

T
ϵ1
1

L

bL + cL
− sign

(
p⋆⋆L − p

T
ϵ1
1

L

)
·
(
ηT

ϵ1
1 GL

(
pT

ϵ1
1 , rT

ϵ1
1
))

.

(37)
We note that, the last step above is due to the premise that the step-size is sufficiently small: since∣∣p⋆⋆L − p

T
ϵ1
1

L

∣∣/(bL + cL) > ϵ0 − ϵ1, the equality sign
(
p⋆⋆L − p

T
ϵ1
1 +1

L

)
= sign

(
p⋆⋆L − p

T
ϵ1
1

L

)
holds if

ηT
ϵ1
1 < (ϵ0 − ϵ1)/MG. Next, we show that the second term on the right-hand side of Eq. (37) is

upper-bounded away from zero:

sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·GL

(
pT

ϵ1
1 , rT

ϵ1
1
)

≥ sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·GL

(
pT

ϵ1
1 ,pT

ϵ1
1
)
−
∣∣∣GL

(
pT

ϵ1
1 , rT

ϵ1
1
)
−GL

(
pT

ϵ1
1 ,pT

ϵ1
1

)∣∣∣
(∆1)

≥ sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·GL

(
pT

ϵ1
1 ,pT

ϵ1
1
)
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2

= sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·

[
1

(bL + cL)p
T

ϵ1
1

L

+ dL(p
T

ϵ1
1 ,pT

ϵ1
1 )− 1

]
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2

≥ sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·

[
1

(bL + cL)p
T

ϵ1
1

L

+ dL

((
p⋆⋆H , p

T
ϵ1
1

L

)
,
(
p⋆⋆H , p

T
ϵ1
1

L

))
− 1

]

−
∣∣∣dL(pT

ϵ1
1 ,pT

ϵ1
1 )− dL

(
(p⋆⋆H , p

T
ϵ1
1

L ), (p⋆⋆H , p
T

ϵ1
1

L )
)∣∣∣− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2

(∆2)

≥ sign ·
(
p⋆⋆L − p

T
ϵ1
1

L

)
·

[
1

(bL + cL)p
T

ϵ1
1

L

+ dL

(
(p⋆⋆H , p

T
ϵ1
1

L ), (p⋆⋆H , p
T

ϵ1
1

L )
)
− 1

]
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2

−max
p∈P

{∣∣∣∣∂dL(p,p)∂pH

∣∣∣∣} · ∣∣p⋆⋆H − p
T

ϵ1
1

H

∣∣
(∆3)

≥ sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·

[
1

(bL + cL)p
T

ϵ1
1

L

+ dL

(
(p⋆⋆H , p

T
ϵ1
1

L ), (p⋆⋆H , p
T

ϵ1
1

L )
)
− 1

]
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2

− 1

4
bH(bH + cH)ϵ1

= G
(
(p⋆⋆H , p

T
ϵ1
1

L )
)
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2
− 1

4
bH(bH + cH)ϵ1,

(38)
where (∆1) holds because of the mean value theorem and the fact that ∥∇rGL(p, r)∥2 ≤ ℓr for
p, r ∈ P2 by Lemma F.5, inequality (∆2) applies the mean value theorem again to the demand

function. In (∆3), we use the assumption that
∣∣p⋆⋆H − p

T
ϵ1
1

H

∣∣ < (bH + cH)ϵ1 and apply a similar
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argument as Eq. (101) to derive that∣∣∣∣∂dL(p,p)∂pH

∣∣∣∣ = |bH · dL(p,p) · dH(p,p)| ≤ 1

4
bH , ∀p ∈ P2. (39)

Since ε
(
(p⋆⋆H , p

T
ϵ1
1

L )
)
> ϵ0 − ϵ1, by Lemma F.2, there exists a constant Mϵ0−ϵ1 > 0, such that

G
(
(p⋆⋆H , p

T
ϵ1
1

L )
)
≥Mϵ0−ϵ1 . Meanwhile, we can choose ϵ1 sufficiently smaller than ϵ0 to ensure that

(1/2)Mϵ0−ϵ1 − (1/4)bH(bH + cH)ϵ1 > 0. Furthermore, recall that T ϵ1
1 can be arbitrarily chosen

from Tϵ1 , where |Tϵ1 | = ∞. Thus, we can always find a sufficiently large T ϵ1
1 ∈ Tϵ1 to guarantee

that ℓr
∥∥rT ϵ1

1 − pT
ϵ1
1

∥∥
2
≤ (1/2)Mϵ0−ϵ1 − (1/4)bH(bH + cH)ϵ1 by Lemma F.1. Back to Eq. (38), it

follows that

sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·GL

(
pT

ϵ1
1 , rT

ϵ1
1
)

≥ G
(
(p⋆⋆H , p

T
ϵ1
1

L )
)
− ℓr

∥∥rT ϵ1
1 − pT

ϵ1
1

∥∥
2
− 1

4
bH(bH + cH)ϵ1

≥Mϵ0−ϵ1 −
(
1

2
Mϵ0−ϵ1 −

1

4
bH(bH + cH)ϵ1

)
− 1

4
bH(bH + cH)ϵ1

=
1

2
Mϵ0−ϵ1 .

(40)

By substituting Eq. (40) into Eq. (37), we further derive that∣∣p⋆⋆L − p
T

ϵ1
1 +1

L

∣∣
bL + cL

≤ sign
(
p⋆⋆L − p

T
ϵ1
1

L

)
·
p⋆⋆L − p

T
ϵ1
1

L

bL + cL
− sign

(
p⋆⋆L − p

T
ϵ1
1

L

)
·
(
ηT

ϵ1
1 GL

(
pT

ϵ1
1 , rT

ϵ1
1
))

≤
∣∣p⋆⋆L − p

T
ϵ1
1

L

∣∣
bL + cL

− 1

2
ηT

ϵ1
1 Mϵ0−ϵ1 .

(41)
This indicates that the price update from p

T
ϵ1
1

L to p
T

ϵ1
1 +1

L is towards the SNE price p⋆⋆L when
∣∣p⋆⋆H −

p
T

ϵ1
1

H

∣∣ < (bH + cH)ϵ1.

Now, we use a strong induction to show that
∣∣p⋆⋆H − ptH

∣∣/(bH + cH) < ϵ1 holds for all t ≥ T ϵ1
1

provided that ϵ1 is sufficiently small and T ϵ1
1 is sufficiently large. Suppose there exists T ϵ1

2 ≥ T ϵ1
1

such that
∣∣p⋆⋆H − ptH

∣∣/(bH + cH) < ϵ1 holds for all t = T ϵ1
1 , T ϵ1

1 + 1, . . . , T ϵ1
2 , we aim to show that∣∣p⋆⋆H − p

T
ϵ1
2 +1

H

∣∣/(bH + cH) < ϵ1. Following the same derivation from Eq. (37) to Eq. (41), it holds
that ∣∣p⋆⋆L − pt+1

L

∣∣
bL + cL

≤
∣∣p⋆⋆L − ptL

∣∣
bL + cL

− 1

2
ηtMϵ0−ϵ1 , t = T ϵ1

1 , T ϵ1
1 + 1, . . . , T ϵ1

2 . (42)

By telescoping the above inequality from T ϵ1
2 − 1 down to T ϵ1

1 , we have that∣∣p⋆⋆L − p
T

ϵ1
2

L

∣∣
bL + cL

≤
∣∣p⋆⋆L − p

T
ϵ1
1

L

∣∣
bL + cL

− Mϵ0−ϵ1

2

T
ϵ1
2 −1∑

t=T
ϵ1
1

ηt ≤
∣∣p⋆⋆L − p

T
ϵ1
1

L

∣∣
bL + cL

. (43)

Additionally, we note that
∣∣p⋆⋆H − ptH

∣∣/(bH + cH) < ϵ1 and pt ̸∈ N1
ϵ0 together imply that

∣∣p⋆⋆L −
ptL
∣∣/(bL + cL) > (ϵ0 − ϵ1) for all t = T ϵ1

1 , T ϵ1
1 + 1, . . . , T ϵ1

2 . As the step-size is sufficiently

small, we conclude that the price path {ptL}
T

ϵ1
2

t=T
ϵ1
1

lies on the same side of the SNE price p⋆⋆L , and

thus sign
(
p⋆⋆L − p

T
ϵ1
2

L

)
= sign

(
p⋆⋆L − p

T
ϵ1
1

L

)
. Below, we discuss two cases based on the value of∣∣p⋆⋆H − p

T
ϵ1
2

H

∣∣:
Case 1:

∣∣p⋆⋆H − p
T

ϵ1
2

H

∣∣/(bH + cH) < ϵ1 − ηT
ϵ1
1 MG.
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Following a similar derivation as Eq.(37), we have that

∣∣p⋆⋆H − p
T

ϵ1
2 +1

H

∣∣
bH + cH

≤ sign
(
p⋆⋆H − p

T
ϵ1
2

H

)
·
p⋆⋆H − p

T
ϵ1
2

H

bH + cH
− ηT

ϵ1
2 sign

(
p⋆⋆H − p

T
ϵ1
2

H

)
·GH

(
pT

ϵ1
2 , rT

ϵ1
2
)
.

≤
∣∣p⋆⋆H − p

T
ϵ1
2

H

∣∣
bH + cH

+ ηT
ϵ1
2

∣∣∣GH

(
pT

ϵ1
2 , rT

ϵ1
2
)∣∣∣

(∆1)
<
(
ϵ1 − ηT

ϵ1
1 MG

)
+ ηT

ϵ1
2 MG

(∆2)

≤ ϵ1,
(44)

where (∆1) is from Lemma F.5 that
∣∣GH(p, r)

∣∣ ≤ MG for p, r ∈ P2, and (∆2) is because the
sequence of step-sizes is non-increasing, hence ηT

ϵ1
1 ≥ ηT

ϵ1
2 .

Case 2:
∣∣p⋆⋆H − p

T
ϵ1
2

H

∣∣/(bH + cH) ∈
[
ϵ1 − ηT

ϵ1
1 MG, ϵ1

)
.

It suffices to show that
∣∣p⋆⋆H − p

T
ϵ1
2 +1

H

∣∣ ≤ ∣∣p⋆⋆H − p
T

ϵ1
2

H

∣∣. According to the observation below Eq. (27),
this is equivalent to showing that

sign
(
p⋆⋆H − p

T
ϵ1
2

H

)
·GH

(
pT

ϵ1
2 , rT

ϵ1
2
)
≥ 0. (45)

We further discuss two scenarios depending on whether pT
ϵ1
2 ∈ N1 ∪N3 or pT

ϵ1
2 ∈ N2 ∪N4.

1. Suppose that pT
ϵ1
2 ∈ N1 ∪N3. According to the definition of set Tϵ1 in Eq. (36), we have that

pT
ϵ1
1 ∈ N1 ∪ N3 since T ϵ1

1 ∈ Tϵ1 is a jumping period. Together with the established fact that

sign
(
p⋆⋆L −p

T
ϵ1
2

L

)
= sign

(
p⋆⋆L −p

T
ϵ1
1

L

)
(see the argument below Eq. (43)), we conclude that pT

ϵ1
2

and pT
ϵ1
1 are in the same quadrant, and sign

(
p⋆⋆H − p

T
ϵ1
2

H

)
= sign

(
p⋆⋆H − p

T
ϵ1
1

H

)
. Then, we can

write that

sign
(
p⋆⋆H − p

T
ϵ1
2

H

)
·GH

(
pT

ϵ1
2 , rT

ϵ1
2
)

≥ sign
(
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T
ϵ1
2

H

)
·GH

(
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ϵ1
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)
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(∆)

≥ sign
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)
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H , p
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1

L ), (p
T
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2
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ϵ1
1

L )
)
− ℓr∥rT
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= sign
(
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1
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)
·GH

(
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ϵ1
1
)
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+ sign
(
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1
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)
·
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ϵ1
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−GH
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1 ,pT
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(46)

where we apply Lemma F.4 in (∆) by utilizing the relation
∣∣p⋆⋆L − p

T
ϵ1
2

L

∣∣ ≤ ∣∣p⋆⋆L − p
T

ϵ1
1

L

∣∣ proved
in Eq. (43). Next, as T ϵ1

1 is a jumping period, it follows from the price update rule in Eq. (26)

that
∣∣p⋆⋆H − p

T
ϵ1
1

H

∣∣/(bH + cH) ≤
∣∣ηT ϵ1

1 GH

(
pT

ϵ1
1 ,pT

ϵ1
1

))∣∣ ≤ ηT
ϵ1
1 MG. Thus, when the chosen

jumping period T ϵ1
1 is sufficiently large so that the step-size ηT

ϵ1
1 is considerably smaller than ϵ1,

we further derive that

∣∣p⋆⋆H − p
T

ϵ1
2

H

∣∣ ≥ (bH + cH) · (ϵ1 − ηT
ϵ1
1 MG) ≥ (bH + cH) · ηT

ϵ1
1 MG ≥

∣∣p⋆⋆H − p
T

ϵ1
1

H

∣∣. (47)
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With Eq. (47), we use Lemma F.4 again to upper-bound the last term on the right-hand side of Eq.
(46):
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(
p⋆⋆H − p

T
ϵ1
1

H

)
·
(
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H , p
T
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ϵ1
1

H

∣∣∣∣∣ ,
(48)

where (∆1) holds since the difference in the previous step is non-negative by Lemma F.4. Fur-
thermore, it is straightforward to observe that the terms diff1 and diff2 have the same sign, which
results in the final inequality (∆2). We substitute Eq. (48) back into Eq. (46):
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(49)
In inequality (∆1), we use the fact that sign

(
p⋆⋆H − p

T
ϵ1
1

H

)
·GH

(
pT

ϵ1
1 , rT

ϵ1
1

)
> 0 since T ϵ1

1 is a

jumping period in Tϵ1 . Then, inequality (∆2) is implied by the properties that sign
(
p⋆⋆H −p

T
ϵ1
2

H

)
=

sign
(
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ϵ1
1
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)
,
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T
ϵ1
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H

∣∣/(bH + cH) ≥ ϵ1 − ηT
ϵ1
1 MG, and

∣∣p⋆⋆H − p
T

ϵ1
1

H

∣∣/(bH + cH) ≤
ηT

ϵ1
1 MG. Since both the step-size ηt and the difference ∥rt − pt∥2 decrease to 0 as t → ∞,

by choosing a sufficiently large jumping period T ϵ1
1 from Tϵ1 , the right-hand side of Eq. (46) is

guaranteed to be non-negative, i.e., sign
(
p⋆⋆H − p

T
ϵ1
2

H

)
·GH

(
pT

ϵ1
2 , rT

ϵ1
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)
≥ 0. This completes the

proof of scenario 1.
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2. Suppose pT
ϵ1
2 ∈ N2 ∪N4. We deduce that
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)
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(∆3)

≥ Mϵ̂1 − ℓr∥rT
ϵ1
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ϵ1
2 ∥2, where ϵ̂1 := ϵ1 − ηT

ϵ1
2 MG.

(50)

The inequality (∆1) follows from Lemma F.4, where sign
(
p⋆⋆H − pH

)
·GH

(
p,p

)
is deceasing

when |p⋆⋆L − pL| decreases . The equality (∆2) is due to the definition of G(p) in Eq. (31)
and the fact that sign(p⋆⋆L − p⋆⋆L ) = 0. Finally, in the last line (∆3), we leverage the initial

assumption of Case 2, which implies that ε
(
(p

T
ϵ1
2

H , p⋆⋆L )
)
=
∣∣p⋆⋆H − p

T
ϵ1
2

H

∣∣/(bH + cH) ∈
[
ϵ1 −

ηT
ϵ1
1 MG, ϵ1

)
. Then, by Lemma F.2, there must exist Mϵ̂1 > 0 with ϵ̂1 := ϵ1 − ηT

ϵ1
2 MG such that

G
(
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T
ϵ1
2

H , p⋆⋆L )
)
≥Mϵ̂1 . As |Tϵ1 | =∞, we can pick a sufficiently large T ϵ1

1 ∈ Tϵ1 to guarantee that
ℓr
∥∥rt − pt

∥∥
2
≤Mϵ̂1 for t ≥ T ϵ1

1 by Lemma F.1. Consequently, we obtain the desired conclusion

that sign
(
p⋆⋆H − p

T
ϵ1
2

H

)
·GH

(
pT

ϵ1
2 , rT

ϵ1
2

)
> 0 when pT

ϵ1
2 ∈ N2 ∪N4, which completes the proof

of scenario 2.

Combining Case 1 and Case 2, we have shown that
∣∣p⋆⋆H −pT ϵ1

2 +1
H

∣∣/(bH+cH) < ϵ1, which completes
the strong induction, i.e.,

∣∣p⋆⋆H − ptH
∣∣/(bH + cH) < ϵ1 for all t ≥ T ϵ1

1 . Under the assumption that
{pt}t≥0 never visits N1

ϵ0 if t ≥ T ϵ0 , we accordingly have that
∣∣p⋆⋆L − ptL

∣∣/(bL + cL) > (ϵ0 − ϵ1)

for all t ≥ T ϵ1
1 . Therefore, following the derivations from Eq. (37) to Eq. (41), we deduce that Eq.

(42) holds for all t ≥ T ϵ1
1 . Using a telescoping sum, it holds for any period T > T ϵ1

1 that

∣∣p⋆⋆L − pTL
∣∣

bL + cL
≤
∣∣p⋆⋆L − p

T
ϵ1
1

L

∣∣
bL + cL

− Mϵ0−ϵ1

2

T−1∑
t=T

ϵ1
1

ηt. (51)

Since Mϵ0−ϵ1 > 0 is a constant and limT→∞
∑T−1

t=T
ϵ1
1

ηt = ∞, we arrive at the contradiction that∣∣p⋆⋆L − pTL
∣∣/(bL + cL)→ −∞ as T →∞. Consequently, our initial assumption is incorrect and the

price path {pt}t≥0 would visit the ℓ1-neighborhood N1
ϵ0 infinitely many times for any ϵ0 > 0, which

completes the proof of Part 1.

C.2 Proof of Part 2

In particular, we show that when pt ∈ N2
ϵ0 for some sufficiently large t, then it also holds pt+1 ∈ N2

ϵ0 .
The value of ϵ0 will be specified later in the proof.
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By the update rule of Algorithm 1, it holds that

∣∣p⋆⋆i − pt+1
i

∣∣2 =
∣∣p⋆⋆i − ProjP

(
pti + ηtDt

i

) ∣∣2
≤
∣∣p⋆⋆i − (pti + ηtDt

i

) ∣∣2
=
∣∣(p⋆⋆i − pti

)
− ηt(bi + ci) ·Gi(p

t, rt)
∣∣2

=
∣∣p⋆⋆i − pti

∣∣2 − 2ηt(bi + ci) ·Gi(p
t, rt) ·

(
p⋆⋆i − pti

)
+
(
ηt(bi + ci) ·Gi(p

t, rt)
)2

=
∣∣p⋆⋆i − pti

∣∣2 − 2ηt(bi + ci) ·Gi(p
t,pt) ·

(
p⋆⋆i − pti

)
+
(
ηt(bi + ci) ·Gi(p

t, rt)
)2

+ 2ηt(bi + ci) ·
(
Gi(p

t,pt)−Gi(p
t, rt)

)
·
(
p⋆⋆i − pti

)
≤
∣∣p⋆⋆i − pti

∣∣2 − 2ηt(bi + ci) ·Gi(p
t,pt) ·

(
p⋆⋆i − pti

)
+
(
ηtMG(bi + ci)

)2
+ 2ηt(bi + ci) ·

∣∣p⋆⋆i − pti
∣∣ · ℓr∥rt − pt∥2,

(52)
where we use |Gi(p, r)| ≤MG and the mean value theorem in the last inequality (see Lemma F.5).
LetH(p) be a function defined as

H(p) := (bH + cH) ·GH(p,p) · (p⋆⋆H − pH) + (bL + cL) ·GL(p,p) · (p⋆⋆L − pL). (53)

Then, by summing Eq. (52) over both products i ∈ {H,L}, we have that

∥∥p⋆⋆ − pt+1
∥∥2
2
≤
∥∥p⋆⋆ − pt

∥∥2
2
− 2ηt

∑
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(bi + ci) ·Gi(p
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(
p⋆⋆i − pti

)
+ (ηtMG)

2
∑
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(bi + ci)
2 + 2ηtℓr∥rt − pt∥2

∑
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∣∣p⋆⋆i − pti

∣∣
=
∥∥p⋆⋆ − pt

∥∥2
2
− 2ηtH(pt) + (ηtMG)

2
∑

i∈{H,L}

(bi + ci)
2

+ 2ηtℓr∥rt − pt∥2
∑

i∈{H,L}

(bi + ci) ·
∣∣p⋆⋆i − pti

∣∣
≤
∥∥p⋆⋆ − pt

∥∥2
2
− ηt

(
2H(pt)− ηtC1 − C2∥rt − pt∥2

)
(54)

where we denote C1 := (MG)
2 ·
∑

i∈{H,L}(bi + ci)
2 and C2 = 2ℓr|p− p| ·

∑
i∈{H,L}(bi + ci).

By Lemma F.3, there exist γ > 0 and a open set Uγ ∋ p⋆⋆ such thatH(p) ≥ γ ·∥p−p⋆⋆∥22, ∀p ∈ Uγ .
Consider ϵ0 > 0 such that the ℓ2-neighborhood N2

ϵ0 =
{
p ∈ P2 | ∥p − p⋆⋆∥2 < ϵ0

}
⊂ Uγ .

Furthermore, let Tγ be some period such that

ηt
(
ηtC1 +

√
2C2(p− p)

)
≤ ϵ20

4
, and ηtC1 + C2∥rt − pt∥2 ≤

γ(ϵ0)
2

2
, ∀t > Tγ . (55)

The existence of such a number Tγ follows from the fact that limt→∞ ηt = 0 and limt→∞ ∥rt −
pt∥2 = 0 (see Lemma F.1). Below, we discuss two cases depending on the location of pt in N2

ϵ0 .

Case 1: pt ∈ N2
ϵ0/2
⊂ N2

ϵ0 , i.e.,
∥∥p⋆⋆ − pt

∥∥
2
< ϵ0/2.
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SinceH(p) ≥ 0, ∀p ∈ Uγ by Lemma F.3, it follows from Eq. (54) and Eq. (55) that

∥p⋆⋆ − pt+1
∥∥2
2
≤
∥∥p⋆⋆ − pt

∥∥2
2
+ ηt

(
ηtC1 + C2∥rt − pt∥2

)
(∆)

≤ (ϵ0)
2

4
+ ηt

(
ηtC1 +

√
2C2(p− p)

)
≤ (ϵ0)

2

4
+

(ϵ0)
2

4

< (ϵ0)
2,

(56)

where inequality (∆) is due to ∥rt − pt∥2 ≤
√
2(p− p). Eq. (56) implies that pt+1 ∈ N2

ϵ0 .

Case 2: pt ∈ N2
ϵ0\N

2
ϵ0/2

, i.e.,
∥∥p⋆⋆ − pt

∥∥
2
∈ [ϵ0/2, ϵ0).

By Lemma F.3, we have thatH(pt) ≥ γ
∥∥p⋆⋆ − pt

∥∥2
2
≥ γ(ϵ0)

2/4. Thus, again by Eq. (54) and Eq.
(55), we have that

∥p⋆⋆ − pt+1
∥∥2
2
≤
∥∥p⋆⋆ − pt

∥∥2
2
− ηt

(
2H(pt)− ηtC1 − C2∥rt − pt∥2

)
≤
∥∥p⋆⋆ − pt

∥∥2
2
− ηt

(
γ(ϵ0)

2

2
− ηtC1 − C2∥rt − pt∥2

)
≤
∥∥p⋆⋆ − pt

∥∥2
2

≤ (ϵ0)
2,

(57)

which implies pt+1 ∈ N2
ϵ0 . Therefore, we conclude by induction that the price path will stay in the

ℓ2-neighborhood N2
ϵ0 . This completes the proof of Theorem 5.1. □

Appendix D Proof of Theorem 5.2

Proof. Recall the function H(p) defined in Eq. (53). By Lemma F.3, there exist γ > 0 and a
open set Uγ ∋ p⋆⋆ such that H(p) ≥ γ · ∥p − p⋆⋆∥22, ∀p ∈ Uγ . Consider ϵ0 > 0 such that the
ℓ2-neighborhood N2

ϵ0 =
{
p ∈ P2 | ∥p − p⋆⋆∥2 < ϵ0

}
⊂ Uγ . Below, we first show that the price

path {pt}t≥0 enjoys the sublinear convergence rate in N2
ϵ0 when t is greater than some constant Tϵ0 .

Then, we will show that this convergence rate also holds for any t ≤ Tϵ0 .

By Part 2 in the proof of Theorem 5.1, there exists Tϵ0 > 0 such that pt ∈ N2
ϵ0 for every t ≥ Tϵ0 .

Following a similar argument as Eq. (52) and Eq. (54), we have that

∥∥p⋆⋆ − pt+1
∥∥2
2

(∆1)

≤
∥∥p⋆⋆ − pt

∥∥2
2
− 2ηtH(pt) + C1(η

t)2 + 2ηtℓr∥rt − pt∥2
∑

i∈{H,L}

(bi + ci) ·
∣∣p⋆⋆i − pti

∣∣
(∆2)

≤
∥∥p⋆⋆ − pt

∥∥2
2
− 2ηtγ

∥∥p⋆⋆ − pt
∥∥2
2
+ C1(η

t)2 + 2ηtℓr∥rt − pt∥2 · k̂
∥∥p⋆⋆ − pt

∥∥
2

(∆3)

≤
∥∥p⋆⋆ − pt

∥∥2
2
− 2ηtγ

∥∥p⋆⋆ − pt
∥∥2
2
+ C1(η

t)2 + ηtℓrk̂

[
γ

ℓrk̂

∥∥p⋆⋆ − pt
∥∥2
2
+

ℓrk̂

γ

∥∥rt − pt
∥∥2
2

]
(∆4)

≤
∥∥p⋆⋆ − pt

∥∥2
2
− ηtγ

∥∥p⋆⋆ − pt
∥∥2
2
+ C1(η

t)2 + ηtk
∥∥rt − pt

∥∥2
2
.

(58)
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In step (∆1), ℓr is the Lipschitz constant defined in Eq. (100) and the constant C1 is defined in Eq.
(54). In step (∆2), we utilize Lemma F.3 and the following inequality∑

i∈{H,L}

(bi + ci)
∣∣p⋆⋆i − pti

∣∣ ≤ max
i∈{H,L}

{bi + ci}
∥∥p⋆⋆ − pt

∥∥
1

≤
√
2 max
i∈{H,L}

{bi + ci}
∥∥p⋆⋆ − pt

∥∥
2

= k̂
∥∥p⋆⋆ − pt

∥∥
2
,

(59)

where we define k̂ :=
√
2maxi∈{H,L}{bi + ci}. Step (∆3) in Eq. (58) follows from the inequality

of arithmetic and geometric means, i.e., 2xy ≤ Ax2 + (1/A)y2 for any constant A > 0. The value
of constant k in (∆4) is given by k := (ℓrk̂)

2/γ = 2
(
ℓr maxi∈{H,L}{bi + ci}

)2
/γ.

To upper-bound the right-hand side of Eq. (58), we first focus on the term
∥∥rt−pt

∥∥2
2

and inductively
show that ∥∥rt − pt

∥∥2
2
= O

(
1

t2

)
, ∀t ≥ Tλ :=

√
λ+ 1

√
λ+ 1−

√
2λ

, (60)

where λ := (1+α2)/2 < 1. We use the notation Dt :=
(
Dt

H , Dt
L

)
=
(
(bH +cH)GH(pt, rt), (bL+

cL)GL(p
t, rt)

)
, where we recall that Dt

i is the partial derivative specified in Eq. (9) and function
Gi(·, ·) is defined in Eq. (25). Then, the term

∥∥rt − pt
∥∥2
2

can be upper-bounded as follows∥∥rt − pt
∥∥2
2

=
∥∥αrt−1 + (1− α)pt−1 − pt

∥∥2
2

=
∥∥α(rt−1 − pt−1) + (pt−1 − pt)

∥∥2
2

= α2
∥∥rt−1 − pt−1

∥∥2
2
+
∥∥pt−1 − pt

∥∥2
2
+ 2α(rt−1 − pt−1)⊤(pt−1 − pt)

(∆1)

≤ α2
∥∥rt−1 − pt−1

∥∥2
2
+
∥∥ηt−1Dt−1

∥∥2
2
+ 2α

∥∥rt−1 − pt−1
∥∥
2

∥∥ηt−1Dt−1
∥∥
2

(∆2)

≤ α2
∥∥rt−1 − pt−1

∥∥2
2
+
∥∥ηt−1Dt−1

∥∥2
2
+

1− α2

2

∥∥rt−1 − pt−1
∥∥2
2
+

2α2

1− α2

∥∥ηt−1Dt−1
∥∥2
2

=
1 + α2

2

∥∥rt−1 − pt−1
∥∥2
2
+

1 + α2

1− α2

∥∥ηt−1Dt−1
∥∥2
2

= λ
∥∥rt−1 − pt−1

∥∥2
2
+

1 + α2

1− α2
·

 ∑
i∈{H,L}

(bi + ci)
2
[
Gi(p

t−1, rt−1)
]2 · (ηt−1)2

(∆3)

≤ λ
∥∥rt−1 − pt−1

∥∥2
2
+

1 + α2

1− α2
· (MG)

2
∑

i∈{H,L}

(bi + ci)
2


︸ ︷︷ ︸

λ0

·(ηt−1)2,

(61)
where (∆1) holds due to the Cauchy-Schwarz inequality and the property of the projection operator
(see Line 5 in Algorithm 1). Step (∆2) is derived from the inequality of arithmetic and geometric
means. Lastly, step (∆3) applies the upper bound on function Gi(·, ·) in Lemma F.5 and the definition
of C1 in Eq. (54). For the simplicity of notation, we denote the coefficient of (ηt−1)2 in the last line
as λ0.

Let the step-size be ηt = dη/(t+ 1) for t ≥ 0, where dη is some constant that will be determined
later. Suppose that there exists a constant drp such that∥∥rt−1 − pt−1

∥∥2
2
≤ drp

(t− 1)2
, (62)
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for some t ≥ Tλ + 1. Then, together with Eq. (61), we have that∥∥rt − pt
∥∥2
2
≤ λ

∥∥rt−1 − pt−1
∥∥2
2
+ λ0(η

t−1)2

≤ λdrp
(t− 1)2

+
λ0(dη)

2

t2

=
λdrp
t2
· t2

(t− 1)2
+

λ0(dη)
2

t2

(∆)

≤ λdrp
t2
· λ+ 1

2λ
+

λ0(dη)
2

t2

=
0.5(λ+ 1) · drp + λ0(dη)

2

t2
,

(63)

where the inequality (∆) results from the choice of Tλ. Hence, the induction follows if 0.5(λ +
1)drp + λ0(dη)

2 ≤ drp, which is further equivalent to

drp ≥
2λ0(dη)

2

1− λ
. (64)

Lastly, the base case of the induction requires that
∥∥rTλ − pTλ

∥∥2
2
≤ drp

(Tλ)2
. Therefore, by Eq. (64)

and the definition of feasible price range P = [p, p], it suffices to choose

drp = max

{
2λ0(dη)

2

1− λ
, 2(Tλ)

2(p− p)2
}
, (65)

where the constants λ0 and Tλ are respectively defined in Eq. (61)and Eq. (60). Note that, under this
choice of constant drp, it also holds that∥∥rt − pt

∥∥2
2
≤ 2(p− p)2 <

2(Tλ)
2(p− p)2

t2
≤ drp

t2
, ∀1 ≤ t < Tλ. (66)

Together with Eq. (60), we derive that∥∥rt − pt
∥∥2
2
≤ drp

t2
, ∀t ≥ 1. (67)

For every t ≥ Tϵ0 , we can further upper-bound the right-hand side of Eq. (58) by exploiting the upper
bound of

∥∥rt − pt
∥∥2
2

in Eq. (67) and the choice of ηt = dη/(t+ 1):∥∥p⋆⋆ − pt+1
∥∥2
2
≤
(
1− γdη

t+ 1

)∥∥p⋆⋆ − pt
∥∥2
2
+

C1(dη)
2

(t+ 1)2
+

dηk · drp
(t+ 1)t2

≤
(
1− γdη

t+ 1

)∥∥p⋆⋆ − pt
∥∥2
2
+

1

t(t+ 1)

(
C1(dη)

2 +
dηkdrp
Tϵ0

)
︸ ︷︷ ︸

C3

.
(68)

Now, we inductively show that∥∥p⋆⋆ − pt
∥∥2
2
= O

(
1

t

)
, ∀t ≥ Tϵ0 . (69)

Suppose there exists a constant dp such that for a fixed period t ≥ Tϵ0∥∥p⋆⋆ − pt
∥∥2
2
≤ dp

t
. (70)

To establish the induction, it suffices for the following inequality to hold∥∥p⋆⋆ − pt+1
∥∥2
2
≤
(
1− γdη

t+ 1

)
dp
t

+
C3

t(t+ 1)
≤ dp

t+ 1
, (71)
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which is further equivalent to
(γdη − 1)dp ≥ C3. (72)

To satisfy the base case of the induction, we can select dp such that dp ≥ Tϵ0 ·
∥∥p⋆⋆ − pTϵ0

∥∥2
2
. In

summary, one possible set of constants (dη, drp, dp) that satisfies all the requirements can be

dη =
2

γ
, drp = max

{
2λ0(dη)

2

1− λ
, 2(Tλ)

2(p− p)2
}
, dp = max{C3, 2Tϵ0(p− p)2}, (73)

where the constants λ0, Tλ, and C3 are respectively defined in Eq. (61), Eq. (60), and Eq. (68). Now,
for any period 1 ≤ t < Tϵ0 , it follows that∥∥p⋆⋆ − pt

∥∥2
2
≤ 2(p− p)2 <

2Tϵ0(p− p)2

t
≤ dp

t
. (74)

Together with Eq. (69), this proves the convergence rate for the price path, i.e.,∥∥p⋆⋆ − pt
∥∥2
2
≤ dp

t
, ∀t ≥ 1. (75)

Finally, the convergence rate of the reference price path can be deduced from the following triangular
inequality: ∥∥p⋆⋆ − rt

∥∥2
2
=
∥∥p⋆⋆ − pt + pt − rt

∥∥2
2

≤ 2
∥∥p⋆⋆ − pt

∥∥2
2
+ 2
∥∥pt − rt

∥∥2
2

(∆)

≤ 2dp
t

+
2drp
t2

≤ 2dp + 2drp
t

, ∀t ≥ 1,

(76)

where (∆) follows from Eq. (67) and Eq. (75). Therefore, it suffices to choose dr := 2dp + 2drp,
and this completes the proof.

□

Appendix E Proof of Theorem 6.1

Proof. Recall the definition of Gi(p, r) from Eq. (25). We can write the inexact derivative as
Dt

i = (bi + ci)Gi(p
t, rt) + nt

i, where nt
i represents the error satisfying |nt

i| < δ, ∀i ∈ {H,L} and
∀t ≥ 0.

We also recall the two-part proof for Theorem 5.1: in Part 1, we show that the price path and reference
price paths converge towards the SNE and visit the neighborhood N1

ϵ infinitely many times, for any
ϵ > 0. In Part 2, we establish that, given ϵ is below a certain threshold ϵ0, the price vector would
remain in the neighborhood N2

ϵ after entering it with a sufficiently small step-size. Since the relative
scale of δ and ϵ0 is unsure, our proof below is mainly based on Part 1.

In Part 1, the original proof assuming the exact gradient oracle employs a contradiction-based
argument. Suppose the price path does not converge to the SNE, the proof consists of the following
major steps (different from Appendix C, we use ϵ in lieu of ϵ0 to avoid confusion in the following
proof):

• In Eq. (29), it is demonstrated that the price path steadily approaches the SNE if it stays in the
same quadrant defined in Eq. (28). The main technique we use is G(p) > Mϵ when ε(p) > ϵ. The
definition of G(p) and the validation for the technique are stated in Lemma F.2.

• In Eq. (34), we show that the price path only oscillates between adjacent quadrants provided the
step-sizes are sufficiently small.

• From Eqs (37) to (41), we prove that even when the price path does not stay in the same quadrant, it
will still converge toward the SNE if it is at the boundary regions between two quadrants. The pivotal
inequality employed here is again G((p⋆⋆H , p

T
ϵ1
1

L )) ≥Mϵ−ϵ1 , provided ε((p⋆⋆H , p
T

ϵ1
1

L )) > ϵ− ϵ1 (see
the end of Eqs. (38) and (40)).
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• Finally, in Eq. (44) and subsequent equations, we provide supplementary justification for the above
bullet that the price path remains adjacent to the boundaries given that the step-size is small. A
crucial consideration here is opting for a much smaller ϵ1 relative to ϵ when defining the boundary
region. In addition, the inequality G((pT

ϵ1
2

H , p⋆⋆L )) ≥Mϵ̂1 is also utilized in Eq. (50).

To summarize, the key to the proof is Lemma F.2., i.e., G(p) > Mϵ > 0 as long as ε(p) > ϵ. By
definition, G(pt) approximately characterizes the difference ε(pt)− ε(pt+1) as seen in Eq. (29). As
a result, the effect of the lower bound Mϵ is that, if other terms can be upper-bounded by Mϵ, we can
show that the updated price is closer to the SNE. For example, in the right-hand side of Eq. (29), once
the term 2ℓr∥rt − pt∥2 is below Mϵ, it suggests that the price vector is heading towards the SNE.

With inexact first-order oracles, the immediate consequence is that there will always be an error term
accompanying G(p). For instance, given Dt

i = (bi + ci)Gi(p
t, rt) + nt

i, we observe that Eq. (29)
evolves to

ε(pt+1) ≤ ε(pt)− ηt

Mϵ − 2ℓr∥rt − pt∥2 −
∑

i∈{H,L}

nt
i

(bi + ci)

 . (77)

This observation is consistent across the proof. Thus, if the error nt
i is substantially smaller than

Mϵ, the proof of Theorem 5.1 remains valid, implying that the price vector converges towards the
SNE. The subtlety arises when the size of nt

i is comparable with Mϵ. Under such circumstances, the
analysis in both Eq. (29) and Eqs. (37) to (41) becomes invalid, as the errors are substantial enough
to negate any assurance that the price path strictly approaches the SNE.

However, if the error nt
i is similar in magnitude to G(p), we can show that the price vector p is

already close to the SNE p⋆⋆. More precisely, since the errors are bounded by δ, it is equivalent to
show that G(p) = O(δ) also implies ∥p− p⋆⋆∥2 = O(δ). This can be proved by a refined version
of Lemma F.2.

Lemma E.1 (Refined Lemma F.2) Let G(p) be the function defined in Eq. (86). Then, it holds that

G(p) ≥
∑
i

|pi − p⋆⋆i |
(bi + ci)p⋆⋆i p

, (78)

i.e., G(p) is lower-bounded by a weighted ℓ1 distance between p and p⋆⋆. By the equivalence of
norms in the Euclidean space, there exists some constant C such that G(p) ≥ C · ∥p− p⋆⋆∥2.

Proof. Similar to the proof of the original Lemma F.2, we separately consider the four possible
scenarios where p belongs to one of the quadrant defined in Eq. (28).

1. Suppose pH > p⋆⋆H and pL ≥ p⋆⋆L , i.e., p ∈ N1. Since Gi(p
⋆⋆) = 0, we have that

G(p) = G(p)− G(p⋆⋆) =
∑
i

1

bi + ci

(
1

p⋆⋆i
− 1

pi

)
+ d0(p,p)− d0(p

⋆⋆,p⋆⋆). (79)

By definition of the non-purchase probability, we observe that d0(p,p) − d0(p
⋆⋆,p⋆⋆) > 0.

Hence, the above equation implies that

G(p) >
∑
i

1

bi + ci
· pi − p⋆⋆i

p⋆⋆i pi
≥
∑
i

1

bi + ci
· pi − p⋆⋆i

p⋆⋆i p
=
∑
i

|pi − p⋆⋆i |
(bi + ci)p⋆⋆i p

, (80)

where we use the fact that pi ∈ P = [p, p] and the presumption p ∈ N1.

2. Suppose pH ≤ p⋆⋆H and pL > p⋆⋆L , i.e., p ∈ N2. Again, using the fact that Gi(p
⋆⋆) = 0, we

derive that

G(p) = 1

bH + cH

(
1

pH
− 1

p⋆⋆H

)
+

1

bL + cL

(
1

p⋆⋆L
− 1

pL

)
+ [dH(p,p)− dH(p⋆⋆,p⋆⋆)] + [dL(p

⋆⋆,p⋆⋆)− dL(p,p)] .

(81)

Since p ∈ N2, we have that dH(p,p) − dH(p⋆⋆,p⋆⋆) > 0 and dL(p
⋆⋆,p⋆⋆) − dL(p,p) > 0.

Hence, similar to the first case, it follows that

G(p) > 1

bH + cH

(
1

pH
− 1

p⋆⋆H

)
+

1

bL + cL

(
1

p⋆⋆L
− 1

pL

)
≥
∑
i

|pi − p⋆⋆i |
(bi + ci)p⋆⋆i p

. (82)
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The same conclusion can be drawn when p ∈ N3∪N4, and the proof is intrinsically the same. Hence,
we conclude the proof of this lemma. □

Finally, due to Lemma E.1, we have that ∥p− p⋆⋆∥2 ≤ 1/C · G(p). Therefore, when G(p) = O(δ),
we also have ∥p − p⋆⋆∥2 = O(δ), i.e., the price vector is already in a O(δ) neighborhood of the
SNE. This completes the proof of Theorem 6.1. □

Appendix F Supporting lemmas

Lemma F.1 (Convergence of price to reference price) Let {pt}t≥0 and {rt}t≥0 be the price path
and reference path generated by Algorithm 1 with non-increasing step-sizes {ηt}t≥0 such that
limt→∞ ηt = 0. Then, their difference {rt − pt}t≥0 converges to 0 as t goes to infinity.

Proof. First, we recall that Dt
i = (bi + ci) ·Gi(p

t, rt), where Gi(p, r) is the scaled partial derivative
defined in (25). Thus, it follows from Lemma F.5 that |Dt

i | ≤ (bi + ci)MG. Since {ηt}t≥0 is a
non-increasing sequence with limt→∞ ηt = 0, for any constant η > 0, there exists Tη ∈ N such that
|ηtDt

i | ≤ η for every t ≥ Tη and for every i ∈ {H,L}. Therefore, it holds that∣∣pt+1
i − pti

∣∣ = ∣∣ProjP (pti + ηtDt
i

)
− pti

∣∣ ≤ ∣∣ηtDt
i

∣∣ ≤ η, ∀t ≥ Tη, (83)

where the first inequality is due to the property of the projection operator. Then, by the reference
price update, we have for t ≥ Tη and for i ∈ {H,L} that∣∣rt+1

i − pt+1
i

∣∣ = ∣∣αrti + (1− α)pti − pt+1
i

∣∣
=
∣∣α (rti − pti

)
+
(
pt+1
i − pti

)∣∣
≤ α

∣∣rti − pti
∣∣+ ∣∣pt+1

i − pti
∣∣

≤ α
∣∣rti − pti

∣∣+ η,

(84)

where the last line follows from the upper bound in Eq. (83). Applying Eq. (84) recursively from t to
Tη , we further derive that

∣∣∣rt+1
i − pt+1

i

∣∣∣ ≤ αt+1−Tη ·
∣∣∣rTη

i − p
Tη

i

∣∣∣+ η

t∑
τ=Tη

ατ−Tη

≤ αt+1−Tη · (p− p) +
η

1− α
, ∀i ∈ {H,L}.

(85)

Since η can be arbitrarily close to 0, we have that |rti − pti| → 0 as t → ∞, which completes the
proof of the convergence. □

Lemma F.2 Define the function G(p) as

G(p) := sign(p⋆⋆H − pH) ·GH(p,p) + sign(p⋆⋆L − pL) ·GL(p,p), (86)

where Gi(p, r) is the scaled partial derivative introduced in Eq. (25). Then, it always holds that
G(p) > 0,∀p ∈ P2\{p⋆⋆}, where p⋆⋆ = (p⋆⋆H , p⋆⋆L ) denotes the unique SNE, and the function
sign(·) is defined in Eq. (27).

Furthermore, for every ϵ > 0, there exists Mϵ > 0 such that G(p) ≥Mϵ if ε(p) ≥ ϵ, where ε(p) is
the weighted ℓ1-distance function defined in Eq. (24).

Proof. Firstly, by the first-order condition at the SNE (see Eq. (16)), we have GH(p⋆⋆,p⋆⋆) =
GL(p

⋆⋆,p⋆⋆) = 0, which also implies G(p⋆⋆) = 0. Then, we recall the definition of four regions
N1, N2, N3, and N4 in Eq. (28). We show that G(p) > 0 when p belongs to either one of the four
regions.
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1. When p ∈ N1, i.e., pH > p⋆⋆H and pL ≥ p⋆⋆L , the function G(p) becomes
G(p) = −GH(p,p)−GL(p,p)

= − 1

(bH + cH)pH
− 1

(bL + cL)pL
−
(
dH(p,p) + dL(p,p)

)
+ 2

= − 1

(bH + cH)pH
− 1

(bL + cL)pL
+ d0(p,p) + 1

= − 1

(bH + cH)pH
− 1

(bL + cL)pL
+

1

1 + exp(aH − bHpH) + exp(aL − bLpL)
+ 1,

(87)
where d0(p, r) = 1− dH(p, r)− dL(p, r) denotes the no purchase probability. We observe from
Eq. (87) that G(p) is strictly increasing in pH and pL. Together with the fact that pH and pL are
lowered bounded by p⋆⋆H and p⋆⋆L , respectively, and G(p⋆⋆) = 0, we verify that G(p) > 0 when
p ∈ N1. With the similar approach, we show that when p ∈ N3, i.e., pH < p⋆⋆H and pL ≤ p⋆⋆L , it
also follows that G(p) > 0.

2. When p ∈ N2, i.e., pH ≤ p⋆⋆H and pL > p⋆⋆L , the function G(p) becomes
G(p) = GH(p,p)−GL(p,p)

=
1

(bH + cH)pH
− 1

(bL + cL)pL
+ dH(p,p)− dL(p,p)

=
1

(bH + cH)pH
− 1

(bL + cL)pL
+

exp(aH − bHpH)− exp(aL − bLpL)

1 + exp(aH − bHpH) + exp(aL − bLpL)
.

(88)

By Eq. (88), we notice that G(p) under region N2 is strictly decreasing in pH and strictly
increasing in pL. Meanwhile, since pH ≤ p⋆⋆H , pL > p⋆⋆L , and G(p⋆⋆) = 0, it implies that
G(p) > 0 when p ∈ N2. Moreover, by similar reasoning, we show that when p ∈ N4, i.e.,
pH ≥ p⋆⋆H and pL < p⋆⋆L , the inequality G(p) > 0 also holds.

Finally, we are left to establish the existence of Mϵ. It suffices to show that
min

ε(p)=ϵ1
G(p) > min

ε(p)=ϵ2
G(p). (89)

for every ϵ1 > ϵ2 > 0. Suppose pϵ1 := argminε(p)=ϵ1 G(p). Define pϵ2 := (ϵ2/ϵ1)p
ϵ1 + (1 −

ϵ2/ϵ1)p
⋆⋆, which satisfies that ε(pϵ2) = ϵ2. Then, we have that

G(pϵ2) = sign(p⋆⋆H − pϵ2H ) ·GH(pϵ2 ,pϵ2) + sign(p⋆⋆L − pϵ2L ) ·GL(p
ϵ2 ,pϵ2)

(∆1)
= sign

(ϵ2
ϵ1
(p⋆⋆H − pϵ1H )

)
·GH(pϵ2 ,pϵ2) + sign

(ϵ2
ϵ1
(p⋆⋆L − pϵ1L )

)
·GL(p

ϵ2 ,pϵ2)

= sign(p⋆⋆H − pϵ1H ) ·GH(pϵ2 ,pϵ2) + sign(p⋆⋆L − pϵ1L ) ·GL(p
ϵ2 ,pϵ2)

(∆2)

≤ sign(p⋆⋆H − pϵ1H ) ·GH(pϵ1 ,pϵ1) + sign(p⋆⋆L − pϵ1L ) ·GL(p
ϵ1 ,pϵ1) = G(pϵ1),

(90)

where (∆1) follows from substituting pϵ2i in sign(p⋆⋆i −pϵ2i ) with pϵ2i = (ϵ2/ϵ1)p
ϵ1
i +(1− ϵ2/ϵ1)p

⋆⋆
i .

To see why (∆2) holds, recall that we have shown in Eq. (87) and Eq. (88) that when two prices
are in the same region (see four regions defined in Eq. (28)), the price closer to p⋆⋆ in terms of the
metric ε(·) has a greater value of G(p). Since pϵ1 and pϵ2 are from the same region and ϵ1 > ϵ2, we
conclude that minε(p)=ϵ1 G(p) = G(pϵ1) > G(pϵ2) ≥ minε(p)=ϵ2 G(p). □

Lemma F.3 Define functionH(p) as follows
H(p) := (bH + cH) ·GH(p,p) · (p⋆⋆H − pH) + (bL + cL) ·GL(p,p) · (p⋆⋆L − pL) (91)

Then, there exist γ > 0 and a open set Uγ ∋ p⋆⋆ such that

H(p) ≥ γ · ∥p− p⋆⋆∥22, ∀p ∈ Uγ . (92)

Proof. According to the partial derivatives in Eq. (98a) and Eq. (98b) from Lemma F.5, we have
∂Gi(p,p)

∂pi
= − 1

(bi + ci)p2i
− bi · di(p,p) ·

(
1− di(p,p)

)
;

∂Gi(p,p)

∂p−i
= b−i · di(p,p) · d−i(p,p).

(93)
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Then, to compute the gradient ∇H(p) = [∂H(p)/∂pH , ∂H(p)/∂pL], we utilize partial derivatives
of Gi(p,p) in Eq. (93) and obtain the partial derivatives ofH(p) for i ∈ {H,L}:

∂H(p)
∂pi

=(bi + ci)

[
∂Gi(p,p)

∂pi
(p⋆⋆i − pi)−Gi(p,p)

]
+ (b−i + c−i)(p

⋆⋆
−i − p−i)

∂G−i(p,p)

∂pi

=− p⋆⋆i
p2i
− (bi + ci)

(
di(p,p)− 1

)
− bi(bi + ci) · di(p,p) ·

(
1− di(p,p)

)
(p⋆⋆i − pi)

+ bi(b−i + c−i) · di(p,p) · d−i(p,p) · (p⋆⋆−i − p−i).
(94)

From the definition of Gi(·, ·) in Eq. (31) and the system equations of first-order condition in Eq.
(16), we have Gi(p

⋆⋆,p⋆⋆) = 1/
[
(bi+ ci)p

⋆⋆
i

]
+(d⋆⋆i −1) = 0, where d⋆⋆i := di(p

⋆⋆,p⋆⋆) denotes
the market share of product i at the SNE. Thereby, it follows that∇H(p⋆⋆) = 0.

Next, the Hessian matrix∇2H(p) evaluated at p⋆⋆ can be computed as

∇2H(p⋆⋆)

=


∂2H(p⋆⋆)

∂pH2
,

∂2H(p⋆⋆)

∂pH∂pL

∂2H(p⋆⋆)

∂pL∂pH
,

∂2H(p⋆⋆)

∂pL2



=


2p⋆⋆H
(p⋆⋆H )3

+ 2bH(bH + cH) · d⋆⋆H
(
1− d⋆⋆H

)
, −

[
bH(bL + cL) + bL(bH + cH)

]
· d⋆⋆H d⋆⋆L

−
[
bH(bL + cL) + bL(bH + cH)

]
· d⋆⋆H d⋆⋆L ,

2p⋆⋆L
(p⋆⋆L )3

+ 2bL(bL + cL) · d⋆⋆L
(
1− d⋆⋆L

)


=

[
2(bH + cH) ·

(
1− d⋆⋆H

)
·
[
(bH + cH)− cHd⋆⋆H

]
, −
[
bH(bL + cL) + bL(bH + cH)

]
· d⋆⋆H d⋆⋆L

−
[
bH(bL + cL) + bL(bH + cH)

]
· d⋆⋆H d⋆⋆L , 2(bL + cL) ·

(
1− d⋆⋆L

)
·
[
(bL + cL)− cLd

⋆⋆
L

]
]
.

Note that the last equality results again from substituting in the identity Gi(p
⋆⋆,p⋆⋆) = 1/

[
(bi +

ci) · p⋆⋆i
]
+ (d⋆⋆i − 1) = 0.

34



The diagonal entries of∇2H(p⋆⋆) are clearly positive. For i ∈ {H,L}, define ki := bi/(bi + ci) ∈
[0, 1]. Then, the determinant of ∇2H(p⋆⋆) can be computed as follows:

det
(
∇2H(p⋆⋆)

)
= 4(bH + cH)(bL + cL) ·

(
1− d⋆⋆H

)(
1− d⋆⋆L

)
·
[
(bH + cH)− cHd⋆⋆H

][
(bL + cL)− cLd

⋆⋆
L

]
−
([

bH(bL + cL) + bL(bH + cH)
]
· d⋆⋆H d⋆⋆L

)2
= (bH + cH)2(bL + cL)

2 ·
(
4
(
1− d⋆⋆H

)(
1− d⋆⋆L

)
·
[
1− (1− kH)d⋆⋆H

][
1− (1− kL)d

⋆⋆
L

]
− (kH + kL)

2
(
d⋆⋆H d⋆⋆L

)2)
(∆1)

≥ 4(bH + cH)2(bL + cL)
2 ·
((

1− d⋆⋆H
)(
1− d⋆⋆L

)
·
[
1− (1− kH)d⋆⋆H

][
1− (1− kL)d

⋆⋆
L

]
−
(
d⋆⋆H d⋆⋆L

)2)
(∆2)

≥ 4(bH + cH)2(bL + cL)
2 · d⋆⋆H d⋆⋆L

([
1− (1− kH)d⋆⋆H

][
1− (1− kL) · d⋆⋆L

]
− d⋆⋆H d⋆⋆L

)
(∆3)

≥ 4(bH + cH)2(bL + cL)
2 · d⋆⋆H d⋆⋆L

[(
1− d⋆⋆H

)(
1− d⋆⋆L

)
− d⋆⋆H d⋆⋆L

]
= 4(bH + cH)2(bL + cL)

2 · d⋆⋆H d⋆⋆L
(
1− d⋆⋆H − d⋆⋆L

)
(∆4)
> 0,

(95)
where inequalities respectively result from the following facts (∆1): kH + kL ≤ 2; (∆2): 1− d⋆⋆i >
d⋆⋆−i for i ∈ {H,L}; (∆3): 1− ki ≤ 1 for i ∈ {H,L}; (∆4): d⋆⋆H + d⋆⋆L < 1. Thus, we conclude that
∇2H(p⋆⋆) is positive definite.

By the continuity of∇2H(p), there exists some constant γ > 0 and a open set Uγ ∋ p⋆⋆ such that
∇2H(p) ⪰ 2γI2, ∀p ∈ Uγ , where I2 is the 2 × 2 identity matrix. Using the second-order Taylor
expansion at p⋆⋆, for all p ∈ Uγ , there exists p̃ ∈ Uγ such that

H(p) = H(p⋆⋆) +∇H(p⋆⋆) ·
(
p− p⋆⋆

)
+

1

2

(
p− p⋆⋆

)⊤ · ∇2H(p̃) ·
(
p− p⋆⋆

)
=

1

2

(
p− p⋆⋆

)⊤ · ∇2H(p̃) ·
(
p− p⋆⋆

)
≥ 1

2

(
p− p⋆⋆

)⊤ · 2γI2 · (p− p⋆⋆
)

= γ∥p− p⋆⋆∥22,

(96)

where the second equality arises from thatH(p⋆⋆) = 0 and ∇H(p⋆⋆) = 0. □

Lemma F.4 For any product i ∈ {H,L}, let

Ĝi(p) := sign
(
p⋆⋆i − pi

)
·Gi

(
p,p

)
, (97)

where Gi(p, r) is the scaled partial derivative defined in Eq. (25). Then, Ĝi(p) is always increasing
as |p⋆⋆i − pi| increases, and

1. when p ∈ N1 ∪N3 (see the definition in Eq. (28)), Ĝi(p) is decreasing as |p⋆⋆−i − p−i| increases;

2. when p ∈ N2 ∪N4, Ĝi(p) is increasing as |p⋆⋆−i − p−i| increases.

Proof. Without loss of generality, consider the case that product i = H and product −i = L.

Apparently, we have sign
(
p⋆⋆H − pH

)
≤ 0 in N1 ∪ N4, and sign

(
p⋆⋆H − pH

)
≥ 0 in N2 ∪ N3

by definitions (see Eq. (28)). On the other hand, by Eq. (98b) in Lemma F.5, it holds that
∂GH

(
p,p

)
/∂pH < 0 and ∂GH

(
p,p

)
/∂pL > 0, ∀p ∈ P2. Thus,

1. in N1∪N4, GH

(
p,p

)
is decreasing as |p⋆⋆H −pH | increases; in N2∪N3, GH

(
p,p

)
is increasing

as |p⋆⋆H − pH | increases;
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2. in N1 ∪N2, GH

(
p,p

)
is increasing as |p⋆⋆L − pL| increases; conversely, GH

(
p,p

)
is decreasing

as |p⋆⋆L − pL| increases in N3 ∪N4.

The final results directly follows by combining the above pieces together. □

Lemma F.5 Let Gi(p, r) be the scaled partial derivative defined in Eq. (25), then partial derivatives
of Gi(p, r) with respect to p and r are given as

∂Gi(p, r)

∂pi
= − 1

(bi + ci)p2i
− (bi + ci) · di(p, r) ·

(
1− di(p, r)

)
; (98a)

∂Gi(p, r)

∂p−i
= (b−i + c−i) · di(p, r) · d−i(p, r); (98b)

∂Gi(p, r)

∂ri
= ci · di(p, r) ·

(
1− di(p, r)

)
; (98c)

∂Gi(p, r)

∂r−i
= −c−i · di(p, r) · d−i(p, r). (98d)

Meanwhile, Gi(p, r) and its gradient are bounded as follows∣∣Gi(p, r)
∣∣ ≤MG,

∥∥∇rGi(p, r)
∥∥
2
≤ ℓr, ∀p, r ∈ P2 and ∀i ∈ {H,L}, (99)

where the upper bound constant MG and the Lipschitz constant ℓr are defined as

MG := max

{
1

(bH + cL)p
,

1

(bL + cL)p

}
+ 1, ℓr :=

1

4

√
c2H + c2L. (100)

Proof. We first verify the partial derivatives from Eq. (98a) to Eq. (98d):

∂Gi(p, r)

∂pi
=

1

(bi + ci)p2i
+

∂di(p, r)

∂pi

=
1

(bi + ci)p2i
−

(bi + ci) · exp
(
ui(pi, ri)

)
·
(
1 + exp

(
u−i(p−i, r−i)

))
(
1 + exp

(
ui(pi, ri)

)
+ exp

(
u−i(p−i, r−i)

))2
=

1

(bi + ci)p2i
− (bi + ci) · di(p, r) ·

(
1− di(p, r)

)
.

∂Gi(p, r)

∂p−i
=

∂di(p, r)

∂p−i

=
(b−i + c−i) · exp

(
ui(pi, ri)

)
· exp

(
u−i(p−i, r−i)

)(
1 + exp

(
ui(pi, ri)

)
+ exp

(
u−i(p−i, r−i)

))2
= (b−i + c−i) · di(p, r) · d−i(p, r).

(101)

Then, the partial derivatives with respect to r, as shown in Eq. (98c) and Eq. (98d), can be similarly
computed.

In the next part, we show that Gi(p, r) is bounded for p, r ∈ P2:∣∣Gi(p, r)
∣∣ = ∣∣∣∣ 1

(bi + ci)pi
+ di(p, r)− 1

∣∣∣∣
≤
∣∣∣∣ 1

(bi + ci)pi

∣∣∣∣+ ∣∣di(p, r)− 1
∣∣

≤ 1

(bi + ci)p
+ 1.

(102)
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Hence, it follows that
∣∣Gi(p, r)

∣∣ for every i ∈ {H,L} is upper bounded by∣∣Gi(p, r)
∣∣ ≤ max

{
1

(bH + cL)p
,

1

(bL + cL)p

}
+ 1 =: MG, ∀p, r ∈ P2,∀i ∈ {H,L}. (103)

Finally, we demonstrate that ∥∇rGi(p, r)∥ is also bounded ∀p, r ∈ P2 and ∀i ∈ {H,L}. From Eq.
(98c) and Eq. (98d), we have∥∥∇rGi(p, r)

∥∥2
2
=
(
ci · di(p, r) ·

(
1− di(p, r)

))2
+
(
− c−i · di(p, r) · d−i(p, r)

)2
= c2i ·

(
di(p, r) ·

(
1− di(p, r)

))2
+ c2−i ·

(
di(p, r) · d−i(p, r)

)2
≤ 1

16

(
c2i + c2−i

)
,

(104)

where the inequality follows from the fact that x · y ≤ 1/4 for any two numbers such that x, y > 0

and x + y ≤ 1. Thus, it follows that
∥∥∇rGi(p, r)

∥∥
2
≤ (1/4)

√
c2H + c2L := lr, ∀p, r ∈ P2 and

∀i ∈ {H,L}. □

Limitaions

This is a theoretical work that concerns with algorithm design in a competitive market, with the
primary goal of learning a stable equilibrium. The consumer demand follows the multinomial logit
model, and we assume that their price/reference price sensitivities are positive, i.e., bi, ci > 0. The
feasible price range P = [p, p] is assumed to contain the unique SNE, with the lower bound p > 0.
We have justified both assumptions in the main body of the paper (see the discussion below Eq. (3)
and Proposition 3.1).

The convergence results in the paper assume the firms take diminishing step-sizes {ηt}t≥0 with∑∞
t=0 η

t =∞, which is common in the literature of online games (see, e.g., [15, 14, 40]). We also
discuss the extension to constant step-sizes in Remark 5.3.
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